
ISBN 978-82-326-5470-3 (printed ver.)
ISBN 978-82-326-6809-0 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2022:134

Muhammad Mudassar Yamin

Modelling and Analyzing Attack-
Defense Scenarios for Cyber-
RangesD

oc
to

ra
l t

he
si

s

D
octoral theses at N

TN
U

, 2022:134
M

uham
m

ad M
udassar Yam

in

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e
of

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
t.

of
 In

fo
rm

at
io

n
Se

cu
rit

y
an

d
Co

m
m

un
ic

at
io

n
Te

ch
no

lo
gy

Thesis for the Degree of Philosophiae Doctor

Gjøvik, May 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Muhammad Mudassar Yamin

Modelling and Analyzing Attack-
Defense Scenarios for Cyber-
Ranges

NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

© Muhammad Mudassar Yamin

ISBN 978-82-326-5470-3 (printed ver.)
ISBN 978-82-326-6809-0 (electronic ver.)
ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2022:134

Printed by NTNU Grafisk senter

Contents

1 Introduction 7

1.1 Synopsis . 7

1.2 Research Context . 8

1.3 Motivation . 9

1.4 Aim and Scope . 10

1.5 Research Questions . 10

1.6 Background . 13

1.6.1 Cyber Ranges . 13

1.6.2 Cybersecurity Exercises 15

1.6.3 Operation-Based Cybersecurity Exercises 15

1.6.4 Cyber Security Exercise life-Cycle 17

1.7 Related Work . 18

1.7.1 Cyber Range State of The Art 20

1.8 Methodology . 22

1.8.1 Verification and Validation 25

1.9 Summary of Contributions . 29

1.9.1 List of Publications . 29

iii

iv CONTENTS

1.9.2 List of Major Contributions 30

1.10 Limitations . 32

1.11 Conclusion and Future Work . 33

2 Research Articles 41

2.1 Inefficiencies in Cyber-Security Exercises Life-Cycle: A Position
Paper . 42

2.2 Make it and Break it - An IoT Smart Home Testbed Case Study . 46

2.3 Cyber ranges and security testbeds: Scenarios, functions, tools and
architecture . 53

2.4 Serious games as a tool to model attack and defense scenarios for
cyber-security exercises . 80

2.5 Modeling and Executing Cyber Security Exercise Scenarios in Cy-
ber Ranges . 103

2.6 Detecting Windows Based Exploit Chains by Means of Event Cor-
relation and Process Monitoring 132

2.7 Use of Cyber Attack and defense agents in Cyber Ranges: A Case
Study . 141

To my family, friends and well wishers

Declaration of Authorship

I, Muhammad Mudassar Yamin, hereby declare that this thesis and the work presen-
ted in it are entirely my own. Where I have consulted the work of others, this is
always clearly stated.

Signed:

(Muhammad Mudassar Yamin)

Date:

Abstract

Rome was not built in a day, but it was burnt to the ground in only six. Wood natur-
ally catches fire, and without adequate engineering, fireproof houses and training
for firefighters, destruction caused by fire is inevitable. In the 21st century, our
modern world is built not on wood but on a digital infrastructure that was pro-
posed in the 20th century with very little thought to security. This has resulted in a
countless number of incidents in which that infrastructure has been compromised,
from hospitals serving critically ill patients to gas pipelines providing necessary
heating to people living in adverse climate conditions.

The current state of affairs is unacceptable, and serious efforts are needed to design
and build a secure digital world and train individuals to use and operate it securely.
Engineers and scientists design road infrastructure with great safety measures, but
traffic accidents still happen. Indeed, they remain one of the leading causes of
death in the world, and most traffic accidents are caused by human error or negli-
gence. Similarly, the digital infrastructure can be designed and deployed securely,
but its overall security and safety depend upon the humans who are operating and
using it. Therefore, there is a great need to train individuals to operate the digital
infrastructure in a secure manner.

Multiple efforts are being made to provide this training. These efforts include
cybersecurity education and training based on different pedagogical methods in-
volving classroom teaching, workshops, seminars, conferences and hands-on train-
ing. However, the effects of these efforts are not yet visible, as we experience
ever-increasing damage caused by cyber-attacks. Traditionally, most cybersecur-
ity awareness and training has been achieved through classrooms and workshops.
Little focus has been on hands-on cybersecurity exercises. This is because design-
ing and deploying infrastructure to deliver realistic hands-on exercises is a resource-

3

4 CONTENTS

intensive, complex and difficult task that requires considerable manual technical
expertise. This makes the training very expensive and the process error-prone and
difficult to standardize.

In order to solve these issues, different researchers have tried to remove ineffi-
ciencies in cybersecurity exercises by automating different phases of the exercises
with limited success. Some efforts yielded very specific testbed-related artifacts,
which were only applicable to that specific testbed, while other efforts lacked the
complexity required for realistic cybersecurity exercises. Moreover, there is a lack
of consensus among the community on defining the training scenarios that can be
used in such exercises. Therefore, standard specifications of scenarios that can
be executed in a cybersecurity exercise environment are needed. In this work,
I attempt to overcome and address these issues by enhancing efficiency, realism
and standardization with a novel method of modeling and executing cybersecurity
exercise scenarios in a cybersecurity exercise environment, or a cyber range.

This is achieved through the development of a domain-specific language that is
used to model and specify the technical requirements for cybersecurity exercises
at an abstract level. The model of the exercise scenario is formalized and verified
through logic programming, and then the technical requirements are translated into
operational artifacts through an orchestrator. The operational artifacts contain an
exercise infrastructure with vulnerabilities, traffic generators and attack/defense
agents that can exploit or defend those vulnerabilities at an operational level in a
cyber range. The proposed system goes beyond the state of the art by overcoming
many inefficiencies in cybersecurity exercise scenario modeling and deployment,
making their execution efficient, realistic and computationally repeatable. The
proposed artifacts and solutions were tested in Norway’s national cybersecurity
competitions, university classrooms and other cybersecurity exercises with posit-
ive results.

Acknowledgement

Many people helped and supported me in conducting this research. First, I would
like to thank my parents and siblings for their support and understanding as I pur-
sued this endeavor. Second, I would like to thank my principal supervisor, Pro-
fessor Basel Katt, who leads the research activities in the Norwegian Cyber Range,
and the Co-supervisor, Slobodan Petrovic, for their guidance and support. Further-
more, I would like to express my gratitude to Espen Torseth, who is responsible
for technical and administrative tasks at the Norwegian Cyber range and helped me
greatly in this research work by sharing his experience and valuable suggestions.

Additionally, I would like to thank the Norwegian Cybersecurity challenge for
providing access to the Norwegian national team to conduct this research activity.
Furthermore, I am grateful to the COINS Research School for Computer Inform-
ation Security for providing funding for Ph.D. courses and granting access to a
valuable research network that helped me make useful connections to share the
research with a broader audience.

I would like to thank my friends and colleagues at NTNU Gjovik, who provided
support and made beautiful memories while pursuing the Ph.D. research. Finally,
I would like to thank the European Information Security Agency for providing
me with the opportunity to conduct research on their behalf and to work with ex-
perts from 20 European countries to develop a common roadmap for the European
Cybersecurity Challenge.

5

6 CONTENTS

Chapter 1

Introduction

1.1 Synopsis
Our world is rapidly changing into a digital-first society, and the ongoing pan-
demic has increased the pace of this digital transformation even more. In a hyper-
connected world, this digital society brings opportunities and challenges. These
opportunities can help humanity through better connectivity, idea sharing and a
better understanding of each other. However, the same technologies empowering
the digital world can be misused by different state and non-state actors to cause
an unimaginable amount of harm to society, from the manipulation of elections to
attacks on a country’s critical infrastructure.

To avoid this danger to society, we need awareness of and training on such attacks
or threats at the individual and organizational levels. Such awareness could be
provided through cybersecurity skills improvement programs. Just as individuals
need gyms where they can exercise and maintain their physical fitness, for a cyber-
safe and secure society we need platforms for individuals and organizations to
practice their cybersecurity skills. Such platforms may be cyber ranges that can
provide continuous training and a learning environment for teaching cybersecurity
skills. However cyberthreats are evolving constantly, and there is a need to model
and analyze those threats and provide realistic scenarios that can be practiced in
cyber ranges to address those threats.

Different threat actors can have different objectives that can affect the security
of a country at multiple levels. Some threat actors target the society with pro-
paganda and social media manipulation rather than targeting the operational in-
frastructure. Meanwhile, some threat actors exploit technical vulnerabilities and

7

8 Introduction

target the national infrastructure. Analyzing and modeling their attacks is becom-
ing a necessity for training individuals and organizations to respond appropriately
in a professional manner, with the goal of avoiding disasters and making society
more resilient against cyberattacks.

1.2 Research Context
Cybersecurity has become one of the fundamental pillars of countries’ national se-
curity. Indeed, the security of the societal functions of a country rests on this pillar.
Due to the changing nature of modern warfare, cybermethods of waging war are
being increasingly utilized compared to kinetic methods. This fundamental shift in
the nature of warfare has led to the development of increased cyber capabilities in
many countries. Realizing the evolving nature of warfare, the government of Nor-
way was one of the first governments to develop a national cybersecurity policy
back in 2003 [1]. This led to the development of different entities that can respond
to attacks on Norwegian digital infrastructure. However, considering the signific-
ant increase of cyberattacks in modern times, in its 2018 national cybersecurity
policy [2] the government of Norway included the cyber range as a key measure
for training individuals and organizations to handle evolving cyberattacks.

Cyber ranges can provide the environment for the execution of different types of
cybersecurity exercises that may or may not need computer-added features. For
example, cyber ranges can be used to execute discussion-based exercises, which
involve seminars, workshops and tabletop exercise scenarios. These kinds of scen-
arios do not require computer infrastructure for execution. In such exercises, scen-
arios are discussed by experts and mangers, and their inputs are used for solving
a cybersecurity incidents. Cyber ranges can also be used for executing opera-
tional exercises, including drills, functional exercises and full-scale exercises [3].
Drills are used for regular testing and verification of different components present
within an organization, such as testing an intrusion detection system with malware
samples. Meanwhile, functional exercises include CTF Capture The Flag, Attack
Defense and Red versus blue scenarios. These kinds of scenarios are used for
training and evaluating offensive and defensive skills within an organization. On
the other hand, full-scale exercises combine concepts from tabletop exercises and
functional exercises to create a coherent exercise environment for both managers
and operational-level analysts.

The Norwegian Cyber Range (NCR) project was launched in 2018 [4] with the
main aim to establish a center of excellence in Norway for organizing and provid-
ing cybersecurity training and education to different public and private actors. One
of the goals of the project was to combine strategic, tactical and operational levels
of cybersecurity and execute full-scale cybersecurity exercises. This research work

1.3. Motivation 9

focused on the operational layer of cybersecurity exercises within NCR, and the
next section will highlight the motivation for this endeavor.

1.3 Motivation
The shortage of cybersecurity skills is a well-known and well-documented prob-
lem [5]. Consequently, a considerable amount of work is being carried out to
address this problem. Most of this work is related to developing exercises and
training materials to educate as many individuals as possible. However, these are
mostly discussion-based scenario exercises [6]. While they have the potential to
increase cybersecurity awareness and address the current challenges that different
stakeholders face, there is a lack of technical cybersecurity training and education,
as highlighted by ENISA (European Network and Information Security Agency)
in its 2015 report on the status of cybersecurity exercises [6]. Similarly, in its 2021
report, ENISA indicated that there are some Europeans countries that are lacking
the capability to organize operation-based cybersecurity exercises [7].

Such operation-based exercises can be provided in environments that represent
actual IT systems, which are vulnerable to cyberattacks. These IT systems can be
represented in a digital emulated environment, such as a cyber range. They provide
an actual representation of an organization to execute realistic cybersecurity incid-
ents in a safe manner and provide people the opportunity to learn hands-on skills to
handle such incidents. Organizing such exercises takes months to years [6, 8], as it
involves a complex cybersecurity exercise life-cycle. Existing solutions [9, 10] are
addressing these inefficiencies by automating the preparation, deployment and dry
run of cybersecurity exercises to a certain extent. However, most of the existing
solutions are currently focused on certain phases of the cybersecurity exercise life-
cycle. Little attention has been given to the dry run and execution phases, while
most of the focus is on environment creation [11, 12].

In terms of environment creation, the main challenge is that there is a significant
lack of methods for representing complex IT systems in a realistic manner. Most
of the existing solutions focus on small-scale CTF competitions [12, 13] with very
little network complexity. The second problem related to environment creation is
that the environments created are highly inflexible after deployment [8, 14]. Cy-
bersecurity exercise scenarios need to be flexible and adaptable so they are readily
available in an efficient manner with changing scenario requirements. Regarding
exercise execution, there is a lack of automated adversaries [15] that can add fric-
tion to the exercise to provide realistic cybersecurity training in the event human
adversaries are not present.

Finally, very little effort has been made to formally model and analyze the exer-

10 Introduction

cise scenarios that integrate both the static environment as well as the dynamic
behavior of attackers and defenders when running within the environment. Using
formal methods for modeling and analyses enables the verification and validation
of exercise scenarios in various phases of the exercise life-cycle. For example, it
can help to design and build a cybersecurity exercise environment with few er-
rors [11] and make it possible for the exercise designer to verify and proof various
scenario properties during execution.

There is a need to develop algorithms and tools to overcome the aforementioned
problems in the operation-based cybersecurity exercise life-cycle. Such solutions
should enable the design, creation and execution of cybersecurity exercise scen-
arios in an efficient, repeatable, realistic and effective manner.

1.4 Aim and Scope
As practical hands-on cybersecurity skills are in high demand [5, 16], operation-
based cybersecurity exercises were the focus in this research. The 2015 Report on
“National and international cyber-security exercises” [6] by ENISA suggested that
the number of cybersecurity exercises conducted is far below the required num-
ber, and due to the increased awareness of cybersecurity problems, policymakers
are demanding more cybersecurity exercises. From 2015 to 2020, the number of
CTFs organized on CTFtime doubled [17], which indicates the growing demand
for operation-based cybersecurity exercises, and the number is expected to grow
even further in the near future.

The same report by ENISA also indicated that 81 percent of the exercises that are
conducted are simulations, table-tops and workshops, compared to 11 percent of
operation-based red/blue team exercises. This indicates significant shortcomings
in operation-based cybersecurity exercises. Therefore, the research focused efforts
on identifying inefficiencies in conducting operation-based cybersecurity exercises
and developing tools and techniques to tackle those inefficiencies, as indicated
in Figure 1.1. Discussion-based exercises are out of the scope of this study. In
our experiments and case studies, we focused on university-organized exercises
and labs. Hence, multinational and very large-scale exercises, e.g., the scale of
lockedshield [6], are beyond our current scope.

1.5 Research Questions
To understand the objectives and goals of this research, four research questions
were formulated.

1.5. Research Questions 11

Figure 1.1: Research focus

Research Question 1

First, it is important to identify the challenges, problems and open questions as-
sociated with cybersecurity exercises. Therefore the first research question was
formulated as follows:

RQ1 What are the current challenges involved in conducting cybersecurity ex-
ercises efficiently in terms of time, computational resources and learning
outcomes?

Inefficiencies in conducting cybersecurity exercises were identified through a lit-
erature review and an experimental observation. A taxonomy and functional ar-
chitecture of the cyber range was developed for further investigation.

Research Question 2

Based on the findings of RQ1, in-depth research and analysis on adversarial attack
and defense scenario modeling and execution in cybersecurity exercises is needed.
Therefore, RQ2(a) and RQ2(b) were formulated as follows:

RQ2(a) How can an efficient and adaptable active offensive opposition process exe-
cution be modeled against a given cybersecurity exercise defense scenario?

RQ2(b) How can an efficient and adaptable active defensive opposition process exe-
cution be modeled against a given cybersecurity exercise attack scenario?

The findings of RQ2(a) and RQ2(b) were used as a basis for modeling the exercise
environment, which is the focus of RQ2(c):

12 Introduction

RQ2(c) How can an efficient and adaptable cybersecurity exercise environment be
modeled with respect to attack and defense scenarios?

A study on current cybersecurity curricula was performed to identify the skills that
need to be taught in a cybersecurity educational program. The identified skills
were used to develop a serious game for teaching attack and defense tactics, tools
and procedures in a cyber range. The study’s findings revealed that such plat-
forms could be useful in teaching cybersecurity skills. A platform was developed
to transform the simulated exercise environment into emulated infrastructures to
conduct operation-based exercises.

Research Question 3

Cybersecurity exercises can be conducted in a manually created network environ-
ment. However, due to the dynamic nature of cybersecurity attack and defense
models, the exercise environment also needs to be dynamic. RQ3(a) investigates
how a dynamic exercise environment can be generated. Therefore RQ3(a) was
formulated as follows:

RQ3(a) How can dynamic cybersecurity exercise environment be generated autonom-
ously with respect to a given cybersecurity exercise model?

RQ3(b) considers how cyberattack and defense scenario models can be executed in
the generated exercise environment of RQ3(a). Therefore RQ3(b) was formulated
as:

RQ3(b) How can cybersecurity attack and defense scenario models be executed autonom-
ously in a cybersecurity exercise?

A DSL (domain-specific language) was developed to emulate the role of the scen-
ario designers, attackers and defenders present in the cybersecurity exercise. The
DSL constructs were used to emulate the attacker in a semi-autonomous manner.
Moreover, the DSL also contained constructs for benign users that can emulate
normal user behavior to conduct realistic cybersecurity exercises. Furthermore, a
special exploit chain detection algorithm was developed to emulate defender beha-
vior in an exercise environment that utilized security event correlation and process
monitoring to identify and autonomously prevent attacks. The DSL was used in a
case study scenario of a Norwegian cybersecurity challenge in which the internal
working of an organization network topolgy was emulated, and the participants

1.6. Background 13

of the case studies were asked to perform penetration testing, incident response
and forensic analysis. The results indicate that such a platform could be useful
in conducting cybersecurity exercises on a large scale realistically, efficiently and
effectively.

Research Question 4

RQ4 evaluates the proposed solutions in RQ3. Therefore, RQ4 was formulated as
follows:

RQ4 How can the developed solutions be evaluated in terms of time, computa-
tional resource and learning outcome requirements with respect to existing
solutions?

A case study was conducted during an ethical hacking course at the Norwegian
University of Science and Technology in which the developed DSL was used to
test and verify the proposed concepts in a classroom setting. In the case study, the
developed DSL was used to orchestrate an exercise infrastructure. The DSL attack
constructs created forensic attack traces through an agent that human participants
verified. Meanwhile, a defender DSL construct was used to emulate defender
behavior in the exercise infrastructure through defender agents. The human parti-
cipants were tasked to exploit the system on which these agents were running. The
case study indicated that such agents could be useful in conducting the exercises
in a realistic manner.

1.6 Background

1.6.1 Cyber Ranges

With the rise of cyberthreats and the growing acceptance of cyberwarfare, cyber
testbeds have become an essential capability for the military and governments to
evaluate their capability to combat possible cybersecurity threats [18]. Such test-
beds provide the ability to test and validate the strategies, tactics, interoperability,
functionality and performance of cyberwarfare (defense and offensive) solutions.
They also provide opportunities to conduct experiments to test new technologies
and mitigate cyberattacks.

The term cyber range first appeared in the literature around 1977, where it was
used to describe a family of supercomputers developed by Control Data Corpor-
ation for scientific and industrial usage [19]. In the context of security testing
and training, the use of a cyber range can be traced back to the MIT LARIAT
project, in which MIT collaborated with the US Department of Defense (DoD) to
construct testbeds to test systems and detect cyberattacks in the early 2000s [20].

14 Introduction

A study from the Australian military in 2013 [21] revitalized the subject and at-
tracted the attention of the scientific community. Cybersecurity researchers have
been burdened with the time and cost needed to establish secure test environments
capable of analyzing new threats and evaluating new technologies [22]. In or-
der to reduce these costs, DARPA Defense Advanced Research Projects Agency
launched the National Cyber Range (NCR) program to develop the architecture,
software and tools required for secure, self-contained cybertesting sites [23, 24].
NCR was developed to test network attack and defense strategies by providing
businesses and research organizations with a real-world simulation environment
to verify advanced concepts and capabilities for defending US communications
networks against cyberthreats. Multiple countries are now in the process of estab-
lishing their own cyber ranges for different testing, training, and experimentation
purposes. Some of the famous publicly known cyber ranges are the Michigan cy-
ber range, which was established in 2012 [25], and the NATO cyber range, which
was established in Estonia around 2014 [26]. Other European projects, such as
KYPO [27], Cyber Wiser [28], ECHO [29] and SPARTA [30], are ongoing.

Using cyber ranges is one of the most effective ways to learn new cybersecur-
ity skills by practicing realistic cyberexercises and techniques in a controlled and
safe environment [31]. Cyber ranges facilitate training of on-demand threat scen-
arios to improve people’s ability to identify vulnerabilities and respond to cyber-
threats [32]. Cyber ranges are modeled similarly to the physical shooting ranges
used by the police and military. Training arenas are thus created that simulate a
wide range of security incidents so that cybersecurity experts can practice how to
respond [33].

Attackers, defenders and the general systems with which users interact shape cy-
berspace as it exists today. Modeling the attack and defense scenarios in cyberdo-
mains is an important line of research. Modeling and presenting the full spectrum
of cyberattacks and defense behavior is a complex and daunting task given the
sheer number of options the attacker and defender have [34]. Live simulations and
penetration tests provide a limited and detailed set of data on cyberattack scen-
arios for network-specific behavior. Synthesis of this data with alternative network
configurations and attack types and behavior can provide a more accurate and ro-
bust security assessment, as it helps to better understand how vulnerabilities are
realized. Cyber range training is useful for people and organizations that want
to experiment with new cyberdefense technologies. They can test new ideas and
see how teams interact with emerging cybersecurity solutions. Additionally, it can
help them to create tailor-made cybersecurity for their solutions to test in an actual
environment.

1.6. Background 15

1.6.2 Cybersecurity Exercises

There are multiple ways in which cybersecurity exercises can be conducted. Two
of the most prominent types are discussion-based exercises and operation-based
cybersecurity exercises [3]. In discussion-based exercises, a cybersecurity scen-
ario is given, which mostly deals with an incident that is happening and evolving.
Higher-level managers strategize how to respond to the incident based on their
experience and decision-making. Such exercises involve hypothetical scenarios
and address them in a theoretical way. Although they are very good at devising
strategies for discussing and addressing different cybersecurity incidents, they are
not well suited for teaching practical cybersecurity skills. Such practical skills in-
volve exploiting known and unknown vulnerabilities within an IT infrastructure,
defending against such attacks and performing forensics analysis after an incident
has happened. For teaching such skills, operation-based cybersecurity exercises
are used. In an operation-based exercise environment, a scenario is given on an
actual IT system that has different tasks associated with attackers and defenders.
In most cases, attackers have to identify some information on one of the IT sys-
tems, and such information is known as a flag to gain points, while defenders have
to stop such actions and prevent attackers.

Conducting discussion-based and operation-based cybersecurity exercises requires
different skill sets. For discussion-based exercises, the designer needs to have vast
experience in cybersecurity incidents at a higher management level to design cy-
bersecurity scenarios. Meanwhile, for an operation-based exercise, the exercise de-
signer needs to have technical know-how about cybersecurity vulnerabilities and
their defenses to set up IT infrastructure to conduct practical hands-on cyberse-
curity exercises. When organizing cybersecurity exercises, many tabletop-based
exercises require little technical infrastructure and operational know-how on cy-
bersecurity incidents. Thus, they can be conducted with very limited resources
like pen and paper. Conversely, operation-based exercises require IT infrastruc-
ture with specific software, services and networking facilities, making them very
difficult and expensive in terms of time and resources to organize.

1.6.3 Operation-Based Cybersecurity Exercises

Operation-based cybersecurity exercises basically involve attack and defense exe-
cution in an exercise environment. In this environment, a team of attackers (i.e.,
red team) tries to compromise the network and application layer vulnerabilities
present in the environment while a team of defenders (i.e., blue team) tries to de-
fend and prevent the attacks. In a recent study [35], the researchers found that
such exercises are beneficial for cybersecurity skill development. The researchers
conducted knowledge surveys on the participants before and after a cybersecur-

16 Introduction

ity exercise, and they found significant improvement in network security skills,
including ARP poisoning, duplication in DNS entries and firewall/router assess-
ment.

In another study, Mirkovic et al. [36] achieved similar results to those observed in
pre- and post-exercise surveys. This clearly suggests that operation-based cyber-
security exercises can help in increasing the skill set of participants in an effective
manner. However, conducting an operation-based cybersecurity exercise is a costly
process [37]; even at a small scale, the cost of the software and hardware required
for the exercise is high. This is due to the fact that realistic cybersecurity exer-
cises require licensed software and extensive redesign of applications according
to the scenario requirements. This makes it difficult to conduct operation-based
cybersecurity exercises in a regular cost-efficient manner.

The purpose of the exercises is mostly to locate a certain piece of text, a so-called
flag, on a server or website. Such exercises simulate scenarios from the real world,
such as hacking remote sites or exploiting vulnerabilities in certain applications.
They can be individual and team-based, attracting a wide range of participants,
including students, enthusiasts and professionals. The exercises can last from a
few hours to a full day or even several days. They have grown from their humble
roots to a sports level, with thousands of individual games and leagues taking place
around the world. There are mainly three types of scenarios that are utilized in such
exercises:

1. Jeopardy-style
In Jeopardy-style scenarios, the participants can see a list of challenges and
are free to choose which challenge they would like to solve. The challenges
can be from different categories (e.g.., web, reverse, forensics, etc.) and are
not linked with each other. However a single challenge can have multiple
flags based upon the challenge difficulty level.

2. Attack/Defense
In an attack/defense scenarios, participants are assigned vulnerable systems
while attempting to attack the opponent’s systems. Participants start with
the time allotted to them to patch and secure their own systems and try to
detect as many vulnerabilities as possible before their opponents attack the
participant’s infrastructure.

3. Red Team vs. Blue Team
In a red team against blue team scenario, one team plays as an attacker while
the other team plays as a defender. The complex infrastructure of an organ-
ization is emulated, and attackers learn vital techniques in compromising

1.6. Background 17

the infrastructure, while defenders learn how to defend their systems against
active attacks.

1.6.4 Cyber Security Exercise life-Cycle

Designing and building cybersecurity exercise scenrios is a complex and challen-
ging task. There is a whole life-cycle involved in conducting cybersecurity exer-
cises. Vykopal et al. [8] presented the lessons learned from an operation-based
cybersecurity exercise in a cyber range. After analyzing multiple cybersecurity
exercises, the researchers shared their cybersecurity exercise life-cycle. The life-
cycle has five phases, as follows:

• Preparation
In this phase, the exercise objectives are defined, the scenario for the exercise
is developed and the necessary infrastructure for the scenarios is created.
This phase takes from weeks to months in the cybersecurity exercise life-
cycle because it involves considerable planning and development.

• Dry run
In this phase, the developed scenario and deployed infrastructure are tested
by a team of experts. Changes are made to ensure that everything is working
as planned. This phase also takes a few weeks because it involves debugging
the exercise scenario and infrastructure for any error.

• Execution
In this phase, the cybersecurity exercise is executed by different teams to try
to achieve the objectives defined in the exercise scenario. This phase usually
takes from a few days to few weeks, depending on the nature of the exercise.

• Evaluation
In this phase, the different participating teams’ performance in the cyber-
security exercise is evaluated based on the achieved objectives. This phase
usually takes a few days to evaluate team performance.

• Repetition
In this phase, the overall exercise is analyzed to identify any technical and
nontechnical problems that need to be addressed before rerunning the exer-
cise. This phase usually takes a few days to fix newly identified problems.

18 Introduction

1.7 Related Work

Cyberattack Scenario Modeling In Cybersecurity Exercises

In the literature, multiple cyberattack modeling languages are used, including Cor-
related Attack Modeling Language (CAML) [38], which uses different modules.
The modules represent a step in a cybersecurity attack scenario. These modules
can be linked to form a multi-step cybersecurity attack scenarios. The modules
contain attack patterns for the purpose of attack modeling process. However, this
language models cyberattacks using attack trees and graphs that are at an abstract
level. Thus, these models can only be used for the identification of probable weak-
nesses in the system defenses. [39] modeled and simulated cyberattacks by ana-
lyzing attacker behavior and mapping the steps in that behavior, such as reconnais-
sance, intrusion and escalation. Then, they generated attack steps for launching an
attack for a given scenario. The present research will focus on emulating such
attack steps in a cybersecurity exercise.

In terms of attack execution methods and solutions, such as the Scanning, Vul-
nerabilities, Exploits and Detection tool (SVED) [40], Armitage and Simulated
Cognitive Attacker Modeling (SC2RAM) [41] exists. SVED uses tools like Open-
Vas for vulnerability scanning and metasploit for vulnerability exploitation. SVED
is also integrated within the CRATE [42] cyber range for some attack team auto-
mation tasks. Armitage is an another free penetration testing automation tool,
which uses the nmap scanning engine for vulnerability scanning and metasploit to
perform exploitation. There is a commercial version of armitage, which is called
cobalt strike, which has more penetration testing exploits and features but the same
core functionality. SC2RAM is utilized to mimic human cognitive behavior in a
cybersecurity exercise. It uses freely available exploits to attack targets based upon
cognitive decision-making. In the Cyris [43] cyber range, an automatic attack
emulation tool is implemented to generate attacks like brute-force and distributed
denial-of-service attacks (DDOS), but it is static in nature and used for traffic log
generation. These tools follow a single attack model for multiple attack scenarios,
seeking to identify and exploit the vulnerabilities through multiple attempts. This
creates a great deal of network traffic noise due to their brute-force approach to
vulnerability scanning and exploitation. Therefore, they are not ideal for cyber-
security exercise execution. Researchers also used crude and basic scripts for the
automation of attack team tasks in the security test bed Power Cyber [44]. The re-
searchers created separate machines with pre-defined bash scripts to automate spe-
cific attack scenarios in a cybersecurity exercise. The bash scripts execute freely
available exploits to generate a network attack. However, using this approach has
disadvantages as well. The scenario builders need to be familiar with many ex-

1.7. Related Work 19

ploit automation techniques, and new exploit automation will be required for new
scenarios. The present research will utilize the previously developed techniques
for the creation of a new cyberattack modeling language. In comparison to those
mentioned above, our cyberattack modeling language will be used in the creation
of a dynamic attack scenario that will be executed autonomously. Our language
will provide a high level of abstraction for the exercise designer and can be used
with very little technical knowledge of vulnerabilities. Our modeling language will
be integrated with the whole cybersecurity exercise life-cycle and will aid in per-
forming dry runs on injected vulnerabilities in the exercise infrastructure as well
as adversary emulation.

Cyber-Defense Scenario Modeling In Cybersecurity Exercises

A network attack description and response architecture based on the multi-level
rule expression language [45] is described in the literature. It is used to classify
a set of attack trees based upon a predefined rule set then uses the rule set to
model an appropriate defense to address the attacks. Similarly, [46] presented the
Predictive, Probabilistic Cybersecurity Modeling Language (P2CySeMoL), which
is an attack graph tool that is designed to estimate the cybersecurity of enterprise
architectures. It provides a theoretical approach on how cyberattacks and defenses
are related quantitatively. Hence, its users only model their assets and how they
are connected in order to enable calculations. These models are validated using
the literature, domain experts, surveys, observations, experiments and case studies.
Most of the models as well as most of their work are created on an abstract level
using attack trees and attack graphs [47]. These models are suitable for running
simulations, but they cannot be used in operation-based cybersecurity exercises for
the emulation of defenders. In [48], the researchers proposed a human immune
system-inspired autonomic system for cyberdefense. The researchers argued that it
is impractical to patch every vulnerability present in an environment, and a multi-
layered autonomous cyberdefense system similar to the human immune system is
required. The present research will utilize the previously developed techniques for
the creation of a new cyberdefense modeling language. However, the cyberdefense
modeling language will be used in the creation of dynamic defense scenarios that
are autonomously executed. The language will be used to specify agent behavior,
which will be injected into the exercise environment and act as an active defender.

Cybersecurity Exercise Scenario Environment Modeling

Multiple cyber ranges have already implemented scenario description languages
in their cybersecurity exercises. One early example of this is TELELAB [49], in
which XML-based scenario description is used to generate new scenarios from a
template of cybersecurity exercise resources. These generated scenarios need to

20 Introduction

be manually modeled in XML to generate new cybersecurity exercise scenarios.
Similar to TELELAB, Cyris [43] uses a YAML-based cyber range modeling lan-
guage in which the cyber range host, guest and clones can be modeled and gener-
ated. Like Telelab, Cyris also includes reconfigured templates for cyber range host
and guest systems, and the clone systems are manually modified from the guest
systems according to the given cybersecurity exercise scenario. In comparison,
Cyrtone [50] takes the process a bit further by introducing the concept of a train-
ing description in the cybersecurity environment modeling process. Cyrtone uses
Cyris for environment creation; however, the clone systems are generated based
upon the input in the training description. CyberVan [51] is another example sim-
ilar to Cyris in which simulation models from NS2 and Opnet can be used in the
creation of the emulated exercise environment. An implementation that automates
the process of cybersecurity exercise scenario generation is SECGEN [13] (Secur-
ity Scenario Generation). It is a framework for generating randomly vulnerable
rich-scenario VMs for learning computer security and hosting CTF Events. SEC-
GEN has a definition of multiple vulnerabilities, which can be inserted in VMs
that are randomly generated by an XML-based scenario configuration input. In
the scenario configuration, a scenario description defines the number and type of
operating systems and services that are involved as well as the number of vulnerab-
ilities that are going to exist in the scenario. Then, the scenario is generated auto-
matically by incorporating the setting defined in the configuration file. TELELAB
and SECGEN only create the environment for a cybersecurity exercise. The envir-
onment still requires teams of attackers and defenders simultaneously to mimic a
real-world cybersecurity environment.

1.7.1 Cyber Range State of The Art

A considerable amount of research work has been carried out on cybersecurity and
technologies that are enabling the execution of cybersecurity exercises efficiently
and autonomously. In 2020, a study presented the CRACK cyber range [11], which
used logical programming to formally model cybersecurity exercise scenarios and
cloud orchestration technologies to deploy the modeled scenarios. The research-
ers emulated the network of an organization to present the work. They automated
the roles of white team members in the cybersecurity exercise life-cycle to auto-
matically deploy the exercise infrastructure. Further, they formally validated the
deployed infrastructure through logical verification.

In 2019, researchers presented a model-driven approach for modeling cyberse-
curity scenarios [52]. They used two different approaches. In the first approach,
they modeled the security assurance requirement for an organization, and in the
second they modeled the specification for creating a security testbed to check and
verify the security requirements. They presented an emulation framework model

1.7. Related Work 21

for meeting the operational cybersecurity requirements. Their work can be used
to model an organization as a whole; however, no artifacts were presented in their
work to emulate the organization.

In 2021, researchers presented a model-driven cyber range assurance platform [53]
in which they used the models developed in [52] for cyberthreat and training pre-
paration. The researchers combined different simulation, emulation and serious
game techniques to provide training related to the security assurance of an organ-
ization. Then, they used feedback from the training participants to adapt their
models to provide training according to their skill set needs. They used an In-
ternet of Things (IoT) smart home scenario to verify their developed tools and
techniques.

Similarly, in [12] a new method of conducting cybersecuirty exercises was in-
troduced. The researchers presented Nautilus which is a tool for the automatic
deployment and sharing of cybersecurity exercise scenarios. The researchers de-
veloped a scenario description language to specify the scenario requirements and
used virtualization technologies to deploy the scenario. The researchers argued
that configuring and deploying scenarios for a dynamic threat environment is a
difficult task, and specifying scenario requirements in a scenario language enables
sharing the scenario with multiple partners for standardized training.

