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Abstract: The intention of this paper is mainly two-fold. First, we point out a striking numerical
agreement between the bulk viscosity in the lepton era calculated by Husdal (2016) and our own
calculations of the present-day bulk viscosity when the functional form is ζ ∼ √ρ. From a
phenomenological point of view, we thus seem to have an ansatz for the viscosity, which bridges the
infancy of the Universe (∼1 s) with the present. This can also be looked upon as a kind of symmetry
between the early-time cosmology and the present-day cosmology: it is quite remarkable that the
kinetic theory-based bulk viscosity in the early universe and the experimentally-based bulk viscosity
in the present universe can be covered by the same simple analytical formula. Second, we consider
the Kasner universe as a typical anisotropic model of Bianchi-Type I, investigating whether this
geometrical model is compatible with constant viscosity coefficients in the fluid. Perhaps surprisingly,
the existence of a shear viscosity turns out to be incompatible with the Kasner model. By contrast,
a bulk viscosity is non-problematic in the isotropic version of the model. In the special case of a
Zel’dovich (stiff) fluid, the three equal exponents in the Kasner metric are even determined by the
bulk viscosity alone, independent of the value of the fluid energy density. We also give a brief
comparison with some other recent approaches to viscous cosmology.

Keywords: viscous cosmology; kasner universe; anisotropic cosmology

1. Introduction

Recent years have witnessed an increased interest in bulk-viscous properties in the cosmic fluid.
From a hydrodynamicist’s point of view, it is almost surprising that this surge of interest has not
occurred earlier. As is known, viscous effects are quite ubiquitous in ordinary hydrodynamics, and one
should not expect the cosmic fluid to be an exception in that respect. There are in general two viscosity
coefficients, the shear viscosity η and the bulk viscosity ζ, corresponding to first-order deviation
from thermal equilibrium, although normally, the shear viscosity is omitted in cosmology because
of the assumption about the spatial isotropy of the fluid. However, what happens if one takes away
the assumption about isotropy? We demonstrate that in the Kasner universe, shear viscosity seems
unphysical. Hence, we are left with bulk-viscous modifications to the equation of state. Moreover,
we present in this paper a striking similarity between the results obtained for the bulk viscosity of the
late Universe [1] based on a much-used phenomenological approach (ζ ∼ √ρ) and that calculated by
Husdal and others (see below) for the early lepton era.

We will assume a spatially flat Friedmann–Lemaître–Robertson–Walker universe, where the
metric is:

ds2 = −dt2 + a2(t)dx2, (1)
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and the energy-momentum tensor of the whole fluid is:

Tµν = ρUµUν + (p− θζ)hµν, (2)

with hµν = gµν + UµUν as the projection tensor. The scalar expansion is θ = Uµ
;µ = 3H. In comoving

coordinates, the components of the fluid four-velocity are U0 = 1, Ui = 0.
The total energy density ρ of the cosmic fluid is taken to be composed of several parts,

ρ = ρDE + ρDM + ρB + ρR, (3)

where subscripts DE, DM, B, and R refer to dark energy, dark matter, baryons, and radiation,
respectively. Experiments show that the dark sector amounts to about 95% of the total energy
content [2]. We will define ρM as the sum of the dark matter and baryons,

ρM = ρDM + ρB. (4)

The contribution from radiation is negligible. Defining the usual density parameters Ωi = ρi/ρc

with ρc the critical density, we have:

ΩDE =
ρDE

ρc
, ΩM =

ρM

ρc
, ρc =

3H2

8πG
. (5)

At present (subscript 0), the Planck experiment finds ([2], Table 2). ΩDE = 0.6847, Ω0M = 0.3153,
summing up to unity. It is also useful to note that H0 = 67.36 km s−1 Mpc−1 = 2.20× 10−18 s−1,
ρ0c = 3H2

0 /8πG = 8.5× 10−27 kg m−3.
Consider now the Friedmann equations:

θ2 = 24πGρ, (6)

θ̇ +
1
2

θ2 = −12πG(p− ζθ). (7)

The obvious task is to figure out how to model the bulk viscosity (although not a focus in the
present work, we also remark that a positive, non-vanishing bulk viscosity will generate entropy [3]) .
One obvious choice—and the one made in this paper—is to model the bulk viscosity as a function of
the total energy density, ζ = ζ(ρ). In [1,4], we advocated the power-law form:

ζ(ρ) = ζ0

(
ρ

ρ0

)λ

, (8)

with λ a constant. Preference, although not a very strong one, was given to the case λ = 1/2,
in agreement with several other investigators having compared with experiments.

