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A hybrid brain computer interface (BCI) system considered here is a combination of electroencephalography (EEG) and functional
near-infrared spectroscopy (fNIRS). EEG-fNIRS signals are simultaneously recorded to achieve high motor imagery task
classification. This integration helps to achieve better system performance, but at the cost of an increase in system complexity
and computational time. In hybrid BCI studies, channel selection is recognized as the key element that directly affects the
system’s performance. In this paper, we propose a novel channel selection approach using the Pearson product-moment
correlation coefficient, where only highly correlated channels are selected from each hemisphere. Then, four different statistical
features are extracted, and their different combinations are used for the classification through KNN and Tree classifiers. As far
as we know, there is no report available that explored the Pearson product-moment correlation coefficient for hybrid EEG-
fNIRS BCI channel selection. The results demonstrate that our hybrid system significantly reduces computational burden while
achieving a classification accuracy with high reliability comparable to the existing literature.

1. Introduction

In 1924, Hans Berger, a neurologist, recorded human brain
signals through EEG for the first time. This actually encouraged
other researchers to further investigate the human brain and
record its activity using brain computer interface (BCI). This
system provides the means for disabled patients to control
and communicate with the surroundings, namely, quadcopters,
manipulators, and other mechanisms, solely using brain activ-
ities. There are different invasive and noninvasive modalities
used for BCI applications such as near-infrared spectroscopy
(NIRS) [1], functional magnetic resonance imaging (fMRI)
[2], and magnetoencephalography (MEG) [3]. In the last
decade, most BCI studies have mainly concentrated on electro-
encephalography (EEG).

EEG, a noninvasive method, registers the electrical activity
in the scalp, generated by the brain to provide high temporal
resolution with low cost, and portability. Yet, it lacks spatial
resolution [4], not to mention poor signal-to-noise ratio,
relying on physical or mental tasks, and subject to contamina-

tion with various artefacts, such as external electromagnetic
waves, e.g., from an electromyogram and an electrooculogram
[5]. As a result, the classification accuracy obtained through
EEG suffers heavily and often leads to misclassification and
false-command generation. Therefore, in order to enhance
EEG’s performance and make it more reliable, several studies
have suggested supporting it with a second modality, such as
NIRS [6–9].

Functional near-infrared spectroscopy (fNIRS), another
noninvasive method, measures the concentration change of
oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) by pick-
ing two distinct near-infrared (NIR) wavelengths (600nm to
1000nm). fNIRS offers subsecond temporal resolution and
spatial resolution in 1 cm2 [10] and has shown its potential
in localizing task activations in the same way as fMRI. How-
ever, fNIRS has some serious concerns that constrains the
overall performance. Contrary to EEG, NIRS is considered to
have strong immunity against electrical noises and motion
artefacts; however, it suffers from long delay in the hemody-
namic response. The response time in order to generate the
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execution command for NIRS is approximately nine times
that of EEG [7]. Over the past few years, researchers have been
striving to increase the information transfer rates (ITR) and to
overcome the limitations of unimodal systems, leading to
multimodal ones, formally known as a hybrid BCI.

In [11], the authors made the first attempt to investigate a
hybrid EEG-fNIRS-based BCI system, and to integrate the
features of EEG and fNIRS, they designed a metaclassifier for
the hybrid BCI. Since then, many other studies have addressed
the benefits of the complementary properties of integrated
EEG-fNIRS [6, 7, 9, 12]. This combination enhanced the signal
strength, improved the classification accuracy, and overcame
most of the limitations of single modalities [6, 11, 13]. The
main challenge in a hybrid BCI is to reduce system complexity,
improve response time, and maintain high classification
accuracy [1, 14, 15]. Though, the multimodal BCI system
has enhanced the classification accuracy, methodological con-
straints still exist, such as heavy reliance on the principle com-
ponent analysis (PCA) and common spatial pattern (CSP) [16,
17], empirical wavelet transform (EWT) [18], andmultivariate
empirical wavelet transform (MEWT) [19] to reduce the
dimensionality of the original dataset. Another motivation
behind the integration of EEG-fNIRS is to retain and highlight
the favourable properties of each unimodal system [20].