Likewise, in 2021 a method was presented for generating models of IT systems
automatically [54]. The researcher used expert-defined roles that can take very
simple inputs about an organization and transform them into operational IT in-
frastructure models that can be used to verify different properties of the IT infra-
structure. The researchers made the system flexible enough to accept new rules to
model new scenarios for different organizations. They used linear programming
to implement the solution and verify its properties. While they did not actually
deploy the cybersecurity exercise environment, the study made a valuable contri-
bution in terms of modeling the networked topology of different IT infrastructures
that can be used in operational cybersecurity exercises.

In parallel, a 2020 study focused on virtualization and automation of cybersecur-
ity training and experimentation [55]. The researchers developed an orchestra-
tion interface for automatically deploying cybersecurity exercise infrastructure. A
scenario description language was used to specify the scenario requirements form-
ally and automatically deploy them using different orchestration technologies. A
python-based orchestrator was used that can take the scenario inputs and transform
them into cyber range artifacts and deploy the cybersecurity exercise environment.

Additionally, in 2021 a hybrid cyber range called PAIDEUSIS [56] was presen-

22 Introduction

ted. The researchers combined technologies from CRACK with actual hardware
representing IoT, SCADA and other devices to organize hybrid capture the flag
competitions. The researchers used different freely available tools to accomplish
this task and proposed a system for the hybrid cyber range. The range consisted of
multiple cyber range environments, including SEcube, Chip whisperer, hardware
and network emulation environment. By combining all these technologies and
ranges, the researchers were able to integrate hardware devices with virtualized
networks. In their hybrid cyber range, there were multiple subnets that had differ-
ent components, some of which were virtualized while others were interconnected
to develop the hybrid cyberenvironment.

1.8 Methodology
As the research moved toward the development of artifacts for conducting cyberse-
curity exercises, the DSR (design science research) methodology was the method
of choice. DSR is a results-oriented research method in information technology
that provides specific guidelines for the evaluation and iteration of research pro-
jects. It is largely applied in engineering and computer science, but it is not limited
to these disciplines and can be found in many disciplines and areas. It is used to
apply knowledge to produce effective artifacts [57]. In general, the DSR method-
ology contains five steps [58], which are depicted in Figure 1.2. These steps are as
follows:

• Awareness of the problem can come from a review of the literature and
through observation and experiments to identify problems and inefficiencies.
The output of this phase is a proposal for the new research effort.

• The suggestion phase follows after the awareness of the problem. Solutions
are suggested for the identified problem. The output of this phase is the
tentative design of the solution for the identified problem.

• Development is the phase in which the tentative design of the solution,
which is suggested in the suggestion phase, is implemented. The output of
this phases is an artifact that can be used in solving the identified problem.

• Evaluation is the phase in which the developed artifact is evaluated based
upon defined quantitative or qualitative matrices.

• The conclusion is the final step of the research, where the results of the
evaluation are used to identify how well the artifact was able to solve the
identified problem.

1.8. Methodology 23

Figure 1.2: General methodology of design science research [58]

The research questions tackled in this thesis were addressed in multiple research
papers, which employed a multitude of research methodologies. Four primary re-
search methodologies were used: SLR (systematic literature review), surveys, case
studies and experiments. These methods were applied in eight research articles
during different DSR activity phases. For the awareness of the problem, SLR, sur-
veys and case studies were employed, which provided an overview of the current
status, opportunities and challenges in cyber range technologies. Based on the
findings, the hypothesis for the study was formalized, and the next phase of DSR
was investigated. In the suggestions phase, surveys, case studies and experiments
were conducted to propose the tentative design for addressing the research ques-
tions. In the development phase, case studies and experiments were conducted
on the developed artifacts to check their performance against defined test cases,
and the results were presented in relevant publications. Finally in the evaluation
phase, case studies and experiments were conducted on the developed artifact
to check its usability in an academic setting. The different research methods that
were used during the different DSR activities with respect to the research questions
and research papers are presented in Table 1.1.

DSR is an iterative process, and the output of different research steps is connected
with those of previous research steps. Some of the methods that were used to carry
out different research steps along with their methods and how they were connected
with other steps include the following:

• Problem identification: Systematic literature review methods [59] were used
to identify the current challenges of unclassified cybersecurity exercise plat-
forms. Additionally, an experimental observation of cybersecurity exercises

24 Introduction

at NTNU was conducted. In the observatory study, the set of problems re-
lated to conducting cybersecurity exercises were analyzed and discussed.
This study was used to identify the inefficiencies in conducting cybersecur-
ity exercises in terms of time, computational resources and learning outcome
requirements. This step was mapped with the first step of the DSR method-
ology and used to answer the first research question RQ1.

• Requirements gathering: In this step, we gathered the requirements and pro-
posed the tentative design of the modeling artifacts. Literature reviews and
surveys were used to gather information from cybersecurity exercise stake-
holders on proposed research. Requirements for the adversarial environment
were established based on the information gathered from the cybersecurity
exercise stakeholders. Furthermore, an extensive analysis of current cyber-
security exercise adversarial environments was performed by conducting a
literature review on current adversarial tools and techniques. This covered
the first part of RQ2.

• Tentative design: This step focused on establishing the tentative design for
attack and defense scenario and environment modeling in cybersecurity ex-
ercises. Based on the design requirements gathered in the previous step, an
efficient and adaptable attack and defense scenario and environment mod-
els for cybersecurity exercises were proposed. For the attack and defense
scenario and exercise environment modeling step, model-driven engineer-
ing (MDE) [60] methods were used, which allowed us to formalize the struc-
ture, behavior and requirements of the attack and defense scenario and en-
vironment within the domain of cybersecurity education [60]. This helped
the researcher to focus more on capturing the domain knowledge in formal
models, thus reducing the need for domain experts in conducting cyberse-
curity exercises. In terms of concrete MDE techniques, the researcher used
domain-specific modeling language [60](DSML) tools. DSML allowed the
researcher to create domain-specific languages for the attack and defense
scenarios and exercise environment. This helped the researcher to segregate
the roles of attack and defense and environment models that enable them to
be used independently with respect to each other.

• Artifact development: This step focused on the development of three arti-
facts: autonomous cybersecurity exercise environment generation, autonom-
ous cybersecurity attack scenario execution and autonomous cybersecurity
defense scenario execution. The scenario environment and the attack and de-
fense execution behavior were formally modeled and analyzed.The formal
model was developed in Datalog, which is a programming language based

1.8. Methodology 25

on a declarative logic [61]. The formal model analysis helped to identify er-
rors and verify different scenario properties of the exercise scenario models
and execution behavior before their actual execution. In terms of cybersecur-
ity exercise execution, the researcher developed an agent-based system [62].
The agent works similar to the multi-agent cyberattack and defense sim-
ulation framework [63], but the developed cyberattack and defense agents
are emulation-based artifacts with an additional environment creation plat-
form. The key contribution in this phase was the integration of the dynamic
cyberattack and defense scenario and security exercise environment mod-
els developed in RQ2 with an agent-based emulation platform. For exercise
environment emulation, OpenStack 1 was used because it is being used in
NTNU for research and development. For attacker emulation, a Kali linux 2-
based agent was implemented due to its penetration testing support. For the
defender agent, a C-Sharp based agent was developed to run in a Windows-
based exercise environment. This step mapped to the third step of the DSR
methodology and answered the third research question RQ3.

• Evaluation: This step focused on the evaluation of the developed artifacts.
Multiple studies were conducted on cybersecurity exercises, which gener-
ated research data. According to researchers [64], the gathered data can be
used in both quantitative and qualitative evaluations. In quantitative evalu-
ation, research deals with the collection and analysis of numerical data. It
enables quantification and statistical analysis of the data to extract important
information. In qualitative evaluation, research deals with the collection and
analysis of descriptive data. This makes it possible to conduct research in-
volving humans. That often includes information about characteristics that
cannot be measured in quantitative research, such as emotional state and
social characteristics. We performed verification and validation of the de-
veloped artifacts based upon quantitative and qualitative evaluation metrics.
This step mapped to the fourth step of the DSR methodology and answered
the fourth research four RQ4. More details about this step are provided in
the next section (Section 1.8.1).

1.8.1 Verification and Validation
In qualitative research, the researchers observe the study participants and
draw conclusions about their behavior, motivations and struggles. This type

1https://docs.openstack.org/openstack-ansible/latest/
2https://www.kali.org/

26 Introduction

R
esearch

Q
uestions

R
esearch

Papers
D

SR
A

ctivity
R

esearch
M

ethods
SL

R
Survey

C
ase

Study
E

xperim
ent

R
Q

1
1,2,3

A
w

areness
R

Q
2

4
Suggestions

R
Q

3
5,6

D
evelopm

ent
R

Q
4

7
E

valuation

Table
1.1:

M
apping

research
m

ethods
used

foraddressing
differentR

Q
s

w
ith

D
SR

m
ethodology

1.8. Methodology 27

of data can be collected from diaries, accounts and in-depth interviews and
analyzed based on sound theory and thematic analysis. Data-gathering meth-
ods can help predict potential reactions, and large ethnographies allow data
to be collected in natural and uncontrolled environments. This means that
qualitative researchers study things in their natural environment and try to
understand and interpret phenomena in terms of the meanings assigned to
them by humans. The aim of qualitative research is to understand and live
the social realities of individuals, groups and cultures as far as possible from
the perspective of the participants.

Quantitative research is used to quantify opinions, attitudes, behaviors and
other defined variables, with the aim of supporting or refuting hypotheses
about certain phenomena or contextualizing the results of a sample of a
broad population or group. Quantitative techniques include various forms of
questionnaires, surveys, structured interviews and behavioral observations
based on explicit coding and categorization schemes. Because quantitative
research determines what is measured and what is measured to detect pat-
terns (e.g., behavior, motivation, emotions and cognition), quantitative data
collection is considered a structured qualitative method.

Two case studies were conducted in which two experiments were performed
to verify and validate the artifact outcomes in a cybersecuirty exercise en-
vironment. The first experiment dealt with quantitative evaluation of the
developed artifact with respect to metrics like time, computational resources
and exercise environment creation accuracy. This helped the researcher in
the artifact verification step. The second experiment dealt with qualitative
evaluation of the developed artifact, and the skill level improvement of the
exercise participants was analyzed. This helped the researcher to validate
the developed artifact.

Case Study 1

The first case study was conducted at the Norwegian Cybersecurity Chal-
lenge. An experiment was performed in which the autonomous environment
generation capability of the developed artifacts was validated. The same
exercise scenario was assigned to two human white teams. The first team
was aided with the autonomous environment generation artifact, while the
second team was only allowed to use traditional environment creation tools
and techniques. The results of this experiment were validated based upon
the following metrics.

– Time This is the most important metric for our evaluation purpose. As
we stated in the research background, preparation of the cybersecurity

28 Introduction

exercise environment is the longest phase in the cybersecurity exercise
life-cycle. The researcher measured the time difference in environ-
ment creation between the teams that were aided by the autonomous
environment generation artifact and those that were not.

– Computational resource Comparative analysis of the computational
resources required for preparing the cybersecurity exercise environ-
ment was performed. Metrics like memory, processing power and
space requirements were compared to existing cybersecurity environ-
ment creation tools and techniques, including SECGEN, Cyrtone and
CyberVan.

– Environment creation accuracy A dry run was performed on the ex-
ercise environment created by the autonomous environment creation
artifact. The aim of the dry run was to identify how much the exercise
scenario in terms of exercise objectives was represented in the created
environments.

The result of this experiment helped us to establish the following:

1. The autonomous environment creation artifact is more time-efficient
and cost-effective compared to manual environment creation.

2. The manual environment creation process is more error prone com-
pared to the autonomous environment creation process.

Case Study 2

The second case study was conducted during a lab exercise on information
security courses taught at NTNU. In the case study, an experiment was per-
formed on two groups of students. The first group of students was the control
group, who performed the cyberattack and defense exercise against human
adversaries. The second group of students was the experimental group. This
group performed the cyberattack and defense exercise against autonomous
attack and defense adversaries. The results of this experiment were ana-
lyzed with pre- and post-exercise surveys, which helped us to establish the
following points:

1. Autonomous adversaries can provide realistic cybersecurity training.

2. Autonomous adversaries are more accurate in terms of attack and de-
fense scenario execution repetition compared to human adversaries.

1.9. Summary of Contributions 29

1.9 Summary of Contributions

1.9.1 List of Publications

1. First Research Question

(a) Yamin, M. M., & Katt, B. (2018). Inefficiencies in Cyber-Security
Exercises Life-Cycle: A Position Paper. In AAAI Fall Symposium:
ALEC (pp. 41-43).

(b) Yamin, M. M., Katt, B., Torseth, E., Gkioulos, V., & Kowalski, S. J.
(2018, September). Make it and break it: An IoT smart home testbed
case study. In Proceedings of the 2nd International Symposium on
Computer Science and Intelligent Control (pp. 1-6).

(c) Yamin, M. M., Katt, B., & Gkioulos, V. (2020). Cyber ranges and
security testbeds: Scenarios, functions, tools and architecture. Com-
puters & Security, 88, 101636.

2. Second Research Question

(a) Yamin, M. M., Katt, B., & Nowostawski, M. (2021). Serious Games
as a Tool to Model Attack and Defense Scenarios for Cyber-Security
Exercises. Computers & Security, 110, 102450.

3. Third Research Question

(a) Yamin, M. M., Katt, B., & Gkioulos, V. (2019, March). Detecting win-
dows based exploit chains by means of event correlation and process
monitoring. In Future of Information and Communication Conference
(pp. 1079-1094). Springer, Cham.

(b) Yamin, M. M. & Katt, B.(2022). Modeling and Executing Cyber Se-
curity Exercise Scenarios in Cyber Ranges. Computers & Security,
116, 102635.

4. 4th Research Question

(a) Yamin, M. M. & Katt, B. Use of Cyber Attack and defense agents in
Cyber Ranges: A Case Study. (Accepted in Computers & Security
undergoing minor revision)

Additional Publications

1. Hannay, J. E., Stolpe, A., & Yamin, M. M. (2021, July). Toward AI-Based
Scenario Management for Cyber Range Training. In International Confer-
ence on Human-Computer Interaction (pp. 423-436). Springer, Cham.

30 Introduction

2. Wen, S. F., Yamin, M. M., & Katt, B. (2021, September). Ontology-Based
Scenario Modeling for Cyber Security Exercise. In 2021 IEEE European
Symposium on Security and Privacy Workshops (EuroS&PW) (pp. 249-
258). IEEE Computer Society.

3. De Zan, T., & Yamin, M. M. . (2021). Towards a Common ECSC roadmap.
European Information Security Agency, ISSN 978-92-9204-464-0.

4. Yamin, M. M., Ullah, M., Ullah, H., & Katt, B. (2021). Weaponized AI
for cyber attacks. Journal of Information Security and Applications, 57,
102722.

5. Yamin, M. M., & Katt, B. (2019, June). Modeling attack and defense scen-
arios for cyber security exercises. In 5th interdisciPlinary cyber research
conference (p. 7).

6. Yamin, M. M., & Katt, B. (2019, August). Cyber security skill set analysis
for common curricula development. In Proceedings of the 14th International
Conference on Availability, Reliability and Security (pp. 1-8).

1.9.2 List of Major Contributions

First Research Question

1. Inefficiencies in Cyber-Security Exercises Life-Cycle: A Position Paper
In the first Paper, the researcher identified the problem that there are ineffi-
ciencies in conducting cybersecurity exercises. The current way of conduct-
ing such exercises is error-prone, and it takes a long time and considerable
resources to configure the exercise infrastructure manually. Automation was
suggested as a way to help and reduce the cost of conducting the cyberse-
curity exercises.

2. Make It and Break It: An IoT Smart Home Testbed Case Study
The researcher conducted an experimental case study to observe the whole
cybersecurity exercise life-cycle. In the case study, two teams were tasked
to develop a testbed, and then the teams were asked to switch sides and
attack each other’s testbed. The exercise was called make it and break it.
The case study was conducted to identify all the inefficiencies present in the
whole cybersecurity exercise life-cycle. The results indicated that there are
many inefficiencies in the cybersecurity exercise life-cycle, and they can be
removed using automation technologies. This conclusion was drawn from a
survey conducted with the exercise participants before and after the exercise.

1.9. Summary of Contributions 31

3. Cyber Ranges and Security Testbeds: Scenarios, Functions, Tools and Ar-
chitecture
In the third paper, the researcher conducted a detailed systematic literature
review of articles related to cyber ranges and cybersecurity testbeds. The
current state of cyber ranges and the technologies available in automating
exercise setups in cyber ranges were identified. A taxonomy of cyber ranges
was developed, and a functional architecture of cyber ranges was proposed.

Second Research Question

1. Serious Games as a Tool to Model Attack and Defense Scenarios for Cyber-
Security Exercises
In this work, the researcher developed a serious game to test different cy-
bersecurity attack and defense skills before the actual deployment of the
exercise infrastructure. The researcher conducted different field studies and
conducted surveys. The survey identified that conducting cybersecurity ex-
ercises in such a way is useful and teaches different skills without actually
deploying the infrastructure beforehand. The research proposed the first ver-
sion of a DSL for infrastructure deployment to conduct operational cyberse-
curity exercises.

Third Research Question

1. Detecting Windows-Based Exploit Chains by Means of Event Correlation
and Process Monitoring
In this work, the researcher developed the core algorithms required for the
defender agent. In the proposed algorithm, security event information in
a Windows-based environment is collected and analyzed based upon given
patterns. When the patterns are identified, specific actions are executed to
stop the attacker. An experiment was performed on the algorithm to identify
its effectiveness against different one-day vulnerabilities. The performance
of the algorithm was found to be satisfactory in this case.

2. Modeling and Executing Cyber Security Exercise Scenarios in Cyber Ranges
In this work, the whole process of the cybersecurity exercise life-cycle was
modeled and executed computationally using a DSL. The models were form-
ally analyzed and verified using logic programming. The DSL contains mul-
tiple parts that are used to emulate multiple team roles, including white team,
red team, blue team and traffic generators. This made the cybersecurity ex-
cise execution efficient, computationally repeatable and cost-effective. Mul-
tiple experiments were performed in this work to identify the effectiveness

32 Introduction

of the proposed solution. It was found that the proposed solution is very
cost-effective and efficient in conducting cybersecurity exercises.

Fourth Research Question

1. Use of Cyber Attack and Defense Agents in Cyber Ranges: A Case Study
In this work, the researcher conducted a case study and utilized the attacker
and defender agents developed in the previous research question in a com-
puter versus human exercise. The case study highlighted the working of the
attacker and defender agents, and a new concept of execution plans was
developed to formally model their behavior in an exercise environment. The
case study had two parts. First, the attacker created forensic traces, which
were then used to evaluate the performance of the human participants. In
the second part, an active defender agent was placed in an exercise environ-
ment that defended attacks against human participants. The results indicated
that both the attacker and defender agents performed as expected. The par-
ticipants identified attack activity by the attacker agent, while the defender
agent created necessary friction to prevent human attackers from achieving
their objective.

1.10 Limitations
Although this research work removed many inefficiencies from the cybersecurity
exercise life-cycle, there are a few limitations that are highlighted below based on
each research question:

First Research Question

The first research question identified the current state of the art, and the challenges,
opportunities and technologies related to the cyber range were identified using a
systematic literature review and experimental observation. Although the results
were promising at the time, general cyber range technologies were identified and
not specific technologies related to SCADA, IoT, etc. The field is evolving so
rapidly that the results quickly become outdated. Moreover, the experimental ob-
servation of more human participants could yield better results.

Second Research Question

A serious game was developed to test and verify attack and defense modeling
scenarios in a simulated environment. Although the study results were promising,
continuous experimental validation of the developed game could have led to more
systematic results. Additionally, the game was designed to be used for helping

1.11. Conclusion and Future Work 33

people to understand cybersecurity scenarios from attacker and defender perspect-
ives. However, most of the people played it from the attacker prospective due to
insufficient knowledge on defense tactics.

Third Research Question

For the third research question, the lessons learned from the first and second ques-
tions were used to develop a DSL to orchestrate the life-cycle of the cybersecur-
ity exercise. This resulted in improving the execution of the cybersecurity exer-
cise life-cycle and removing many inefficiencies. The DSL was used in multiple
exercises and was validated through multiple experiments. Despite the fact that
defender agents are able to monitor and react to run time events, there has been a
limitation in addressing the monitoring part of the whole cybersecurity exercise in-
frastructure. Moreover, the researcher used specifications related to vulnerabilities
based on strict operational requirements of software, service and configurations,
which is a very unorthodox approach compared to traditionally accepted vulner-
ability specifications like CVE and CWE. Integrating other forms of vulnerability
classification in the developed DSL is one of the future work directions.

Fourth Research Question

To address the last research question, experimental case studies were conducted
to validate the effectiveness of the agents developed during this research. The
results were positive and indicated their effectiveness in cybersecurity exercises;
however, further experimental validation could improve the quality of the results.
Moreover, the agents currently utilize the predefined intelligence of an expert to
launch attacks and defenses autonomously, but an intelligent logic-based solution
for their run time decision-making would make them more useful.

1.11 Conclusion and Future Work
Although cybersecurity exercises have been conducted since the 1990s, the field
of systematic training through cyber range technology is still emerging. When this
research work started, inefficiencies in the cybersecurity exercise life-cycle were
a major challenge in conducting cybersecurity exercises, as the life-cycle took too
much time and resources. This research work effectively removed the inefficien-
cies from the cybersecurity exercise life-cycle and made the execution of cyber-
security exercises very efficient and scalable in terms of time and resources. We
conducted systematic literature reviews, experimental observations, case studies
and artifact development to reduce the inefficiencies in the cybersecurity exercise
life-cycle.

Additionally, We employed formal scenario modeling and analyzed cybersecurity

34 Introduction

attack and defense scenarios before their actual deployment. This removed many
errors in the cybersecurity exercise planning and design phase. We developed an
orchestrator that can take a scenario and deploy it automatically, which optim-
ized the cybersecurity exercise deployment process and removed many inefficien-
cies. We represented the scenario models as easily changeable DSL specifications,
which make them flexible and adaptable based on changing scenario requirements.
We integrated an attack and defense agent in the exercise environment to perform
dry runs and support the execution of exercises to make the whole cybersecurity
exercise life-cycle more efficient and realistic. The proposed solution was the first
functional prototype of the Norwegian cyber range and was extensively used in
multiple cybersecurity exercises involving hundreds of people.

Although the present research removed many inefficiencies from the cybersecurity
exercise life-cycle, there is always room for improvement. One of the requirements
from various exercise organizers has been to create new unique scenarios for each
exercise. While the developed solution supports various phases of the cybersecur-
ity exercise life-cycle, it requires input from a human expert. That expert needs to
design and use the developed DSL to specify a scenario for each exercise. There-
fore, in the future, the researcher will be working on an AI-based exercise scenario
planner that will assist in the planning of cybersecurity exercise scenarios based
on the given objectives. The scenario planner will combine machine reasoning
with scenario formalism, which will be used to make the cybersecurity exercise
requirements more abstract. This will help to generate new and unique scenarios
that can be deployed using the developed orchestrator.

Bibliography

[1] cyber_security_strategy_norway.pdf, (Accessed on 12/13/2021).
URL https://www.regjeringen.no/globalassets/upload/fad/

vedlegg/ikt-politikk/cyber_security_strategy_norway.pdf

[2] list-of-measures–national-cyber-security-strategy-for-norway.pdf, (Accessed
on 12/13/2021).
URL https://tinyurl.com/2p93hysw

[3] R. Gurnani, K. Pandey, S. K. Rai, A scalable model for implementing cy-
ber security exercises, in: 2014 International Conference on Computing for
Sustainable Global Development (INDIACom), IEEE, 2014, pp. 680–684.

[4] About norwegian cyber range - ntnu, (Accessed on 12/13/2021).
URL https://www.ntnu.no/ncr

[5] Isc2-cybersecurity-workforce-study-2021.ashx, (Accessed on 12/19/2021).
URL https://www.isc2.org//-/media/ISC2/Research/2021/

ISC2-Cybersecurity-Workforce-Study-2021.ashx

[6] B. Uckan Färnman, M. Koraeus, S. Backman, The 2015 report on national
and international cyber security exercises: Survey, analysis and recommend-
ations (2015).

[7] Towards a common ecsc roadmap — enisa, (Accessed on 12/14/2021).
URL https://tinyurl.com/5xrfjaxf

[8] J. Vykopal, M. Vizváry, R. Oslejsek, P. Celeda, D. Tovarnak, Lessons learned
from complex hands-on defence exercises in a cyber range, in: 2017 IEEE
Frontiers in Education Conference (FIE), IEEE, 2017, pp. 1–8.

35

https://www.regjeringen.no/globalassets/upload/fad/vedlegg/ikt-politikk/cyber_security_strategy_norway.pdf
https://www.regjeringen.no/globalassets/upload/fad/vedlegg/ikt-politikk/cyber_security_strategy_norway.pdf
https://www.regjeringen.no/globalassets/upload/fad/vedlegg/ikt-politikk/cyber_security_strategy_norway.pdf
https://tinyurl.com/2p93hysw
https://tinyurl.com/2p93hysw
https://www.ntnu.no/ncr
https://www.ntnu.no/ncr
https://www.isc2.org//-/media/ISC2/Research/2021/ISC2-Cybersecurity-Workforce-Study-2021.ashx
https://www.isc2.org//-/media/ISC2/Research/2021/ISC2-Cybersecurity-Workforce-Study-2021.ashx
https://www.isc2.org//-/media/ISC2/Research/2021/ISC2-Cybersecurity-Workforce-Study-2021.ashx
https://tinyurl.com/5xrfjaxf
https://tinyurl.com/5xrfjaxf

36 BIBLIOGRAPHY

[9] I. Priyadarshini, Features and architecture of the modern cyber range: a qual-
itative analysis and survey, University of Delaware, 2018.

[10] T. Gustafsson, J. Almroth, Cyber range automation overview with a case
study of crate, in: Nordic Conference on Secure IT Systems, Springer, 2020,
pp. 192–209.

[11] E. Russo, G. Costa, A. Armando, Building next generation cyber ranges with
crack, Computers & Security 95 (2020) 101837.

[12] G. Bernardinetti, S. Iafrate, G. Bianchi, Nautilus: A tool for automated de-
ployment and sharing of cyber range scenarios, in: The 16th International
Conference on Availability, Reliability and Security, 2021, pp. 1–7.

[13] Z. C. Schreuders, T. Shaw, G. Ravichandran, J. Keighley, M. Ordean, et al.,
Security scenario generator (secgen): A framework for generating randomly
vulnerable rich-scenario vms for learning computer security and hosting ctf
events, in: USENIX, USENIX Association, 2017.

[14] O. Darwish, C. M. Stone, O. Karajeh, B. Alsinglawi, Survey of educational
cyber ranges, in: Workshops of the International Conference on Advanced
Information Networking and Applications, Springer, 2020, pp. 1037–1045.

[15] F. Maymí, R. Bixler, R. Jones, S. Lathrop, Towards a definition of cyberspace
tactics, techniques and procedures, in: 2017 IEEE International Conference
on Big Data (Big Data), IEEE, 2017, pp. 4674–4679.

[16] B. E. Endicott-Popovsky, V. M. Popovsky, Application of pedagogical fun-
damentals for the holistic development of cybersecurity professionals, ACM
Inroads 5 (1) (2014) 57–68.

[17] Ctf events — enisa, (Accessed on 12/19/2021).
URL https://www.enisa.europa.eu/publications/ctf-events

[18] Militaries developing cyber testbeds to test and validate strategies, tactics
and security measures for cyber warfare | international defense security &
technology inc., (Accessed on 08/06/2021).
URL https://tinyurl.com/msw5c3ka

[19] A. H. J. Sale, Primitive data types, Australian Compuer Journal 9 (2) (1977)
63–71.

[20] D. J. Pack, W. Streilein, S. Webster, R. Cunningham, Detecting http tunneling
activities, Tech. rep., MASSACHUSETTS INST OF TECH LEXINGTON
LINCOLN LAB (2002).

https://www.enisa.europa.eu/publications/ctf-events
https://www.enisa.europa.eu/publications/ctf-events
https://tinyurl.com/msw5c3ka
https://tinyurl.com/msw5c3ka
https://tinyurl.com/msw5c3ka
https://tinyurl.com/msw5c3ka

BIBLIOGRAPHY 37

[21] J. Davis, S. Magrath, A survey of cyber ranges and testbeds (2013).

[22] Darpa builds cyber range to test security measures – gcn, (Accessed on
08/06/2021).
URL https://gcn.com/articles/2010/06/07/

defense-it-1-cyber-range.aspx

[23] A secure architecture for the range-level command and control system
of a national cyber range testbed, in: 5th Workshop on Cyber Security
Experimentation and Test (CSET 12), USENIX Association, Bellevue, WA,
2012.
URL https://www.usenix.org/conference/cset12/

workshop-program/presentation/rosenstein

[24] M. Rosenstein, F. Corvese, A secure architecture for the range-level com-
mand and control system of a national cyber range testbed., in: CSET, 2012.

[25] M. Turčaník, A cyber range for armed forces education, Information & Se-
curity 46 (3) (2020) 304–310.

[26] Nato investing in the development of estonian cyber range | kaitsemin-
isteerium, (Accessed on 12/13/2021).
URL https://kaitseministeerium.ee/en/news/

nato-investing-development-estonian-cyber-range

[27] J. Vykopal, R. Ošlejšek, P. Čeleda, M. Vizvary, D. Tovarňák, Kypo cyber
range: Design and use cases (2017).

[28] L. A. Org, A. Refsdal, G. Erdogan, R. Manella, R. Cascella, P. Lombardi,
M. Nannipieri, D3. 3-cyber risk modelling tool (2016).

[29] Echo federated cyber range – echo network, (Accessed on 12/20/2021).
URL https://echonetwork.eu/echo-federated-cyber-range/

[30] J. Hajny, S. Ricci, E. Piesarskas, M. Sikora, Cybersecurity curricula designer,
in: The 16th International Conference on Availability, Reliability and Secur-
ity, 2021, pp. 1–7.

[31] Cyber range - test bed for cybersecurity | rise, (Accessed on 08/06/2021).
URL https://www.ri.se/en/test-demo/cyber-range

[32] C. Braghin, S. Cimato, E. Damiani, F. Frati, L. Mauri, E. Riccobene, A model
driven approach for cyber security scenarios deployment, in: Computer Se-
curity, Springer, 2019, pp. 107–122.

https://gcn.com/articles/2010/06/07/defense-it-1-cyber-range.aspx
https://gcn.com/articles/2010/06/07/defense-it-1-cyber-range.aspx
https://gcn.com/articles/2010/06/07/defense-it-1-cyber-range.aspx
https://www.usenix.org/conference/cset12/workshop-program/presentation/rosenstein
https://www.usenix.org/conference/cset12/workshop-program/presentation/rosenstein
https://www.usenix.org/conference/cset12/workshop-program/presentation/rosenstein
https://www.usenix.org/conference/cset12/workshop-program/presentation/rosenstein
https://kaitseministeerium.ee/en/news/nato-investing-development-estonian-cyber-range
https://kaitseministeerium.ee/en/news/nato-investing-development-estonian-cyber-range
https://kaitseministeerium.ee/en/news/nato-investing-development-estonian-cyber-range
https://kaitseministeerium.ee/en/news/nato-investing-development-estonian-cyber-range
https://echonetwork.eu/echo-federated-cyber-range/
https://echonetwork.eu/echo-federated-cyber-range/
https://www.ri.se/en/test-demo/cyber-range
https://www.ri.se/en/test-demo/cyber-range

38 BIBLIOGRAPHY

[33] What is a cyber range? | cybersecurity guide, (Accessed on 08/06/2021).
URL https://cybersecurityguide.org/resources/

cyber-ranges/

[34] Cyber threat assessment via attack scenario simulation using an integrated
adversary and network modeling approach | the society for modeling & sim-
ulation international, https://tinyurl.com/2bzab73r, (Accessed on
08/06/2021).

[35] E. Moore, S. Fulton, D. Likarish, Evaluating a multi agency cyber security
training program using pre-post event assessment and longitudinal analysis,
in: IFIP World Conference on Information Security Education, Springer,
2017, pp. 147–156.

[36] J. Mirkovic, A. Tabor, S. Woo, P. Pusey, Engaging novices in cybersecur-
ity competitions: A vision and lessons learned at acm tapia 2015, in: 2015
USENIX Summit on Gaming, Games, and Gamification in Security Educa-
tion (3GSE 15), 2015.

[37] N. Childers, B. Boe, L. Cavallaro, L. Cavedon, M. Cova, M. Egele, G. Vigna,
Organizing large scale hacking competitions, in: International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment,
Springer, 2010, pp. 132–152.

[38] S. Cheung, U. Lindqvist, M. W. Fong, Modeling multistep cyber attacks for
scenario recognition, in: DARPA information survivability conference and
exposition, 2003. Proceedings, Vol. 1, IEEE, 2003, pp. 284–292.

[39] M. E. Kuhl, J. Kistner, K. Costantini, M. Sudit, Cyber attack modeling and
simulation for network security analysis, in: Proceedings of the 39th Confer-
ence on Winter Simulation: 40 years! The best is yet to come, IEEE Press,
2007, pp. 1180–1188.

[40] H. Holm, T. Sommestad, Sved: Scanning, vulnerabilities, exploits and detec-
tion, in: Military Communications Conference, MILCOM 2016-2016 IEEE,
IEEE, 2016, pp. 976–981.

[41] R. M. Jones, R. O’Grady, D. Nicholson, R. Hoffman, L. Bunch, J. Bradshaw,
A. Bolton, Modeling and integrating cognitive agents within the emerging
cyber domain, in: Proceedings of the Interservice/Industry Training, Simula-
tion, and Education Conference (I/ITSEC), Vol. 20, Citeseer, 2015.

[42] T. Sommestad, Experimentation on operational cyber security in crate, NATO
STO-MP-IST-133 Specialist Meeting, Copenhagen, Denmark, 2015.

https://cybersecurityguide.org/resources/cyber-ranges/
https://cybersecurityguide.org/resources/cyber-ranges/
https://cybersecurityguide.org/resources/cyber-ranges/
https://tinyurl.com/2bzab73r

BIBLIOGRAPHY 39

[43] C. Pham, D. Tang, K.-i. Chinen, R. Beuran, Cyris: A cyber range instanti-
ation system for facilitating security training, in: Proceedings of the Seventh
Symposium on Information and Communication Technology, ACM, 2016,
pp. 251–258.

[44] A. Ashok, S. Krishnaswamy, M. Govindarasu, Powercyber: A remotely ac-
cessible testbed for cyber physical security of the smart grid, in: Innovative
Smart Grid Technologies Conference (ISGT), 2016 IEEE Power & Energy
Society, IEEE, 2016, pp. 1–5.

[45] S. Souissi, L. Sliman, B. Charroux, An attack description and response archi-
tecture based on multi-level rule expression language, Journal of information
assurance and security (JIAS) (2016).

[46] H. Holm, K. Shahzad, M. Buschle, M. Ekstedt, Cysemol: Predictive, probab-
ilistic cyber security modeling language, IEEE Transactions on Dependable
and Secure Computing 12 (6) (2015) 626–639.

[47] B. Kordy, L. Piètre-Cambacédès, P. Schweitzer, Dag-based attack and de-
fense modeling: Don’t miss the forest for the attack trees, Computer science
review 13 (2014) 1–38.

[48] D. Dasgupta, Immuno-inspired autonomic system for cyber defense, inform-
ation security technical report 12 (4) (2007) 235–241.

[49] M. Casini, D. Prattichizzo, A. Vicino, The automatic control telelab: A
user-friendly interface for distance learning, IEEE Transactions on Educa-
tion 46 (2) (2003) 252–257.

[50] R. Beuran, D. Tang, C. Pham, K.-i. Chinen, Y. Tan, Y. Shinoda, Integrated
framework for hands-on cybersecurity training: Cytrone, Computers & Se-
curity (2018).

[51] R. Chadha, T. Bowen, C.-Y. J. Chiang, Y. M. Gottlieb, A. Poylisher,
A. Sapello, C. Serban, S. Sugrim, G. Walther, L. M. Marvel, et al., Cybervan:
A cyber security virtual assured network testbed, in: Military Communica-
tions Conference, MILCOM 2016-2016 IEEE, IEEE, 2016, pp. 1125–1130.