Our motivations for undertaking the present investigation are the following:
(i) The phenomenological approach above was based on redshifts up to about z = 2.3. It is of

interest to make a big jump in the cosmological scale, back to the lepton-photon universe, characterized
by temperatures between T = 1012 K and 1010 K, where the Universe was populated by photons,
neutrinos, electrons, and their antiparticles. Furthermore, under such circumstances, a bulk viscosity
appears, explained in kinetic terms as a result of the imbalance between the free paths of neutrinos and
the other particles. The maximum bulk viscosity occurs at the time of neutrino decoupling, T = 1010 K.
We will base our analysis on the recent papers of Husdal et al. [5–7]. Moreover, we will show that a
bold extrapolation of the formula (8) with λ = 1/2 back to this very early instant brings surprisingly
good agreement with the kinetic theory based result for ζ. It becomes suggestive to assume that
Formula (8) holds for very longer times back than what is so far justified from observations. In other
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words, there is apparently a kind of symmetry between the early-time cosmology and the present-day
cosmology as far as the bulk viscosity is concerned.

(ii) Some effort ought to be made to clarify the reasons why there are apparently conflicting
statements in the recent literature. The extensive analysis of Yang et al. [8] favors the form ζ ∝ ρm

with m ≈ −0.4, thus of a generalized Chaplygin form, and quite different from what we stated above.
As one might expect, this discrepancy is rooted in differences in the initial formalism. We consider this
theme in some detail in Section 3.

(iii) The common omission of the shear viscosity in cosmology is not quite trivial, all the time that
the shear viscosity is the dominant viscosity in ordinary fluid mechanics. One might suspect that even
a slight anisotropy in the cosmic fluid could easily compensate for the bulk viscosity. We consider this
point in Section 4, choosing the anisotropic Kasner universe as an example. It actually turns out that
the Kasner model is not easily compatible with a shear viscosity. On the other hand, the model admits
a bulk viscosity without any problems, in the degenerate case of spatial isotropy.

Readers interested in review articles on viscous cosmology may consult [3,9–12]. By now,
the literature is rich with contributions on the topic of viscous cosmology. The contributions include
investigations of the early universe [13–16], the late universe [17–19], the phantom divide [20–25],
models for the dark sector [26–29], and others [30–39].

2. Possible Relationship to the Bulk Viscosity in the Lepton-Photon Epoch

On the basis of H(z) measured for different moderate values of z (0 < z < 2.3), we estimated
in [1,4] the present bulk viscosity ζ0 to lie in the interval:

104 Pa s ≤ ı0 ≤ 106 Pa s. (9)

Although we refer the interested reader to the sources for detailed explanations, we will in the
following clarify under what assumptions these results were obtained. First of all, we made use of
the ansatz (8), testing three different values for the exponent λ, λ = (0, 1/2, 1). The equation of state
was assumed in the simple form p = wρ with ρ a constant. In view of the dominance of the dark
energy component of the fluid, we took the value of w to lie closely to −1 when we investigated a
one-component fluid model [4]. Mathematically, this means:

p = (−1 + α)ρ, |α| � 1. (10)

From the 2015 Planck data [40], w = −1.019+0.075
−0.080. It corresponds to:

αmin = −0.099, αmax = +0.056. (11)

From the second Friedmann Equation (7) together with the ansatz (8), we see that one may
introduce an effective pressure peff = weffρ, with an effective equation of state parameter:

weff = −1 + α− 3Hζ0

ρ0

(
ρ

ρ0

)λ−1
. (12)

Thus, if λ 6= 1, weff is in general a function of ρ.
We know, however, that the cosmic fluid is not actually a one-component fluid, but rather consists

of many different constituents. As mentioned earlier, the total energy density is assumed to be
composed by a dark energy component ρDE and a matter component ρM = ρDM + ρB satisfying ΩDE +