In hybrid BCI studies, three major steps define the overall
performance of the system: channel selection, feature extrac-
tion, and classification. This study focuses on the identification
and selection of most optimal channels with the intention to
reduce the computational cost while maintaining high classifi-
cation accuracy. In previous studies [1, 7], all available chan-
nels from both hemispheres were considered for feature
extraction and classification. This not only increased system
complexity but also computational cost.

To confront these issues, various methods have been pro-
posed in the near past. It is worth mentioning that most of
the literature has merely focused on crude analysis to select
the fewer channels, manually [21–23]. This approachmay work
in some cases, but the generalization of such methods is limited
by self-analysis as well as by the excessive time required in order
to analyse each individual channel. In contrast, some
researchers endeavoured for the sophisticated approaches as
how to determine the optimal channels. In [9], the authors pro-
posed to select a singular channel of EEG-fNIRS from both
hemispheres using a general linear model (GLM); however,
the obtained average classification accuracy wasmoderate. Also,
the performance of GLM might be subjected to artefacts that
infect the data, such as motion artefacts, low frequency inclines,
and serial correlations [24]. Common spatial patterns (CSPs)
have also been utilized to determine the most effective channels
[25]. Based upon the average energy of each channel, the ones
with the highest energy are selected; whereas, those with low
energy are assumed to carry noise and, hence, set aside.

In this paper, we present a novel approach for a hybrid
EEG-fNIRS BCI channel selection using the Pearson
product-moment correlation coefficient (PPMCC). In recent
years, researchers have tried to explore the benefits of corre-
lation in BCI for the window selection [26], channel selection
[27], and classification [28]. The determination of the corre-
lation coefficient is a statistical approach that allows us to

quantify the strength of association. The calculation yields
the linear association between two channels which is then used
to select the most dominant ones. Based upon the correlation
coefficient, a rank matrix is developed. The highest ranked
channels are classified as active channels or true motor
imagery signals, whereas the lowest ranked channels are
regarded as nonrepresentative channels of motor imagery
signals. Those with lower correlation coefficients can also be
interpreted as artefacts, noise, or other signals that are not
correlated with motor imagery signals. To the best knowledge
of the authors, PPMCC has never been utilized for channel
selection in a BCI paradigm before. Therefore, this study is
expected to introduce a completely new perspective for
channel selection in hybrid BCI systems. Through results, it
is demonstrated that the proposed approach can play its role
effectively, when used in conjunction with two different classi-
fiers, to attain reduced computational time and high classifica-
tion accuracy. The following sections present the signal
processing, feature extraction, and classification approaches.
In Results, the outcomes are shown with focus on the perfor-
mance. Discussion and Conclusion conclude the work by
summarizing the findings and proposed future work.