[52] I. Somarakis, M. Smyrlis, K. Fysarakis, G. Spanoudakis, Model-driven cyber
range training: a cyber security assurance perspective, in: Computer Security,
Springer, 2019, pp. 172–184.

[53] M. Smyrlis, I. Somarakis, G. Spanoudakis, G. Hatzivasilis, S. Ioannidis,
Cyra: A model-driven cyber range assurance platform, Applied Sciences
11 (11) (2021) 5165.

40 BIBLIOGRAPHY

[54] I. Kovačević, S. Groš, A. Ðerek, B. Bijelić, Automatically generating models
of it systems, arXiv preprint arXiv:2107.11102 (2021).

[55] I. Bica, R. L. Unc, S. T, urcanu, Virtualization and automation for cybersecur-
ity training and experimentation, in: International Conference on Information
Technology and Communications Security, Springer, 2020, pp. 227–241.

[56] G. Berra, G. Ferraro, M. Fornero, N. Maunero, P. Prinetto, G. Roascio,
Paideusis: A remote hybrid cyber range for hardware, network, and iot se-
curity training.

[57] S. T. March, G. F. Smith, Design and natural science research on information
technology, Decision support systems 15 (4) (1995) 251–266.

[58] V. K. Vaishnavi, W. Kuechler, Design science research methods and patterns:
innovating information and communication technology, Crc Press, 2015.

[59] D. Budgen, P. Brereton, Performing systematic literature reviews in software
engineering, in: Proceedings of the 28th international conference on Soft-
ware engineering, ACM, 2006, pp. 1051–1052.

[60] D. C. Schmidt, Model-driven engineering, COMPUTER-IEEE COMPUTER
SOCIETY- 39 (2) (2006) 25.

[61] J. W. Lloyd, Foundations of logic programming, Springer Science & Busi-
ness Media, 2012.

[62] D. Helbing, Agent-based modeling, in: Social self-organization, Springer,
2012, pp. 25–70.

[63] I. Kotenko, Multi-agent modelling and simulation of cyber-attacks and cyber-
defense for homeland security, in: Intelligent Data Acquisition and Advanced
Computing Systems: Technology and Applications, 2007. IDAACS 2007.
4th IEEE Workshop on, IEEE, 2007, pp. 614–619.

[64] T. W. Edgar, D. O. Manz, Research Methods for Cyber Security, Syngress,
2017.

Chapter 2

Research Articles

41

42 Research Articles

2.1 Inefficiencies in Cyber-Security Exercises Life-Cycle: A Po-
sition Paper

Inefficiencies in Cyber-Security Exercises Life-Cycle: A Position Paper

Muhammad Mudassar Yamin and Basel Katt
Department of Information Security and Communication Technology
Norwegian University of Science and Technology (NTNU), Norway

muhammad.m.yamin@ntnu.no, basel.katt@ntnu.no

Abstract
Our world is becoming digitalized day by day, this
leads to an increase amount of cyber-attacks by cyber-
criminals. To tackle the increasing amount of cyber-
attacks, cyber-security professionals are required in a
high number. However, the required number of cyber-
security professionals is not present. Despite the fact
that academia and industry are trying to increase the
number of cyber-security professionals, however, the
tools and techniques used for cyber-security profes-
sional development are ineffective, as the gap between
required and available cyber-security professionals is
still increasing. One of the primary tools that is used
in cyber-security professional development is hands-on
cyber-security exercises. In this position paper, we will
analyze the inefficiencies present in conducting hands-
on cyber-security exercises and what can be done to
reduce and eliminate those inefficiencies.

INTRODUCTION
Cyber-security exercises run attack and defense scenar-
ios on a virtual and physical environment. A team
of individuals, known as white time, creates the en-
vironment. In the environment, a team of attack-
ers, known as red team, tries to exploit vulnerabilities
present in the environment while a team of defenders,
known as a blue team, tries to defend and prevent the
attacks. In a recent study (Moore, Fulton, and Likar-
ish 2017) researchers find out that such an exercise
is very beneficial in cyber-security skill development.
The researcher conducted knowledge surveys on par-
ticipants before and after a cyber-security exercise and
they found significant improvement in network security
skills like ARP-Posioning, duplication in DNS entries
and firewall/routers assessment as seen in figure 1.

These cyber-security exercises are usually conducted
within hours and days but the time required to pre-
pare these cyber-security exercises often spans up to

Copyright c© by the papers authors. Copying permitted
for private and academic purposes. In: Joseph Collins,
Prithviraj Dasgupta, Ranjeev Mittu (eds.): Proceedings of
the AAAI Fall 2018 Symposium on Adversary-Aware Learn-
ing Techniques and Trends in Cybersecurity, Arlington, VA,
USA, 18-19 October, 2018, published at http://ceur-ws.org

Figure 1: Participants knowledge test prior and after
cyber-security exercise (Moore, Fulton, and Likarish
2017)

months (Vykopal et al. 2017). This makes cyber-
security exercises very costly and time consuming to
be used in large scale to help reducing the growing
cyber-security skills gap (Furnell, Fischer, and Finch
2017). Researchers divided cyber-security exercise in
five phases to get the clear picture of cyber-security
exercise development and execution steps. These five
phases make the cyber-security exercise development
and execution life cycle (Vykopal et al. 2017):

• Preparation It is the lengthiest part of cyber-
security exercise development and execution. It in-
volves setting up exercise objectives, defining a story,
establishing points weight-age and creating a virtual
environment for the cyber security exercise.

• Dry run The dry run is the testing of the devel-
oped virtual environment according to exercise ob-
jective by cyber-security experts. This process also
takes long time due to the changes and adjustments
required for the cyber-security exercise.

• Execution This is the phase where the actual cyber-
security exercise takes place. Teams of attackers and
defenders try to achieve the set of defined objectives.

Based upon the complexity of cyber-security exercise
it can take hours to days.

• Evaluation At this phase teams performance is as-
sessed according to the level of exercise objective
completion. Feedback from participants is collected
for future exercises. This phase usually takes few
hours for its completion.

• Repetition The whole process is repeated for a set
of new teams utilizing the lessons learned from the
previous exercises and making necessary changes.

Conducting cyber security exercises in the described
manner is a length, tedious and error-prone pro-
cess (Beuran et al. 2018). Therefore, it is the posi-
tion put forward that cyber-security exercises are a good
tool for cyber-security skill development but the ineffi-
ciencies in cyber-security exercise development and ex-
ecution life cycle limits its ability to be widely used for
cyber-security skill development.

SURVEY OF THE LITERATURE
Researchers have been trying to reduce the inefficiencies
present in conducting cyber-security exercise. In term
of environment preparation phase of cyber-security ex-
ercise life cycle most of the current research is fo-
cused on reducing the time required for the preparation
of virtual environment. Researchers developed multi-
ple solutions for this problem two of them are Tele-
lab (Willems and Meinel 2012) and SecGen (Schreuders
et al. 2017) (security scenario generator). In TeleLab
the researchers created multiple templates of virtual
environment and developed an environment definition
language, through which existing template are modi-
fied automatically to create new virtual environments
for cyber security exercises. In SecGen researchers take
the approach of TeleLab a bit further. Instead of defin-
ing the detailed environment schema using an environ-
ment definition language, SecGen takes the environ-
ment requirement i.e. number of machine, number of
vulnerabilities, type of vulnerabilities etc. as input and
randomly generate a virtual environment through the
combination of existing virtual environment templates.

In the dry-run phase of cyber-security exercise recent
studies (Ošleǰsek et al. 2018) has shown that this phase
has a lot of room for improvement. It is identified that
team of human attacker and defenders does manual ver-
ification of the developed environment. That makes the
process quite inefficient.

In execution phase multiple solutions in the litera-
ture are available for the execution of cyber-attacks
and defense in cyber-security exercise execution. Two
of the attack execution tools are Simulated Cognitive
Cyber Red-team Attack Agent (SC2RAM) (Jones et
al. 2015) and Scanning, Vulnerabilities, Exploits and
Detection tool (SVED) (Holm and Sommestad 2016).
SC2RAM is developed to mimic the red team execution
steps in a cyber security-exercise. It can perform ba-
sic DoS (Denialof-Service) attack on a given network.
It is still at prototyping stage and is being tested at

Michigan cyber-range (Jones et al. 2015). SVED on the
other hand utilizes freely available exploit tools such as
metasploit and nmap and automate their operations to
execute red team activities in a cyber security exercise.
SVED is deployed at CRATE cyber range (Sommes-
tad 2015). In term of cyber-defense process execution
it is identified that in a cyber-security exercise skilled
human professionals are required to conduct the ex-
ercise. Most of the cyber-defense research is focused
on antivirus, antimalware, firewall and SIEM develop-
ment, which left a lot of room for improvement in cyber-
defense process execution without human involvement
in a cyber-security exercise.

In term of evaluation phasen in most cyber-security
exercises the theme of the exercise is CTF (Capture
the flag competition). As the name suggests flags are
used for point scoring and evaluation purposes. Flags
contain some value of a random length when submitted
to exercise or competition management systems points
will be awarded. Based upon the number of points
at the end of cyber security exercise or CTF competi-
tion, teams are evaluated. But the flag based evaluation
mechanism is not ideal for overall performance analysis
of individuals and teams. Flags only indicate that they
either successful or not in completing a task, flags dont
indicate at which approach they use or at which stage
they feel difficult in completing the task. To tackle
this problem KYPO (Čeleda et al. 2015) cyber range
implemented an evaluation mechanism that is depen-
dent upon event log monitoring. Event logs contains
specific information about the activities that are being
performed on a system. Based upon this information
automatic evaluation is performed.

ANALYSIS AND DISCUSSION
The literature contains interesting solutions for the re-
duction of inefficiencies in cyber-security exercise de-
velopment and execution life cycle. But these solutions
have their cons as well. If we consider the autonomous
generation of experimental environment by TeleLab and
SecGen, we will notice that the environment which is
generated is based upon an environment that is already
available and if a participant already participated in an
environment that is used for the creation of the environ-
ment then the participants will have unfair advantage.

The autonomous attack execution in the cyber-
security exercise by SC2RAM and SVED gives a ca-
pability to the team of defenders to practice their skills
without the availability of an actual attacker. But these
tools are currently at an initial phase of their testing
and have only basic capabilities. That makes them un-
suitable for realistic training.

The scoring mechanism in KYPO cyber range is a
very good approach for automatic evaluation of a par-
ticipants performances in a cyber security-exercsie by
monitoring the event logs created by the participants
activity. However, this approach can only give a holis-
tic view of participant performance, which is only good
for calculating the overall performance of a participant,

not the performance of a participant at specific phase
of the cyber-security exercise.

POTENTIAL SOLUTION

Research is being carried out to address the issues
present in conducting operation based cyber-security
exercises. Researchers in (Jones et al. 2015) presented
a novel technique to model and execute an active op-
position in a cyber-security exercise. The researchers
discussed the missing element in the exercise environ-
ment that is active opposition. The researchers argued
that:The environment may have static defenses, such
as access control or firewalls, or a fixed set of intrusion
methods to defend against, but it typically lacks any ac-
tive opposition that might adapt defensive or offensive
actions (e.g., monitor logs, blocked connections, exploit
switching or information gathering)

The researchers presented techniques to model cyber-
attack/defense adversaries and highlighted possible ap-
proaches that can be used in the implementation of
such adversaries. Based upon this research, a tool is
developed for autonomous execution of highly skilled
red-team attackers SC2RAM: A Deployable Cognitive
Model of a Cyber Attacker (Jones et al. 2015). This tool
can train blue teamers to tackle cyber-security chal-
lenges and can configure and test defensive systems.
SC2RAM is deployed at Michigan cyber-range to per-
form basic cyber-attack simulation, as it is still at pro-
totype stage. On the other hand tools that mimic blue
teams actions in a security exercise is still need to be
implemented (Jones et al. 2015). We are planning to
model the roles of white, blue and red teamers with
respect to each other for the development of a cyber-
security exercise platform that can assist execution of
cyber-security exercises in a autonomous manner by
autonomously preparing the exercise environment and
generating autonomous adversaries according to the ex-
ercise environment. This will effectively remove the
need of human adversaries and support staff required
for conducting a cyber-security exercise. By reducing
these inefficiencies cyber-security exercises can be con-
ducted regularly at a wider scale, which will help in
reducing the cyber-security skill gap currently present
in industry.

CONCLUSIONS

From the above discussion it can be observed that mul-
tiple phases involved in cyber-security exercise devel-
opment and execution can be automated to reduce cost
and time required for conducting cyber-security exer-
cises in an efficient manner. As it was suggested ear-
lier inefficiencies in cyber-security exercise development
and execution life cycle limit its ability to be widely used
for cyber-security skill development. We can conclude
that the roles of white, blue and red teamer in a cyber-
security exercise need to be executed autonomously,
which will increase the efficiency of preparation, exe-
cution and evaluation phases in cyber-security exercise

life cycle .This will (1) reduce the cost and time re-
quire for conducting cyber-security exercise, (2) provide
better training by always-available autonomous adver-
saries, and (3) make cyber-exercises computationally
repeatable for conducting systematic training.

References
Beuran, R.; Tang, D.; Pham, C.; Chinen, K.-i.; Tan,
Y.; and Shinoda, Y. 2018. Integrated framework for
hands-on cybersecurity training: Cytrone. Computers
& Security.

Čeleda, P.; Čegan, J.; Vykopal, J.; and Tovarňák,
D. 2015. Kypo–a platform for cyber defence exer-
cises. M&S Support to Operational Tasks Including War
Gaming, Logistics, Cyber Defence. NATO Science and
Technology Organization.

Furnell, S.; Fischer, P.; and Finch, A. 2017. Can’t get
the staff? the growing need for cyber-security skills.
Computer Fraud & Security 2017(2):5–10.

Holm, H., and Sommestad, T. 2016. Sved: Scan-
ning, vulnerabilities, exploits and detection. In Mil-
itary Communications Conference, MILCOM 2016-
2016 IEEE, 976–981. IEEE.

Jones, R. M.; OGrady, R.; Nicholson, D.; Hoffman,
R.; Bunch, L.; Bradshaw, J.; and Bolton, A. 2015.
Modeling and integrating cognitive agents within the
emerging cyber domain. In Proceedings of the Inter-
service/Industry Training, Simulation, and Education
Conference (I/ITSEC), volume 20. Citeseer.

Moore, E.; Fulton, S.; and Likarish, D. 2017. Eval-
uating a multi agency cyber security training program
using pre-post event assessment and longitudinal analy-
sis. In IFIP World Conference on Information Security
Education, 147–156. Springer.

Ošleǰsek, R.; Vykopal, J.; Burská, K.; and Rusňák, V.
2018. Evaluation of cyber defense exercises using visual
analytics process.

Schreuders, Z. C.; Shaw, T.; Ravichandran, G.; Keigh-
ley, J.; Ordean, M.; et al. 2017. Security scenario gen-
erator (secgen): A framework for generating randomly
vulnerable rich-scenario vms for learning computer se-
curity and hosting ctf events. In USENIX. USENIX
Association.

Sommestad, T. 2015. Experimentation on operational
cyber security in crate. NATO STO-MP-IST-133 Spe-
cialist Meeting, Copenhagen, Denmark.

Vykopal, J.; Vizváry, M.; Oslejsek, R.; Celeda, P.; and
Tovarnak, D. 2017. Lessons learned from complex
hands-on defence exercises in a cyber range. In Fron-
tiers in Education Conference (FIE), 1–8. IEEE.

Willems, C., and Meinel, C. 2012. Online assessment
for hands-on cyber security training in a virtual lab. In
Global Engineering Education Conference (EDUCON),
2012 IEEE, 1–10. IEEE.

46 Research Articles

2.2 Make it and Break it - An IoT Smart Home Testbed Case
Study

This article is not included due to copyright
available at https://doi.org/10.1145/3284557.3284743

2.3. Cyber ranges and security testbeds: Scenarios, functions, tools and architecture 53

2.3 Cyber ranges and security testbeds: Scenarios, functions,
tools and architecture

Computers & Security 88 (2020) 101636

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Cyber ranges and security testbeds: Scenarios, functions, tools and

architecture

Muhammad Mudassar Yamin

∗, Basel Katt, Vasileios Gkioulos

Norwegian University of Science and Technology, Department of Information Security and Communication Technology, Teknologivegen 22, Gjøvik 2815,

Oppland, Norway

a r t i c l e i n f o

Article history:

Received 21 March 2019

Revised 8 July 2019

Accepted 6 October 2019

Available online 7 October 2019

Keywords:

Cyber range

Security testbed

Scenarios

Cyber security

Security exercise

a b s t r a c t

The first line of defense against cyber threats and cyber crimes is to be aware and get ready, e.g., through

cyber security training. Training can have two forms, the first is directed towards security professionals

and aims at improving understanding of the latest threats and increasing skill levels in defending and

mitigating against them. The second form of training, which used to attract less attention, aims at in-

creasing cyber security awareness among non-security professionals and the general public. Conducting

such training programs requires dedicated testbeds and infrastructures that help realizing and executing

the training scenarios and provide a playground for the trainees. A cyber range is an environment that

aims at providing such testbeds. The purpose of this paper is to study the concept of a cyber range, and

provide a systematic literature review that covers unclassified cyber ranges and security testbeds. In this

study we develop a taxonomy for cyber range systems and evaluate the current literature focusing on

architecture and scenarios, but including also capabilities, roles, tools and evaluation criteria. The results

of this study can be used as a baseline for future initiatives towards the development and evaluation of

cyber ranges in accordance with existing best practices and lessons learned from contemporary research

and developments.

© 2019 Elsevier Ltd. All rights reserved.

Contents

1. Introduction . 2

2. Related work. 2

3. Methodology. 3

3.1. Purpose of the literature review . 3

3.2. Establishing the review protocol. 3

3.3. Searching the literature . 4

3.3.1. Search criteria . 4

3.4. Practical literature screening. 4

3.5. Classification and data extraction . 5

4. Analysis of results . 7

4.1. General capabilities . 7

4.2. New taxonomy . 7

4.2.1. Scenarios . 8

4.2.2. Monitoring . 10

4.2.3. Learning. 11

4.2.4. Management . 11

4.2.5. Teaming. 11

4.2.6. Environment . 11

∗ Corresponding author.

E-mail address: muhammad.m.yamin@ntnu.no (M.M. Yamin).

https://doi.org/10.1016/j.cose.2019.101636

0167-4048/© 2019 Elsevier Ltd. All rights reserved.

2 M.M. Yamin, B. Katt and V. Gkioulos / Computers & Security 88 (2020) 101636

4.3. Evaluation. 12

4.3.1. Overall and performance evaluation . 12

4.3.2. Functional evaluation . 12

4.4. Tools . 13

4.4.1. Emulation tools . 14

4.4.2. Simulation tools . 14

4.4.3. Hardware. 14

4.4.4. Management tools . 15

4.4.5. Monitoring tools . 16

4.4.6. Traffic generation tools. 17

4.4.7. User behavior generation tools . 17

4.4.8. Scoring tools and mechanisms . 17

4.4.9. Scenario definition . 17

4.4.10. Security testing tools . 18

4.5. Future research trends and directions . 18

5. Synthesis . 20

5.1. Architecture and capabilities . 20

5.1.1. Ideal methods and tools . 22

5.2. Future research trends and directions . 22

6. Discussion and conclusion . 22

Declaration of Competing Interest . 23

Appendix A. Appendix: Citation Data . 23

References . 24

1. Introduction

The recent security incidents worldwide have shown that there

is an increase in the complexity and severity of cyber security

threats. The attackers become more organized and the attack vec-

tors are using more advanced and automated techniques and tools.

The first line of defense against such attacks is increasing cyber

security awareness in the public and security skills among the se-

curity professionals, in order to be ready and aware of the latest

threat techniques and tools. These training programs include the

execution of cyber security labs and exercises. In general terms,

we define a cyber security exercise as a training exercise that runs

attack and/or defense scenarios on virtual and/or physical envi-

ronments with the aim of improving the attack and/or defence

understandings and skills of the participants. Different groups of

people are involved in preparing and executing such exercises.

A group of individuals, known as white team , creates the train-

ing environment. Another group, known as red team , tries to ex-

ploit vulnerabilities present in the environment, while a third

group, known as blue team , tries to defend the environment and

prevent attacks. These are the main basic roles for those who

are involved in an exercise. More comprehensive list of all roles

within an exercises is discussed later. Please note that we use

the term security exercise for any practical training or awareness

activity.

Researchers divided a security exercise life cycle in five

phases (Vykopal et al., 2017a), which are preparation, dry run, ex-

ecution, evaluation , and repetition . In the first phase the exercise

objectives, scenario story, scoring method, and the environment

will be set up. In the dry run phase, the developed environment

will be tested according to the exercise objectives. The execution

phase involves running the exercise, in which the participants in

the attacking and/or defending side will try to achieve their ob-

jectives. In the evaluation phase, the performance of the partici-

pants will be assessed based on the scoring method and learning

objectives. Finally, in the last phase, the environment is cleaned

and the whole process is repeated for a new exercise. It has been

observed (Vykopal et al., 2017a) that security exercises are usually

conducted and evaluated (execution and evaluation phases) in few

hours up to a few days, while the preparation and dry run often

take up to months for completion. This makes security exercises

very costly and time consuming to be used in large-scale to help

reducing the growing cyber security skills gap (Furnell et al., 2017).

In order to maintain and manage security exercises and their

environment, a cyber range concept has been proposed. Recently,

the concept and the term has attracted a great attention, but has

been used differently in different contexts. Some use it to refer

to a virtual environment, and others include other physical ele-

ments to a cyber range. It can refer to a university lab environ-

ment, or it can refer to a classified security exercise environment.

There has been some attempts to study and classify the concept

of a cyber range, e.g., the survey conducted by the Australian de-

fense in 2013 (Davis and Magrath, 2013). Such studies provide a

general background and classification of the term, though, (1) they

do not cover all aspects of a cyber range system, e.g., architecture,

management or scenarios, (2) they are outdated when it comes to

cyber range technologies and tools, and (3) they do not discuss re-

search trends and directions. Others, like Holm et al. (2015) and

Qassim et al. (2017) are not generic enough and focus on specific

exercise domains, like smart grids. To cover the gap in the litera-

ture, we conducted a systematic literature review on the topic of

cyber range systems. The goals is to analyze the current state of

the art within the topic of unclassified cyber ranges and security

testbeds, and make recommendations regarding the architecture,

capabilities, tools, the testing and training process, scenarios, and

evaluation. The result can be used as a baseline for future initia-

tives towards the development, standardization and evaluation of

cyber ranges in accordance with existing best practices and lessons

learned from contemporary implementations.

The rest of this paper is structured as follows. In this next sec-

tion, we present the related work covering the similar surveys and

reviews conducted on this topics. In Section 3 , we present the

methodology and in Section 4 we discuss the results. In Section 5 ,

we synthesize the result and present a general purpose architec-

ture for a cyber range and summarize the research trends and di-

rections. Finally, in Section 6 we discuss and conclude the paper.

2. Related work

During planning and writing this article, no other systematic

literature review was found by the authors on the topic of cy-

ber ranges and security testbeds. Yet, a multitude of survey arti-

cles has been identified with focus on specific application domains

such as industrial control systems, mobile ad-hoc networks and

cyber physical systems. Leblanc et al. (2011a) in 2011 presented

an overview of cyber attack and computer network operations

M.M. Yamin, B. Katt and V. Gkioulos / Computers & Security 88 (2020) 101636 3

simulation and modeling approaches. The discussed approaches

have been identified within the open literature, and originate from

governmental and academic efforts as well as from the private

sector. These include, but are not limited to, ARENA, RINSE (Real-

Time Immersive Network Simulation Environment), SECUSIM, and

NetENGINE. In respect to research activities driven by the private

sector and academia, the authors found that there are substantial

effort s f ocused on cyber attack modeling, with constructive auto-

mated simulations. The results enabled the discovery of cyber at-

tack patterns, with accuracy that is primarily dependent on the

utilized models. Yet, the authors noticed that the governing param-

eters for most of these models are not validated against real world

scenarios. Therefore, they mostly focused on specific artificial ed-

ucational scenarios, rather than analysis of realistic cyber attacks

in general. Furthermore, they overlooked also cascading effects on

organizational or national scale.

Siaterlis and Masera (2009) in 2009 investigated available soft-

ware for the creation of testbeds for Internet security research. The

authors identified that numerous publications refer to prototypes

rather than to software that is ready to be used for the creation of

testbeds. Accordingly, they proposed a framework for feature based

evaluation of the available software, as well as, they provided a lit-

erature review and comparison of state-of-the-art tools. This study

excluded platforms that (i) share computational resources, (ii) fo-

cus only on simulation, (iii) are specific to wireless or sensor net-

works, (iv) run on a single computer, and (v) use custom hardware.

The proposed framework consists of 13 basic and 6 compound fea-

tures, including (i) distinction of roles, (ii) remote access, (iii) vir-

tualization, and (iv) clean reconfiguration. The authors categorized

their findings to overlay testbeds, including Planetlab and X-Bone,

and cluster testbeds, including Grid’50 0 0, Emulab, and ModelNet.

They concluded that Emulab and Planetlab provide the most ma-

ture solutions for each testbed type and sufficient documentation

for the development of dedicated testbeds, while Flexlab seeks to

combine the best characteristics of the two approaches.

Davis and Magrath (2013) provided a survey of unclassified cy-

ber ranges and testbeds, in a study completed in October 2013. The

article provides an overview of background information in terms

of supported functionalities and terminology, and also covers spe-

cific implementations originating from the military, public govern-

ments, and academia. SECUSIM, RINSE, ARENA, and LARIAT are

some of the testbeds covered. The authors promoted hardware em-

ulation as the most realistic approach, with simulations, on the

other hand, providing increased flexibility and scalability advan-

tages. Yet, as the study suggests, the middle ground providing pa-

rameterized support for emulation, simulation, and virtualization

is increasingly explored, highlighting again Emulab and DETER as

the most mature solutions.

Holm et al. (2015) , Sun et al. (2018) , Qassim et al. (2017) ,

and Cintuglu et al. (2017) focused on testbeds dedicated to cyber

physical systems, such as industrial control systems, SCADA, and

the power grid. The articles investigated testbeds that have been

proposed for scientific research and educational activities in as-

pects related to objectives, capabilities, architectural designs, inte-

grated components, as well as implementation techniques for sat-

isfying requirements. The authors also referred to these articles

with explicit design and integration recommendations. Specifically,

although the examined testbeds seem to target objectives such

as vulnerability analysis, education, and tests of defensive mech-

anisms, these are not thoroughly described. In order for them to

relate to specific architectural decisions, they must be refined and

aligned with specific target vulnerabilities.

Balenson et al. (2015) focused on cyber security experimenta-

tion for the future. They worked on devising fundamental and new

experimentation techniques for cyber security research. They con-

cluded that new methods of research is required in cyber security

focusing on just hardware and software is not enough. A commu-

nity driven approach is required to constantly train the workforce

in a dynamic cyber security enviroment. Carnegie Mellon Univer-

sity has developed a LMS (Learning Management System) which is

called StepForward . It provides the opportunity to teach students

both theoretical and practical cyber security skill set in a realistic

environment by combining multiple choice questions with emu-

lated labs. In term of cyber security competitions that use different

cyber ranges and security testebeds, a comprehensive list is main-

tained at cybersecuritydegrees . Cyber security competitions are a

good way to measure the effectiveness of cyber security training.

3. Methodology

The systematic literature review is a research review that aims

at identifying, evaluating and synthesizing the existing literature

of scientific work regarding a particular research question or topic.

We decided to follow this method because it results in a cred-

ible, objective and unbiased evaluation of the current literature.

This study has been conducted in accordance with the protocol de-

scribed by Chitu and Kira (2010) in their article ”A Guide to Con-

ducting a Systematic Literature Review of Information Systems Re-

search”. The protocol consists of eight consecutive steps, namely:

(1) Define the purpose of the literature review, (2) establish a pro-

tocol among the participants, (3) search the literature, (4) perform

practical literature screening, (5) perform quality appraisal, (6) per-

form data extraction, (7) synthesize the results, and (8) write the

review. Three researchers participated in the literature review. In

the following paragraphs, we provide the required insights of the

adopted methodology in order to enhance the readability of the

following sections and support future derivative or continuation

studies.

3.1. Purpose of the literature review

The main purpose of this literature review is to study the con-

cept of a cyber range system. Various aspects of a cyber range will

be considered and a taxonomy will be created. Specifically, the ob-

jectives of this systematic literature review can be summarized as

follows:

1. To identify and classify the capabilities and functionalities de-

ployed within contemporary cyber ranges and security testbeds.

2. To collect and critically evaluate existing cyber ranges and se-

curity testbeds’ architectural models.

3. To identify and classify scenarios, for training or testing, applied

in cyber ranges and security testbeds.

4. To identify the different roles and teams associated with the

execution of an exercise in a cyber range.

5. To identify and classify hardware and software tools utilized

within contemporary cyber ranges and security testbeds.

6. To identify methods to evaluate different cyber ranges against a

standard.

7. To study the research trends and directions on the topic of cy-

ber ranges and security testbeds.

3.2. Establishing the review protocol

Three researchers participated in this systematic literature re-

view from the period between March 2018 until January 2019. At

the beginning, a discussion round resulted in the selection of the

concrete methodology. The methodology was shared and studied

by all members. After the selection and the study of the method-

ology, a concrete protocol for the execution of the review was es-

tablished and a cloud based repository was created to maintain

temporary files and document the conducted steps. Templates for

4 M.M. Yamin, B. Katt and V. Gkioulos / Computers & Security 88 (2020) 101636

documentations, data extraction, and storing the results according

to the established protocol were created as well.

3.3. Searching the literature

We followed the established protocol for systematic literature

review in order to help the reproducibility of the study (Chitu and

Kira, 2010) and provided the details in comprehensive methodol-

ogy. We employed keywords based search technique in order to

identify relevant literature. The keywords were selected very care-

fully in order to fulfill the purpose of the review described in

3.1 . We performed a preliminary search using only the term“cyber

range” and the results were not comprehensive. We noticed that

there are some work that uses the name security testbed and se-

curity exercise when talking about a “cyber range” system. So, we

decided to use the words “testbed” and “exercise”. The collection

of the literature was undertaken in accordance with the following

parameters:

• Examined scientific databases: ACM digital library, IEEE Xplore,

ScienceDirect, Springer Link, and Wiley online library.

• Utilized keywords (advanced search): “Cyber Range”, “Secu-

rity”+”Testbed”, “Security”+“Test-bed”, “Security Exercise”.

• Publication period: 15 years (2002–2018).

• The total period of the literature review: March 2018–January

2019.

3.3.1. Search criteria

The search for security testbed results in a large amount of

work, in which researchers conducted an experiment and they

used a specific testbed for that purpose. These works were not of

an interest for this review, and accordingly, we developed the list

of rigorous inclusion and exclusion criteria. Thus, we listed the top-

ics in which security testbeds were only mentioned to describe an

experiment that was conducted in a particular domain, e.g., robots,

UAV, and RFID testbeds. The application domains that can be in-

cluded in the survey are vast, ranging from chemical-focused lab-

oratories, to environmental systems. Covering all possible domains

in one survey is not feasible and not possible. Therefore, we had to

exclude some of the application domains to make it feasible, tak-

ing the maturity of the domain and the security relevance as two

factors in this decision. Based on an internal discussion among the

researchers, we decided on the list of inclusion and exclusion cri-

teria that cover most important domains (not all), but make the

survey feasible. For example, we cover the smart grid and indus-

trial SCADA systems, but at the same time, we excluded transport

systems, UAV, and robotics. The same applies for mobile infrastruc-

ture. In this case, we focused on application layer in the mobile

testbeds, e.g., BYOD testbed scenarios, but we excluded infrastruc-

ture focused testbeds, like 4G/5G/GSM, and WIMAX testbeds. Thus,

the identified literature was based on the following inclusion and

exclusion criteria:

1. Inclusion criteria: The following inclusion criteria were applied

in the review.

• Articles written in English.

• Security relevant testbed and exercises. Either presenting a

whole cyber-range or a section/component of a cyber-range.

• IoT (Internet of Things) related testbeds.

• CPS (Cyber Physical Systems) and SCADA related testbeds.

• Articles related to cyber-range federation.

• Articles related to mobile applications testbeds.

2. Exclusion criteria: Based on the aforementioned discussion, in

the following is the list of criteria we developed to filter out

papers that are not within the scope of this review.

• Articles that mention testbeds in the context of other work.

The focus must be on the testbed.

• Testbeds for UAV (Unmanned Aerial Vehicle).

• Testbeds for RFID, NFC, and WIMAX.

• Testbeds for cryptographic protocols.

• Testbeds for robots.

• Testbeds for trust related issues.

• Testbeds focusing on security of structures, transportation,

and security/safety of persons.

• Testbeds focusing on climate change and the environment.

• Testbeds for simulation of underwater sensor.

• Conference abstracts, book reviews, conference info, discus-

sion, editorials, mini reviews, news, short communications.

3. Quality appraisal: The focus of this paper is to study cyber

ranges and security testbeds as a whole, in order to give in-

sights to those who are designing, building, researching, stan-

dardizing, or operating a cyber ranges and security testbeds.

For this reason, a relevant quality appraisal criteria is defined to

cover and study cyber ranges and security testbeds as a whole.

This survey can be followed by other surveys that focuse on a

particular aspect of cyber ranges and security testbeds like sce-

narios, teaming, scoring etc. To ensure significant and quality

contributions, we established an additional filtering step. We

decided on the following list of topics related to general cy-

ber range investigation, which are part of the taxonomy that we

propose later in the paper. We noticed in the initial screening,

that papers that use testbeds in the context of another research

that is not related to the testbed itself, mentioned the scenario

and an additional aspect, like scoring, monitoring, or manage-

ment, depending on the research conducted. This means that

papers that mentioned only one or two of the topics we spec-

ify, are not relevant. Therefore, significance and relevance were

decided if articles include in their investigation at least three of

the following five areas or topics of investigation:

(a) Scenarios (architecture and story/behavior)

(b) Monitoring and logging

(c) Teaming

(d) Scoring

(e) Management (Id management, resource management, cyber

range management, life cycle management)

Additionally, the following quality assurance criteria were taken

into consideration.

(a) Originality of the work.

(b) Quality of presentation.

(c) Scientific soundness and method.

(d) Papers that have been cited should be included in the sur-

vey. This rule is exempted from papers that were published

recent, i.e., less or equal then two years. The citation data as

of August 10th 2018 is parented in appendix Table 13 .

3.4. Practical literature screening

Based on the aforementioned steps and criteria, we conducted

the practical literature screening. The following rounds were re-

sulted.

1. Round 1: Collection of the literature was conducted in March

30th. It resulted in a total entries of 385 .

2. Round 2: Elimination of duplicates was conducted in April 25th,

and resulted in a total entries of 310 .

3. Round 3: Back tracing additional entries from the citations of

the current articles was conducted in June 20th. It resulted in a

total number of entries 341 .

4. Round 4: Quality appraisal was conducted on August 10th, and

resulted in the total number of articles 100 .

M.M. Yamin, B. Katt and V. Gkioulos / Computers & Security 88 (2020) 101636 5

Fig. 1. Cyber Range taxonomy.

3.5. Classification and data extraction

Based on the work we have done in developing a cyber range

and after the first screening of the literature, we propose an initial

taxonomy to classify cyber ranges as shown in Fig. 1 . A new up-

dated taxonomy is developed after the survey was conducted and

will be presented in Section 4.2 . In the following is a short descrip-

tion of each concept.

1. Scenarios

A scenario defines the execution environment as well as the

storyline that indicates the execution steps of a test or a train-

ing exercise. It accurately represents the operational environ-

ment and training requirements, and drives training execution

to ensure the achievement of training objectives. The scenario

describes and provides documentation, summaries, action or-

ders, etc., to ensure the representative operational context sup-

ports testing and training objectives (Staff, 2012). We classify

a scenario to extract information about what is the purpose of

the exercise, or test? Where an exercise, or a test, is executed?