ΩM = 1. Denoting the homogeneous solution corresponding to ζ = 0 by ρh(a), we can decompose:

ρh(a) = ∑
i

ρ0ia−3(wi+1), (13)
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with i = (DE, M), wDE = −1, wM = 0. Moreover, for simplicity, we assume that the viscosity can be
associated with the fluid as a whole. Going beyond a phenomenological approach, this seems to imply
that the viscosity directly or indirectly is sourced by the interaction of the various components of the
phenomenological one-component fluid. Consider [41,42] for interesting discussions. Furthermore,
a bulk viscosity associated with the overall fluid would be most accurate if the dark sector interacts
with the constituents of the standard model. Associating the viscosity with the fluid as a whole enables
us to write:

ρ(a) = ρh(a)[1 + u(a)], (14)

where u(a) is determined from Friedmann’s equations. It is useful to define the auxiliary quantity:

B0 = 12πGζ0, (15)

whose value is about unity in astronomical units (note the subscript 0 on B; this subscript was not used
in our previous works, but should have been there in order to indicate that this is a present-day value).
We introduce the common notation E = H/H0 and give the final formulas for the most actual option
λ = 1/2 only. Then,

u(z, B) = (1 + z)−
2B
H0 , (16)

E(z, B) =
√

Ω(z)(1 + z)−
B

H0 . (17)

We have thus delineated the assumptions that led us to the result (9), by comparison with the
observations of H(z). This is also largely in agreement with earlier investigators [31,43].

Let us now go back to the early Universe, the lepton-photon era, in which case the viscosity
coefficients have to be calculated by kinetic theory. There are two factors that are important for the
calculation, namely the state of the system (we assume it to be a pure lepton-photon mixture) and then
the transport equations for the fluid. The free mean paths for the neutrinos are much larger than those
of the electromagnetically interacting particles, thus building up a temperature difference between
the fluid components. The electromagnetic particles will cool somewhat faster than the neutrinos.
Both coefficients η and ζ can be evaluated via the Chapman–Enskog approximation [5–7,44,45],
here given for ζ only,

ζ(T) = nkBT ∑
k

akαk. (18)

The n is the particle density; ak are the coefficients for particle k for the linearized relativistic
Boltzmann equation; and αk are known state parameters. As mentioned above, the most significant
instant is that of neutrino decoupling, T = 1010 K, at which Husdal obtained [6]:

ζ = 1.26× 1022 Pa s, η = 1.0× 1025 Pa s. (19)

This value of ζ can be compared with that obtained from the expression (8) extrapolated back
to the instant of neutrino decoupling. The relation between ρ and T in the early Universe is [7]
(in geometric units):

ρ =
π2

30
g∗(T)(kBT)4, (20)

with g∗ denoting the effective degrees of freedom at temperature T. Table 1 shows the resulting
estimates for ζ for the three actual parameter values λ = (0, 1/2, 1). What is apparent is that,
by choosing λ = 1/2 and also by taking ζ equal to the logarithmic mean of the interval (9), i.e.,

ζ0 = 105 Pa s, (21)

we find practically the same value of ζ as with (8).
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Table 1. The table should be read horizontally and shows the numerical values of ζ calculated by
Equation (8) for different parameter value inputs {λ, ζ0, Ω0}. The parameter values given in the three
first columns are used as input when calculating the values for ζ in the rightmost column.

Table Showing ζ Estimates

λ (−) ζ0 (Pa s) Ω0 ζ from Equation (8) (Pa s)

0 ∀ ζ0 (0,1] ζ = ζ0

1/2 ζ0 = 104 [0.1,1] ∼1021

1/2 ζ0 = 105 [0.1,1] ∼1022

1/2 ζ0 = 106 [0.1,1] ∼1023

1 ζ0 = 104 [0.9,1] ∼1038

1 ζ0 = 105 [0.9,1] ∼1039

1 ζ0 = 106 [0.9,1] ∼1040

We find this coincidence striking. Of course, it is not a proof for the extended applicability of
the formula (8), but we think it deserves attention. It suggests that the formula can be used beyond
the interval where it was originally constructed. Furthermore, it is notable that the parameter value
λ = 1/2 turns out to be the favorable choice, in agreement with other analyses as mentioned earlier.