2. Materials and Methods

2.1. Data Source and Data Processing. The dataset for this
study is taken from an online repository, provided by [6]. It
contains raw data of simultaneously recorded EEG-fNIRS
motor tasks of the left arm, the left hand, the right arm, and
the right hand. For motor imagery tasks, fifteen healthy
subjects took part in the experiment, which lasted an hour.
During the experiment, the subjects were instructed to
perform four movements—right–left-hand gripping, right–
left-arm raising—by following visual instructions displayed
on a laptop screen placed 1m away from where they were sit-
ting. For each subject, the trials started with a rest task of 6 sec-
onds, followed by another 6 seconds of movements according
to the screen instructions. The raw EEG signals were obtained
at 250Hz through twenty-one channels, all of which were
baseline corrected by subtracting the mean value of channels
and then filtered at 1-25Hz by a 4th-order IIR Butterworth
filter [9]. The fNIRS signals were acquired at a sampling
frequency of 10.42Hz for two wavelengths—760nm and
850nm—equipped with twelve sources and twelve electrodes
on thirty-four channels. The sources and detectors of the
fNIRS are at maximum 3.4 cm apart from each other, in order
to ascertain high-quality signals. The raw data is later decom-
posed into oxyhemoglobin and deoxyhemoglobin concentra-
tion changes (HbO and HbR, respectively) through the
Modified Beer-Lambert law [29]. In this study, we used
HbO, referred to as fNIRS from here on. The fNIRS data is
filtered by a 4th-order band pass IIR Butterworth filter
(between 0.01 and 0.2Hz) to remove artefacts [6, 9]. Initializa-
tion trial prior to the motor tasks was segmented out. The fil-
tered EEG and fNIRS data are then normalized by subtracting
the mean and dividing by the standard deviation. Figure 1
shows the hybrid BCI system that highlights all the major
steps involved.
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2.2. Channel Selection for Hybrid BCI. In hybrid BCI studies,
channel selection is considered as the key element that directly
affects the system’s performance. The Pearson correlation
coefficient has been applied by a number of researchers [27,
30, 31] in order to solve practical problems in medical
research. Although it has given some promising results, it
has never been tested for hybrid BCI systems before. Hence,
we propose a novel approach to ensure optimal performance
by involving only the most optimized channels using the
Pearson product-moment correlation coefficient. The
approach is based upon statistical analysis that allows to quan-
tify the strength of a linear association between two channels,
denoted by ρ, having a value between ½−1, 1�. The basic idea is
to associate the data of two channels through the best fit line.
The Pearson correlation coefficient, ρ, is an indicator of the
placement of these data points in reference to the line of best
fit. A higher positive value indicates a stronger association,
whereas a more negative value is an indicator of a stronger
negative association. The third possibility is absolutely no
association between the variables, i.e., ρ = 0.

EEG-fNIRS channels are distributed into two groups
based upon their placement in the right and left hemispheres,
as shown in Figure 2. The correlation coefficient between the
two intervals in each group is a measure of how close a linear
relationship these two intervals possess. Given a pair of two
channels ½i, j�, the correlation coefficient is defined as follows:

ρi,j =
E i − μið Þ j − μj

� �h i

σiσj
, ð1Þ

where μ represents the mean value, σ denotes the standard
deviation, and E represents the expectation operator.

The reference guideline for interpreting the strength of
association based upon the correlation coefficient is given in
Table 1. For the purpose of selecting the most representative
channels (see Algorithm 1) with the most meaningful perfor-
mance, and to eliminate signals with unnecessary information
and noise, highly correlated EEG-fNIRS channels from each
hemisphere are chosen based upon their ranking. To reduce
dimensions and improve the parity of the two systems, the
EEG-fNIRS dataset is downsized through a 0.096 sec averaged
moving window.

2.3. Feature Extraction. Once the channels are selected, the
next task is to prepare a feature set for classification. Four
different statistical features are extracted using spatial averag-
ing of the selected channels for both EEG and fNIRS features.

2.3.1. Signal Mean (M). For channel X acquired through
EEG-fNIRS, the signal is contained in x1 through xN , then
the mean value for the discrete signal is evaluated as follows:

M =
1
N
〠
N

i=1
Xi, ð2Þ

where N is the total number of observations.

2.3.2. Signal Skewness (SK). The skewness of a channel X is
the third standardized moment, represented as follows:

SK Xð Þ = E
X − μ

σ

� �3
" #

: ð3Þ
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Figure 1: Hybrid BCI system.
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The distribution of X is said to be positively skewed
(SK > 0), negatively skewed (SK < 0), or unskewed (SK = 0).

2.3.3. Signal Kurtosis (KR). The kurtosis of X is the fourth
standardized moment, defined as follows:

KR Xð Þ = E
X − μ

σ

� �4
" #

: ð4Þ

Kurtosis is an indicator of the peak of the distribution.
For positive it is peaked more, and for negative it is peaked
less than the normal distribution.

2.3.4. Signal Peak (P). The peak Xp of a channel X is defined
as Xi ≤ Xp, 1 ≤ i ≤N .

Once the feature set is defined, the next process is to
normalize the feature set of both EEG-fNIRS between 0
and 1 using

Xnew =
Xi −min Xið Þ

max Xið Þ −min Xið Þ : ð5Þ

From here on, it is assumed that all the features are nor-
malized, hence new feature vectors are obtained as Mnew, S
Knew, KRnew, and Pnew. But, in order to avoid the ambiguity
and for the sake of easiness, the normalized features are repre-
sented as M, SK, KR, and P.