How an exercise, or a test, is executed? And which tools are

used in the execution of a scenario? answers to these questions

are given below.

(a) Purpose

The purpose explains what are the objectives of the sce-

nario, i.e. the execution of a cyber security training exer-

cise or the experimentation validation of new cyber secu-

rity tools and techniques. Based upon the scenario objec-

tives, scenario environment is developed, details of which

are given below:

(b) Environment

The scenario environment is the topology where the sce-

nario is executed. The scenario depends upon the exercise

and experiment objectives. If the exercise is an operation-

based, then the environment will be a technical infrastruc-

ture, i.e., computer based, physical, virtualized or hybrid. If

the exercise is a table-top or discussion based the environ-

ment can be non computer based (Gurnani et al., 2014). In

a table/top based cyber security exercise, a cyber scenario

is discussed and the decision making ability of the exercise

participants is evaluated. It can be computer aided or can be

executed without the use of any digital equipment.

(c) Storyline

A storyline of a scenario tells a single or multiple stories

about how the exercise will be executed. It includes the

development of relevant actions and events that constitute

the scenario and how these are connected to generate the

whole narrative of a scenario. This allows the overall un-

derstating and controlling of a big technical scenario, and

gives the ability to critically evaluate the exercise, or test,

outcome (Staff, 2012). In term of experimental validation of

new technologies, single or multiple test cases can be exe-

cuted for research are investigation.

(d) Type

The type of the scenario indicates whether the scenario is

static or dynamic. We define a scenario to be static, if it

includes a static environment, and no changes are applied

during the execution of the exercise. This means that the

storyline does not include any dynamic components that

change over time. A dynamic scenarios are scenarios that in-

6 M.M. Yamin, B. Katt and V. Gkioulos / Computers & Security 88 (2020) 101636

clude, besides the static environment, a dynamic component

that will make changes during the execution of the scenario.

For example, a simulator, or a traffic generator that can be

injected, or executed, during the exercise.

(e) Domain

The domain indicates the application domain of the sce-

nario, e.g., IoT, network, cloud etc.

(f) Tools

The tools which are used in the development of a scenario.

This includes the tools which are needed for the creation of

the environment of the scenario, or the tools which are used

in the development of a storyline.

2. Monitoring

Monitoring includes the methods, the tools and the layers at

which real time monitoring of cyber security exercises and

tests are performed (Staff, 2012). Monitoring of cyber se-

curity exercise participants is performed by designated ob-

servers (Kick, 2014). The methods that the observers employ,

the tools that they use and the layers at which they perform

monitoring are further classified:

(a) Methods

This classifies methods employed to monitor the cyber secu-

rity exercise and tests, i.e., how the cyber security exercise,

or the test, is monitored. Either automatically with the use

of tools that gather data for analysis, or manually by human

observers.

(b) Tools

This classifies the software and hardware tools that can be

used for monitoring of cyber security exercises and tests.

The software and hardware tools may include security in-

formation and event management (SIEM) solutions and in-

trusion detection systems etc.

(c) Layers

This classifies the layer at which monitoring is being per-

formed. Depending on the type of an exercise, monitoring

can be performed at multiple TCP/IP layers, in case of an

operation-based exercise; or at an abstract social layer, in

case of a table-top exercise.

3. Teaming

In a cyber security exercise, teaming includes an individual

and a group of individuals that design, develop, manage and

participate in a cyber security exercise or a test (Schepens

et al., 2002). Based upon a team’s role in a cyber security ex-

ercise different colors are assigned to them to identify their

role (Vykopal et al., 2017b). Details of which are given below:

(a) Red team

Red teaming is a form of information security assessment

in which cyber- security adversaries are modeled to identify

vulnerability present in a system during an exercise or a test

(Wood and Duggan, 20 0 0). The red team is responsible to

identify and exploit potential vulnerabilities that are present

in the exercise environment.

(b) Blue team

Blue teaming is a form of active defense against an ac-

tive attack on a cyber security exercise and test environ-

ment (White and Williams, 2005). The blue team is respon-

sible to identify and patch potential vulnerabilities that can

be exploited by a red team.

(c) White team

A white team designs the exercise and experiment scenario,

objectives, rules and evaluation criteria. They set a set of

rules of engagement between red and blue team, inject the

vulnerabilities in the environment for patching and exploita-

tion; and sometimes they act as instructors to give hints to

the participating teams (Vykopal et al., 2017b).

(d) Green team

A green team is responsible for the development, monitor-

ing and maintenance of the exercise infrastructure designed

by the white team. They are also responsible for fixing bugs

and crashes in the infrastructure occurred during an exer-

cise execution (Vykopal et al., 2017b).

(e) Autonomous teams

Team roles that are being automated by different tools and

techniques are considered as autonomous teams. For exam-

ple, Secgen (Schreuders et al., 2017) is used for the automa-

tion of scenario environment development which is the role

of a green team, and SVED (Holm and Sommestad, 2016) is

used for the role automation of a red team.

In some cyber security exercises, additional teams are included,

which are exercise/specific and not present in cyber security

exercise life cycle (Vykopal et al., 2017b). Details of which are

given below:

(a) Orange Team

Orange team members assign different technical tasks to

blue team members during the exercise. Blue team mem-

bers can earn points if they are able to successfully com-

plete the tasks.

(b) Purple Team

Purple teams perform the communication role between

multiple exercises teams. They do information sharing to in-

crease the exercise effectiveness. This enhances the effec-

tiveness of a red team in attacking the exercises environ-

ment and increases the capability a blue team in defending

the network.

(c) Yellow Team

Yellow team members simulate the behavior of normal

users that are using the infrastructure created by the green

team. They perform tasks like generating legitimate network

traffic which can be used by red and blue teams in attack

and defense.

4. Scoring

Scoring uses data from monitoring systems in order to give per-

formance related semantics to the low level technical events

observed during monitoring of cyber security exercises and

tests. Some scoring indicators might not depend on techni-

cal monitoring events, like flags or over-the shoulder eval-

uation mechanisms. The scoring mechanism is also used to

measure the teams and test progress during an exercise, or a

test (Vykopal et al., 2017b). The methods and tools used in the

scoring mechanism are further classified:

(a) Methods

This classifies whether the scoring is done based upon

achieving a specific objective, i.e flags, or it is done by an-

alyzing logs that are generated during cyber security exer-

cises or tests.

(b) Tools

This classifies the software and hardware tools that are used

for scoring of cyber security exercises or tests. The tools may

include flags submission dashboards, log analyzers, etc.

5. Management

Management involves the assignment of roles and duties

to individuals and teams. Allocation of computational and

other resources required for conducting a cyber security ex-

ercise, or a test, and the overall management of the cyber

range.

(a) Role management

Role management classifies the methods, tools and tech-

niques with which the identities and roles of individuals and

teams involved in a cyber security exercise, or a test, are

managed.

M.M. Yamin, B. Katt and V. Gkioulos / Computers & Security 88 (2020) 101636 7

Fig. 2. Overall classification of cyber ranges and security testbeds capabilities with respect to years.

(b) Resource management

Resource management classifies the computational re-

sources like processing frequency, memory and disk space

required for conducting cyber security exercise, or a test.

(c) Range management

Range management classifies the methods, tools and tech-

niques with which the holistic view of overall cyber security

exercise, or a test, is presented in portals and dashboards.

4. Analysis of results

In this section we present and discuss the results of the litera-

ture review. First, we discuss how the main capabilities identified

in the taxonomy, presented in Section 3.5 , have been investigated,

or considered in the literature. Then, we discuss, in more details,

the architecture of contemporary cyber ranges, scenarios, teaming,

evaluation criteria, tools used, and future directions presented in

major work.

4.1. General capabilities

As per our selection strategy presented in 3.3 , a classification

of the capabilities and functionalities deployed within contempo-

rary cyber ranges and security testbeds is presented in Fig. 2 and

Table 1 . We identified that the capability that was mostly inves-

tigated in the literature is scenarios with 94 papers that include

details about scenarios. The second most prominent capability is

management with 91 papers. Then there were 86 papers that have

details about the monitoring infrastructure, 41 papers contain de-

tails about teams, and only 26 papers have details about the scor-

ing mechanism.

In order to analyze the evolution of these different capabili-

ties over time, Fig. 2 depicts how the interest of different capa-

bilities has increased steadily, with few exceptions, since 2002. It

can be noticed that in the period between 2007 and 2008 the

number of publications dropped, and then continued increasing

in 2009 until 2017. This is correlated with the fact the major cy-

ber ranges, like the US National Cyber Range have started devel-

opment in the period between 2008 and 2009. Before that date,

most of the work was conducted in terms of general purpose se-

curity testbeds. Around the time the US National Cyber Range

(Palleschi, 2010), among FIRE(Future Internet Research and Exper-

imentation) (Gavras et al., 2007) in Europe started which aimed

to interconnect existing security testbeds. Due to which many re-

searchers started looking at the new “Cyber Range” concept, which

explains the dip in publication around 2008. It is worth mention-

ing that due to the fact that the screening happened in the second

quarter in 2018, the figures related to 2018 is not complete. Also,

there were few papers that were found during the search with

publication date scheduled in 2019.

4.2. New taxonomy

The taxonomy presented in Section 3.5 is good for identifying

the general capabilities of cyber ranges and security testbeds. How-

ever, after reviewing the selected papers and analyzing the col-

8 M.M. Yamin, B. Katt and V. Gkioulos / Computers & Security 88 (2020) 101636

Table 1

Capabilities and functionalities deployed with in contemporary cyber ranges and security testbeds.

Paper Scenarios Monitoring Teaming Scoring Mng.

Čeleda et al. (2015) ; Childers et al. (2010) ; Ernits et al. (2015) ; Maennel et al. (2017) ; Ošlejšek

et al. (2017) ; Vykopal et al. (2017a,b) Davis and Magrath (2013) ; Leblanc et al. (2011b)

� � � � �

Border (2007) ; Chadha et al. (2016) ; Domínguez et al. (2017) ; Farooqui et al. (2014) ; Flauzac

et al. (2016) ; Sun et al. (2018) Chandra and Mishra (2019) ; Jung et al. (2008) Richmond (2005)

Alves et al. (2016) Edgar et al. (2011) ; Furfaro et al. (2017) ; Xypolytou et al. (2017) Gao et al.

(2013) ; Gunathilaka et al. (2016) ; Louthan et al. (2010) ; Mirkovic et al. (2010) ; Rubio-Hernan

et al. (2016) ; Shumba (2006) ; Tsai and Yang (2018) Al-Ayyoub et al. (2015) ; Almalawi et al.

(2013) ; Alvarenga and Duarte (2016) ; Ashok et al. (2016) ; Liljenstam et al. (2005) ; Rahman

et al. (2009) ; Suba ̧s u et al. (2017) Edgar and Manz (2017) ; Lee et al. (2017) ; Moraes et al.

(2014) ; Pfrang et al. (2016) ; Siaterlis and Genge (2014) ; Soupionis and Benoist (2015) ; Volynkin

and Skormin (2007) Bergin (2015) ; Gao et al. (2015) ; Hahn et al. (2013) ; Herold et al. (2017) ;

Jirsik et al. (2014) ; Kouril et al. (2014) ; Miciolino et al. (2015) ; Tsai et al. (2017) Caliskan et al.

(2017) ; Chow et al. (2010) ; Fovino et al. (2010) ; Genge et al. (2012) ; Siboni et al. (2016) ; White

et al. (2002) Cintuglu et al. (2017) ; Koutsandria et al. (2015) ; Mallouhi et al. (2011) Barcellos

et al. (2012) ; Hu et al. (2006)

� � �

Line and Moe (2015) ; Patriciu and Furtuna (2009) ; Urias et al. (2012) ; Willems and Meinel

(2011, 2012) Benzel et al. (2009, 2006) ; Damodaran and Smith (2015) ; Edgar and Rice (2017) ;

Morris et al. (2011)

� � � �

Braidley (2016) ; Ferguson et al. (2014) ; Li et al. (2009) ; Marshall (2009) ; Murphy et al. (2014) ;

Pham et al. (2016) ; Yasuda et al. (2016)

� � �

Siaterlis and Masera (2010) ; Stites et al. (2013) � � � �

Kuhl et al. (2007) � � �

Glumich and Kropa (2011) ; Siaterlis et al. (2011) � � �

Chiang et al. (2013) ; Gephart and Kuperman (2010) � � �

Rossey et al. (2002) ; Snyder (2006) � � �

Sommestad (2015) � � � �

Hoffman et al. (2005) ; Rursch and Jacobson (2013b) ; Sommestad and Hallberg (2012) � � � �

Antonioli et al. (2017) ; Labuschagne and Grobler (2017) ; Silva et al. (2014) � � � �

Doupé et al. (2011) ; Reed et al. (2013) � � �

Vigna et al. (2014) � � �

Alfieri et al. (2005) � � �

Rursch and Jacobson (2013a) � � � �

lected data, we identified that the taxonomy that we used to iden-

tify the general capabilities was not sufficient in presenting cyber

ranges and security testbeds functionalities in depth. Therefore, we

are proposing a new updated taxonomy for presenting the func-

tionality of cyber ranges and security testbeds based upon the col-

lected data. The developed taxonomy is parented in Fig. 3 . In this

section, we will focus our discussion on the new elements that

were added to the new taxonomy. We will refer to the papers that

included information about these new concepts. In general, it is

worth mentioning the following two main changes compared to

the initial taxonomy. First, due to its importance and being related

to different other concepts, environment is presented on its own,

separately from scenarios. Second, we added the learning concept,

as we noticed that learning modules were mentioned repeatedly in

cyber ranges. Scoring is considered as a sub-element of the learn-

ing module, and thus added as a sub-concept to the learning con-

cept. Apart from that, we expanded the scenario concept with the

scenario lifecycle, the management with command&control, and

data storage concepts.

4.2.1. Scenarios

In this section, first, we discuss the cyber security scenario

lifecycle management. It involves creating, generating, editing, de-

ploying and executing a cyber security scenario. The following

work (Alvarenga and Duarte, 2016; Furfaro et al., 2017; Gephart

and Kuperman, 2010; Hu et al., 20 06; Marshall, 20 09; Ošlejšek

et al., 2017; Tsai and Yang, 2018; Yasuda et al., 2016) have spe-

cialized components in their architecture to create and edit cy-

ber security scenarios. They mostly have a designer dashboard in

which different com ponents of a scenario are presented, and can

be used to develop new scenarios. The works in Lee et al. (2017) ;

White et al. (2002) have components to generate cyber security

scenarios using different automation techniques. The scenarios are

created mostly in a human and machine readable language like

XML and JSON, which is then executed on a compiler to deploy

the scenario. The works presented in the these papers (Furfaro

et al., 2017; Herold et al., 2017; Hu et al., 2006; Marshall, 2009;

Tsai and Yang, 2018; Vigna et al., 2014) included special scenario

deployment component which is responsible for deploying net-

work resources, like routers and firewalls, and relevant applica-

tions, like vulnerable software. For scenario execution, (Alvarenga

and Duarte, 2016; Ernits et al., 2015; Gao et al., 2013; Moraes et al.,

2014; Rubio-Hernan et al., 2016) have module that can control the

scenario flow, like start, stop and pause scenario execution. Works

in Alvarenga and Duarte (2016) ; Willems and Meinel (2011) have

orchestration modules that combine multiple components to ex-

ecute a scenario. Finally, (Alvarenga and Duarte, 2016; Barcellos

et al., 2012; Chandra and Mishra, 2019; Ernits et al., 2015; Fur-

faro et al., 2017; Gao et al., 2013; Jung et al., 2008; Labuschagne

and Grobler, 2017; Rursch and Jacobson, 2013b; Siboni et al., 2016)

have components that are used to generate different events within

the scenario execution to make the scenario more dynamic and re-

alistic. These events can be the launch of automatic attacks, like

in Chandra and Mishra (2019) ; Ernits et al. (2015) ; Furfaro et al.

(2017) , or can represent traffic generation, like in Labuschagne and

Grobler (2017) ; Rursch and Jacobson (2013b) .

Fig. 4 shows the evolution of the different purposes of scenar-

ios, i.e., testing, education, and experiment. It can be seen that

testing and education are gaining a lot of attention in the last

few years, particularly testing. With respect to the scenario type,

we can distinguish between both static and dynamic scenarios (cf.

Section 3). Fig. 5 shows the evolution of scenario types discussed

in the reviewed papers. It can be seen that before 2011 static sce-

narios, in which the scenario story was not discussed but included

only the static topology, was dominant. Since 2011, cyber range

scenarios started to add the dynamic component, in which the sto-

M.M. Yamin, B. Katt and V. Gkioulos / Computers & Security 88 (2020) 101636 9

Fig. 3. Updated taxonomy of a cyber range.

Fig. 4. Classification of cyber-ranges and security testbeds based upon the scenarios purpose.

10 M.M. Yamin, B. Katt and V. Gkioulos / Computers & Security 88 (2020) 101636

Fig. 5. Classification of cyber-ranges and security testbeds based upon the scenario type which they support.

Fig. 6. Classification of cyber-ranges and security testbeds based upon the scenarios domains.

ryline and the behavior are specified. This shows an advancement

in the specification and execution of scenarios in cyber ranges and

security testbeds.

Finally, when it comes to the domains of the scenarios, Fig. 6

shows the different application domains, in which scenarios are

specified. Those domains are (1) hybrid network applications, (2)

Networking, (3) SCADA systems, (4) social engineering, (5) IoT sys-

tems, (6) critical infrastructure, (7) Cloud based systems, and (8)

autonomous systems. The figure indicates that networking systems

were the main application domain for cyber ranges and security

testbeds, SCADA system started to gain attention from 2010, and in

recent year cyber ranges and security testbeds have covered most

application domain aforementioned. In Table 2 we present scenario

samples from each application domain, including the purpose, the

environment, the storyline topic, and tools used.

4.2.2. Monitoring

In this section, we will talk about the methods, dashboard, layer

and tools that are used for monitoring of cyber ranges and se-

curity test beds. Works in Alvarenga and Duarte (2016) ; Čeleda

et al. (2015) ; Herold et al. (2017) ; Siboni et al. (2016) ; White

et al. (2002) use different data collection and analysis modules

for monitoring purposes. While (Alfieri et al., 2005; Chandra and

Mishra, 2019; Furfaro et al., 2017; Labuschagne and Grobler, 2017;

M.M. Yamin, B. Katt and V. Gkioulos / Computers & Security 88 (2020) 101636 11

Table 2

Scenarios and their purpose in different domains.

Id Domain Paper Purpose Environment Storyline Tools

1 Hybrid Network

and Application

Herold et al.

(2017)

Education Hybrid Network topology configuration

for students

XEN, CISCO routers

2 Networks Benzel et al. (2006) Experiment Emulation DDoS, Worm Behavior, Early

Routing Security experiments

Emulab

3 IOT Siboni et al. (2016) Testing Hardware Bring your own device scenario

testing for enterprises

Smart Wacthes, google glass, printers

4 Critical

Infrastructure

Genge et al. (2012) Testing Emulation DoS attack on a powergrid Emulab

5 SCADA Fovino et al. (2010) Experiment Hardware DoS, ICT worm, Phishing, DNS

poisoning experiments

ABB 800F, OpenPMC (PLC), Emerson

MD, Turbogas Subsystem, Turbogas

Control Subsystem, Steam cycle

Subsystem Plant Control subsystem

6 Social Engineering Braidley (2016) Testing Simulation Social engineering testing for

enterprises using employee

online data

Netkit

7 Cloud Jirsik et al. (2014) Experiment Emulation DDoS attack testing on

different network toplogies

OPENNEBULA, Netflow, Low Orbit Ion

Canon

8 Autonomous

System

Bergin (2015) Testing Simulation Military autonomous vehicle

DDoS attack testing

JAUS messages, JSONS, NOSQL,

PYTHON, RUBY, NODE.JS,

JAVASCRIPT,XML, REST FULL WEBAPI

Lee et al., 2017; Mallouhi et al., 2011; Tsai and Yang, 2018) use

event logging mechanism and analysis techniques for monitoring

purposes. Alfieri et al. (2005) ; Chandra and Mishra (2019) ; Herold

et al. (2017) ; Lee et al. (2017) ; White et al. (2002) have special-

ized dashboards preset in the architecture to present the moni-

tored information. Alfieri et al. (2005) ; Chandra and Mishra (2019) ;

Furfaro et al. (2017) ; Labuschagne and Grobler (2017) ; Lee et al.

(2017) ; Mallouhi et al. (2011) ; Tsai and Yang (2018) use mainly

application layer protocols for data collection, while in Alvarenga

and Duarte (2016) ; Čeleda et al. (2015) ; Herold et al. (2017) ; Siboni

et al. (2016) ; White et al. (2002) , authors use network layer proto-

cols for monitoring purposes. In term of tools, these cyber ranges

and security testbeds uses multitude of different tools, a detailed

list of those tools is provided in Section 4.4.5 .

4.2.3. Learning

In this section, we will discuss the learning and tutoring com-

ponent, the after action analysis mechanism and scoring tech-

niques present in different cyber ranges and security testbeds. Au-

thors in Ernits et al. (2015) ; Hu et al. (2006) ; Suba ̧s u et al. (2017) ;

Willems and Meinel (2012) have a tutoring or learning manage-

ment system present in their functional architecture. These tutor-

ing systems mainly consists of text, images and multimedia clips.

Authors in Alvarenga and Duarte (2016) have an after action analy-

sis module that operates over the complete experimental data set.

Its main attribution is data pre-processing and calculation of a sup-

plemental set of metrics derived from experimental bulk data. In

term of scoring mechanisms, the work in Vigna et al. (2014) uses

a score bot that is responsible for monitoring the status of the ser-

vices and calculates the score for each team. (Ernits et al., 2015)

use a scoreboard in which progress of participants is presented

based upon the task they completed. Details of scoring mecha-

nisms and tools are presented in Section 4.4.8 .

4.2.4. Management

In this section we present the roles, interfaces, range manage-

ment, command and control, and resource management within

the reviewed cyber ranges. Different teams perform different roles

within the cyber range and security testbeds, we shared the de-

tails of different teams in Section 4.2.5 . In term of interfaces, (Alves

et al., 2016; Čeleda et al., 2015; Tsai and Yang, 2018) have dash-

boards that graphically presents the current state of cyber range

and security test beds; while (Alfieri et al., 2005; Liljenstam et al.,

2005) have special portals for communication. For interfaces, the

work in Siboni et al. (2016) has a reporting module that is re-

sponsible for starting, enrolling devices and simulating. Authors

in Willems and Meinel (2012) have a remote desktop component

that is used to initialize, start, monitor, and terminate remote desk-

top connections to machines. The work in Čeleda et al. (2015) uses

an API to manage remote access between different com ponents of

a cyber range, and authors in Genge et al. (2012) use a proxy that

enables running remote code and integrate different physical com-

ponents. Mallouhi et al. (2011) have a control component that rep-

resents the main command and control for all the resources and

services present within the security testbed. The works in Bergin

(2015) ; Furfaro et al. (2017) ; Ošlejšek et al. (2017) ; Rursch and Ja-

cobson (2013b) ; Vigna et al. (2014) ; White et al. (2002) have data

storage modules that store elements like scenario models, attack

tools, exercise and experiment rules and results; while authors

in Alfieri et al. (2005) have a module for cataloging different at-

tack and defense scenarios.

4.2.5. Teaming

Fig. 7 presents the different types of teams that participate

in activities conducted at cyber ranges and security testbeds. The

main types of teams are, red, blue, white, green, and autonomous

teams. Red and blue teams correspond to red and/or blue exer-

cise types. Autonomous teams, in which some activities of a team

is performed by an autonomous system, or agent, have gained an

attention since 2014. Autonomous teams are added as a separate

type to study the status of using automation of different team roles

in cyber security exercises.

4.2.6. Environment

In this section, we discuss the concept environment . This in-

clude the scenario execution environment type and different event

generation tools that are used in scenario environments. Works

in Alvarenga and Duarte (2016) ; Border (2007) ; Childers et al.

(2010) ; Ernits et al. (2015) ; Flauzac et al. (2016) ; Snyder (2006) ;

Suba ̧s u et al. (2017) ; Vigna et al. (2014) ; Willems and Meinel (2011,

2012) use an emulated environment for scenario execution. Their

scenarios usually contain virtualized nodes running different ser-

vices. Authors in Antonioli et al. (2017) ; Bergin (2015) ; Čeleda

et al. (2015) ; Chandra and Mishra (2019) ; Gephart and Kuper-

man (2010) ; Jung et al. (2008) ; Labuschagne and Grobler (2017) ;

Mallouhi et al. (2011) ; Moraes et al. (2014) ; Pfrang et al. (2016) ;

Sommestad (2015) ; Soupionis and Benoist (2015) ; Tsai and Yang

(2018) use Hybrid environment for the execution of cyber secu-

12 M.M. Yamin, B. Katt and V. Gkioulos / Computers & Security 88 (2020) 101636

Fig. 7. Classification of cyber-ranges and security testbeds based upon the teams.

rity scenarios. The environment contains both hardware, virtual-

ized and simulated elements. The hardware usually contain spe-

cialized equipment, like PLCs that are difficult to emulate. In term

of hardware based environments, works in Alves et al. (2016) ;

Ashok et al. (2016) ; Furfaro et al. (2017) ; Gao et al. (2013) ; Lee

et al. (2017) ; Louthan et al. (2010) ; Miciolino et al. (2015) ; Rubio-

Hernan et al. (2016) ; Rursch and Jacobson (2013b) use actual hard-

ware cyber security scenario execution. These scenarios are mostly

relate to IoT, SCADA and critical infrastructure. Works in Al-Ayyoub

et al. (2015) ; Barcellos et al. (2012) ; Genge et al. (2012) ; Jung et al.

(20 08) ; Li et al. (20 09) ; Liljenstam et al. (2005) ; Suba ̧s u et al.

(2017) ; White et al. (2002) use different simulation and modeling

techniques for cyber security scenario execution. Details of differ-

ent event generation tools, like traffic and user behavior, are pre-

sented in Section 4.4.6 and 4.4.7 .

Fig. 8 indicates the type of the runtime environment that are

used in cyber ranges and security testbeds in the last 15 years. It

can be sees that HW-only equipment has not been used widely.

From 2002 until 2015, there has been only one paper presented

a pure HW run time environment. Emulation has been, and still,

used widely in cyber ranges and security testbeds. Since 2016, hy-

brid approaches have also become widely used.

4.3. Evaluation

In this section we discuss the different methods that have been

used in order to evaluate cyber ranges and security testbeds. Out

of 100 papers, 8 have details about the evaluation techniques em-

ployed in the cyber ranges and security testbed. Four papers used

quantitative evaluation methods to evaluate the cyber ranges and

security testbeds as a whole. The other four used qualitative meth-

ods to evaluate the functionality of cyber ranges and security

testbed by executing specific tests on them.

4.3.1. Overall and performance evaluation

The following papers applied quantitative evaluation methods

to evaluate the cyber ranged and security testbeds as a whole, es-

pecially the performance.

1. Researchers in Herold et al. (2017) based their evaluation on the

time for testbed generation. They measured the time required

for generating an infrastructure of 3 router, 1 switch and 4 PCs’

for an educational scenario. The total time required for gener-

ating the testbed was 42 min 32 s.

2. Researchers in Yasuda et al. (2016) applied similar method and

found out that the network environment generation tool took

about 1624s to construct an environment consisting of three

segments, i.e., the client, internal-server, and DMZ segments.

For a single team in the cyber security exercise, there were

five instances in total for each segment: the firewall, Windows

7 client, file server, database, and DNS/mail instances. It took

about 6754s to finish the construction of identical segments for

four teams for the conducted cyber security exercise.

3. In a distributed system scenario in White et al. (2002) , the re-

searchers used Netbed’s batch system to evaluate every possible

combination of 7 bandwidths, 5 latencies, and 3 application pa-

rameter settings on four different configurations on a set of 20

nodes. The result was performing a total of 420 different tests

in 30 h, averaging 4.3 min each.

4. In simulation environment for validating protocols for dis-

tributed applications, researchers in Barcellos et al. (2012) em-

ployed similar quantitative evaluation methods, which is also

based upon time requirements.

4.3.2. Functional evaluation

The following papers applied qualitative evaluation methods to

evaluate the functionality of cyber ranges and security testbeds.

1. In a scenario of critical infrastructure protection (Morris et al.,

2011), researchers employed CSET (cyber security evaluation

tool) 1 . CSET is a qualitative evaluation method in which multi-

ple security standards are integrated like NIST, Transportation

Security Administration (TSA), North American Electric Relia-

bility Corporation (NERC), U.S. Department of Defense (DoD),

and others. When a security level is selected for evaluation, the

CSET present a questionnaire based upon the above standards

and measure the security level based upon the answers from

security experts.

2. In another scenario of SCADA testbed and security device (Jung

et al., 2008), researchers developed there own evaluation ma-

trices for evaluating the security of SCADA testbed. Their eval-

uation matrices consist of.

1 https://ics- cert.us- cert.gov/Assessments .

M.M. Yamin, B. Katt and V. Gkioulos / Computers & Security 88 (2020) 101636 13

Fig. 8. Classification of cyber-ranges and security testbeds based upon the scenario execution environment.

• The level of exposure of SCADA systems.

• Ports of which the access is available (such as TCP/IP, MOD-

BUS).

• Access to websites connected with the SCADA system.

• Vulnerabilities of websites connected with the SCADA sys-

tem.

• Vulnerabilities of Remote Terminal Unit(RTU) and Master

Terminal Unit(MTU).

• The status of common firewalls.

3. Researchers in a testbed of wearable IoT devices (Siboni et al.,

2016) employed a scenario based evaluation in which they de-

termined what type of scenario capabilities their testbed sup-

ports. Scenario based evaluation takes into account the follow-

ing capabilities in a scenario.

• Scanning (e.g., IP and port scanning)

• Fingerprinting

• Process enumeration

• Data leakage

• Side-channel attacks

• Data collection

• Management access

• Breaking encrypted traffic

• Spoofing/masquerade attack

• Communication delay attacks

• Communication tampering

• List known vulnerabilities

• Vulnerability scan

4. In a cloud-based testbed for simulation of cyber attacks (Kouril

et al., 2014), researcher used two experiments to evaluate

the testbed in a qualitative manner, in which they used

slowHttptest to validate the effectiveness of a security mod-

ule on a web server. In the first experiment, a web server is

equipped with a security module to mitigate a cyber attack,

while in the second experiment a web server is targeted with-

out the security module. During the first experiment the server

became unavailable after 14 seconds of the attack. However, as

soon as the duration of the connection reached the timeout set

by the mitigation module, the connection was terminated and

the server returned HTTP code 400. In the second experiment,

the server became unavailable after 14 seconds and remained

in this state for next 586 seconds until the attack ended, as no

mitigation module was activated.

4.4. Tools

In this section we identify and classify hardware and software

tools utilized within contemporary cyber ranges and security test

beds. Details of the tools with respect to year and domain of ap-

plication as indicated in Section 3.5 will be presented.

14 M.M. Yamin, B. Katt and V. Gkioulos / Computers & Security 88 (2020) 101636

4.4.1. Emulation tools

Table 3

Emulation tools used in cyber ranges and security test beds.

ID Tool Name Year Paper Domain

1 LAAS Cloud

infrastructure

2014 Kouril et al. (2014) Cloud

2 Openstack 2017 Edgar and Manz (2017) Cloud

3 EMULAB 2012 Genge et al. (2012) Critical Infrastructure

4 Unity Pro-XL

v7.0 suite

2015 Miciolino et al. (2015) Critical Infrastructure

5 EMULAB 2014 Siaterlis and Genge

(2014)

Critical Infrastructure

6 Virtual Box 2013 Stites et al. (2013) Critical Infrastructure

7 NetEm 2017 Xypolytou et al. (2017) Critical Infrastructure

8 User-Mode

Linux (UML)

2006 Hu et al. (2006) Hybrid Network and Application

9 Vmware

Vsphere

2017 Caliskan et al. (2017) Hybrid Network and Application

10 Emulab 2015 Soupionis and Benoist

(2015)

Hybrid Network and Application

11 KVM 2016 Pham et al. (2016) Hybrid Network and Application

12 XEN Worlds 2010 Gephart and Kuperman

(2010)

Hybrid Network and Application

13 CITRIX XEN 2019 Chandra and Mishra

(2019)

Hybrid Network and Application

14 Virtual Box 2015 Sommestad (2015) Hybrid Network and Application

15 Vmware 2005 Hoffman et al. (2005) Hybrid Network and Application

16 Vmware 2011 Doupé et al. (2011) Hybrid Network and Application

17 OPENNEBULA 2015 Čeleda et al. (2015) Hybrid Network and Application

18 OPENNEBULA 2015 Vykopal et al. (2017a) Hybrid Network and Application

19 Qemu 2012 Willems and Meinel

(2012)

Hybrid Network and Application

20 KVM 2012 Willems and Meinel

(2012)

Hybrid Network and Application

21 XEN 2010 Childers et al. (2010) Hybrid Network and Application

22 OPEN VZ 2010 Childers et al. (2010) Hybrid Network and Application

23 Qemu 2011 Willems and Meinel

(2011)

Hybrid Network and Application

24 KVM 2011 Willems and Meinel

(2011)

Hybrid Network and Application

25 Mininet 2015 Al-Ayyoub et al. (2015) Hybrid Network and Application

26 Virtualbox 2014 Vigna et al. (2014) Hybrid Network and Application

27 Virtual Machine 2010 Louthan et al. (2010) Hybrid Network and Application

28 Cyber Smart 2009 Marshall (2009) Hybrid Network and Application

29 Vmware 2007 Border (2007) Hybrid Network and Application

30 Vmware ESXI 2013 Rursch and Jacobson

(2013b)

Hybrid Network and Application

31 Vmware 2005 Richmond (2005) Hybrid Network and Application

32 Vmware ESXI 2013 Rursch and Jacobson

(2013a)

Hybrid Network and Application

33 OpenFlow

switches (OVS)

2016 Flauzac et al. (2016) IOT

34 Vmware

Vsphere

2016 Flauzac et al. (2016) IOT

35 Qemu system 2016 Flauzac et al. (2016) IOT

36 XEN with the

xapi toolstack

2017 Herold et al. (2017) Network

37 KVM 2016 Yasuda et al. (2016) Network

38 Vmware ESXI 2016 Yasuda et al. (2016) Network

39 OPENNEBULA 2014 Jirsik et al. (2014) Network

40 Xen-VM 2016 Chadha et al. (2016) Network

41 Fluxbox desktop

through

Guacamole

2016 Chadha et al. (2016) Network

42 Emulab 2006 Benzel et al. (2006) Network

43 XEN 2014 Moraes et al. (2014) Network

44 XORP Router 2009 Li et al. (2009) Network

45 Open VZ 2009 Li et al. (2009) Network

46 Future internet

test bed FITS

2016 Alvarenga and Duarte

(2016)

Network

47 Emulab 2018 Tsai and Yang (2018) Network

48 Emulab 2011 Siaterlis et al. (2011) Network

49 Proxmox VE 2016 Pfrang et al. (2016) SCADA

50 Mininet 2017 Antonioli et al. (2017) SCADA

51 CORE emulator 2013 Almalawi et al. (2013) SCADA

52 Vmware Esxi 2012 Urias et al. (2012) SCADA

53 Vyatta software

routers

2012 Urias et al. (2012) SCADA

4.4.2. Simulation tools

Table 4

Simulation tools used in cyber ranges and security test beds.