3. Discussion

We shall show that the results obtained in this paper are actually not surprising at all,
when considered from a phenomenological point of view, where the fluid has an overall viscosity.
Consider the Bianchi identity for the overall cosmological fluid ρ:

ρ̇ + θ(1 + w)ρ− ζθ2 = 0. (22)

This equation may be rewritten as:

ρ̇ = −θ(1 + w(1− r))ρ, (23)

where we have defined:
r ≡ θ

wρ
ζ (24)

Thus, r is the ratio between the viscous pressure ζθ and the equilibrium pressure p = wρ. In the
Eckart formalism, the viscous pressure exerted by ζ should remain a first order modification to the
equilibrium pressure wρ throughout the history of the Universe. This translates into the requirement
that 0 ≤ r � 1. Then, under the weak assumption that ζ is a monotonic function, we find:

r ≈ const. (25)

Detailed analysis of the dynamical behavior of the cosmological fluid could of course reveal small
variations in the ratio r, so this relationship represents an approximation. Moreover, the variation
in r could very well prove to be important in a variety of contexts (Such as that of understanding
the (microscopic) mechanism that gives rise to the viscosity, or structure formation), but in this
phenomenological analysis, we are nevertheless more interested in large-scale variations. Thus,
putting r = const. translates into ζ ∼ ρ/θ. For a one-component fluid ρ, this is, by the application of
the first Friedmann equation, just the same as ansatz (8). As such, our result is trivial, yet obviously
worth mentioning, considering the wide application of other functional forms for the viscosity, also in
the case of one-component fluids. The fact that the results of Husdal actually agree with our own
calculations, as inferred from supernova observations, shows that our theoretical prejudice seems to
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be confirmed by observation. This is, of course, not a trivial point. In more general terms, consider a
viscosity ζ ∼ ρm and an equilibrium pressure wρ. Then, the ratio r defined in (24) becomes:

r ∼ ρm−1/2. (26)

The choice m = 1/2 now gives the condition (25). One may also observe that any m < 1/2 will
cause the ratio to grow if ρ decreases. Consequently, unless ρ asymptotically approaches a constant
value, the ratio must therefore eventually grow out of bounds of the first-order thermodynamic
(Eckart) formalism.

Comparison with the Result ζD ∼ ρ−0.4 Obtained by Yang et al.

As mentioned in the Introduction, Yang et al. [8] suggested a model where the effective pressure
ρeff of the dark fluid ρD = ρDE + ρDM is:

peff = wρD +
√

3αρ · ρm−1
D , (27)

where w is the equation of state parameter, α and m are parameters of the theory, and ρ is the total energy
density. The above equation makes sense only if peff and w are (respectively) the effective pressure and
equation of state parameter for the unified dark fluid only, and not the overall fluid ρ. We therefore
henceforth make this assumption. Thus, interpreting their results, we reach the conclusion that they
worked with a different theory from our own. While they attributed the viscosity to the dark fluid
only, we attribute the viscosity to the overall fluid. Perhaps more importantly, we fix the dark matter
and dark energy components at present when obtaining our estimates for the present-day viscosity.
As far as we understand, this is different from Yang et al., who (more appropriately) avoided such an
a priori fixing of parameters. To sum up, the discrepancy derives from the difference in the theories.
Without further examination, one may not conclude that the two approaches are in disagreement,
per say. We shall repeat from the preceding subsection, however, that r in Equation (26) will eventually
grow out of bounds for m = −0.4, since−0.4 < 1/2. Hence, a viscosity ζ ∼ ρ−0.4 cannot be considered
as a bulk-viscous modification in the ordinary sense, unless limt→∞ ρ = const. 6= 0. As a general
dynamical modification to a homogeneous equation of state, the results of Yang et al. seem however to
be valid.

4. The Viscous Kasner Universe

It is of interest to consider the anisotropic universe. The reason why the Universe is usually
considered to be spatially isotropic is that observation strongly indicates such behavior. However,
there is also evidence, in cosmology, as well as in ordinary fluid mechanics, that the shear viscosity
grossly dominates over the bulk viscosity in magnitude. Thus, it might be possible that the combination
of a slight anisotropy with a dominant shear viscosity leads to physically detectable consequences after
all. This is the motivation for the analysis in the present section. We will focus on the anisotropic Kasner
universe, as a typical example of an anisotropic space. It belongs to Bianchi-Type I. An introduction to
this model can be found, for instance, in [46].