2.4. Classification. Prior to classification, three different sets
of features are constructed: the EEG-only set, the fNIRS-
only set, and the hybrid EEG-fNIRS set. Two different classi-
fiers, K-nearest neighbor (KNN) and Decision Tree classifier,
are used to perform classifications among five different
classes: four motor tasks and one rest task. Both classifiers
belong to the supervised learning and are widely used due
to their simplicity and ease of implementation. A 10-fold
crossvalidation paradigm is implemented to split each feature
set into ten subsets, where nine subsets are used to train the
classifiers, and the remaining one subset is used to test the
classification accuracy. Through the results, it is observed
that both classifiers have performed well in order to attain
high classification accuracy.

3. Results

The goal of this study is to perform a comparison among three
different sets of features: EEG-only, fNIRS-only, and hybrid
EEG-fNIRS for the selected channels based on a correlation
coefficient. To achieve this, we performed two-trial classifica-
tions of the four motor execution tasks versus rest. A classifi-
cation accuracy of 100% refers to perfectly separated motor
tasks, whereas 50% signifies poor performance. The move-
ments of the subjects are recorded through twenty-one EEG
and thirty-four fNIRS channels in total.

EEG channel
EEG GND
EEG reference

NIRS source
NIRS detector
NIRS channel

Figure 2: EEG-fNIRS channel placement [6].

Table 1: Correlation coefficient [32].

Strength of association
Coefficient, ρ

Positive Negative

Small 0.1 to 0.3 -0.1 to -0.3

Medium 0.3 to 0.5 -0.3 to -0.5

Large 0.5 to 1.0 -0.5 to -1.0
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To analyse the reduction in the computational time, the
temporal distance between the filtration step and feature
extraction is recorded as an evaluation time. Comparison is
made for 10 sec of the sampled data obtained through EEG
and fNIRS. Figure 3 shows the computational time required
in order to process a hundred and twenty-five-hundred
samples of fNIRS and EEG, respectively, against a varying
number of channels. It can be observed that the relation
between the number of channels and computational time is
almost linear. Thus, by utilizing a lesser number of channels,
time reduction is expected. Through the proposed approach,
only highly correlated channels are obtained and processed.
For EEG, only six channels are selected out of twenty-one,

and for fNIRS, only ten channels are selected out of thirty-
four. The processing time is reduced by more than 40% for
EEG and around 20% for fNIRS. In this study, it has been
observed that for the experiments considered, if we further
try to reduce the number of channels, the accuracy will start
to deteriorate with not much improvement in time. In the
later part of this section, it is revealed that only those
channels that are the carrier of less significant information
compared to the rest are dropped. This helps to get rid of
the outliers and noise variation that may have been intro-
duced in some channels at the time of data acquisition.

With the help of a novel correlation coefficient-based
method, only those channels that contain the most relevant

Ranking of channels.
Input: Number of channels N
Output: The ranking of channels
for each channel i = 1 to Ndo
sumðρiÞ← 0
for each channel j = i to Ndo

ifj ≠ ithen
Compute correlation ρi,j between channels i and j using equation (1)

sumðρiÞ← sumðρiÞ + ρi, j
End if

End for
avgðρiÞ← sumðρiÞ/N − 1
Based upon the avgðρiÞ, classify channels as {high, mid, low} according to Table 1

End for.

Algorithm 1.
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Figure 3: Performance comparison of EEG and fNIRS.
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Figure 4: Continued.
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motor imagery information are picked. The probability of the
channels being selected based upon the correlation results
obtained for subjects 1, 4, and 15 is depicted in Figure 4.
The highest correlation coefficients are obtained in the motor
cortex region in the right and left hemispheres. According to
Figure 4, this is true because the movements considered are
of the left arm, left hand, right arm, right hand, and rest.
The highest correlation coefficient helps to separate the opti-
mized channels from the rest. Once the channels are selected,
the next task is to train the classifiers on the given dataset
from different sources in order to obtain accurate results.