ID Tool name Year Paper Domain

1 QualNet 2015 Bergin (2015) Autonmous

Systems

2 Simulink 2015 Koutsandria et al. (2015) Critical In-

frastructure

3 Digsilent

Powerfactory

2013 Hahn et al. (2013) Critical In-

frastructure

4 Real-time

digital

simulator

2013 Hahn et al. (2013) Critical In-

frastructure

5 Simulink 2014 Siaterlis and Genge (2014) Critical In-

frastructure

6 SCADASim 2013 Stites et al. (2013) Critical In-

frastructure

7 ModelNet 2002 White et al. (2002) Network

8 Network

Simulator

2002 White et al. (2002) Network

9 Arena 2007 Kuhl et al. (2007) Network

10 Opnet 2016 Chadha et al. (2016) Network

11 QualNet 2016 Chadha et al. (2016) Network

12 ns2 2016 Chadha et al. (2016) Network

13 ns3 2016 Chadha et al. (2016) Network

14 PRIME (Parallel

Real-time

Immersive

network

Modeling

Environment)

2009 Li et al. (2009) Network

15 iSSFNet 2005 Liljenstam et al. (2005) Network

16 Opnet 2011 Mallouhi et al. (2011) SCADA

17 PowerWorld 2011 Mallouhi et al. (2011) SCADA

18 Matlab 2014 Farooqui et al. (2014) SCADA

19 Simulink 2014 Farooqui et al. (2014) SCADA

20 Truetime 2014 Farooqui et al. (2014) SCADA

21 CIROS 6.0 2016 Pfrang et al. (2016) SCADA

22 Digital I/O,

Analog I/O

2008 Jung et al. (2008) SCADA

23 MODBUS IO 2013 Almalawi et al. (2013) SCADA

24 Opnet 2012 Urias et al. (2012) SCADA

25 Matlab 2013 Gao et al. (2013) SCADA

26 Smulink 2013 Gao et al. (2013) SCADA

27 Simulink 2016 Alves et al. (2016) SCADA

28 Matlab 2016 Alves et al. (2016) SCADA

29 SimHydraulics 2016 Alves et al. (2016) SCADA

30 OpenPlc 2016 Alves et al. (2016) SCADA

4.4.3. Hardware

Table 5

Hardware devices used in cyber ranges and security test beds.

ID Tool name Year Paper Domain

1 Allen Bradley

RSLogix 5000

2011 Morris et al.

(2011)

Critical

Infrastructure

2 L35E PLCs. 2011 Morris et al.

(2011)

Critical

Infrastructure

3 Factory Talk

View 5.0 HMI

screens

2011 Morris et al.

(2011)

Critical

Infrastructure

4 Phasor

measurement

units

2011 Morris et al.

(2011)

Critical

Infrastructure

5 Phasor data

concentrator

2011 Morris et al.

(2011)

Critical

Infrastructure

(continued on next page)

M.M. Yamin, B. Katt and V. Gkioulos / Computers & Security 88 (2020) 101636 15

Table 5 (continued)

ID Tool name Year Paper Domain

6 Synchrophasor

vector

processor

2011 Morris et al.

(2011)

Critical

Infrastructure

7 protection

relays

controllers

2011 Morris et al.

(2011)

Critical

Infrastructure

8 substation GPS

clock

2011 Morris et al.

(2011)

Critical

Infrastructure

9 Omicron relay

test

2011 Morris et al.

(2011)

Critical

Infrastructure

10 calibration

device

2011 Morris et al.

(2011)

Critical

Infrastructure

11 Real Time

Digital

Simulator

(RTDS)

2011 Morris et al.

(2011)

Critical

Infrastructure

12 amplifiers 2011 Morris et al.

(2011)

Critical

Infrastructure

13 PMUs 2011 Morris et al.

(2011)

Critical

Infrastructure

14 Cisco 5510 2011 Morris et al.

(2011)

Critical

Infrastructure

15 MU Dynamics

MU-4000

Analyzer

2011 Morris et al.

(2011)

Critical

Infrastructure

16 IEEE C37.118, 2011 Morris et al.

(2011)

Critical

Infrastructure

17 PLC 2015 Koutsandria

et al. (2015)

Critical

Infrastructure

18 Intelligebt End

Device

2013 Hahn et al.

(2013)

Critical

Infrastructure

19 PLC 2013 Hahn et al.

(2013)

Critical

Infrastructure

20 PLC 2015 Gao et al.

(2015)

Critical

Infrastructure

21 Remote

Terminal Unit

2015 Gao et al.

(2015)

Critical

Infrastructure

22 Smart

Transmitter

2015 Gao et al.

(2015)

Critical

Infrastructure

23 Cisco 6503 2014 Siaterlis and

Genge (2014)

Critical

Infrastructure

24 IEC 60870-5-

104

2016 Gunathilaka

et al. (2016)

Critical

Infrastructure

25 IEC 61,850

MMS

2016 Gunathilaka

et al. (2016)

Critical

Infrastructure

26 HP ProLiant

DL380 G7

2015 Ernits et al.

(2015)

Hybrid

Network and

Application

27 Google Glass 2016 Siboni et al.

(2016)

IOT

28 Sony Smart

watches

2016 Siboni et al.

(2016)

IOT

29 Energy

Management

System

2018 Lee et al.

(2017)

IOT

30 Remote

Terminal Unit

2018 Lee et al.

(2017)

IOT

31 Smart

surveillance

camera

2017 Furfaro et al.

(2017)

IOT

32 Android Smart

Phone

2017 Furfaro et al.

(2017)

IOT

33 Cisco routers 2017 Herold et al.

(2017)

Network

34 Cisco routers 2010 Chow et al.

(2010)

Network

35 Siemens

Devices

2010 Fovino et al.

(2010)

SCADA

36 Emerson

Devices

2010 Fovino et al.

(2010)

SCADA

37 ABB Devices 2010 Fovino et al.

(2010)

SCADA

38 Filed Dev 2010 Fovino et al.

(2010)

SCADA

Table 5 (continued)

ID Tool name Year Paper Domain

39 PLC 2017 Domínguez

et al. (2017)

SCADA

40 PLC 2016 Pfrang et al.

(2016)

SCADA

41 SIEMENS

S7-300

2016 Pfrang et al.

(2016)

SCADA

42 Cisco ASA 2016 Pfrang et al.

(2016)

SCADA

43 RS485

Multiport

2008 Jung et al.

(2008)

SCADA

44 Phasor Data

Concentrator

2016 Ashok et al.

(2016)

SCADA

45 Phasor

Measurement

Units

2016 Ashok et al.

(2016)

SCADA

46 SEL 421 2016 Ashok et al.

(2016)

SCADA

47 Multifunction

protection

relays (7SJ610,

7SJ82)

2016 Ashok et al.

(2016)

SCADA

48 SICAM PAS 2016 Ashok et al.

(2016)

SCADA

49 Power TG 2016 Ashok et al.

(2016)

SCADA

50 PLC 2013 Almalawi

et al. (2013)

SCADA

51 PLC 2016 Rubio-Hernan

et al. (2016)

SCADA

52 Raspbery PI 2016 Rubio-Hernan

et al. (2016)

SCADA

53 Cisco 2600

router

2012 Urias et al.

(2012)

SCADA

54 Juniper M61 2012 Urias et al.

(2012)

SCADA

55 PLC 2013 Gao et al.

(2013)

SCADA

56 Remote

Teminal Unit

2013 Gao et al.

(2013)

SCADA

57 Rasbery PI 2016 Alves et al.

(2016)

SCADA

4.4.4. Management tools

Table 6

Management tools used in cyber ranges and security test beds.

1 Energy

Management

System

2013 Hahn et al.

(2013)

Critical

Infrastructure

2 Energy

Management

System

2014 Siaterlis and

Genge (2014)

Critical

Infrastructure

3 Energy

Management

System

2016 Gunathilaka

et al. (2016)

Critical

Infrastructure

4 ISEAGE 2013 Rursch and

Jacobson

(2013a)

Hybrid Network

and Application

5 SIGAR API 2019 Chandra and

Mishra (2019)

Hybrid Network

and Application

6 3vilSh3llfor

backdoor

2011 Doupé et al.

(2011)

Hybrid Network

and Application

7 vmService 2012 Willems and

Meinel (2012)

Hybrid Network

and Application

8 vmService 2011 Willems and

Meinel (2011)

Hybrid Network

and Application

9 HAMIDS 2017 Antonioli

et al. (2017)

SCADA

10 Xentop 2014 Moraes et al.

(2014)

Network

16 M.M. Yamin, B. Katt and V. Gkioulos / Computers & Security 88 (2020) 101636

4.4.5. Monitoring tools

Table 7

Monitoring tools used in cyber ranges and security test beds.

1 Netflow 2014 Kouril et al.

(2014)

Cloud

2 IPFIX 2014 Kouril et al.

(2014)

Cloud

3 IPFIX 2017 Edgar and

Manz (2017)

Cloud

4 OSISoft PI

Historian

2011 Morris et al.

(2011)

Critical

Infrastructure

5 Zabbix 2012 Genge et al.

(2012)

Critical

Infrastructure

6 Libpcap 2015 Koutsandria

et al. (2015)

Critical

Infrastructure

7 OSIsoft 2015 Koutsandria

et al. (2015)

Critical

Infrastructure

8 Wireshark 2015 Miciolino

et al. (2015)

Critical

Infrastructure

9 Energy

Management

System

2013 Hahn et al.

(2013)

Critical

Infrastructure

10 Open V Switch 2015 Gao et al.

(2015)

Critical

Infrastructure

11 Energy

Management

System

2014 Siaterlis and

Genge (2014)

Critical

Infrastructure

12 Energy

Management

System

2016 Gunathilaka

et al. (2016)

Critical

Infrastructure

13 Tcpdump 2017 Xypolytou

et al. (2017)

Critical

Infrastructure

14 Security Onion

Linux

2017 Caliskan

et al. (2017)

Hybrid

Network and

Application

15 OSSEC 2017 Caliskan

et al. (2017)

Hybrid

Network and

Application

16 Tcpdump 2016 Pham et al.

(2016)

Hybrid

Network and

Application

17 Wireshark 2016 Pham et al.

(2016)

Hybrid

Network and

Application

18 SIGAR API 2019 Chandra and

Mishra

(2019)

Hybrid

Network and

Application

19 3vilSh3llfor

backdoor

2011 Doupé et al.

(2011)

Hybrid

Network and

Application

20 Nagios 2015 Čeleda et al.

(2015)

Hybrid

Network and

Application

21 Nagios 2015 Vykopal

et al. (2017a)

Hybrid

Network and

Application

22 vmService 2012 Willems and

Meinel

(2012)

Hybrid

Network and

Application

23 vmService 2011 Willems and

Meinel

(2011)

Hybrid

Network and

Application

24 Catbird 2015 Al-Ayyoub

et al. (2015)

Hybrid

Network and

Application

Table 7 (continued)

25 ISEAGE 2013 Rursch and

Jacobson

(2013b)

Hybrid

Network and

Application

26 Snort 2005 Richmond

(2005)

Hybrid

Network and

Application

27 SyscallAnomaly 2005 Richmond

(2005)

Hybrid

Network and

Application

28 ISEAGE 2013 Rursch and

Jacobson

(2013a)

Hybrid

Network and

Application

29 Wireshark 2016 Siboni et al.

(2016)

IOT

30 ADB 2016 Siboni et al.

(2016)

IOT

31 Open V Switch 2016 Flauzac et al.

(2016)

IOT

32 Opendaylight

controller

2016 Flauzac et al.

(2016)

IOT

33 Tcpdump 2017 Herold et al.

(2017)

Network

34 Tcpdump 2002 White et al.

(2002)

Network

35 Traceroute 2002 White et al.

(2002)

Network

36 FRONTIER 2010 Chow et al.

(2010)

Network

37 SHINE 2010 Chow et al.

(2010)

Network

38 Netflow 2014 Jirsik et al.

(2014)

Network

39 IPFIX 2014 Jirsik et al.

(2014)

Network

40 Emulab 2006 Benzel et al.

(2006)

Network

41 Network Flight

Recorder (NFR)

Sentivist

2006 Benzel et al.

(2006)

Network

42 FloodWatch 2006 Benzel et al.

(2006)

Network

43 OPENFLOW 2014 Moraes et al.

(2014)

Network

44 Xentop 2014 Moraes et al.

(2014)

Network

45 Tcpdump 2009 Li et al.

(2009)

Network

46 Testbed@TWISC

Monitor

2018 Tsai and

Yang (2018)

Network

47 NAGIOS 2005 Alfieri et al.

(2005)

Network

48 Zabbix 2011 Siaterlis et al.

(2011)

Network

49 NetDecoder 2017 Domínguez

et al. (2017)

SCADA

50 CanAnalyzer 2017 Domínguez

et al. (2017)

SCADA

51 Open V Switch 2016 Pfrang et al.

(2016)

SCADA

52 Pf sense 2016 Pfrang et al.

(2016)

SCADA

53 SNORT 2016 Pfrang et al.

(2016)

SCADA

54 OSSEC 2016 Pfrang et al.

(2016)

SCADA

55 HAMIDS 2017 Antonioli

et al. (2017)

SCADA

56 Wireshark 2012 Urias et al.

(2012)

SCADA

57 Tcpdump 2012 Urias et al.

(2012)

SCADA

M.M. Yamin, B. Katt and V. Gkioulos / Computers & Security 88 (2020) 101636 17

4.4.6. Traffic generation tools

Table 8

Traffic generation tools used in cyber ranges and security test beds.

ID Tool Name Year Paper Domain

1 Low Orbit Ion

Canon

2014 Kouril et al. (2014) Cloud

2 Modbus 2011 Morris et al. (2011) Critical

Infrastructure

3 Events

(GOOSE)

2011 Morris et al. (2011) Critical

Infrastructure

4 Generic

Object

Oriented

Substation

2011 Morris et al. (2011) Critical

Infrastructure

5 DNP3 2011 Morris et al. (2011) Critical

Infrastructure

6 EtherNet/IP 2011 Morris et al. (2011) Critical

Infrastructure

7 ISAGE 2013 Hahn et al. (2013) Critical

Infrastructure

8 Open flow 2015 Gao et al. (2015) Critical

Infrastructure

9 Modbus 2014 Siaterlis and Genge

(2014)

Critical

Infrastructure

10 DNP3 2014 Siaterlis and Genge

(2014)

Critical

Infrastructure

11 Modbus 2016 Gunathilaka et al.

(2016)

Critical

Infrastructure

12 ISEAGE 2013 Rursch and Jacobson

(2013b)

Hybrid

Network and

Application

13 Traffic Collec-

tor/Replayer

2013 Rursch and Jacobson

(2013a)

Hybrid

Network and

Application

14 Printer 2016 Siboni et al. (2016) IOT

15 SSH 2016 Siboni et al. (2016) IOT

16 SNMP 2016 Siboni et al. (2016) IOT

17 MicroWorks 2018 Lee et al. (2017) IOT

18 SSH 2017 Herold et al. (2017) Network

19 SNMP 2017 Herold et al. (2017) Network

20 Policy Enabled

Agent

2010 Chow et al. (2010) Network

21 Low Orbit Ion

Canon

2014 Jirsik et al. (2014) Network

22 Emulab 2006 Benzel et al. (2006) Network

23 hydra 2018 Tsai and Yang (2018) Network

24 tfn2k 2018 Tsai and Yang (2018) Network

25 Modbus Rsim 2011 Mallouhi et al. (2011) SCADA

26 MODBUS 2008 Jung et al. (2008) SCADA

27 DNP3 2016 Rubio-Hernan et al.

(2016)

SCADA

28 Modbus 2016 Rubio-Hernan et al.

(2016)

SCADA

29 Virtual

Control

System

Environment

2012 Urias et al. (2012) SCADA

4.4.7. User behavior generation tools

Table 9

Use behavior generation tools used in cyber ranges and security test beds.

ID Tool name Year Paper Domain

1 AMICI 2015 Soupionis and

Benoist (2015)

Hybrid Network

and Application

2 ConsoleUser 2015 Sommestad (2015) Hybrid Network

and Application

3 AutoIT 2016 Chadha et al. (2016) Network

4 Netkit 2017 Braidley (2016) Social

Engineering

4.4.8. Scoring tools and mechanisms

Table 10

Scoring mechanisms and tools used in cyber ranges and security test beds.

ID Tool name Year Paper Domain

1 Task

Based

2013 Stites et al. (2013) Critical

Infrastructure

2 Score Bot 2005 Hoffman et al.

(2005)

Hybrid Network

and Application

3 Jeopardy

board

2014 Silva et al. (2014) Hybrid Network

and Application

4 ICTF score

board,

Flags

2011 Doupé et al. (2011) Hybrid Network

and Application

5 ICTF score

board,

Flags

2010 Childers et al. (2010) Hybrid Network

and Application

6 Score Bot 2014 Vigna et al. (2014) Hybrid Network

and Application

7 Flags 2006 Snyder (2006) Hybrid Network

and Application

4.4.9. Scenario definition

Table 11

Scenario definition mechanisms in cyber ranges and security test beds.

ID Tool name Year Paper Domain

1 XML 2015 Bergin (2015) Autonmous

Systems

2 JSON 2015 Bergin (2015) Autonmous

Systems

3 XML 2012 Genge et al. (2012) Critical

Infrastructure

4 YAML 2016 Pham et al. (2016) Hybrid

Network and

Application

5 XML 2013 Reed et al. (2013) Hybrid

Network and

Application

6 XML 2012 Willems and Meinel

(2012)

Hybrid

Network and

Application

7 XML 2011 Willems and Meinel

(2011)

Hybrid

Network and

Application

8 XML 2017 Herold et al. (2017) Network

9 XML 2010 Chow et al. (2010) Network

10 Integration

Markup

Language

(IML)

2010 Chow et al. (2010) Network

11 Policy Editor

Tools

2010 Chow et al. (2010) Network

12 Policy

negotiation

tool

2010 Chow et al. (2010) Network

13 XML 2007 Kuhl et al. (2007) Network

14 XML 2016 Chadha et al. (2016) Network

15 XML 2002 Rossey et al. (2002) Network

16 JSON 2016 Alvarenga and Duarte

(2016)

Network

17 Offense and

Defense

Toolbox

2018 Tsai and Yang (2018) Network

18 M.M. Yamin, B. Katt and V. Gkioulos / Computers & Security 88 (2020) 101636

4.4.10. Security testing tools

Table 12

Security Testing tools used in cyber ranges and security test beds.

ID Tool name Year Paper Domain

1 Juas Messages 2015 Bergin (2015) Autonmous

Systems

2 Low Orbit Ion

Canon

2014 Kouril et al. (2014) Cloud

3 Ettercap 2011 Morris et al. (2011) Critical

Infrastructure

4 Ettercap 2015 Miciolino et al.

(2015)

Critical

Infrastructure

5 GunPG1 2006 Hu et al. (2006) Hybrid

Network and

Application

6 John-the-

Ripper

2006 Hu et al. (2006) Hybrid

Network and

Application

7 Bit torrent 2012 Barcellos et al. (2012) Hybrid

Network and

Application

8 Kali Linux 2017 Caliskan et al. (2017) Hybrid

Network and

Application

9 PathTest 2015 Soupionis and

Benoist (2015)

Hybrid

Network and

Application

10 Iperf 2015 Soupionis and

Benoist (2015)

Hybrid

Network and

Application

11 FTK Imager 2011 Glumich and Kropa

(2011)

Hybrid

Network and

Application

12 Zora 2011 Glumich and Kropa

(2011)

Hybrid

Network and

Application

13 netcat 2011 Glumich and Kropa

(2011)

Hybrid

Network and

Application

14 cron 2011 Glumich and Kropa

(2011)

Hybrid

Network and

Application

15 hex editor 2011 Glumich and Kropa

(2011)

Hybrid

Network and

Application

16 offensive

computing.net

2011 Glumich and Kropa

(2011)

Hybrid

Network and

Application

17 Helix

Forensics Live

Linux CD

2011 Glumich and Kropa

(2011)

Hybrid

Network and

Application

18 WinHex 2011 Glumich and Kropa

(2011)

Hybrid

Network and

Application

19 md5sum 2011 Glumich and Kropa

(2011)

Hybrid

Network and

Application

20 FTK Imager 2011 Glumich and Kropa

(2011)

Hybrid

Network and

Application

21 vxheaven.org 2019 Chandra and Mishra

(2019)

Hybrid

Network and

Application

22 SlowHTTPTest 2019 Chandra and Mishra

(2019)

Hybrid

Network and

Application

23 LOIC 2019 Chandra and Mishra

(2019)

Hybrid

Network and

Application

Table 12 (continued)

ID Tool name Year Paper Domain

24 John the

ripper

2006 Snyder (2006) Hybrid

Network and

Application

25 SVED 2015 Sommestad (2015) Hybrid

Network and

Application

26 ENCASE

Enterprise

2014 Silva et al. (2014) Hybrid

Network and

Application

27 WireShark 2014 Silva et al. (2014) Hybrid

Network and

Application

28 IDA Pro- 2014 Silva et al. (2014) Hybrid

Network and

Application

29 Volatility 2014 Silva et al. (2014) Hybrid

Network and

Application

30 Hex

Workshop

2014 Silva et al. (2014) Hybrid

Network and

Application

31 PDF Dissector 2014 Silva et al. (2014) Hybrid

Network and

Application

32 One-class

support vector

machine

(OCSVM)

2018 Lee et al. (2017) IOT

33 Low Orbit Ion

Canon

2014 Jirsik et al. (2014) Network

34 Crimeware

toolkits

2016 Chadha et al. (2016) Network

35 Metasploit 2016 Chadha et al. (2016) Network

36 Nmap 2016 Chadha et al. (2016) Network

37 Symantec

ManHunt

2006 Benzel et al. (2006) Network

38 Nmap 2011 Mallouhi et al. (2011) SCADA

39 Nmap 2008 Jung et al. (2008) SCADA

40 Nessus 2008 Jung et al. (2008) SCADA

41 Wireshark 2008 Jung et al. (2008) SCADA

42 WinHTTrack 2008 Jung et al. (2008) SCADA

43 Netcraft 2008 Jung et al. (2008) SCADA

44 Kartoo 2008 Jung et al. (2008) SCADA

4.5. Future research trends and directions

In order to analyze the future research trends and directions,

we looked closely to all papers since 2016 and we briefly present

their future work in this section, and discuss and summarize them

in Section 5.2 .

1. Design of cyber warfare testbed (Chandra and Mishra, 2019).

Tow main future direction were proposed, the first is us-

ing OS container , as they are lightweight and support a wide

range of OSs. The second direction is focusing on simulating

human behavior using agent based simulation toolkit.

2. Testbed@ TWISC: A network security experiment plat-

form (Tsai and Yang, 2018).

The authors of this work foresee threefold future develop-

ment. The first is using virtualization and SDN (SW Defined

Networks) due to its high programmability capability. The

second is federation , which is required to support large scale

exercises. Particularly they planned to use VPLS(Virtual Pri-

vate LAN Service). Finally, they planned to work on what

they call Software Defined Security that aims at tackling the

additional attack vector on virtualization.

3. Achieving reproducible network environments with IN-

SALATA (Herold et al., 2017).

Few Future directions were proposed by the authors. They

mainly focus on extending the current capability, e.g., (1)

M.M. Yamin, B. Katt and V. Gkioulos / Computers & Security 88 (2020) 101636 19

better monitoring and event collection , and (2) more realistic

network environment reproducibility. Furthermore, efficient

deployment is another goal for the future.

4. Capability Detection and Evaluation Matrics for Cyber Secu-

rity lab Exercises (Caliskan et al., 2017).

The authors planned to extend the experiment setting and

invite different students to take part for the sake of cross

validation. Stability to support large scale exercises were also

planned.

5. Control frameworks in network emulation testbeds: A sur-

vey (Tsai et al., 2017).

Two main directions can be identified in this paper, which

are (1) supporting more realistic scenarios, and (2) visualiza-

tion and analytics .

6. Cybersecurity training in control systems using real equip-

ment (Domínguez et al., 2017).

Further work of this work includes the educational evalua-

tion of the laboratory.

7. Design and implementation of cybersecurity testbed for in-

dustrial IoT systems (Lee et al., 2017).

The main future direction of this work is to use the testbed

to test and evaluate new security technologies to various crit-

ical infrastructure systems, e.g., next generation intelligent

power control system.

8. Developing a capability to classify technical skill levels

within a Cyber Range (Labuschagne and Grobler, 2017).

One idea that were discussed is the development of an in-

tent capability whereby the intent of the user can be pre-

dicted.

9. Experiment as a service (Edgar and Rice, 2017).

The main future direction discussed in this paper is the de-

velopment of sharable and validated models (scenarios) of re-

alistic environments to support federation .

10. Extending Our Cyber-Range CYRAN with Social Engineering

Capabilities (Braidley, 2016).

The social media profiles didn’t use any real employee photo

due to privacy concerns this can be improved in future using

alternate images of employees. The content posted on social

media is only text based in future other media formats like

videos and images can be integrated for better representa-

tion of real social media.

11. Gamifying ICS security training and research: Design, imple-

mentation, and results of S3 (Antonioli et al., 2017).

Future work discussed was to use the method applied in the

paper as a foundation to enable others to run similar secu-

rity educational experiments. This implies also the possibility

to share the experiment models among different parties.

12. Improving and Measuring Learning Effectiveness at Cyber

Defense Exercises (Maennel et al., 2017).

Future work was planned to develop a learning metrics and

trends benchmark , which will provide a baseline to evaluate

learning improvement in cybersecurity exercises.

13. KYPO Cyber Range: Design and Use Cases (Vykopal et al.,

2017a).

The future direction for KYPO is to use the current devel-

oped infrastructure to test and experiment with recent com-

plex cyber attacks in order to evaluate and study detection

and mitigation control against cyber threats to the critical in-

frastructure.

14. Modeling and simulation architecture for training in cyber

defence education (Suba ̧s u et al., 2017).

There are several courses of future development arising from

the ideas presented above. A further direction is to make a

comparison between our proposed architecture and existing

military or commercial training solutions.

15. The FUSE testbed: Establishing a microgrid for smart grid se-

curity experiments (Xypolytou et al., 2017).

Similar to the previous future work, FUSE testbed was

planned to be used to study methods and techniques to de-

tect anomalies against critical infrastructure. Security, avail-

ability and reliability will be evaluated in the testbed to en-

hance situational-awareness .

16. Advanced security testbed framework for wearable IoT de-

vices (Siboni et al., 2016).

Afte completing the development of the testbed, the main

future work discussed for this paper is to use the testbed

in testing smart city IoT devices. The development of a

lightweight anitmalware is also planned.

17. Alfons: A Mimetic Network Environment Construction Sys-

tem (Yasuda et al., 2016).

Optimizing and enhancing efficiency of the system are the

main future work planned for the Alfons system.

18. Cybervan: A cyber security virtual assured network

testbed (Chadha et al., 2016).

In the following are the future work directions discussed for

Cybervan: (1) Scalability , (2) portability to various virtualiza-

tion and container technologies, (3) supporting more realis-

tic scenarios (4) introducing cognitive factors in simulation of

user/attacker behaviors, (5) enhancing testing and validation

procedures of new technologies by developing an automated

state space exploration mechanisms, and finally (6) enhanc-

ing automation capabilities in order to increase resource and

research productivity.

19. CyRIS: A cyber range instantiation system for facilitating se-

curity training (Pham et al., 2016).

Two main issues were planned for future work of CyRIS sys-

tem, the first is scalability and the second is automation of

network configuration capabilities.

20. Design and architecture of an industrial IT security

lab (Pfrang et al., 2016).

The two main directions planned for this work are to (1) ap-

ply the infrastructure for education and awareness training,

and (2) perform advanced security monitoring by including

remote production sites.

21. Developing a distributed software defined networking

testbed for IoT (Flauzac et al., 2016).

The main future work discussed in this paper is to expand

simulation capabilities to include IPv6 and evaluate perfor-

mance evaluation.

22. PowerCyber: A remotely accessible testbed for Cyber Physi-

cal security of the Smart Grid (Ashok et al., 2016).

The activities planned as future work include (1) developing

library of models and datasets, (2) increasing the user com-

munity , and (3) developing advanced realistic use cases.

23. RIO: A denial of service experimentation platform in a Fu-

ture Internet Testbed (Alvarenga and Duarte, 2016).

The main future work is to work on efficiency by studying

the impact of each step on the experimentation overall time.

Furthermore, the authors were planning to investigate pos-

sible automation of the platform.

24. Softgrid: A software-based smart grid testbed for evaluating

substation cybersecurity solutions (Gunathilaka et al., 2016).

Future directions discussed for this work are multifold. (1)

Supporting distributed setups and emulation , (2) testing and

evaluation of different security solution and attack vectors,

and (3) supporting other SCADA protocols , are the main di-

rections discussed.

25. Virtualization of industrial control system testbeds for cyber-

security (Alves et al., 2016).

The future work presented focused on improving the stud-

ied emulated and virtual testbeds. Regarding virtualization, it

20 M.M. Yamin, B. Katt and V. Gkioulos / Computers & Security 88 (2020) 101636

was proposed to compare the system characteristics of both

the virtual and the physical controller. Finally, scalability is

the last issue the authors were planning to investigate.

5. Synthesis

The analysis of data related to tool yielded some interesting re-

sults. In term of scenario definition, XML is predominately used as

indicated in Table 11 . XML provide a self descriptive way for de-

signing and storing a scenario definition. The developed scenario

definition can then be used in scenario simulation and emulation.

It is used in autonomous systems, critical infrastructure, network

and hybrid network and application scenarios. For monitoring, Tcp-

dump, IPFIX, and Wireshark were the most widely used tools in

cyber ranges and security test-beds. They are used for monitor-

ing traffic in cloud, network, critical infrastructure, and SCADA do-

mains. Details of all the monitoring tools used in cyber ranges

and security testbeds are presented in Table 7 . Multitude of dif-

ferent hardware devices were used in construction of different cy-

ber ranges and security testbeds. However CISCO based devices

are most widely used from the domain of critical infrastructure

to networks and SCADA. Different PLC devices were also used in

the construction of SCADA and critical infrastructure testbeds. De-

tails of hardware devices used in construction of different cyber

ranges and security testbeds are presented in Table 5 . For emula-

tion, Vmware based tools and Emulab were mostly used for crit-

ical infrastructure, hybrid network and application and networks

domain. Vmware was also used in IoT and SCADA domains as

well. Details of emulation tools used in cyber ranges and security

testbeds is presented in Table 3 . In term of scenario simulation,

Quanet, Simulink, Network Simulator and Matlab were widely used

as indicated in Table 4 . Qualnet was used for both autonomous

systems and critical infrastructure. Simulink was used for Critical

infrastructure and SCADA. While Network Simulator and Matlab

were used specifically for networks and SCADA respectively.

Different tools were used for traffic generation purposes in dif-

ferent domains. Modbus traffic is mostly used for SCADA and crit-

ical infrastructure while Low Orbit Ion Canon is used for TCP/UDP

traffic generation. Details of traffic generation tools are presented

in Table 8 . Different tools were used for security testing, user be-

havior generation, and scoring purposes in different domains, de-

tails of which are presented in Tables 9 , 10 and 12 , respectively.

In term of the scenario types static and dynamic, a significant

shift towards dynamic scenarios is witnessed in 2011 as indicated

in Fig. 5 . We believe that this shift happened due to identification

of famous Stuxnet (Langner, 2011) worm in 2010 which created a

lot of tidal waves in the cyber security research community. This

observation is further backed by the data presented in Fig. 6 , in

which the rise of critical infrastructure and SCADA related testbeds

can be observed. With the rise of cyber threats from nation state

actors, investment in cyber security research increased with the

aim to develop cyber resilience. This included development of new

cyber security tools and methods as well as educating a workforce

to handle cyber security crisis. This shift of sudden rise of educa-

tion related scenarios in 2011 can be observed in Fig. 4 . In the fu-

ture, we believe that with abundant availability of computational

resources, more and more tasks within the cyber ranges and secu-

rity testbeds will get automated. From scenario creation to scenario

execution and analysis, human role will become limited. This trend

has started from 2014 with the appearance of autonomous teams

in cyber ranges and security tetsbeds as indicated in Fig. 7 .

5.1. Architecture and capabilities

In Section 4.2 and 4.1 , we presented a new taxonomy that in-

cluded general capabilities of cyber ranges and security testbeds.

We also looked into the details of the architectural model of each

cyber range reviewed in this paper. Analyzing the various archi-

tectural models of different systems, we can see that the same

components are named differently in different systems. For ex-

ample, scenario execution element, orchestration module, control-

ling component could indicate the same functional component. We

highlighted in Section 4.2 the main concepts and used unified ter-

minology. In this section, we aim at developing a unified func-

tional architecture for cyber ranges based on the knowledge we

gained from analyzing the architectures of cyber ranges and secu-

rity testbeds, aforementioned.

Fig. 9 shows a unified functional architecture that is developed

from studying the literature. The architecture is divided into main

components and within each component we define a set of sub-

components.

• Portal.

Portal provide the interface for communication between acyber

range, or a security testbed, and multiple users. The users can

be cyber range admins, white team users to create and edit

cyber security scenarios and other clients who use the cyber

ranges for various tests and experiments. The cyber range and

security testbed admin user performs over management activ-

ities related to the cyber range or the testbed, which includes

resource management and access management to other users

like instructor, testers, trainee, or a white team member sce-

nario creator. The scenario creator creates scenarios which can

be deployed for cyber security exercise and experiments. The

clients can use cyber range and testbed resources for testing

and experimentation according to their requirements.

• Management.

In management functions, resources and roles are managed. Re-

sources includes the memory, processing and storage capabil-

ities, while roles management include the assignment of du-

ties for the cyber security exercises and experiment. A cyber

range and a security testbed management is related to over-

all range management. It deals with assigning roles to exercise

and experiment managers, as well as necessary computational

resources to conduct the exercise and run the experiment. Mul-

tiple exercises and experiments can be conducted at a same

time on cyber ranges and security testbeds. Exercise manage-

ment deals with the segregation of roles and resource of an

exercise or an experiment participant. In an exercise or ex-

periment, multiple scenarios can be conducted, scenario man-

agement deals with the management of multiple exercises or

experiment scenarios on the environment. Extensive collection

of log information and analysis is performed from the cyber

range and security testbed infrastructure for managing the cy-

ber range and security testbed infrastructure in optimal man-

ner.

• Training and education.

A training and education module provides tutoring system for

cyber range and security testbed. The tutoring system consist of

cyber security concepts and their practical exercises for cyber

security education purposes. The training outcome is evaluated

using a scoring mechanism. Multiple scoring mechanisms can

be used like flag-based scoring, task-based scoring and scor-

ing with the help of event log information. After action anal-

ysis using training participant feedback and event information

is performed to remove inefficiencies in conducting cyber secu-

rity exercises and improve their qualities.

• Testing.

As mentioned before, besides training, the second main objec-

tive of a cyber range is testing and security assessment. We no-

ticed two main types of tests that can be conducted in a cyber

range. The first is to test the security of a system or a prod-

uct, and the second is to test a new defence or attack method

or technique. A testing module aims at defining the test cases,

M.M. Yamin, B. Katt and V. Gkioulos / Computers & Security 88 (2020) 101636 21

Fig. 9. Cyber range and security testbed functional architecture.

which will be turned into a scenario that will be deployed and

executed on the run time environment. After executing the sce-

nario, through the scenario module and the run time environ-

ment, the result will be sent back to the testing module to con-

duct the final analysis and evaluation of the system under test.

• Scenario.

White team members have access to scenario creator interface.

The scenario creator interface is used to create, edit, deploy,

generate, execute, control and destroy cyber security scenarios.

The scenario creator gives capability to design and deploy new

cyber security scenarios and save the scenario configuration in

a file. The scenario editor allows to edit predefined scenarios

for modification. The scenario deployer reads the saved scenario

configuration file and deploys the scenario on emulated, sim-

ulated, or hybrid environment. The scenario generator is used

to generate new cyber security scenarios using minimum sce-

nario configurations. The scenario executor executes the sce-

nario and performs different actions during different phases of

the scenario, like injecting network traffic or initiating a user

behavior at different stages to make the scenario more realis-

tic. The scenario controller gives the functionality of modifying

the scenario during execution. The scenario destroyer is used

to remove obsolete scenario from cyber security exercises to be

ready for the next exercise.