Consider the Kasner universe:

ds2 = −dt2 + t2p1 dx2 + t2p2 dy2 + t2p3 dz2, (28)

where the three pi are constants, in the original formulation, which refers to a vacuum.
Einstein’s equations can be written:

Rµν = 8πG(Tµν −
1
2

gµνTα
α ), (29)
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and the non-vanishing Christoffel symbols are (no sum over i):

Γ0
ii = pit2pi−1, Γi

i0 = Γi
0i =

pi
t

. (30)

Allowing for both shear and bulk viscosities, we write the energy-momentum tensor as:

Tµν = ρUµUν + (p− ζθ)hµν − 2ησµν, (31)

where the scalar expansion θ = θα
α = Uα

;α is the trace of the expansion tensor:

θµν =
1
2
(Uµ;αhα

ν + Uν;αhα
µ), (32)

and σµν is the shear tensor:

σµν = θµν −
1
3

hµνθ. (33)

Defining the numbers S and Q as:

S =
3

∑
i=1

pi, Q =
3

∑
i=1

p2
i , (34)

we can then write:
θ =

S
t

, σ2 =
1
2

σµνσµν = − 1
2t2 (

1
3

S2 −Q). (35)

With Ri = tpi being the expansion factors of the metric, the directional Hubble parameters become
Hi = Ṙi/Ri = pi/t, and the average Hubble parameter becomes:

H =
1
3

3

∑
i=1

Hi =
S
3t

=
θ

3
. (36)

Let now w = constant be the thermodynamic parameter,

p = wρ. (37)

With κ = 8πG, we can then write the Einstein Equation (29) as:

S−Q +
3
2

κtζS =
1
2

κt2(1 + 3w)ρ,

pi(1− S− 2κtη) +
1
2

κt
(

ζ +
4
3

η

)
S =

1
2

κt2(w− 1)ρ. (38)

The basic formalism given here is as in our earlier works [47,48]. We are thus considering an
isotropic fluid in an anisotropic space (what we mean by this is that the same fluid in an isotropic
background would not possess shear viscosity). The fluid itself is modeled as a usual fluid with density
ρ and scalar pressure p. Our model is thus different from one in which the fluid is taken to have
anisotropic properties; cf., for instance, [49]. We will assume that the physical properties of the fluid
are given at some initial time called tin and investigate if these initial conditions are compatible with
constant values of S and Q. In the vacuum case (no fluid at all), one has S = Q = 1 [46]. We expect
the Kasner model to be appropriate for the early Universe and will naturally choose the instant of
neutrino decoupling, Tin = 1010 K, tin = 1 s, as mentioned above.
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We consider the development of the fluid from t = tin onwards; the initial energy and pressure
being ρin and pin. It is notable that the governing Equation (38) actually fix the later time dependence
to be:

ζ = ζin

(
t

tin

)−1
, η = ηin

(
t

tin

)−1
, (39)

ρ = ρin

(
t

tin

)−2
, p = pin

(
t

tin

)−2
, (40)

whereby we obtain a time independent set of equations,

S−Q +
3
2

κtinζinS =
1
2

κt2
in(1 + 3w)ρin,

pi(1− S− 2κtinηin) +
1
2

κtin(ζin +
4
3

ηin)S = −1
2

κt2
in(1− w)ρin, (41)

(note that in fundamental units where the basic unit is [t] = cm, one has [ρ] = [p] = cm−4, [ζ] = cm−3).
It is also convenient to note the following equations derived from those above,

2S(S− 1) = 3κtinζinS + 3κt2
in(1− w)ρin, (42)

S2 −Q = 2κt2
inρin. (43)

The basic formalism outlined so far is essentially as in our earlier papers [47,48]. We assume
now that the physical quantities {ρin, pin, ζin, ηin} are given at t = tin and investigate if these
initial conditions lead to acceptable values for the coefficients pi in an anisotropic Kasner universe.
From Equation (41), it follows that if the three pi are to be unequal, the multiplying factor of pi has to
be zero,

S = 1− 2κtinηin. (44)

This is thus an algebraic restriction on the pi. If the fluid is nonviscous, then S = 1, in accordance
with the original Kasner model in a vacuum. Once S is known, Q follows at once from Equation (43) as:

Q = S2 − 2κt2
inρin. (45)

Note that the bulk viscosity does not appear in the last two equations. This is as should be
expected physically: anisotropy is caused by the shear only.