3.1. EEG. The average classification accuracies for five
different classes (four movements, one rest) obtained using
KNN and Tree classifiers are shown in Table 2. Mean (M),

peak (P), kurtosis (KR), and skewness (SK) are defined as
statistical features. The reduced number of channels from
eight subjects are processed to generate a feature set that
contains all one-to-one possible combinations of the
features. The Tree classifier has produced acceptable results
when evaluated against KNN for the given feature set. The
average classification accuracy obtained through KNN is well
below the defined acceptable threshold of 50%. This
phenomenon has occurred, according to our observation,
as some of the subjects were not presumably fully engaged
in the task and lost interest at some stage during the process.
This caused an overall drop in the accuracy, thus the motiva-
tion to eliminate the channels that directly affects the accu-
racy. In order to observe the performance of eight
individual subjects, the classification results obtained
through both classifiers using the optimized channels are
plotted in Figure 5. In accordance with the results obtained
in Table 2, it is reaffirmed that the KNN classifier has not
been able to produce any satisfactory results, whereas the
Tree classifier hardly satisfies the defined acceptable thresh-
old. The average classification accuracies of the EEG-only
feature set achieved through the Butterworth filter are
KNN = 42:72% and Tree = 52:49%. The classification accu-
racies obtained through the Tree classifier for the selected
subjects against a varying number of channels are plotted
in Figure 6. The feature set is based upon the data obtained
from five selected subjects including randomly selected (sr).
It is observed that an increase in the number of channels
has not produced any significant effect on the accuracy but
certainly increased the computational cost.
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Figure 4: Probability of channels being selected based upon correlation coefficients of (a) subject 1, (b) subject 4, and (c) subject 15.

Table 2: The classification accuracies obtained through KNN and
Tree classifiers for EEG-only and fNIRS-only feature sets.

Feature set
KNN Tree

EEG fNIRS EEG fNIRS

M, P 43.25 64.81 53.30 68.29

M, SK 42.41 70.97 52.55 73.24

M, KR 42.66 68.85 52.47 71.05

P, SK 42.48 70.36 51.73 72.16

P, KR 43.75 66.43 52.70 70.29

SK, KR 41.05 56.67 52.23 63.91
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3.2. fNIRS. Table 2 shows the KNN and Tree classification
results—using the most optimized channels from eight sub-
jects—for the fNIRS-only dataset. In this study, it is revealed

that, for fNIRS, the combination of peak and skewness has
produced the highest accuracy for both classifiers. The accu-
racy obtained through fNIRS is much higher as compared to

40

42

44

46

48

Cl
as

sifi
ca

tio
n 

ac
cu

ra
cy

 (%
)

s1
s4
s6
s8
s9

s12
s14
s15
avg

(M,P) (M,SK) (M,KR) (P,SK)

Feature set-KNN classifier

(P,KR) (SK,KR)

(a)

48

50

52

54

Cl
as

sifi
ca

tio
n 

ac
cu

ra
cy

 (%
)

s1
s4
s6
s8
s9

s12
s14
s15
avg

(M,P) (M,SK) (M,KR) (P,SK)

Feature set-Tree classifier

(P,KR) (SK,KR)

(b)

Figure 5: Classification accuracies obtained using EEG when evaluated for eight subjects: (a) KNN classifier and (b) Tree classifier.
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EEG. To highlight the performance variation among subjects,
classification accuracies based upon eight individuals—along
with their average—are depicted in Figure 7. The fNIRS-only
feature set filtered by the Butterworth filter achieved an
average accuracy of KNN = 66:34% and Tree = 69:82%.