• Monitoring.

Monitoring provides the capability to monitor cyber security

exercise and experiment execution. It includes collection of

logs from multiple sources and analysis on those logs. The log

sources contain different network and operating system inter-

faces. The logs are mostly in different formats, so their for-

mat needs to be unified using some pre-processing techniques.

Analysis is then performed on the unified logs to identify dif-

ferent activities being performed by cyber security exercise and

experiment participants at different stages of an exercise and

an experiment scenario.

• Run time environment.

The run time environment represents the infrastructure layer

that contains physical, virtual, hybrid and cloud platforms, on

which the scenario is deployed. Red team attacks the infras-

tructure and blue team defends the infrastructure. The activi-

ties of both teams create events that are used for monitoring

and scoring purposes. To make the cyber security exercise and

experiment environment more realistic, user behavior and ran-

dom network traffic is generated.

• Data storage.

Data storage aims at storing various artifacts needed for execut-

ing the training, or testing, scenarios. It includes scenario defi-

22 M.M. Yamin, B. Katt and V. Gkioulos / Computers & Security 88 (2020) 101636

nition files, information about the rules that need to be imple-

mented in the scenario, and tools required for the scenario ex-

ecution. The data storage act as a library for the scenarios with

relevant meta/data related to scenario difficulty and complexity.

This assists in designing cyber security exercise and experiment

according to the skill set of participants.

• Teaming.

Although not presented in functional architecture of cyber

range and security testbeds, teaming roles can’t be ignored. A

white team is responsible for scenario creation and setting the

learning objectives for the scenario. Green team in involved

in the monitoring of the scenario. While red and blue teams

have access to run time environment for scenario execution.

Autonomous teams can be used to emulate or simulate any role

of red, blue, white and green teams.

5.1.1. Ideal methods and tools

In this section we will discuss about the ideal methods and

tools for cyber range and security testbed development. First, we

would argue that there is a lack in standards for cyber ranges and

security testbed development. Their is a need to standardize this

field, we found cyber range interoperability standards (Damodaran

and Smith, 2015) that governs the federation principles for cyber

ranges and security testbeds. So, we suggest that any future de-

velopment of cyber ranges and security should be governed by ac-

cepted standards. Secondly, from the results indicated in Fig. 6 , it

can be augured that hybrid network and application domain over

emulation is most popular for cyber range and security testbed de-

velopment. Therefore, we expect to see more research in the field.

We would like to suggest the use of open source or publicly avail-

able tools for their development. For hybrid network and appli-

cation domains, we would suggest the use of cloud infrastructure

like Opennebula or Openstack for emulation due to their standard-

ize work environment. With cloud, we would also suggest the use

of standard APIs for communication with specific hardware which

can’t be emulated like PLCs. APIs should also be used for manage-

ment, monitoring and giving access to teams on the cyber range

and security testbed.

5.2. Future research trends and directions

In Section 4.5 we presented the main future plans for all recent

work related to cyber range and security testbeds. In this section

we compile these plans and provide the main directions for future

work. We categorize the future direction into the following cate-

gories

1. Efficiency.

One of the main topics for future work that were discussed by

reviewed papers is enhancing the efficiency of exercise lifecy-

cle. To do that, automation is mentioned as a possible technique

to make the deployment and execution of exercises more effi-

cient (Beuran et al., 2018; Herold et al., 2017; Pham et al., 2016).

2. Scalability, realism and virtualization.

To achieve the best result from a training exercise or a test-

ing process, the run time environment should be as close as

possible to the real world. While developing small scale and

class-room oriented testbeds is feasible and easy to achieve,

scaling the testbed to provide as realistic scenarios as possible

is a challenging task. Scalability is mentioned by many papers

as one of enhancement plans for their cyber ranges (Beuran

et al., 2018; Chadha et al., 2016; Pham et al., 2016). Using the

new virtualization and emulation techniques, e.g., SDN, is put

as an option. Particularly, SDN provides a high degree of pro-

grammability that is desired in such settings. Container tech-

nology and its support lightweight nature was another scalabil-

ity enabled future technology. Regarding the issue of realism,

one paper proposed to provide the support for a larger number

of protocols, e.g., SCADA protocols, in future design of security

testbeds (Alves et al., 2016).

3. Federation.

Another related topic is federation. Federation is also men-

tioned by couple of papers as one of the main future direction.

Activities and issues related to federation include ”sharability”,

potability, support of multiple locations, developing standard

way to describe scenarios, defining a library for models and

data, and expanding the user community (Edgar and Rice, 2017;

Tsai and Yang, 2018).

4. User behavior simulation.

Current work identified that techniques used today for user be-

havior simulation has its limitation. To overcome its limitation,

advances in user behavior simulation is proposed as one po-

tential future work (Braidley, 2016; Chandra and Mishra, 2019).

Examples of the proposed enhancements in the future are to

use agent based simulations and introducing cognitive factors.

5. Monitoring.

Monitoring capabilities are essential for any cyber range or se-

curity testbed installations. However, the degree of monitoring

and the way it can be used vary from one solution to another.

Future work related to monitoring is to use advanced security

monitoring and data collection techniques (Herold et al., 2017;

Pfrang et al., 2016).

6. Testing and evaluation.

Few papers proposed, as future work, to extend the current cy-

ber ranges and security testbeds with new testing and eval-

uation capabilities in order to (1) test new security solutions

and technologies (Lee et al., 2017), (2) testing new attack vec-

tors and attack techniques (Vykopal et al., 2017a), (3) testing

for some security features that were not considered before in

the testbeds like reliability and availability (Gunathilaka et al.,

2016), and (4) enhancing the testing techniques (Alvarenga and

Duarte, 2016).

7. Education and learning.

One of the issues that are missing in many current cyber ranges

and training testbeds is considering learning and educational

aspects (Pfrang et al., 2016). Thus, future work was proposed

to support techniques and methods to evaluate learning effec-

tiveness and improvements, e.g., by developing learning met-

rics (Caliskan et al., 2017).

8. Benchmarking.

The final aspect that we identified as future work is the plans

to conduct comparisons between the developed cyber ranges

and security testbeds and others. In order to support this ac-

tivities, we believe that developing a cyber range benchmark is

essential for the future (Suba ̧s u et al., 2017).

6. Discussion and conclusion

From the systematic literature review we confirmed our obser-

vations that the interest in cyber range and security testbeds has

increased in the last few years as indicated in Fig. 2 . We identi-

fied that scenarios play a major role in cyber range and security

testbed development as indicated in Fig. 2 . These scenarios focuse

on cyber security testing, experimental and educational purposes

as indicated in Fig. 4 . These scenarios are executed on emulated,

simulated, hybrid, or real equipment environment as indicated in

Fig. 8 . The execution of theses scenarios is either static or dynamic

as indicated in Fig. 5 . Static scenarios have a linear execution and

they execute according to predefined process. Dynamic scenarios

have a non linear execution and their execution depends upon the

dynamic changes that are introduced in to the environment. These

Dynamic changes are introduced by the teams involved in the sce-

nario.

M.M. Yamin, B. Katt and V. Gkioulos / Computers & Security 88 (2020) 101636 23

Most of the uses cases of cyber ranges and security testbeds are

centered around the needs for red and blue team training as indi-

cated in Fig. 7 . The role of white and green teams need to be fo-

cused for cyber security scenario development and cyber security

scenario management. A new trend of autonomous teams is start-

ing to appear in cyber ranges and security testbed. These teams au-

tomate the role of red, blue and white teams, to reduce the time

required in conducting cyber security exercises, tests and experi-

ments. However, concrete methods to model the behavior of these

teams are missing and modeling of attack and defense scenarios for

cyber ranges and security testbeds are required for systemic execu-

tion and evaluation of a cyber security scenario.

The interest to use cyber ranges in testing, besides educa-

tion, has increased in the last few years. This indicates that cyber

ranges are not exclusively educational platforms, but can be used

in other purposes, like testing. Most of the security test beds and

cyber ranges are focusing on either quantitative evaluation meth-

ods or qualitative evaluation methods. Evaluation criteria which fo-

cuses on both quantitative and qualitative analysis on the security

testbed and cyber ranges is missing. New evaluation metrics which

focus on evaluating a single scenario on multiple test beds on both

qualitative and quantitative manner will assist the evaluation of

the security testbeds and cyber ranges in a systemic comparative

analysis.

The Fig. 6 indicates that networking systems were the main

application domain for cyber ranges and security testbeds, SCADA

system started to gain attention from 2010, and in recent year cy-

ber ranges and security testbeds have covered most application

domain aforementioned. IOT, social engineering and testbeds for

autonomous system are being developed. However, most of these

testbeds use a hybrid environment in which they combine emula-

tion, simulation and real equipment to produce most realistic cy-

ber security environment for cyber security exercises, training, ed-

ucation and experiments.

Declaration of Competing Interest

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to

influence the work reported in this paper.

Appendix A. Appendix: Citation Data

Table 13

Reviewed paper citation data as of Augusts 10 2018.

No. Paper Title Citation Count Year Published

1 Design of Cyber Warfare Testbed 2 2019

2 Cyber security of a power grid: State-of-the-art 10 2018

3 Testbed@ TWISC: A network security experiment platform 0 2018

4 Achieving reproducible network environments with INSALATA 1 2017

5 A Survey on Smart Grid Cyber-Physical System Testbeds. 52 2017

6 Capability Detection and Evaluation Metrics for Cyber Security lab Exercises 0 2017

7 Control frameworks in network emulation testbeds: A survey 1 2017

8 Cybersecurity training in control systems using real equipment 1 2017

9 Design and implementation of cybersecurity testbed for industrial IoT systems 2 2017

10 Developing a capability to classify technical skill levels within a Cyber Range 0 2017

11 Experiment as a service 1 2017

12 Extending Our Cyber-Range CYRAN with Social Engineering Capabilities 0 2017

13 Gamifying ICS security training and research: Design, implementation, and results of S3 2 2017

14 Improving and Measuring Learning Effectiveness at Cyber Defense Exercises 1 2017

15 Instrumentation Research Methods for Cyber Security 7 2017

16 KYPO Cyber Range: Design and Use Cases 9 2017

17 Lessons learned from complex hands-on defence exercises in a cyber range 2 2017

18 Modeling and simulation architecture for training in cyber defence education 0 2017

19 The FUSE testbed: establishing a microgrid for smart grid security experiments 1 2017

20 Towards a Unified Data Storage and Generic Visualizations in Cyber Ranges 1 2017

21 Using virtual environments for the assessment of cybersecurity issues in IoT scenarios 14 2017

22 Advanced security testbed framework for wearable IoT devices 18 2016

23 Alfons: A Mimetic Network Environment Construction System 4 2016

24 Cybervan: A cyber security virtual assured network testbed 11 2016

25 CyRIS: A cyber range instantiation system for facilitating security training 12 2016

26 Design and architecture of an industrial IT security lab 4 2016

27 Developing a distributed software defined networking testbed for IoT 7 2016

28 PowerCyber: A remotely accessible testbed for Cyber Physical security of the Smart Grid 5 2016

29 RIO: A denial of service experimentation platform in a Future Internet Testbed 0 2016

30 Security of Cyber-Physical Systems 1 2016

31 Softgrid: A software-based smart grid testbed for evaluating substation cybersecurity solutions 4 2016

32 Virtualization of industrial control system testbeds for cybersecurity 10 2016

33 A real-time testbed environment for cyber-physical security on the power grid 12 2015

34 Communications network analysis in a SCADA system testbed under cyber-attacks 9 2015

35 Cyber-attack and defense simulation framework 4 2015

36 Cyber modeling & simulation for cyber-range events 9 2015

37 Cyber-physical systems testbed based on cloud computing and software defined network 6 2015

38 Cyber-physical testbed The impact of cyber attacks and the human factor 3 2015

39 Experimentation on operational cyber security in CRATE 2 2015

40 i-tee: A fully automated Cyber Defense Competition for Students 7 2015

41 KYPO A Platform for Cyber Defence Exercises 7 2015

42 Sdsecurity: A software defined security experimental framework 44 2015

43 Understanding collaborative challenges in it security preparedness exercises 10 2015

44 Building a Virtual Cybersecurity Collaborative Learning Laboratory (VCCLL) 1 2014

45 Cloud-based security research testbed: A DDoS use case 10 2014

46 Cloud-based testbed for simulation of cyber attacks 23 2014

47 Cyber-physical testbeds 17 2014

(continued on next page)

24 M.M. Yamin, B. Katt and V. Gkioulos / Computers & Security 88 (2020) 101636

Table 13 (continued)

No. Paper Title Citation Count Year Published

48 Cyber security backdrop: A scada testbed 13 2014

49 Factors impacting performance in competitive cyber exercises 19 2014

50 FITS: A flexible virtual network testbed architecture 42 2014

51 National cyber range overview 14 2014

52 Ten Years of iCTF: The Good, The Bad, and The Ugly. 30 2014

53 The design of ics testbed based on emulation, physical, and simulation (eps-ics testbed) 13 2014

54 A survey of cyber ranges and testbeds 15 2013

55 Cyber-physical security testbeds: Architecture, application, and evaluation for smart grid 197 2013

56 Instrumenting competition-based exercises to evaluate cyber defender situation awareness 13 2013

57 SCADAVT-A framework for SCADA security testbed based on virtualization technology 25 2013

58 Smart Grid Security Educational Training with ThunderCloud: A Virtual Security Test Bed 1 2013

59 This IS Child’s Play 2 2013

60 When a testbed does more than testing: The Internet-Scale Event Attack and Generation Environment

(ISEAGE)-providing learning and synthesizing experiences for â

5 2013

61 Amici: An assessment platform for multi-domain security experimentation on critical infrastructures 24 2012

62 Beyond network simulators: Fostering novel distributed applications and protocols through extendible

design

6 2012

63 Cyber security exercises and competitions as a platform for cyber security experiments 20 2012

64 Cyber Security Assessment Tools and Methodologies 5 2012

65 Online assessment for hands-on cyber security training in a virtual lab 30 2012

66 Supervisory Command and Data Acquisition (SCADA) system cyber security analysis using a live, virtual,

and constructive (LVC) testbed

36 2012

67 Towards an experimental testbed facility for cyber-physical security research 10 2012

68 A control system testbed to validate critical infrastructure protection concepts 69 2011

69 An overview of cyber attack and computer network operations simulation 28 2011

70 A testbed for analyzing security of SCADA control systems (TASSCS) 95 2011

71 DefEX: Hands-On Cyber Defense Exercise for Undergraduate Students 7 2011

72 Hit’em where it hurts: a live security exercise on cyber situational awareness 34 2011

73 Practical network security teaching in an online virtual laboratory 16 2011

74 Using an Emulation Testbed for Operational Cyber Security Exercises 2 2011

75 An experimental platform for assessing SCADA vulnerabilities and countermeasures in power plants 61 2010

76 An Intelligent network for federated testing of NetCentric systems 4 2010

77 A survey of software tools for the creation of networked testbeds 14 2010

78 Design of a virtual computer lab environment for hands-on information security exercises 13 2010

79 Organizing large scale hacking competitions 44 2010

80 The Blunderdome: An Offensive Exercise for Building Network, Systems, and Web Security Awareness. 6 2010

81 The DETER project: Advancing the science of cyber security experimentation and test 78 2010

82 Current developments in DETER cybersecurity testbed technology 26 2009

83 Guide for designing cyber security exercises 30 2009

84 Real-time security exercises on a realistic interdomain routing experiment platform 7 2009

85 The Cyber Scenario Modeling and Reporting Tool (CyberSMART) 3 2009

86 Network modelling and simulation tools 63 2009

87 Design on SCADA test-bed and security device 29 2008

88 Cyber attack modeling and simulation for network security analysis 82 2007

89 Large-scale reconfigurable virtual testbed for information security experiments 18 2007

90 The development and deployment of a multi-user, remote access virtualization system for networking,

security, and system administration classes

84 2007

91 A virtual machine architecture for creating IT-security laboratories 13 2006

92 Ethical hacking and password cracking: a pattern for individualized security exercises 5 2006

93 Experience with deter: a testbed for security research 195 2006

94 Teaching hands-on Linux host computer security 3 2006

95 Exploring a national cybersecurity exercise for universities 78 2005

96 Rinse: The real-time immersive network simulation environment for network security exercises 82 2005

97 The INFN-grid testbed 9 2005

98 ViSe: A virtual security testbed 14 2005

99 An integrated experimental environment for distributed systems and networks 1667 2002

100 Lariat: Lincoln adaptable real-time information assurance testbed 112 2002

References

Al-Ayyoub, M. , Jararweh, Y. , Benkhelifa, E. , Vouk, M. , Rindos, A. , et al. , 2015. Sdsecu-

rity: a software defined security experimental framework. In: Communication
Workshop (ICCW), 2015 IEEE International Conference on. IEEE, pp. 1871–1876 .

Alfieri, R. , Barbera, R. , Belluomo, P. , Cavalli, A. , Cecchini, R. , Chierici, A. , Ciaschini, V. ,
DellAgnello, L. , Donno, F. , Ferro, E. , et al. , 2005. The infn-grid testbed. Future

Gener. Comput. Syst. 21 (2), 249–258 .
Almalawi, A. , Tari, Z. , Khalil, I. , Fahad, A. , 2013. Scadavt-a framework for scada se-

curity testbed based on virtualization technology. In: Local Computer Networks

(LCN), 2013 IEEE 38th Conference on. IEEE, pp. 639–646 .
Alvarenga, I.D. , Duarte, O.C.M. , 2016. Rio: a denial of service experimentation plat-

form in a future internet testbed. In: Network of the Future (NOF), 2016 7th
International Conference on the. IEEE, pp. 1–5 .

Alves, T. , Das, R. , Morris, T. , 2016. Virtualization of industrial control system testbeds
for cybersecurity. In: Proceedings of the 2nd Annual Industrial Control System

Security Workshop. ACM, pp. 10–14 .

Antonioli, D. , Ghaeini, H.R. , Adepu, S. , Ochoa, M. , Tippenhauer, N.O. , 2017. Gamifying
ics security training and research: design, implementation, and results of s3.

In: Proceedings of the 2017 Workshop on Cyber-Physical Systems Security and

PrivaCy. ACM, pp. 93–102 .
Ashok, A. , Krishnaswamy, S. , Govindarasu, M. , 2016. Powercyber: a remotely acces-

sible testbed for cyber physical security of the smart grid. In: Innovative Smart
Grid Technologies Conference (ISGT), 2016 IEEE Power & Energy Society. IEEE,

pp. 1–5 .

Balenson, D. , Tinnel, L. , Benzel, T. , 2015. Cybersecurity experimentation of the future
(cef): catalyzing a new generation of experimental cybersecurity research. Tech.

Rep.. SRI International .
Barcellos, M.P. , Antunes, R.S. , Muhammad, H.H. , Munaretti, R.S. , 2012. Beyond net-

work simulators: fostering novel distributed applications and protocols through
extendible design. J. Netw. Comput. Appl. 35 (1), 328–339 .

Benzel, T. , Braden, B. , Faber, T. , Mirkovic, J. , Schwab, S. , Sollins, K. , Wroclawski, J. ,
2009. Current developments in deter cybersecurity testbed technology. In: Con-

ference for Homeland security, 2009. CATCH’09. Cybersecurity applications &

technology. IEEE, pp. 57–70 .
Benzel, T. , Braden, R. , Kim, D. , Neuman, C. , Joseph, A. , Sklower, K. , Ostrenga, R. ,

Schwab, S. , 2006. Experience with deter: a testbed for security research. In:
Testbeds and Research Infrastructures for the Development of Networks and

M.M. Yamin, B. Katt and V. Gkioulos / Computers & Security 88 (2020) 101636 25

Communities, 20 06. TRIDENTCOM 20 06. 2nd International Conference on. IEEE .
10–pp.

Bergin, D.L. , 2015. Cyber-attack and defense simulation framework. J. Defense
Model. Simul. 12 (4), 383–392 .

Beuran, R. , Tang, D. , Pham, C. , Chinen, K.-i. , Tan, Y. , Shinoda, Y. , 2018. Integrated
framework for hands-on cybersecurity training: cytrone. Comput. Secur. .

Border, C. , 2007. The development and deployment of a multi-user, remote ac-
cess virtualization system for networking, security, and system administration

classes. ACM SIGCSE Bull. 39 (1), 576–580 .

Braidley, S. , 2016. Extending our cyber-range cyran with social engineering capabil-
ities. De Montfort University MSc Thesis Report .

Caliskan, E. , Tatar, U. , Bahsi, H. , Ottis, R. , Vaarandi, R. , 2017. Capability detection and
evaluation metrics for cyber security lab exercises. In: ICMLG2017 5th Interna-

tional Conference on Management Leadership and Governance. Academic Con-
ferences and publishing limited, p. 407 .

Čeleda, P. , Čegan, J. , Vykopal, J. , Tovar ̌nák, D. , 2015. Kypo–a platform for cyber de-

fence exercises. M&S Support to Operational Tasks Including War Gaming, Lo-
gistics, Cyber Defence. NATO Science and Technology Organization .

Chadha, R. , Bowen, T. , Chiang, C.-Y.J. , Gottlieb, Y.M. , Poylisher, A. , Sapello, A. , Ser-
ban, C. , Sugrim, S. , Walther, G. , Marvel, L.M. , et al. , 2016. Cybervan: A cyber

security virtual assured network testbed. In: Military Communications Confer-
ence, MILCOM 2016-2016 IEEE. IEEE, pp. 1125–1130 .

Chandra, Y. , Mishra, P.K. , 2019. Design of cyber warfare testbed. In: Software Engi-

neering. Springer, pp. 249–256 .
Chiang, C.J. , Poylisher, A. , Gottlieb, Y. , Serban, C. , 2013. Cyber testing tools and

methodologies. Presentation at ITEA, November .
Childers, N. , Boe, B. , Cavallaro, L. , Cavedon, L. , Cova, M. , Egele, M. , Vigna, G. , 2010.

Organizing large scale hacking competitions. In: International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment. Springer,

pp. 132–152 .

Chitu, O. , Kira, S. , 2010. A guide to conducting a systematic literature review of in-
formation systems research. Sprouts: Working Pap. Inf. Syst. 26 (10) .

Chow, E. , James, M. , Chang, H.-P. , Vatan, F. , Sudhir, G. , 2010. An intelligent network
for federated testing of netcentric systems. In: Policies for Distributed Systems

and Networks (POLICY), 2010 IEEE International Symposium on. IEEE, pp. 44–52 .
Cintuglu, M.H. , Mohammed, O.A. , Akkaya, K. , Uluagac, A.S. , 2017. A survey on

smart grid cyber-physical system testbeds.. IEEE Commun. Surv. Tutor. 19 (1),

446–464 .
cybersecuritydegrees, A comprehensive list of cyber security competitions.

Damodaran, S.K. , Smith, K. , 2015. CRIS Cyber Range Lexicon, Version 1.0. Technical
Report. Massachusetts Institute of Technology Lexington Lincoln Laboratory .

Davis, J. , Magrath, S. , 2013. A survey of cyber ranges and testbeds. Technical Report.
Defence Science and Technology Organization Edinburgh (Australia) Cyber and

Electronic Warfare Division .

Domínguez, M. , Prada, M.A. , Reguera, P. , Fuertes, J.J. , Alonso, S. , Morán, A. , 2017. Cy-
bersecurity training in control systems using real equipment. IFAC-PapersOnLine

50 (1), 12179–12184 .
Doupé, A. , Egele, M. , Caillat, B. , Stringhini, G. , Yakin, G. , Zand, A. , Cavedon, L. , Vi-

gna, G. , 2011. Hit’em where it hurts: a live security exercise on cyber situational
awareness. In: Proceedings of the 27th Annual Computer Security Applications

Conference. ACM, pp. 51–61 .
Edgar, T. , Manz, D. , Carroll, T. , 2011. Towards an experimental testbed facility for cy-

ber-physical security research. In: Proceedings of the Seventh Annual Workshop

on Cyber Security and Information Intelligence Research. ACM, p. 53 .
Edgar, T.W. , Manz, D.O. , 2017. Research Methods for Cyber Security. Syngress .

Edgar, T.W. , Rice, T.R. , 2017. Experiment as a service. In: Technologies for Homeland
Security (HST), 2017 IEEE International Symposium on. IEEE, pp. 1–6 .

Ernits, M. , Tammekänd, J. , Maennel, O. , 2015. i-tee: a fully automated cyber defense
competition for students. In: ACM SIGCOMM Computer Communication Review,

45. ACM, pp. 113–114 .

Farooqui, A .A . , Zaidi, S.S.H. , Memon, A.Y. , Qazi, S. , 2014. Cyber security backdrop: a
scada testbed. In: Computing, Communications and IT Applications Conference

(ComComAp), 2014 IEEE. IEEE, pp. 98–103 .
Ferguson, B. , Tall, A. , Olsen, D. , 2014. National cyber range overview. In: Military

Communications Conference (MILCOM), 2014 IEEE. IEEE, pp. 123–128 .
Flauzac, O. , Gonzalez, C. , Nolot, F. , 2016. Developing a distributed software defined

networking testbed for iot. Procedia Comput. Sci. 83, 6 80–6 84 .

Fovino, I.N. , Masera, M. , Guidi, L. , Carpi, G. , 2010. An experimental platform for as-
sessing scada vulnerabilities and countermeasures in power plants. In: Human

System Interactions (HSI), 2010 3rd Conference on. IEEE, pp. 679–686 .
Furfaro, A. , Argento, L. , Parise, A. , Piccolo, A. , 2017. Using virtual environments for

the assessment of cybersecurity issues in iot scenarios. Simul. Model. Pract.
Theory 73, 43–54 .

Furnell, S. , Fischer, P. , Finch, A. , 2017. Can’T get the staff? the growing need for cy-

ber-security skills. Comput. Fraud Secur. 2017 (2), 5–10 .
Gao, H. , Peng, Y. , Dai, Z. , Wang, T. , Jia, K. , 2013. The design of ics testbed based on

emulation, physical, and simulation (eps-ics testbed). In: Intelligent Information
Hiding and Multimedia Signal Processing, 2013 Ninth International Conference

on. IEEE, pp. 420–423 .
Gao, H. , Peng, Y. , Jia, K. , Wen, Z. , Li, H. , 2015. Cyber-physical systems testbed based

on cloud computing and software defined network. In: Intelligent Information

Hiding and Multimedia Signal Processing (IIH-MSP), 2015 International Confer-
ence on. IEEE, pp. 337–340 .

Gavras, A. , Karila, A. , Fdida, S. , May, M. , Potts, M. , 2007. Future internet research and
experimentation: the fire initiative. ACM SIGCOMM Comput. Commun. Rev. 37

(3), 89–92 .

Genge, B. , Siaterlis, C. , Hohenadel, M. , 2012. Amici: an assessment platform for
multi-domain security experimentation on critical infrastructures. In: Inter-

national Workshop on Critical Information Infrastructures Security. Springer,
pp. 228–239 .

Gephart, N. , Kuperman, B.A. , 2010. Design of a virtual computer lab environment for
hands-on information security exercises. J. Comput. Sci. Colleges 26 (1), 32–39 .

Glumich, S.M. , Kropa, B.A. , 2011. DefEX: Hands-On Cyber Defense Exercise for Un-
dergraduate Students. Technical Report. Air Force Research Lab Rome NY Infor-

mation Directorate .

Gunathilaka, P. , Mashima, D. , Chen, B. , 2016. Softgrid: a software-based smart grid
testbed for evaluating substation cybersecurity solutions. In: Proceedings of

the 2nd ACM Workshop on Cyber-Physical Systems Security and Privacy. ACM,
pp. 113–124 .

Gurnani, R. , Pandey, K. , Rai, S.K. , 2014. A scalable model for implementing cyber
security exercises. In: Computing for Sustainable Global Development (INDIA-

Com), 2014 International Conference on. IEEE, pp. 6 80–6 84 .

Hahn, A . , Ashok, A . , Sridhar, S. , Govindarasu, M. , 2013. Cyber-physical security
testbeds: architecture, application, and evaluation for smart grid. IEEE Trans.

Smart Grid 4 (2), 847–855 .
Herold, N. , Wachs, M. , Dorfhuber, M. , Rudolf, C. , Liebald, S. , Carle, G. , 2017. Achiev-

ing reproducible network environments with insalata. In: IFIP International
Conference on Autonomous Infrastructure, Management and Security. Springer,

pp. 30–44 .

Hoffman, L.J. , Rosenberg, T. , Dodge, R. , Ragsdale, D. , 2005. Exploring a national cy-
bersecurity exercise for universities. IEEE Secur. Privacy 3 (5), 27–33 .

Holm, H. , Karresand, M. , Vidström, A. , Westring, E. , 2015. A survey of industrial
control system testbeds. In: Buchegger, S., Dam, M. (Eds.), Secure IT Systems.

Springer International Publishing, Cham, pp. 11–26 .
Holm, H. , Sommestad, T. , 2016. Sved: scanning, vulnerabilities, exploits and detec-

tion. In: Military Communications Conference, MILCOM 2016-2016 IEEE. IEEE,

pp. 976–981 .
Hu, J., Cordel, D., Meinel, C., 2006. A virtual machine architecture for creating it-

security laboratories.
Jirsik, T. , Husak, M. , Celeda, P. , Eichler, Z. , 2014. Cloud-based security research

testbed: a ddos use case. In: Network Operations and Management Symposium

(NOMS), 2014 IEEE. IEEE, pp. 1–2 .

Jung, S. , Song, J.-g. , Kim, S. , 2008. Design on scada test-bed and security device. Int.

J. Multim. Ubiq.Eng. 3 (4), 75–86 .
Kick, J. , 2014. Cyber exercise playbook. Technical Report. MITRE CORP BEDFORD MA .

Kouril, D. , Rebok, T. , Jirsik, T. , Cegan, J. , Drasar, M. , Vizváry, M. , Vykopal, J. , 2014.
Cloud-based testbed for simulation of cyber attacks. In: Network Operations

and Management Symposium (NOMS), 2014 IEEE. IEEE, pp. 1–6 .
Koutsandria, G. , Gentz, R. , Jamei, M. , Scaglione, A. , Peisert, S. , McParland, C. , 2015.

A real-time testbed environment for cyber-physical security on the power grid.

In: Proceedings of the First ACM Workshop on Cyber-Physical Systems-Security
and/or PrivaCy. ACM, pp. 67–78 .

Kuhl, M.E. , Kistner, J. , Costantini, K. , Sudit, M. , 2007. Cyber attack modeling and sim-
ulation for network security analysis. In: Proceedings of the 39th Conference on

Winter Simulation: 40 years! The best is yet to come. IEEE Press, pp. 1180–1188 .
Labuschagne, W.A. , Grobler, M. , 2017. Developing a capability to classify technical

skill levels within a cyber range. In: ECCWS 2017 16th European Conference
on Cyber Warfare and Security. Academic Conferences and publishing limited,

p. 224 .

Langner, R. , 2011. Stuxnet: dissecting a cyberwarfare weapon. IEEE Secur. Privacy 9
(3), 49–51 .

Leblanc, S.P. , Partington, A. , Chapman, I. , Bernier, M. , 2011a. An overview of cyber
attack and computer network operations simulation. In: Proceedings of the 2011

Military Modeling & Simulation Symposium. Society for Computer Simulation
International, San Diego, CA, USA, pp. 92–100 .

Leblanc, S.P. , Partington, A. , Chapman, I. , Bernier, M. , 2011b. An overview of cyber

attack and computer network operations simulation. In: Proceedings of the 2011
Military Modeling & Simulation Symposium. Society for Computer Simulation

International, pp. 92–100 .
Lee, S. , Lee, S. , Yoo, H. , Kwon, S. , Shon, T. , 2017. Design and implementation of cy-

bersecurity testbed for industrial iot systems. J.Supercomput. 1–15 .
Li, Y. , Liljenstam, M. , Liu, J. , 2009. Real-time security exercises on a realistic interdo-

main routing experiment platform. In: Principles of Advanced and Distributed

Simulation, 2009. PADS’09. ACM/IEEE/SCS 23rd Workshop on. IEEE, pp. 54–63 .
Liljenstam, M. , Liu, J. , Nicol, D. , Yuan, Y. , Yan, G. , Grier, C. , 2005. Rinse: the real-time

immersive network simulation environment for network security exercises. In:
Proceedings of the 19th Workshop on Principles of Advanced and Distributed

Simulation. IEEE Computer Society, pp. 119–128 .
Line, M.B. , Moe, N.B. , 2015. Understanding collaborative challenges in it security

preparedness exercises. In: IFIP International Information Security Conference.

Springer, pp. 311–324 .
Louthan, G. , Roberts, W. , Butler, M. , Hale, J. , 2010. The blunderdome: an offensive

exercise for building network, systems, and web security awareness.. CSET .
Maennel, K. , Ottis, R. , Maennel, O. , 2017. Improving and measuring learning effec-

tiveness at cyber defense exercises. In: Nordic Conference on Secure IT Systems.
Springer, pp. 123–138 .

Mallouhi, M. , Al-Nashif, Y. , Cox, D. , Chadaga, T. , Hariri, S. , 2011. A testbed for analyz-

ing security of scada control systems (tasscs). In: Innovative Smart Grid Tech-
nologies (ISGT), 2011 IEEE PES. IEEE, pp. 1–7 .

Marshall, J. , 2009. The cyber scenario modeling and reporting tool (cybersmart).
In: Cybersecurity Applications & Technology Conference For Homeland Security.

IEEE, pp. 305–309 .

26 M.M. Yamin, B. Katt and V. Gkioulos / Computers & Security 88 (2020) 101636

Miciolino, E.E. , Bernieri, G. , Pascucci, F. , Setola, R. , 2015. Communications network
analysis in a scada system testbed under cyber-attacks. In: Telecommunications

Forum Telfor (TELFOR), 2015 23rd. IEEE, pp. 341–344 .
Mirkovic, J. , Benzel, T.V. , Faber, T. , Braden, R. , Wroclawski, J.T. , Schwab, S. , 2010. The

deter project: advancing the science of cyber security experimentation and test.
In: Technologies for Homeland Security (HST), 2010 IEEE International Confer-

ence on. IEEE, pp. 1–7 .
Moraes, I.M. , Mattos, D.M. , Ferraz, L.H.G. , Campista, M.E.M. , Rubinstein, M.G. ,

Costa, L.H.M. , de Amorim, M.D. , Velloso, P.B. , Duarte, O.C.M. , Pujolle, G. , 2014.

Fits: a flexible virtual network testbed architecture. Comput. Netw. 63, 221–237 .
Morris, T. , Srivastava, A. , Reaves, B. , Gao, W. , Pavurapu, K. , Reddi, R. , 2011. A control

system testbed to validate critical infrastructure protection concepts. Int. J. Crit.
Infrastruct.Protect. 4 (2), 88–103 .

Murphy, J. , Sihler, E. , Ebben, M. , Lovewell, L. , Wilson, G. , 2014. Building a virtual
cybersecurity collaborative learning laboratory (vccll). In: Proceedings of the In-

ternational Conference on Security and Management (SAM). The Steering Com-

mittee of The World Congress in Computer Science, Computer Engineering and
Applied Computing (WorldComp), p. 1 .

Ošlejšek, R. , Toth, D. , Eichler, Z. , Burská, K. , 2017. Towards a unified data storage
and generic visualizations in cyber ranges. In: ECCWS 2017 16th European Con-

ference on Cyber Warfare and Security. Academic Conferences and publishing
limited, p. 298 .

Palleschi, A. , 2010. Pentagon fought proposal: congress adopts provision to halt

funding for national cyber range. Inside the Air Force 21 (51) . 10–10.
Patriciu, V.-V. , Furtuna, A.C. , 2009. Guide for designing cyber security exercises. In:

Proceedings of the 8th WSEAS International Conference on E-Activities and in-
formation security and privacy. World Scientific and Engineering Academy and

Society (WSEAS), pp. 172–177 .
Pfrang, S. , Kippe, J. , Meier, D. , Haas, C. , 2016. Design and architecture of an industrial

it security lab. In: International Conference on Testbeds and Research Infrastruc-

tures. Springer, pp. 114–123 .
Pham, C. , Tang, D. , Chinen, K.-i. , Beuran, R. , 2016. Cyris: A cyber range instantiation

system for facilitating security training. In: Proceedings of the Seventh Sympo-
sium on Information and Communication Technology. ACM, pp. 251–258 .