Now, going over to dimensional units, we first note the useful relations κ = 8πG/c2 = 1.866×
10−26 m kg−1, 1 MeV4 = 2.085× 1025 J m−3. In the radiation dominated era:

a(t) = 2.2× 10−10 t1/2, T(t) = 1010 t−1/2 K. (46)

With ηin = 1.0× 1025 Pa s, we then obtain from Equation (44):

S = 0.627. (47)

The energy density in this region can be roughly estimated from ρinc2 = aradT4, where arad is the
radiation constant:

arad =
π2k4

B

15h̄3c3
= 7.56× 10−16 J m−3 K−4. (48)

Here, the degeneracy factor is omitted (cf., for instance, [13]). Then, ρin ∼ 1025 J m−3. Alternatively,
we may use the equation H2

in = (κc2/3)ρin to get somewhat more accurately:

ρin = 4.47× 108 kg m−3, (49)
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or ρin = 4.02× 1025 J m−3. With the latter values, we calculate:

Q = 1− 2κc2t2
inρin = −1.11. (50)

This is a non-acceptable result, as Q is a sum of quadratic numbers. We conclude that the Kasner
model does not appear to be compatible with a shear viscosity.

There is also another reason why anisotropy (pi = 0) is problematic in the Kasner model.
From Equation (38), it follows that if w < 1, which is the case for the usual fluids, the combination
(ζ + 4η/3) becomes negative. Although negative viscosities are occasionally considered in cosmology
(cf. for instance, [50]), such a case is physically not very natural. This point was first noticed by Cataldo
and Campo [51].

It is worthwhile to notice that the isotropic Kasner geometry easily allows for a viscosity.
That means only the bulk viscosity comes into question, as this viscosity concept goes along with
spatial isotropy. Let us consider this case in some more detail, defining a by p1 = p2 = p3 ≡ a.
From Equation (41), we obtain, still in dimensional units,

a =
1
6

1 +
3
2

κtinζin +

√(
1 +

3
2

κtinζin

)2
+ 6κc2t2

in(1− w)ρin

 . (51)

This equation shows that if the physical quantities ρin and pin, as well as the bulk viscosity ζin are
given at t = tin, then the isotropic version of the Kasner metric (28) is determined.

There is finally one exceptional case that should be noticed, namely a Zel’dovich fluid for which
w = 1, the velocity of sound being equal to c. In that case,

a =
1
3

[
1 +

3
2

κtinζin

]
. (52)

The metric turns out to be determined by the bulk viscosity as the only physical parameter;
the actual value of ρin being irrelevant. If the fluid is nonviscous, ζin = 0, then a = 1/3.
This corresponds to the metric coefficients in Equation (28) being t2a = t2/3.

5. Conclusions

In this work, we pointed out an agreement between the bulk-viscosity calculated by
Husdal et al. [5–7] to be present in the lepton-photon era and the present-day phenomenological
viscosity calculated by ourselves in previous works based on the evolution ζ ∼ √ρ ∼ H of the
viscosity in isotropic cosmology. As mentioned above, this points towards a symmetry between
early-time and present-time viscous cosmology. It is instructive to note that viscosities such as ζ ∼ ρ

or constant ζ do not provide the same agreement.
Our analysis of the Kasner model showed the inapplicability of the shear viscosity concept in the

anisotropic version of this model (meaning that at least two of the three exponents pi in the metric (28)
are unequal). The isotropic Kasner model is however easily compatible with a bulk viscosity. Then,
the Kasner model itself becomes isotropic, so that p1 = p2 = p3. It is noteworthy that for the special
case of a Zel’dovich fluid, the Kasner exponents are determined exclusively by the bulk viscosity alone;
cf. Equation (52).
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