It is observed that some subjects have really outper-
formed others; e.g., subject nine can be regarded as the
healthiest among the sample set, whose accuracy is well
above the average accuracy for fNIRS. Thus, it can be
concluded that for the overall high accuracy, every subject
is supposed to perform at their best. Figure 8 shows the
average classification accuracies using the Tree classifier for
five selected subjects including randomly selected (sr), when
evaluated against a varying number of channels. Again, sub-
ject nine has been able to perform the best as compared to the

others. The increase in the number of channels did not play a
big role in improving the accuracy; in fact, if we select less
than 30% of the total number of channels, then the accuracy
drops significantly.

3.3. Hybrid EEG-fNIRS. For the hybrid EEG-fNIRS, the EEG
feature set contains six feature vectors that are combined
with the fNIRS feature set, which also contain the same num-
ber of feature vectors, in order to generate a total of thirty-six
feature vectors. Table 3 shows the performance in terms of
the average classification accuracy for eight subjects obtained
through KNN and Tree classifiers. No absolute judgement
can be made regarding the most desired feature set; however,
½M, SK� has performed well as compared to the rest at multiple
instances. The highest and the lowest average classification
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Figure 7: Classification accuracies obtained using fNIRS when evaluated for eight subjects: (a) KNN classifier and (b) Tree classifier.
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accuracies of 78.2% and 66.7% are obtained through the Tree
classifier, whereas the highest and lowest average classification
accuracies obtained through the KNN classifier are 75.28%
and 60.76%.

Figure 9 shows the classification accuracies for eight
subjects obtained through the KNN and Tree classifiers
against different features; moreover, the average accuracies
are also depicted through filled circles. It is observed that
against some feature vectors, the Tree classifier has been able
to get as high as 90% classification accuracy. Overall, the Tree
classifier has proved to be more effective when compared
against KNN for the hybrid EEG-fNIRS BCI system.

To evaluate the performance of the proposed approach, it
is compared against [6], who provided the actual dataset. The
classification accuracy is obtained through a linear discrimi-
nant analysis (LDA) classifier for the rest vs. the right-hand
movement. For true analysis, the type of classifier and the
movement is kept the same as [6]. For EEG-only, fNIRS-only,
and hybrid EEG-fNIRS, our approach achieves the classifica-
tion accuracy of 61.6%, 98%, and 98.6%, respectively. The clas-
sification results obtained by [6] for EEG-only, fNIRS-only,
and hybrid EEG-fNIRS are 85.4%, 92.4%, and 94.2%, respec-

tively. It can be observed that at two out of three instances,
the proposed approach performed better against Buccino
et al. [6], who considered all channels.

4. Discussion

The hybrid BCI using EEG-fNIRS has proved itself capable of
improving classification accuracy as compared to a single
modality [11]. In this paper, we attempted to improve the
classification accuracy of motor tasks as well as to reduce the
computational cost. The results demonstrate that the EEG-
fNIRS combination based upon the selection of the most
optimized channels has performed better compared to the
unimodal approaches. It is widely accepted that the design
and application of a BCI system is strongly influenced by the
selection of channels, their number, and their placement [9].

To generate execution commands based upon motor
imagery tasks, previous studies have recommended picking
channels from the C3 and C4 areas [6, 11]. Yet, this approach
cannot be generalized for all due to variations from subject to
subject, as identical channels may exist in different brain
regions. Although some researchers investigated the efficiency

1060 20 30 34
No. of channels

Cl
as

sifi
ca

tio
n 

ac
cu

ra
cy

 (%
)

0

10

20

30

40

50

60

70

80

90

s1
s15
s4

s9
sr

Figure 8: Classification accuracies obtained using fNIRS when evaluated for five subjects against a varying number of channels.

Table 3: The average classification accuracies of hybrid EEG-fNIRS for eight subjects as calculated through KNN and Tree classifiers.