Qassim, Q. , Jamil, N. , Abidin, I.Z. , Rusli, M.E. , Yussof, S. , Ismail, R. , Abdullah, F. ,
Ja’afar, N. , Hasan, H.C. , Daud, M. , 2017. A survey of scada testbed implemen-

tation approaches. Indian J. Sci. Technol. 10 (26) .

Rahman, M.A. , Pakštas, A. , Wang, F.Z. , 2009. Network modelling and simulation
tools. Simul. Model. Pract. Theory 17 (6), 1011–1031 .

Reed, T. , Nauer, K. , Silva, A. , 2013. Instrumenting competition-based exercises to
evaluate cyber defender situation awareness. In: International Conference on

Augmented Cognition. Springer, pp. 80–89 .
Richmond, M. , 2005. Vise: a virtual security testbed. Tech. Rep. University of Cali-

fornia, Santa Barbara .

Rossey, L.M. , Cunningham, R.K. , Fried, D.J. , Rabek, J.C. , Lippmann, R.P. , Haines, J.W. ,
Zissman, M.A. , 2002. Lariat: Lincoln adaptable real-time information assurance

testbed. In: Aerospace Conference Proceedings, 2002. IEEE, 6. IEEE . 6–6.
Rubio-Hernan, J. , Rodolfo-Mejias, J. , Garcia-Alfaro, J. , 2016. Security of cyber-physi-

cal systems. In: Conference on Security of Industrial-Control-and Cyber-Physical
Systems. Springer, pp. 3–18 .

Rursch, J.A. , Jacobson, D. , 2013a. This is child’s play creating a “play-
ground”(computer network testbed) for high school students to learn, practice,

and compete in cyber defense competitions. In: Frontiers in Education Confer-

ence, 2013 IEEE. IEEE, pp. 1776–1778 .
Rursch, J.A. , Jacobson, D. , 2013b. When a testbed does more than testing: the inter-

net-scale event attack and generation environment (iseage)-providing learning
and synthesizing experiences for cyber security students.. In: Frontiers in Edu-

cation Conference, 2013 IEEE. IEEE, pp. 1267–1272 .
Schepens, W.J. , Ragsdale, D.J. , Surdu, J.R. , Schafer, J. , New Port, R. , 2002. The cyber

defense exercise: an evaluation of the effectiveness of information assurance

education. J. Inf. Secur. 1 (2), 1–14 .
Schreuders, Z.C. , Shaw, T. , Ravichandran, G. , Keighley, J. , Ordean, M. , et al. , 2017. Se-

curity scenario generator (secgen): a framework for generating randomly vul-
nerable rich-scenario vms for learning computer security and hosting ctf events.

USENIX. USENIX Association .
Shumba, R. , 2006. Teaching hands-on linux host computer security. J. Educ. Resour.

Comput.(JERIC) 6 (3), 5 .

Siaterlis, C. , Genge, B. , 2014. Cyber-physical testbeds. Commun. ACM 57 (6), 64–73 .
Siaterlis, C., Masera, M., 2009. A review of available software for the creation of

testbeds for internet security research. In: 2009 First International Conference
on Advances in System Simulation, pp. 79–87. doi: 10.1109/SIMUL.2009.33 .

Siaterlis, C. , Masera, M. , 2010. A survey of software tools for the creation of net-
worked testbeds. Int. J. Adv. Secur. 3 (2), 1–12 .

Siaterlis, C. , Perez-Garcia, A. , Masera, M. , 2011. Using an emulation testbed for oper-

ational cyber security exercises. In: International Conference on Critical Infras-
tructure Protection. Springer, pp. 185–199 .

Siboni, S. , Shabtai, A. , Tippenhauer, N.O. , Lee, J. , Elovici, Y. , 2016. Advanced security
testbed framework for wearable iot devices. ACM Trans. Internet Technol. (TOIT)

16 (4), 26 .
Silva, A. , McClain, J. , Reed, T. , Anderson, B. , Nauer, K. , Abbott, R. , Forsythe, C. , 2014.

Factors impacting performance in competitive cyber exercises. In: Proceedings

of the Interservice/Interagency Training, Simulation and Education Conference,
Orlando, FL .

Snyder, R. , 2006. Ethical hacking and password cracking: a pattern for individualized
security exercises. In: Proceedings of the 3rd annual conference on Information

security curriculum development. ACM, pp. 13–18 .

Sommestad, T. , 2015. Experimentation on operational cyber security in crate. NATO
STO-MP-IST-133 Specialist Meeting, Copenhagen, Denmark .

Sommestad, T. , Hallberg, J. , 2012. Cyber security exercises and competitions as a
platform for cyber security experiments. In: Nordic Conference on Secure IT

Systems. Springer, pp. 47–60 .
Soupionis, Y. , Benoist, T. , 2015. Cyber-physical testbedthe impact of cyber attacks

and the human factor. In: Internet Technology and Secured Transactions (IC-
ITST), 2015 10th International Conference for. IEEE, pp. 326–331 .

Staff, U.J. , 2012. Joint training manual for the armed forces of the united states

(cjcsm 3500.03 d). Washington, DC: Joint Chiefs of Staff.
StepForward, Carnegie mellon university - software engineering institute.

Stites, J. , Siraj, A. , Brown, E.L. , 2013. Smart grid security educational training with
thundercloud: a virtual security test bed. In: Proceedings of the 2013 on In-

foSecCD’13: Information Security Curriculum Development Conference. ACM,
p. 105 .

Suba ̧s u, G. , Ro ̧s u, L. , B ̆adoi, I. , 2017. Modeling and simulation architecture for training

in cyber defence education. In: Electronics, Computers and Artificial Intelligence
(ECAI), 2017 9th International Conference on. IEEE, pp. 1–4 .

Sun, C.-C. , Hahn, A. , Liu, C.-C. , 2018. Cyber security of a power grid: state-of-the-art.
Int. J. Electr. Power Energy Syst. 99, 45–56 .

Tsai, P.-W. , Piccialli, F. , Tsai, C.-W. , Luo, M.-Y. , Yang, C.-S. , 2017. Control frameworks
in network emulation testbeds: a survey. J. Comput. Sci. 22, 148–161 .

Tsai, P.-W. , Yang, C.-S. , 2018. Testbed@ twisc: a network security experiment plat-

form. Int. J. Commun. Syst. 31 (2), e3446 .
Urias, V. , Van Leeuwen, B. , Richardson, B. , 2012. Supervisory command and data

acquisition (scada) system cyber security analysis using a live, virtual, and con-
structive (lvc) testbed. In: Military Communications Conference, 2012-MILCOM

2012. IEEE, pp. 1–8 .
Vigna, G. , Borgolte, K. , Corbetta, J. , Doupe, A. , Fratantonio, Y. , Invernizzi, L. , Kirat, D. ,

Shoshitaishvili, Y. , 2014. Ten years of ictf: the good, the bad, and the ugly.. 3GSE .

Volynkin, A. , Skormin, V. , 2007. Large-scale reconfigurable virtual testbed for infor-
mation security experiments. In: Testbeds and Research Infrastructure for the

Development of Networks and Communities, 2007. TridentCom 2007. 3rd Inter-
national Conference on. IEEE, pp. 1–9 .

Vykopal, J., Ošlejšek, R., Čeleda, P., Vizvary, M., Tovar ̌nák, D., 2017a. Kypo cyber
range: design and use cases.

Vykopal, J. , Vizváry, M. , Oslejsek, R. , Celeda, P. , Tovarnak, D. , 2017b. Lessons learned

from complex hands-on defence exercises in a cyber range. In: Frontiers in Ed-
ucation Conference (FIE). IEEE, pp. 1–8 .

White, B. , Lepreau, J. , Stoller, L. , Ricci, R. , Guruprasad, S. , Newbold, M. , Hibler, M. ,
Barb, C. , Joglekar, A. , 2002. An integrated experimental environment for dis-

tributed systems and networks. ACM SIGOPS Oper. Syst. Rev. 36 (SI), 255–270 .
White, G.B. , Williams, D. , 2005. The collegiate cyber defense competition. In: Pro-

ceedings of the 9th Colloquium for Information Systems Security Education .

Willems, C. , Meinel, C. , 2011. Practical network security teaching in an online vir-
tual laboratory. In: Proceedings of the International Conference on Security and

Management (SAM). The Steering Committee of The World Congress in Com-
puter Science, Computer Engineering and Applied Computing (WorldComp),

p. 1 .
Willems, C. , Meinel, C. , 2012. Online assessment for hands-on cyber security train-

ing in a virtual lab. In: Global Engineering Education Conference (EDUCON),
2012 IEEE. IEEE, pp. 1–10 .

Wood, B.J. , Duggan, R.A. , 20 0 0. Red teaming of advanced information assurance

concepts. In: DARPA Information Survivability Conference and Exposition, 20 0 0.
DISCEX’00. Proceedings, 2. IEEE, pp. 112–118 .

Xypolytou, E. , Fabini, J. , Gawlik, W. , Zseby, T. , 2017. The fuse testbed: establishing a
microgrid for smart grid security experiments. e & i Elektrotechnik und Infor-

mationstechnik 134 (1), 30–35 .
Yasuda, S. , Miura, R. , Ohta, S. , Takano, Y. , Miyachi, T. , 2016. Alfons: a mimetic

network environment construction system. In: International Conference on

Testbeds and Research Infrastructures. Springer, pp. 59–69 .

Muhammad Mudassar Yamin Mudassar is currently a PhD candidate at Norwegian

University of Science and Technology, his focus of research is systems security. He
holds multiple cyber security certifications like OSCP, LPT-MASTER, CEH, CHFI, CPTE,

CISSO, CBP. A list of his publication can be found here: https://scholar.google.no/

citations?user=Do _ xVQMAAAAJ&hl=en .

Basel Katt is currently working as an Associate Professor in Norwegian University

of Science and Technology. His focus of research is:

• Software security and security testing

• Software vulnerability analysis

• Model driven software development and model driven security
• Access control, usage control and privacy protection

• Security monitoring, policies, languages, models and enforcement

A list of his publication can be found here: https://wo.cristin.no/as/WebObjects/

cristin.woa/wa/fres?sort=ar&pnr=811108&action=sok .

Vasileios Gkioulos is currently working as a post-doctoral research fellow. His area
of research is security of cyber physical systems. A list of his publication can be

found here: https://scholar.google.no/citations?user=Jgo7 _ q4AAAAJ&hl=en .

80 Research Articles

2.4 Serious games as a tool to model attack and defense scen-
arios for cyber-security exercises

c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 5 0

Available online at www.sciencedirect.com

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c o s e

Serious games as a tool to model attack and

defense scenarios for cyber-security exercises

Muhammad Mudassar Yamin

∗, Basel Katt , Mariusz Nowostawski

Norwegian University of Science and Technology, Gjøvik 2815, Norway

a r t i c l e i n f o

Article history:

Received 30 March 2020

Revised 8 May 2021

Accepted 16 August 2021

Available online 20 August 2021

Keywords:

Cyber range

Cyber-security

Exercises

Scenarios

Attack

Defense

a b s t r a c t

Technology is evolving rapidly; this poses a problem for security specialists and average cit-

izens as their technological skill sets are quickly made obsolete. This makes the knowledge

and understanding of cyber-security in a technologically evolving world difficult. Global IT

infrastructure and individuals’ privacy are constantly under threat. One way to tackle this

problem is by providing continuous training and self-learning platforms. Cyber-security ex-

ercises can provide a necessary platform for training people’s cyber-security skills. However,

conducting cyber-security exercises with new and unique scenarios requires comprehen-

sive planning and commitment to the preparation time and resources. In this work, we pro-

pose a serious game for the development of cyber-security exercise scenarios. The game pro-

vides a platform to model simulated cyber-security exercise scenarios, transforming them

into an emulated cyber-security exercise environment using domain-specific language (DSL)

and infrastructure orchestration. In this game, players can play as cyber attackers or defend-

ers in a multiplayer environment to make operational cyber-security decisions in real-time.

The decisions are evaluated for the development of operational cyber-attack and defense

strategies.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

During the European cyber-security challenge (ecs, 2019), we
found that the teams involved were facing problems in strate-
gizing their approach for solving cyber-security exercise sce-
narios. The team members had a sufficient level of techni-
cal skills to tackle the technical problems present in the chal-
lenge, but their decision-making skills in prioritizing the best
moves were lagging. One way to overcome this issue would be
by conducting many operational cyber-security exercises with

unique scenarios, such that the exercise participants could

get the right level of experience in decision making. However,
conducting such exercises is resource intensive and time-

∗ Corresponding author.
E-mail addresses: muhammad.m.yamin@ntnu.no (M.M. Yamin), basel.katt@ntnu.no (B. Katt), mariusz.nowostawski@ntnu.no (M.

Nowostawski).

consuming (Yamin and Katt, 2018). Therefore, in the current
research, we investigate an efficient way to conduct cyber-
security exercises that can help exercise the participants’ skill
improvement.

Through a review of the literature (Amorim et al., 2013;
Hendrix et al., 2016; Schreuders and Butterfield, 2016), we
identified that serious games are actively used in cyber-
security skill development. However, one problem with such

games is related to the static level design, which makes the in-
tegration of new and unique scenarios difficult. Another prob-
lem is that many are turned-based games as opposed to real-
time strategy games. Real-time strategy games enhance play-
ers’ cognitive flexibility (Glass et al., 2013) and help in training
for the dynamic nature of cyber-security scenarios. To address

https://doi.org/10.1016/j.cose.2021.102450
0167-4048/© 2021 Elsevier Ltd. All rights reserved.

2 c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 5 0

these issues and challenges, we ask the following research

questions:

1. How can serious games be used to model dynamic cyber-
security exercise scenarios in a realistic manner?

2. How can modeled cyber-security exercises be used in de-
vising cyber attack and defense strategies in a realistic
manner?

3. Is it efficient to conduct cyber-security exercises in a simu-
lated modeled environment for exercise participants’ skill
improvement?

4. Is it efficient to transform simulated cyber-security exer-
cise scenarios in a game to an emulated infrastructure, and

how usable, flexible, and complete is it?

To answer the research questions, we developed (1) a
real-time cyber-security strategy game that enhances play-
ers’ cognitive flexibility and (2) a cyber-security exercise sce-
nario domain-specific language (DSL) to model the scenario
and generate the emulated infrastructure. The game is thor-
oughly assessed using surveys given to a large group of
participants during the Norwegian cyber-security challenge
2019 (sta, 2019); the findings of this survey are presented in

this article.
The rest of the current article is organized as follows:

First, we share the research background and key concepts
of cyber-security exercises. Then, we proceed with sharing a
brief related work on serious games in cyber-security. Con-
tinuing this, we will state our research methodology, present
our cyber-security strategy game with the developed DSL, and

their assessment and evaluation. Finally, we conclude the ar-
ticle with a discussion and conclusion.

2. Research background

The importance of cyber warfare training is critical when con-
sidered in light of contemporary examples, such as the cyber-
attacks on Estonia and the crippling of Georgia’s government
websites using advanced hacking methods. Cyber-warfare
was first deployed during Operation Desert Storm against Iraq.
The communication networks of the Iraqi forces were crip-
pled, so they were forced to use less-secure microwave com-
munication, which was easily intercepted and led to their
eventual defeat. The Bosnia–Herzegovina war saw the use of
cyber warfare to cripple governmental infrastructure to such

an extent that the paramilitary force was turned against the
actual military. In the 1990s, the U.S. (United States) govern-
ment realized that they were vulnerable to cyber-attacks; they
had been using offensive cyber capabilities to achieve their
tactical and strategic objectives, which resulted in a similar
response from other state actors.

Norway is one of the leading digital nations in the world.
The government encourages public and private sectors to take
part in digital innovations for the country’s progress. Digital
infrastructure is challenged by many factors, including the ex-
istence of complex vulnerabilities that can be exploited by ad-
vanced cyber-security attacks, along with the need to secure
the provision of successful digitalization solutions. Norway
was the first country to make a cyber-security strategy in 2003

and then revised it in 2007 and 2012 (cyb, 2012). A follow-up

report was also published, emphasizing responsibility for se-
curing digital assets. The present strategy is Norway’s fourth

cyber-security strategy, and its purpose is to address the chal-
lenges of digitalization faced by Norwegian society (Nat, 2020).
While designing strategies, stakeholders from the public and

private sectors are taken into account.
More than 300 delegates took part in the formulation of

Norway’s present strategy. The introduction deals with the
challenges, strategy, vision, and strategic goals. In the intro-
duction, it is noted that Norwegian society has become im-
mensely digitalized to benefit private individuals, companies,
and authorities. Here, the challenge of digitalization is cyber
threats and the thorough dependency of society on digital-
ization. Digital infrastructures and systems are growing more
complex, global, and integrated. All kinds of devices are be-
ing connected to the Internet. The fast speed of digitaliza-
tion makes it challenging to forecast the resulting threats.
Some threats include ransomware, industrial espionage, sab-
otage, blackmail, cyber-bullying, and identity theft (Nat, 2020).
The strategy aims to address cyber-security issues, but to
do this, the appropriate authorities must give access to a
broad range of tools, along with the development of regula-
tions and knowledge of supervisory activities. A follow-up re-
port (lis, 2021) was released, highlighting the 50 steps taken

by the government to implement the national cyber-security
strategy. Step 27, 41, and 42 are as follows:

• Development of the Norwegian Cyber Range (NCR), which

will be the first national test arena for cyber-security.
• Conducting National cyber-security exercise .
• Participation in international exercises such as NATO coali-

tion, Locked Shields, Cyber Europe, and NATOs CMX.

2.1. Cyber-security training and exercises

There is a constant need for training and self-learning plat-
forms to achieve the stated objectives for cyber-security ed-
ucation. Cyber-security threats are on the rise, so the field of
cyber-security education is emerging to train the next gener-
ation of cyber-security professionals (Ford et al., 2017). How-
ever, the cyber-security field faces a skills gap problem be-
cause of the nature of the rapidly changing cyber-security en-
vironment (Endicott-Popovsky and Popovsky, 2014). This sit-
uation makes it difficult to train and educate the next gen-
eration of cyber-security professionals. There are two main

types of cyber-security exercises. The first is table-top discus-
sions, and the second is practical hands-on operation-based

exercises (Gurnani et al., 2014). Table-top exercises are discus-
sion based and conducted in the form of seminars, workshops,
and idea exchanges mostly related to policy-oriented issues.
In comparison, most operation-based cyber-security educa-
tion and training programs employ hands-on activities aim-
ing to improve the exercise participants’ technical skills and

abilities. These cyber-security exercises are executed in sim-
ulated, emulated, physical, or hybrid practice environments.
Recent studies have identified that the required practice en-
vironments are being developed via manual setup and config-
uration, a methodology that is ineffective, tedious, and error

c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 5 0 3

prone (Beuran et al., 2018). These practice environments are
known as cyber-ranges.

According to Pham et al. (2016) , cyber-ranges are well-
defined controlled (virtual) exercise environments that are
used in cyber-security training to efficiently help trainees
gain practical knowledge through hands-on activities. Cre-
ating these exercise environments that contain the neces-
sary features such as network topology, virtual machines, and

security-related content is not an easy task (Beuran et al.,
2018; Yamin and Katt, 2018). Many cyber-ranges try to auto-
mate the creation of these exercise environments, such as
with Cytrone (Beuran et al., 2018), CyberVAN (Chadha et al.,
2016), Cyris (Pham et al., 2016), Telelab (Casini et al., 2003), and

Secgen (Schreuders et al., 2017). Like the natural environment
in which animals and plants interact with the environment to
utilize its resources, these exercise environments need to be
interacted with to utilize the resources in them. These inter-
actions can be done in the form of cyber-security exercises, an

assessment of new technologies, a vulnerability assessment,
malicious activity profiling, security data generation, and so
forth. Individuals and teams on a cyber-range perform these
interactions. In terms of operation-based cyber-security exer-
cises, these teams include the following:

1. White team: A team that creates or generates a cyber-
security exercise environment.

2. Red team: A team that attacks the cyber-security exercise
environment.

3. Blue team: A team that defends the cyber-security exercise
environment.

Multiple additional teams are also part of cyber-security
exercises and can include Green, Orange, Yellow, and Pur-
ple teams, which we have explained in our previous
work (Yamin et al., 2019). Their involvement solely depends
on the scale and objectives of an exercise. However, in the cur-
rent work, we are only focusing on the White, Red, and Blue
teams. These teams are primarily involved in three main types
of cyber-security exercises:

1. Cyber-attack exercise: theses exercises are conducted to
train, assess, and evaluate the performance of red teams.
An environment is created by a white team in which red

teams need to achieve specific objectives to compromise
the exercise environment in a particular time period.

2. Cyber-defense exercise: these exercises are conducted to
train, assess, and evaluate the blue team’s performance.
A white team creates an exercise environment. A blue
team needs to investigate and prevent cyber-attacks by red

teams and to prevent these attacks within a particular time
period.

3. Cyber-attack/defense exercise: these exercises are con-
ducted to assess and evaluate red and blue teams’ perfor-
mance at the same time. A white team creates an exercise
environment in which active engagement between red and

blue teams occurs to simultaneously attack and defend an

exercise environment.

Based on our research findings (Yamin et al., 2018), we
have identified that automation can reduce the time require-

ments for cyber-security exercises. For this, serious games
could help (Hendrix et al., 2016) to overcome the inefficiencies in
cyber-security exercises . The gamification of cyber-security ex-
ercises is a recent trend in which participants are divided into

teams for achieving a specific objective like finding flags. The
participants’ strategies to solve the problems like Capture The
Flag (CTF) in a cyber-security exercise scenario are very dif-
ficult to model because of the real-time decision-making of
exercise participants. This makes the decision tree that is in-
volved in such problem solving very complex. To address this,
we propose a real-time cyber-security strategy game. Players
will have the ability to play as an attacker or defender in a
real-time multiplayer environment. Resources are assigned to
attackers and defenders based on the scenario requirement,
and their actions are recorded and observed by an observer. A

detailed scenario creator is developed in which experts model
the scenario in the game that can be transformed into an em-
ulated environment. This results in a dynamic generation of
attack and defense trees generated during the real-time cyber-
security strategy game.

3. Related work

In the related work section, we provide a brief overview of se-
rious games developed and used for cyber-security exercises
and the methods for cyber-security scenario modeling.

3.1. Games for cyber-security exercises

In 2016, Hendrix et al. (2016) conducted a detailed survey of
serious games for cyber-security education. They identified

15 games from industry and 14 games from academia that
are actively being used for this purpose. Next, they catego-
rized the games by their types like 2D point and clicked turn-
based scenarios, 3D virtual world (sims style), and enterprise
contingency planning. The games’ target audiences comprises
science curriculum students, children, and teenagers. The re-
searchers stated that these games are used for training and

education for short-term purposes only. For long-term train-
ing and education, scenario-based games are required. These
scenario-based games represent unique case studies that can

help in case-based learning.
In 2016, Alotaibi et al. (2016) conducted a review of serious

games for cyber-security awareness. They identified 12 aca-
demic research articles and nine serious games being used

for cyber-security education and awareness. These games had

shown positive results in the evaluation of their effective-
ness in cyber-security education and awareness. However, a
large population set is needed in future research to better un-
derstand their impact. Moreover, the games currently being
used deal with general cyber issues; there is a need to develop

games that can be used in training specific scenarios.
In 2016, Schreuders and Butterfield (2016) conducted a two-

year study on gamification for teaching and learning com-
puter security in higher education. The study aimed to im-
prove student engagement, increase student experience, and

the content coverage of education material. They used freely
available security educational games with in-house devel-
oped solutions for measuring students’ progress with semi-

4 c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 5 0

autonomous evaluations. The authors identified that games
could be useful for initial motivation and student engage-
ment; however, with time, students’ motivation and engage-
ment levels tend to decrease. In terms of increasing pos-
itive student experiences and content coverage, the study
yielded positive results. The authors stated that gamification

approaches work well when no extensive task-based assess-
ment is involved in the education and training process.

In 2013, Amorim et al. (2013) proposed gamification as
a new cyber-security education and training approach. They
stated that the new approach should be a model-driven ap-
proach for the agile development of cyber-security exercises.
The authors further stated that in terms of simulation and

emulation, exercise execution depends on the training needs.
The effectiveness of training exercises can be assessed with

performance support systems. Their research was concluded

by stating that cyber-security training requirements change
with the technology. Therefore, new content and material
for training exercises are continuously required, and model-
driven agile development techniques can achieve this.

Adam Shostack (Ada, 2020) maintained an online list of
table-top cyber-security games used for educational purposes.
These games were mostly board and card games played be-
tween multiple players to learn different cyber-security con-
cepts in a fun and engaging manner. As of June 2020, the list
contained 28 games for security educational purposes, one
game for teaching privacy principles, three non-game decks,
and table-top games with some additional resources. These
games did not require any software to play.

3.2. Methods for cyber-security scenario modeling

Cheung et al. (2003) presented CAML (correlated attack modeling
language) , which uses a module of small attack steps to create
a cyber-security attack scenario. The modules were designed

to be very generic so that they could be used to model dif-
ferent cyber-attack scenarios. The researchers divided an at-
tack model scenario into four parts: vulnerability , exploit, attack
step , and composite attack . Vulnerability is the condition in the
system or procedure that enables an adversary to perform ac-
tions that violate the security of the system and procedure,
while exploitation is the process of exploiting a single vulnera-
bility. Attack steps are the actions of the adversary for achiev-
ing specific goals, while composite attack combines multiple
attack steps. The researchers’ attack modeling methodology
considered the attacker’s goal and sub-goals, developing a re-
lationship between attacker goals and the coresponding sys-
tem events that can be observed to detect an attack.

Liu et al. (2005) presented AIOS incentive-based modeling and
inference of attacker intent, objectives, and strategies . They inte-
grated attacker intent regarding the cost of action to model the
attackers’ objectives. They also developed a game-theoretic
AIOS formalization to capture the inter-dependencies be-
tween attacker intent, objective, strategies, and defender ob-
jective, along with the strategies to deduce AIOS automati-
cally. They applied the developed AIOS on a real-world DDoS
scenario to validate AIOS effectiveness in modeling attack and

defense scenarios.
Marshall (2009) presented CyberSMART i.e.(cyber scenario

modeling and reporting tool). They divided the cyber-security

exercise into three tracks: description and objectives , games-
pace , and scenario . Description and objectives define the scope
of the exercise and what learning outcome is expected to
be achieved. Gamespace defines the exercise environment and

networking topology on which the exercises are planned to
be executed. In comparison, the scenario defines the set of
events expected to happen to achieve an objective. The re-
searchers argued that there might be multiple objectives and

sub-objectives in a cyber-security exercise, so there would be
multiple scenarios to achieve those objectives. The authors
proposed an event-based pyramid model for the representa-
tion of exercise objective and the corresponding scenarios.

Shiva et al. (2010) applied game theory concepts to dy-
namic cyber-security scenarios and considered the interac-
tion between attackers and defenders in the cyber-security
scenario as a game. The researchers suggested a model with

rewards and punishments for the adversaries’ actions. The
model works by considering the Nash equilibrium as a key
defining point for defender strategies. The defenders try to
reach the Nash equilibrium to win against the attacker, while
the attacker tries to avoid the zero-sum state in the game. The
attacker receives a payoff if they can avoid a zero-sum state,
and the whole game continues.

Russo et al. (2018) presented scenario design and validation for
next generation cyber ranges , in which they proposed a model
to design, validate, automatically generate, and test cyber-
security scenarios. The researchers introduced scenario de-
scription language SDL , which is used to model the scenarios.
The SDL has 10 elements: system, firewall, policy, software, user,
principal, vulnerability, file, invariant , and goal . In the scenario,
principals represent the subjects operating in the system while
a goal is the objective of the principals . The researchers exe-
cuted the SDL on a cloud orchestration platform for scenario
deployment and validation.

4. Research methodology

Numerous different research methods were employed in the
current work, including serious game development method-
ology, ontology development methods, and model-driven en-
gineering methodology. The last one includes the devel-
opment of the DSL and its compiler. Furthermore, vari-
ous quantitative and qualitative assessment methods for
evaluation were used. First, for the development of serious
games, we used the framework in cyber-security proposed

by Le Compte et al. (2015) . The framework provides a precise
methodology for conducting research related to serious games
in cyber-security. The framework has six steps for the de-
velopment life cycle and evaluation of serious cyber-security
games: (1) Preliminary analysis in which the available re-
sources for game development are evaluated, pedagogical ob-
jectives are defined, the target audience is identified, and the
game mechanics are defined based on the pedagogical objec-
tives. (2) The design phase is responsible for the game’s con-
ceptual modeling, ensuring that the game objectives are well
conveyed to the players. (3) The development phase aims at
developing the game based on the resources and objectives
identified before. (4) Game assessment evaluates the game, in

which a test group of a target audience can be used in the

c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 5 0 5

game assessment process, and the feedback will then be used

to improve the game mechanics. (5) The deployment phase is
the one responsible for deploying the game for real-world as-
sessment and training. The final phase is the (6) the player as-
sessment phase, in which the game’s effectiveness in achiev-
ing its pedagogic objectives is measured. This can be achieved

through tests, surveys, and questionnaires given to game play-
ers.

Second, to model the various concepts present in the
cyber-security exercise scenarios, we carefully analyzed the
cyber-security exercise domain and developed an ontol-
ogy (Maines et al., 2015). This ontology highlighted various ab-
stract concepts related to cyber-security exercises that must
be incorporated in the DSL; these are presented in Fig. 10 . For
the development of the DSL, we employed model-driven en-
gineering (Schmidt, 2006) techniques. These techniques are
used to develop the scenario language and its syntax and then

to develop a compiler for the language that will process an in-
stance of the scenario language and generate various usable
artifacts, such as HEAT (hea, 2019) and Puppet (Pup, 2020) tem-
plates, which can be used to generate the exercise infrastruc-
ture.

For the verification and assessment of our developed arti-
facts, we employed both quantitative and qualitative evalua-
tion methods. We created a cyber-security exercise scenario
based on a real penetration testing activity, along with using
pre- and post-exercise survey methods (Yamin et al., 2018) to
quantify and measure the skill improvement of the exercise
participants. For the qualitative evaluation, we used expert
feedback against a set of four predefined evaluation matrices:
efficiency , usability , completeness , and flexibility that we identi-
fied from the literature (Yamin et al., 2019).

5. Proposed system

As we have argued, the current way of conducting cyber-
security exercises is not efficient; therefore, we are proposing a
system that addresses one of the most time-consuming parts
of the cyber-security exercise life cycle (Yamin and Katt, 2018):
the preparation of an exercise scenario. Furthermore, a dry run

is partially covered as well. In the preparation of a scenario, a
White Team creates the environment in which the Red Team

and the Blue Team practice their attack and defense skills. We
identified the major cyber-security scenario definition tech-
niques (Yamin et al., 2019) in which a scenario definition lan-
guage is used for the orchestration of the cyber-security exer-
cises infrastructure. Our proposed system utilizes the concept
of SDL ; however, we are proposing a fundamentally new way
of creating and deploying a scenario. Our proposed system has
three primary parts:

1. Cyber security strategy game
The game is used to model the network topology for a
cyber-security exercise scenario. The games provide an

interface for presenting high-level scenario requirements
and transforming them into low-level technical require-
ments. The game is basically designed to facilitate the
process of cyber-security exercise scenario modeling and

validation in a simulated environment by incorporating

the roles of the Red and Blue Teams. The game provides
an opportunity for the scenario designer to develop and

test hundreds of cyber-security scenarios before deploying
them in a realistic, emulated environment.

2. Domain specific language
The DSL is used to represent the low-level technical de-
tails present in the cyber-security exercise scenario. The
cyber security strategy game saves an exercise scenario as
an instance of the DSL in the form of a YAML Ben-
Kiki et al. (2005) file. The DSL is designed to accommodate
11 key concepts related to cyber-security exercises. It can

be used to implement three types of cyber-security exer-
cises, which are presented in Section 7 .

3. Infrastructure orchestration module
The infrastructure orchestration module is a compiler that
takes the DSL and performs syntax validation. If the code
has no errors, then it generates the infrastructure, as de-
scribed in the DSL. The infrastructures generated in the
form of HEAT (hea, 2019) and Puppet (Pup, 2020) stack and

deploy them on the open stack cloud environment. The
technical details of the infrastructure orchestration module are
presented in the corresponding section.

A schematic representation of the proposed system and its
layers of abstraction are presented in Fig. 1 :

6. Cyber-security strategy game

As discussed in Section 2 , we identified the inefficiencies in

cyber-security exercise development (Yamin and Katt, 2018).
We also identified that automation could help in reducing
these inefficiencies (Yamin et al., 2018). As a first step toward

this automation, we hypothesized that serious gamification

would help (Yamin and Katt, 2019b) in removing the identi-
fied inefficiencies. To validate our hypothesis, we conducted

a survey during NCSC (Norwegian Cyber-Security Challenge)
2019 (sta, 2019). The test subjects consisted of 25 participants
who qualified for the initial CTF round at the NCSC, in which

around 150 people participated. In the survey, we asked ques-
tions about serious games for cyber-security education, evalu-
ated our developed game, and assessed players’ skill sets, the
details of which are given in subsequent sections.

6.1. Preliminary analysis

The game was developed as a proof of concept by three bach-
elor students during their final year project at NTNU (Nor-
wegian University of Science and Technology) (git, 2020). The
game pedagogic objectives are to achieve the following:

1. Increase player awareness of how cyber-attacks and de-
fenses are conducted.

2. Provide an understating for strategizing cyber-attacks and

defenses.
3. Provide an understating for decision making at the opera-

tional cyber-security level.

This was achieved by incorporating the concepts of pene-
tration testing methodology (Allen et al., 2014) and the cyber

6 c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 5 0

Fig. 1 – Proposed system parts and corresponding layers of abstraction.

kill chain (Hutchins et al., 2011; Yadav and Rao, 2015). These
concepts included a total of 16 skills developed after an analy-
sis of a common curriculum being taught at US-DODapproved

certification programs (Yamin and Katt, 2019a). The skill set
concepts included in the game are as follows:

• Network and system security
• Information security and management
• Cyber-security incidents and response
• Risk analysis and management
• Forensics and cryptography
• Windows and Cisco device security
• Application and web security
• Security concepts and controls

To apply the cyber-security skill set in a realistic environ-
ment, a methodological approach of the cyber kill chain was
used, incorporating both the attackers’ and defenders’ ac-
tions; the details are specifically given in Section 6.2.1 . Cur-
rently, the game integrates most of the stated skill set; how-
ever, a very specific skill set related to Windows and Cisco
device security still requires additional work. We planned to
use the game for cyber-security education; therefore, we set
the target audience age group between 16 and 25 years old. A

sample of 25 top-ranking individuals selected out of 150 par-
ticipants of NCSC 2019 qualifiers participated in the survey;
this target audience group was selected based on the target
audience of the European cyber-security challenge (ecs, 2019).
We considered the sample group as a reliable indicator for
such research in the Norwegian context. The survey ques-
tions were straightforward, neutral, and easy to understand.
Besides Yes and No answers, the participants were given the
option Maybe if they were not sure. One of the questions
related to computer games in general, and the other two
tackled attack and defense scenarios separately. The word-

Fig. 2 – Percentage of the participants who thought
computer games could help in cyber-security education.

ing was carefully chosen based on the background of the
participant (highly technical). Finally, the survey was admin-
istered, and the participants responded to the questions in

a relaxed environment to avoid any biases. Below are the
findings of our survey about serious games in cyber-security
exercises.

1. Do you think computer games can help in cyber-security
education?
The first question was a general question about the role of
computer games in cyber-security exercises. Here, 84% of
participants considered that they could play an important
role, 12% were not sure about the role of computer games
in cyber-security exercises, and only 4% did not consider
them useful. The survey findings are presented in Fig. 2 .