Feature set fNIRS
Feature set EEG

M, P M, SK M, KR P, SK P, KR SK, KR

M, P (73.82, 76.75) (67.46, 76.45) (66.85, 75.38) (67.36, 74.72) (65.68, 74.85) (62.08, 73.4)

M, SK (75.28, 76.91) (69.25, 78.2) (67.93, 75.5) (69.43, 76.02) (67.37, 75.2) (64.58, 73.7)

M, KR (74.32, 74.53) (68.98, 74.6) (67.82, 74.02) (68.51, 73.62) (67.31, 73.38) (63.03, 70.6)

P, SK (73.83, 77.63) (67.36, 77.4) (67.5, 77.03) (67.2, 74.83) (67.63, 75.76) (62.55, 73.7)

P, KR (74.2, 76.53) (69.68, 75) (68.75, 74.65) (69.3, 73.6) (67.6, 73.78) (63.8, 72.32)

SK, KR (71.81, 69.88) (67.03, 69.9) (65.38, 69.25) (66.2, 69.2) (62.16, 69.3) (60.76, 66.7)
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of different channel selection approaches [7, 17, 33], little
effort has been made in the selection of the most optimized
channels. In this study, we use a set of channels from each
hemisphere with high similarities based on the correlation
coefficient to ensure that the most effective channels are cho-
sen for feature extraction and classification. The obtained
results show that not only did the classification accuracy
increase but the computational complexity also reduced. As
Table 3 summarizes the classification accuracy of the merged
features of EEG-fNIRS, it is noticeable that although few chan-
nels are used for the classification, the accuracy tended to be
decent as compared to previous studies.

The classification performance of a full channel set does
not necessarily yield an optimal performance as witnessed
in Figures 6 and 8. Thus, it is desired that only those sets of
channels that actually contain a significant amount of infor-
mation must be considered. Through the selection of the
most optimized channels, the processing time has improved
by 40% for EEG and around 20% for fNIRS. The channel
selection approach based on the ranking of the correlation
coefficient can identify the optimal channel combination
and enhance the classification performance. The classifica-
tion accuracy of the system can further be increased by select-
ing optimal features for the system. Signal mean, peak,
skewness, and kurtosis are used as the feature set for the
classification. It has been shown that the use of these sets of
features achieved high accuracy in fNIRS classification, yet
the accuracy in EEG is low due to the dimensionality issue
and, as mentioned by [6], the experimental design and proce-
dure strongly affect the performance.

5. Conclusions

In this study, a hybrid EEG-fNIRS configuration is proposed
for motor task classification. The primary goal of this work is
to reduce the computational cost by not compromising the
classification accuracy. In order to realize such a system, for
the first time we propose to utilize a correlation coefficient
for the selection of the most optimized channels. To validate
the effectiveness of the proposed approach, eight different
subjects are considered and multiple trials are performed.
As evident from the results, our hybrid system significantly
reduces the computational burden while achieving the classi-
fication accuracy with high reliability comparable to the
existing literature.

Despite this accomplishment, we observed two major
limitations that hold back the overall accuracy of the hybrid
BCI system. The motor imagery task data was collected with
an EEG visual feedback system. Through the visual informa-
tion displayed on the screen, the subjects were instructed to
perform certain movements. The motor classification accu-
racy of 52:49 ± 4% is achieved through EEG only, which is
not even comparable to the accuracy of 72:42 ± 3% obtained
through fNIRS using the Tree classifier. This phenomenon
has also been experienced by some researchers when dealing
with EEG [34]. This is perhaps because the subjects’ involved
in the experiments were exposed to the motor imagery tasks
for the first time. Therefore, in order to improve the results in
motor imagery tasks, it has been suggested in [35] that all the
subjects be trained for 1-4 hours with visual feedback inform-
ing the user whether his/her imagery strategy is correctly
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Figure 9: Classification accuracies obtained using hybrid EEG-fNIRS when evaluated for eight subjects.
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classified. Secondly, as EEG suffers from low spatial resolu-
tion, it directly affects the overall performance of the hybrid
system. The use of high-resolution EEG can possibly over-
come this problem. As to future work, we focus on the valida-
tion of the results from the practical perspective [36–38] and
the investigation of the performance of the entire system
using online data. Furthermore, different feature sets will be
explored in our studies to further improve the classification
of the system.

Data Availability

The raw data used to support the findings of this study are
deposited in EEG-fNIRS hybrid SMR BCI data S1-S8 and
EEG-fNIRS hybrid SMR BCI data S9-S15.
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