2. Do you think practicing attack strategies in games is useful
before launching a real attack?
The second question was related to cyber-attack strategies.
The purpose was to identify whether it is a good approach

to practice a simulated attack strategy before launching a

c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 5 0 7

Fig. 3 – Percentage of the participants who thought
practicing attack strategies in games is useful before
launching a real attack.

Fig. 4 – Percentage of the participants who thought
practicing defense strategies in games is useful before
defending against a real attack.

real attack on actual infrastructure. Here, 64% of the survey
participants considered this a useful approach, 32% were
not sure, and 4% did not find this approach useful. The sur-
vey findings are shown in Fig. 3 .

3. Do you think practicing defense strategies in games is use-
ful before defending against a real attack?
The third question was related to cyber defense strategies.
The purpose was to identify whether it is a good approach

to practice a simulated defense strategy before defending
against a real attack on actual infrastructure. Here, 68% of
the survey participants considered this a useful approach,
24% were not sure, and 8% did not find this approach use-
ful. The survey findings are shown in Fig. 4 .

In Question 1 , 84% of the survey participants stated that the
game could help in cyber-security education, while in Ques-
tion 2 and Question 3 , 64% and 68% stated that it could help in

devising attack and defense strategies, respectively. Here, we
observed a slight deviation of the survey participants’ feed-
back. We believe that the majority of the survey participants
considered that such games are good for cyber-security edu-
cation in general. However, the survey participants had their
own experiences and skill sets regarding operational strate-
gies, which we believe caused the deviation. For instance, most
of the survey participants were good at devising attack strate-
gies; therefore, they believed the game would help improve
their competence in devising defense strategies and rated it a
bit higher.

Regarding the game mechanics, multiple cyber-security
strategy games already exist (Hendrix et al., 2016); they
are mostly turn-based strategy games. However, because of
the dynamic and complex nature of cyber-security exer-
cises, a turn-based strategy is not beneficial for develop-
ing cognitive flexibility. Therefore, we decided to develop

a real-time strategy game (Glass et al., 2013) to accom-
modate cyber-security concepts such as penetration test-
ing methodology and cyber kill chain in a multiplayer
environment.

6.2. Design

6.2.1. Integrating cyber-security in a serious game
• Cyber-security exercise scenario modeling

Cyber-security exercise scenarios are quite dy-
namic, and modeling the scenarios based on specific
events (Marshall, 2009) is not useful in a multiplayer
environment. Adversary player actions can change
planned scenario events. Therefore, we opted for a no-win

condition in the cyber-security strategy game model.
The game players are given the objective to attack or
defend a system within a specific time interval. The
penetration level assesses players’ performance during
the attack or the number of attacks stopped during the
defense. For the attack and defense steps, we used Lock-
heed Martin’s course of action matrix (Hutchins et al.,
2011), which is widely accepted in the academic and

industrial communities; this matrix is presented in

Fig. 5 .
• Penetration testing methodology

We incorporated concepts from penetration testing exe-
cution standards in the game design (PTE, 2020) for the
attackers. These concepts deal with reconnaissance and

information gathering about systems by using active and

passive measures. Then, the gathered information is used

for the identification and discovery of vulnerabilities. Af-
ter this, the discovered vulnerabilities are used for the ex-
ploitation and post-exploitation of the systems. Addition-
ally, performing an analysis of the exploited vulnerabilities
and sharing the findings in a report is also incorporated.

• Cyber kill chain

For the defenders, we incorporated the concepts from the
cyber kill chain (Yadav and Rao, 2015). Cyber kill chain con-
cepts are used to stop the attacker during different phases
of attacks, such as during discovery, weaponization, ex-
ploitation, and so forth. The defenders have to prioritize
the security of the assets at risk and assets protected by
other security controls like firewalls, IPS (intrusion preven-
tion systems), and so forth.

6.2.2. Actors and functionalities
• White Team

For White Team members, a scenario modeling interface
is proposed in which a White Team member can cre-
ate a complete network topology. The network topology
can contain interconnected components such as APIs, web
servers, computers, firewalls, IPS, and so forth. These com-
ponents have a security level that can be defined as affect-
ing the attack and defense cost within the game. New se-

8 c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 5 0

Fig. 5 – Cyber kill chain course of action matrix for attackers and defenders (Hutchins et al., 2011).

curity vulnerabilities (owa, 2020) can be injected in these
components according to the need of the scenario. White
Team members can also introduce cyber asymmetry by
setting system vulnerabilities and exploitation levels from

low to high, depending on the exercise objectives. For ob-
serving the game, an interface for White Team members is
also proposed to observe the Red and Blue Teams’ game-
play and progress in real time.

• Red Team

For Red Team members, an interface is proposed to access
different penetration testing methods, such as discovery,
probing, and exploitation. They also have a list of known

exploits that can be used if they found a vulnerable sys-
tem. However, all the systems are not vulnerable to known

exploits, so they have a panel for researching new exploits
related to those systems.

• Blue Team

For Blue Team members, an interface is proposed to have
full visibility of the network topology in the scenario. They
have to identify whether the systems are up to date with no
vulnerabilities; if they find a vulnerability, they can patch

it. The defenders have the option to place security controls
like firewalls and IPS within the topology to secure the sys-
tems further.

• Green Team

For Green Team members, an interface is proposed to
have full visibility of the network topology in the scenario
where there are live-action representations of Red and Blue
Teams at the same time. This interface provides the capa-
bility to monitor the team’s performance and engage spec-
tators in the game.

• Game economy
Every action in the game has a cost; the cost is determined

by the White Team members who planned the scenario.
Red and Blue Team members have to make operational
cyber-security strategy decisions to achieve their objec-
tives while keeping the cost of their actions in mind. More-

over, time plays an important role during the gameplay be-
cause the game is intended to be completed in a specific
amount of time, so the game players must make quick de-
cisions.

6.3. Development

The game took nearly five months from its initial planning to
complete development. The game was developed using Unity
3D (Unity Technologies, 2020), a standard game development
engine. The game is called Red vs Blue, Cyber-security Simu-
lator . We made the game open source so that anybody can

make changes to the in-game functionality per their require-
ments; the game source code is available at GitLab (git, 2020).
The game’s most important component is a dynamic cyber-
security exercise scenario creator, which provides drag-and-
drop functionality of different IT infrastructure objects to cre-
ate a network topology. The developed topology is saved in a
YAML file in the form of a scenario model. We used the devel-
oped models to deploy an emulated cyber-security exercise in-
frastructure. The developed real-time cyber-security strategy
game is presented in Fig. 6 . The technical details of the game
functionality are discussed next.

6.3.1. Program flow

The game has two main parts: first is a scenario creator,
which was developed to help White Team members in design-
ing cyber-security exercise scenarios. A new scenario can be
created, or old scenarios can be edited from a YAML file in

the scenario creator. The second part involves the gameplay in

which Red and White Team members play the developed sce-
nario. The Red Team members can attack, exploit, probe, and

analyze the system’s components present within the scenario
environment, while Blue Team members can probe, analyze,
and defend the system components. There is a third part of
the game in which the whole gameplay of Red and Blue Team

members can be monitored; this is for the Green Team mem-

c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 5 0 9

Fig. 6 – Developed real-time cyber-security strategy game.

Fig. 7 – Game program flow.

bers. The game program flow with its major components, is
presented in Fig. 7 .

6.3.2. Scenario creator
The scenario creators provide the White Team members with

three functionalities:

• System components
System components comprise computers, router, switches,
APIs, and other infrastructure-related components that
can be dragged and dropped on a 2D plane. The compo-
nents are configurable in such a way that the vulnerabili-
ties or defenses associated with them can be defined.

• Component connections
The component connection allows the White Team mem-
bers to define the inter-connectivity between the different
system components. This inter-connectivity helps design

wide ranges of cyber-security scenarios because system

components can be the same for multiple scenarios. How-

ever, the network topology can change the way the attack-
ers and defenders play the scenario.

• Component menus
Component menus allow the White Team members to con-
figure the component with vulnerabilities and defenses.
Then, they can configure the component level of exploita-
tion by adding high-risk vulnerabilities in it, or they can

set the component with no vulnerabilities at all. It all de-
pends on the scenario requirement and complexity. Fig. 8
represents the component menu, as seen by White Team

members.

6.3.3. Attack and defense game play
The game offers simulated attack and defense gameplay in

which attackers can discover, exploit, probe, and analyze dif-
ferent system components, while defenders can probe, ana-
lyze, and defend different system components. Attackers and

defenders have realistic options available at their disposal to
make choices like scanning a network for an attacker or patch-
ing the system and placing a firewall in front of a vulnerable

10 c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 5 0

Fig. 8 – Component configuration menu.

component for a defender. These attack and defense choices
have a cost that is pre-assigned by the White Team members.
There is a reward system for successful exploitation and de-
fenses, which opens other options to attackers and defenders,
like scanning for 0day vulnerabilities for the attacker and set-
ting up SIEM (security information and event management)
solutions for defenders during the gameplay. For a specific ex-
ample, consider a machine present in a network that has an

RCE (remote code execution vulnerability). If the attacker can

identify the vulnerability, then the attacker can exploit the
vulnerability with a cost of 5. The defender has two options
here: (1) patch the vulnerability, which may have a cost of 2 or
(2) to place a firewall in front of the vulnerable machine, which

may have a cost of 10. There may be multiple machines with

the same vulnerabilities to make things complex, and patch-
ing all those machines might not be the ideal solution. So the
defender has to identify the network paths from where an at-
tacker can exploit such vulnerabilities and place the appropri-
ate defenses.

6.3.4. Networking and logging
The game is implemented as a client-server architecture,
in which one instance can host a game, while multiple in-
stances of attackers and defenders can join the game. When

a game is hosted at an instance, it acts as a server and

starts to listen for a TCP connection. When a client wants
to join the server, it needs to send a request to a server,
and the server assigns the client a game lobby in which the
game is hosted. When a client joins the lobby, it obtains ac-
cess to a messaging server in which different team mem-
bers can communicate in a textual format. The actions per-
formed by the attackers and defenders and their communi-
cations are logged for a post-exercise evaluation about what
can be done or what went wrong for a team. The logs are vis-
ible to cyber-security exercise observers and are presented in

Fig. 9 .

Fig. 9 – Event logs collected during a cyber-security exercise.

7. Domain-specific language

In connection with the strategic game, we developed a DSL
for specifying and generating cyber-security scenarios as a
part of Norwegian Cyber Range research activities; this was
done with the collaboration of one of our master’s students,
Dunfjeld (2019) . The scenario language, together with its in-
terpreter, are publicly available on Github (Git, 2020). DSLs are
programming languages used to solve problems in a very spe-
cific domain compared with general purpose programming lan-
guages , which are used to address problems in a wide area
of domains. A DSL provides a layer of abstraction to the user
that closely matches the domain-specific problem description

and removes the unnecessary overheads of setting up frame-
works and writing application-specific technical code. In our
proposed DSL, we have identified 11 key concepts required

to model a cyber-security exercise scenario, which are pre-
sented in the DSL ontology in Fig. 10 . A scenario has objec-
tives , such as capture or defend a flag. To achieve the objec-
tives , a scenario includes teams , challenges and phases , all of

c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 5 0 11

Fig. 10 – An ontology of the main concepts of a cyber-security exercise scenario.

which have rules . Teams can be attackers or defenders trying
to pass the challenges presented in the scenario. Challenges
includes attacking a vulnerable system or patching a vulner-
ability. These actions are performed during different phases
of the exercise, such as the start or middle phase. The chal-
lenges are presented on the node , which has vulnerabilities ,
services and agents . The nodes are connected to the router ,
which is connected to the internet for providing access to
the exercise platform. For the language, we defined both the
abstract syntax and concrete syntax. Additionally, the lan-
guage compiler/interpreter has been defined and developed

(Voelter et al., 2013). The details are presented below.

7.1. Abstract syntax

The abstract syntax of the DSL is used to represent the differ-
ent concepts present within the domain; the identified con-
cepts are as follows:

1. Scenario properties
There are multiple types of cyber-security exercises sce-
narios; the scenario concept in the DSL is used to define
the main properties of a scenario, which are as follows:
• Name: A string value that is used to define the name of

the competition or the event within which the scenario
will be executed, such as Defcon CTF .

• Type: A string value used to define scenario types, such

as jeopardy and attack-defense .

• Start date: A date value that indicates the scenario start
date in the format of dd.mm.yyyy.

• End date: A date value that indicates the scenario end

date in the format of dd.mm.yyyy.
• Start time: A time value that indicates the start time of

the scenario in the 24 h format of hh:mm.
• End time: A time value that indicates the end time of the

scenario in the 24 h format of hh:mm.
• Docker hosts: An integer value that indicates the number

of docker hosts that are going to run virtual machines
in the scenario.

• Objectives: A list of all objectives of the scenario, which

will be explained later in more detail.
• Agents: A list of all agents that are active during the sce-

nario, which will be explained later in more detail.
• Rules: A list of all rules that need to be followed in the

scenario, which will be explained later in more detail.
• Teams: A list of all teams participating in the scenario,

which will be explained later in more detail.
Scenario properties that have list values like objectives,
agents, rules , and teams do not contain the definition of the
concepts; they just refer to the objects that have the con-
cept definition.

2. Node
The concept of a node is used to define a virtual machine
that is present in the scenario. It has the following proper-
ties and sub-properties:

12 c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 5 0

• Type: A string value that is used to define the type of the
node.

• Flavor: Flavor is used to allocate the amount of RAM,
CPU, and storage in the cloud. It is a string value, and

if it is not implemented, the default settings are used.
• OS: A string value that is used to specify the operating

system for a virtual machine.
• Public IP: A Boolean value that is used to assign a public

IP address to the VM. By default, a VM is not publicly
accessible, so this property is used to assign a floating
IP address to the VM.

• Networks: A list value that is used to represent the con-
nection of nodes in a network topology. It should at least
have two of the following sub-proprieties:
• Router: It is the name of the router with which nodes

are connected.
• Subnet: A string value is used to indicate the subnets

in which nodes are connected.
• Port security: One or many TCP or UDP property val-

ues used to represent the open ports on the virtual
machine and respective services. By default, only
SSH and ICMP ports and services are open for man-
agement and diagnostic purposes.

• Vulnerabilities: A list value that indicates the vulnerable
application and services that need to be installed on a
node. The detailed properties and sub-concepts of the
vulnerabilities will be explained later.

• Services: A list value that indicates the services that
needs to be installed on a node.

• User accounts A list value that contains the user account
details that are present on a node. It has the following
sub-properties:
• Username: A string value that indicates the user-

name of the user.
• Name: A string value that indicates the user’s full

name.
• Password: A string value that indicates the user pass-

word in a hash form.
• Uid: A string value that indicates the user’s identifier.
• Gid: A string value that indicates the user’s primary

group ID.
• Group: A string value that can be used to override the

user’s primary group value.
• Groups: A list value that contains the groups’ names

in which the user is present.
• Home: A string value that indicates the user’s home

folder.
• ssh key: A list value that contains the ssh key, which

is used to access the user’s account.
• Shell: A string value that indicates the user shell’s ad-

dress.
3. Router

A router is used to provide the necessary networking func-
tionality to different nodes. It has the following properties:
• Type: A string value used to define the type of the router.
• Network: The network property contains the informa-

tion of all the subnets connected to the router. The sub-
nets have their own properties, which are as follows:
• CIDR: A string that indicates the IP range of the sub-

net.

• Gateway IP: A string that indicates the gateway IP ad-
dress of the subnet.

• Routes: A list of strings that contains the information

of routes between different subnets.
4. Service: Services are used to define the applications that are

running on the nodes and that are not vulnerable and are
used to make the scenario more realistic.
• Type: A string value used to define a service that con-

tains the information about the service that is needed

to be connected to a node.
5. Vulnerability

A vulnerability is a component of a node, for example, an

application or a service installed in a node, that is inten-
tionally vulnerable or contains an implementation bug or
design flaw.
• Type: A string value used to define the vulnerability type

such as DoS , RCE , XSS , and so forth.
6. Challenge

A challenge concept is used to represent an exercise or a
task that needs to be completed to earn points in a cyber-
security exercise. It has the following properties:
• Type: A string value used to define the type of a chal-

lenge.
• Points: An integer value that represents the maximum

number of points awarded after completing a challenge.
• Port: An integer value that indicates the port number

through which the challenge is accessed.
• Prerequisites: A list of strings indicates some other chal-

lenges that need to be completed before accessing the
current challenge.

7. Team

The team concept is used to identify the participants’ role
in a cyber-security exercise. It is also used for point alloca-
tion. There can be multiple Red or Blue Teams present in a
cyber-security exercise.
• Type: A string value used to define the team type, that

is, Red Team or Blue Team.
• Members: A list value that contains the contact informa-

tion of each member of the team.
8. Agent

Agents are used for performing specific tasks in a cyber-
security exercise in an automatic manner. They can be
used to generate traffic or launch autonomous attacks.
• Type: A string value that is used to define the type of the

agent like Traffic generator , Attacker , and so forth.
• Sub type: A property is used to define the sub-category of

an agent. The agents can be used for traffic generation,
user behavior simulation, and so forth.

9. Phase
A scenario can be broken down into multiple phases,
for example, vulnerability discovery, vulnerability exploita-
tion, and so forth. Transitioning from one phase to another
results in a possible change of objectives and rules defined

in this concept.
• Type: A string value used to define the type of a phase

like start , middle , and final .
• Objectives: A list value that contains scenario objectives

in textual format with respect to a particular phase.
• Rules: A list value that contains scenario rules in textual

format with respect to a particular phase.

c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 5 0 13

Fig. 11 – Jeopardy-style CTF generation sample code.

• Agent: : A list of agents that are phase specific
10. Objectives

A description of scenario objectives that must be com-
pleted to successfully complete a scenario. A scenario may
have single or multiple objectives depending on the com-
plexity of the scenario.
• Text: A string value that indicates scenario objectives in

textual format.
11. Rules

Rules contain information for teams in the scenario, such

as ”DOS on the nodes is not allowed”.
• Type: A string value used to define the type of a rule

like allowed or not allowed .
• Text: A list value that contains scenario rules in textual

format.

7.2. Concrete syntax

The concrete syntax is used to create a scenario instance.
It can be generated by the real-time cyber-security strategy
game and presented in the previous sections, or a user can

write it directly with the help of an interactive interface. YAML
specification is used for the specification of the concrete syn-
tax of our scenario language. It provides the necessary inden-
tation, helping in creating hierarchical structures and repre-
sentation of the data in lists, keys, or a combination thereof.
All concepts of our language are defined in the form of ob-
jects, and the structure for representing any concept in object
format is identical. Below is an example of how a concept is
represented in an object form in YAML.

The concepts are identified by the object identifier. The ob-
ject identifier is used as a reference to that object. Each ob-
ject needs to have a mandatory property type , which is used

to specify the object type. Each object has its properties as-
signed by a property identifier. Fig. 11 presents a sample of
the concrete syntax used to generate a simple jeopardy-style
cyber-security exercise containing three docker hosts and two
vulnerabilities. Here, not all elements need to be present in the
scenario. For those elements that are not mentioned, default
values will be assigned, for example, routers and networks.

7.3. Compiler/Interpreter

Five steps are involved in the compilation of a DSL scenario
instance:

1. Loading
The scenario file is loaded into the compiler using the
python library oyaml. oyaml preserves the dictionary order-
ing of the file when loading the scenario YAML file.

2. Syntax validation
Syntax validation is performed, and whether the loaded

files contain the scenario information according to YAML
specification or not is checked. If the file does not follow

the YAML specification, the syntax validation process fails,
and compilations stop.

14 c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 5 0

Fig. 12 – Compilation process of DSL.

Fig. 13 – Infrastructure orchestration process from a simulated game to an emulated environment.

3. Intermediate transformation
The YAML file data are transformed into a Python dictio-
narytype data structure. This helps access data and apply
compilation logic in Python. One reason to choose YAML as
a scenario specification language is its ability to be easily
transformed into a Python data structure.

4. Semantic validation
Although syntax validation can ensure that the scenario
syntax is correct, semantic errors can still exist. To avoid

semantic errors, multiple semantic validation types were
applied, as follows:
• Verification of the input flow structure.
• Verification of objects that are associated with a partic-

ular scenario type.
• Verification of mandatory properties in objects and

their values according to the required data formats.
• Verification of optional properties in objects and their

values according to required data formats.
• Verification of assigned OS/services/vulnerabilities in

the objects present in the compiler database.
• Verification of assigned IP addresses and that they are

in the correct subnet.

5. Transformation
After semantic validation, the data structures are trans-
formed into three artifacts that are usable for low-level
platform-specific technology. In our case, we use Open-
Stack as the cloud platform technology, which will host
the final exercise infrastructure. Thus, the end result of
the transformation is a set of HEAT templates that can be
used to deploy the network and the virtual machines on

our OpenStack-based private cloud. The details of the three
artifacts are as follows:
• Infrastructure artifacts

These are artifacts that are used to build a network-
ing component and the virtual machines present in a
cyber-security exercise scenario; they are HEAT tem-
plates that are used to deploy the exercise infrastruc-
ture on OpenStack.

• Software artifacts
These are artifacts that are used for the installation and

configuration of operating systems and services. They
are transformed into Ansible (Ope, 2019) templates. Vir-
tual machines have their separate configuration tem-
plates that define their settings according to the sce-
nario definition.

c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 5 0 15

• External artifacts
The artifacts that are not related to software and infras-
tructure artifacts are presented as external artifacts.
They contain rules and objectives of the scenario, which

are merely textual information related to the cyber-
security exercise participants’ scenarios.

The compilation process of our DSL is presented in Fig. 12 .

8. Infrastructure orchestration module

After a successful compilation of the scenario, the com-
piler also performs the provisioning process for deploying
the cyber-security exercise infrastructure. Because of this,
compilation and provisioning become a one-click process.
Fig. 13 shows how different components of the proposed sys-
tems interact with each other for the full orchestration of the
deployment of the cyber-security exercise infrastructure. This
is a multi-step process in which, first, a White Team member
creates the scenario topology within the cyber-security strat-
egy game. According to the DSL specification, the scenario is
saved in a YAML file, which is then validated and compiled

by the compiler. If the compilation process is successful, the
aforementioned artifacts, including the HEAT templates, are
generated, and a request is generated to the OpenStack or-
chestration API to create a stack based on the generated HEAT

templates. For the configuration of VMs, the Cloud-init option

of OpenStack is used, which initiates basic bootstrapping of
the VMs, such as installing Ansible and transferring SSH keys.

When nodes are created that do not have an IP address,
DHCP is used to allocate the IP addresses to the nodes. The
compiler makes a query to OpenStack and requests the IP ad-
dresses of the nodes that were created. A waiting period is
added into the compiler to ensure all the nodes are set up and

have acquired an IP address. The compiler then updates the
list of IP addresses and uses SSH to transfer the required con-
figuration of the nodes, that is, the compiler-generated Ansible
templates.

Ansible is a push-based configuration setup utility, mean-
ings that for configuring a VM of the cyber-security exercise
scenario, an additional VM is needed to push the scenario con-
figuration from within the scenario network. A manager node
is created, which receives the configuration from the compiler.
After the Ansible files are received from the compiler, a man-
ager node starts pushing the configuration of all the network-
related functions and VM-related services and vulnerabilities
based on the scenario requirements specified by the scenario’s
DSL instance.

8.1. Nature of emulation

The toolset produces emulation for a cloud native environ-
ment, which is currently OpenStack based. The emulation

supports network , transport , session , presentation , and applica-
tion layer protocols. However, the datalink and physical layer
protocols were not supported because of the inherent limi-
tations of cloud-native software networking (Ope, 2021). The
toolset can create and deploy small and large exercise envi-
ronments based on the scenario requirements. These exercise

Fig. 14 – Emulated environment produced using the
developed toolset.

environments can be configured to be vulnerable using Anis-
ble. These environments can support a variety of exercises
such as jeopardy-style CTF, attack/defense, Red/Blue teaming,
and so forth. A generated exercise environment using the de-
veloped toolset is presented in Fig. 14 .

9. Game and players assessment

To evaluate the whole toolset developed in this research work,
we conducted a case study in the context of the NCSC in

2019; a summary of the results of the study are presented in

Section 9.5 . The NCSC is used for selecting, evaluating, and

training the Norwegian team that will participate in the Euro-
pean Cyber-Security Challenge (ECSC). Our research team was
part of this process, and the field study was conducted in this
context. The goal was to evaluate both the developed game
and the scenario language toolset during one of the two qual-
ification rounds of NCSC 2019.

9.1. Number of participants and demographic data

The test subjects consisted of 25 participants, 20 male and five
females, who qualified for the initial CTF round at NCSC 2019,
in which more than 150 people participated from all over Nor-
way. All the survey participants were ethnic Norwegians be-
tween the ages of 16 and 25.

9.2. Task performed by the participants

The participants were given a brief tutorial about the game
and how it works. The participants were seasoned CTF play-
ers and had expertise in offense techniques. Therefore, a Red

Team game was chosen. Each participant was tasked to play
the game individually as an attacker for 20 min in an isolated

environment without any external interference. They were

16 c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 5 0

Fig. 15 – Game scenario realism rating.

asked to critically analyze the game because they were ex-
pected to provide feedback after the game session. The partic-
ipants attacked a network with no active opposition but with

limited resources. Their decision-making process for attack-
ing the network was evaluated.

9.3. Data collection

The data for the study were collected in three ways:

• Post-game session survey
A survey was conducted after the game session in which

the participants were asked six questions, of which four
questions were related to game realism and usability and

two to the players’ assessment of the improvement of their
skills, which are reported in the summary of results.

• Game recordings
The game can act as an observer, so the gameplay can be
remotely observed. This functionality was used to record

the participant gameplay for participant evaluation in

making real-time strategy decisions.
• Post-game session interview

An expert from CYFOR (Norwegian Cyber Force) (Cyb, 2020)
conducted post-game session interviews with the partici-
pants. The interviews were used for the psychometric anal-
ysis of the participants to assess their cognitive abilities.

9.4. Data analysis

Data from the surveys were analyzed using a simple statisti-
cal method of trend line (Tre, 2020), which is a line that can be
drawn on a scatter diagram to represent a trend in the data.
In our study, the trend line is presented in histogram charts in

the summary of the results. The game recordings and inter-
views were used for the evaluation of individual player perfor-
mance during NCSC 2019. In the interviews, the participants
were asked to self-reflect on their experience. The details of
the individual participants’ cognitive performance evaluation

processes are out of the scope of this work and will be pre-
sented in a study dedicated to this topic. The cyber defense
retrospective timeline analysis (Knox et al., 2019) was used for
the qualitative evaluation of the individual participants.

9.5. Summary of the results

9.5.1. Game assessment:
In our field study, we developed a scenario related to an or-
ganization’s internal network exploitation. The scenario was
based on real cyber-security incidents that involved a private
organization. The organization had an internet-facing website
that was connected to multiple APIs. The website itself was
not vulnerable, but one of the deployed APIs was vulnerable to
RCE (remote code execution vulnerability). The attacker could

exploit the vulnerability and ingress into an internal network
with multiple subnets. After that, the attacker had to identify
important subnet and resources based on the retrieved infor-
mation from the network interfaces before penetrating into

the important subnet to achieve full network exploitation. On

the defender side, the defenders had to patch the vulnerable
systems and make strategies to secure the important network
subnets with limited resources. We developed questions re-
lated to scenario realism in the game and the overall game
usability, asking the participants to rate the game from 1 to
10, where 1 was the lowest and 10 the highest value. To ensure
correct and sound answers by all participants, they received a
short training session on the questionnaires included in the
study and the meaning of the scales used before the study.
The findings of the survey are as follows:

1. How realistic is the current game in representing cyber-
security exercise scenarios?
Most of the survey participants considered that the repre-
sentation of cyber-security exercise scenarios was realistic
in the game. Here, 15 out of the 25 participants rated the
game realism as more than 5, out of which two rated it 8,
nine rated it 7, and four rated it 4, as shown in Fig. 15 .

2. How realistic is the current game in devising cyber attack
strategies?
The majority of the survey participants considered that
the game was realistically devising cyber-attack strategies.
Here, 14 out of the 25 participants rated the game realism

at more than 5, out of which one rated it 9, two rated it 8,
six rated it 7, and five rated it 6, as shown in Fig. 16 .

3. How realistic is the current game in devising cyber defense
strategies?

c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 5 0 17

Fig. 16 – Cyber attack strategies realism.

Fig. 17 – Cyber defense strategies realism.

Most of the survey participants considered that the cur-
rent game was not suitable for realistically devising cyber
defense strategies. Here, 19 out of the 25 participants rated

the game realism as less than 6, out of which four rated it
1, two rated it 2, two rated it 3, eight rated it 4, and three
rated it 5, as shown in Fig. 17 .

4. Do you think that the current game can be useful for cyber-
security education?
Here, 44% of the survey participants considered that the
game could be useful for cyber-security education. In ad-
dition, 36% of the participants were not sure about the
game’s usability, while 20% of the participants did not
consider the game useful in cyber-security education, as
shown in Fig. 18 .

9.5.2. Player assessment:
The game was successfully deployed during the NCSC

2019 (sta, 2019), in which it was used for players’ assessment.
We asked the participants to self-assess the way in which the
cyber-security exercise was conducted and if their skills had

improved. The findings of the survey are as follows:

Fig. 18 – Percentage of the participants who thought the
developed game is useful for cyber-security education.

1. Do you think playing/practicing the cyber-security exercise
scenario in a simulated/modeled game is an efficient way
to conduct cyber-security exercises?
Here, 64% of the survey participant considered that play-
ing and practicing cyber-security exercises in a simu-
lated/modeled environment is an efficient way of conduct-

18 c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 5 0

Fig. 19 – Percentage of the participants who thought it is
efficient to conduct cyber-security exercises scenarios in a
simulated modeled environment.

Fig. 20 – Percentage of operational strategy decision-making
skill improvement in cyber-security exercises.

ing the cyber-security exercise. In comparison, 36% of the
participants were not sure about it, as indicated in Fig. 19 .

2. Do you think that your cyber-security exercise operational
strategy decision-making skills have improved after play-
ing this game?
Here, 20% of the survey participants considered that the
game helped them in developing their operational cyber-
security strategy skills, while 40% stated they do not see
any skill improvement and 40% were not sure, as shown in

Fig. 20 .

During the interview, one observation was that when the
expert from CYFOR asked two participants ”Why did you choose
the selected strategy?”. The first replied that she randomly se-
lected the strategy, while the second participant replied that
she critically evaluated all possible strategies and then se-
lected the optimum strategy. The decision making helped the
second participant secure a place on the national team.

9.6. Threats to validity

We tried to quantify the findings of the field study by us-
ing statistical methods on a small data set of 25 partici-
pants. Although the data set is comparable to similar stud-
ies (Abbott et al., 2015), a larger data set would have provided

us with more insights. Moreover, we did not take notes of the
participants’ prior experiences in cyber-security exercises and

only tested one scenario during the evaluation process. This
is because of the limited time available for the exercise par-
ticipants. Conducting the experiment with different scenarios
and adapting (Pusey et al., 2016), the scenario according to the

participants’ prior experiences could have yielded more accu-
rate results, which will be taken into account in future exper-
iments. Additionally, the post-survey questionnaire was only
tested by the research team, which caused threats to its valid-
ity. This is because similar instruments were not identified in

the literature. In this exploratory study, we wanted to test the
survey, and we plan to validate our instrument in future work.

10. Scenario language evaluation

To evaluate the developed scenario language and its related

toolset, including the compilation, deployment, and orches-
tration, two field studies were conducted in the context of the
NCSC 2019. Below, we discuss the conducted studies and their
results.

10.1. Number of participants and demographic data

Two technical experts were used for the assessment of the
developed system. One expert from the Netherlands was ac-
tively involved in creating and deploying cyber-security exer-
cise scenarios for NCSC 2019. The other expert from Norway
has expertise in infrastructure orchestration on OpenStack us-
ing HEAT and Puppet templates.

10.2. Task performed by the participants

To evaluate the developed DSL and compiler’s performance
in terms of the cyber-security exercise scenario infrastruc-
ture and its provision, we conducted two case studies. These
case studies involved replicating two infrastructures used in

NCSC 2019. Two independent experts conducted the replica-
tion. For the first time, they did not use our language toolset,
and the second time, they used our language toolset. The ex-
perts were tasked with generating the two scenario infrastruc-
tures: (1) a jeopardy-style CTF and (2) an attack/defense style
cyber-security exercise. The exact examples of both the CTF
and attack/defense scenarios can be found and accessed in

the Github project of the language toolset (Dunfjeld, 2019) in

the examples folder.

10.3. Data collection

After replicating the infrastructure, the experts were inter-
viewed about their experience using the developed artifacts.
Interviews were conducted in a semi-structured form to col-
lect their qualitative feedback. The interviews contained ques-
tions about a set of four metrics used to evaluate the perfor-
mance of the DSL toolset qualitatively. The four metrics are as
follows:

• Efficiency: In this metric, we measured the time required

by manual labor compared with the proposed system to
deploy and generate the same infrastructure. Time is one
observation data point; however, the experts’ opinion was
also used for making the assessment.

• Usability: In this metric, we tried to identify how useful the
proposed system was in generating cyber-security exercise
infrastructure. Expert observation and feedback were used

to assess this metric.

c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 5 0 19

Table 1 – Result of case studies.

Case study Efficiency Usability Completeness Flexibility

Replicating jeopardy
NCSC

5 min with the developed tool
compare to 20 + minutes by 2
experts without the developed
tool

Bare-bones structure of
scenario only

Limited to container-based
challenges

Not flexible after
deployment

Attack and Defense
Exercises

5 min with the developed tool
compare to 60 + minutes by 2
experts without the developed
tool

Bare-bones structure of
scenario only

Limited to container-based
challenges

Not flexible after
deployment

• Completeness: In this metric, we measured the capability
of the proposed system of fulfilling the infrastructure re-
quirements for a given cyber-security exercise scenario.
The data source for this measurement was the observa-
tion made during the replication of the given infrastruc-
tures and experts’ feedback.

• Flexibility: In this metric, we tried to identify the post-
deployment modification capability of a cyber-security ex-
ercise scenario generated by the proposed system.

The list of questions asked during the interviews is pre-
sented in Appendix A .

10.4. Data analysis

The expert feedback was analyzed using a comparative analy-
sis (Berg-Schlosser et al., 2009). Their feedback was compared

to establish a common understanding of the performance of
the system. The common understating was then used to eval-
uate the overall system using the pre-defined qualitative met-
rics.

10.5. Summary of the results

Both experts agreed that the developed tool was efficient in

deploying cyber-security exercise infrastructure when it came
to time. For example, it took only five minutes to deploy a
replica of the NCSC jeopardy scenario using the developed

tools; in contrast, the two experts took more than 20 min for
the same task using general purpose infrastructure orches-
tration technologies like OpenStack HEAT. The attack/defense
scenario took the experts more than an hour to deploy, while
with the developed tools, they were able to replicate it in

five minutes. However, in terms of usability, completeness,
and flexibility, there is a room for improvement because our
method only provides a bare-bones infrastructure that only
supports container-based challenges. These challenges are
suitable for application layer security exercises but do not pro-
vide much of an attack surface for network layer attacks. The
summarized results are presented in Table 1 .

10.6. Threats to validity

We used only two experts for the assessment of the proposed

system. This is because of the lack of such experts in the field.
In the future, we will try to get the feedback of as many experts
as possible to obtain more feedback of the system. Moreover,

the proposed system was only tested in NTNU’s highly cus-
tomized cloud infrastructure. There may be operational and

technical difficulties in other deployment environments. We
made the proposed DSL toolset open source and hopefully will
receive feedback from other researchers about the operational
and technical issues and testing to further enhance its perfor-
mance and functionality.

11. Discussion and conclusion

In the present study, we developed a multi-layer system

(toolset) to support the planning and execution of cybersecu-
rity exercises. The developed system bridges the gap between

two different perspectives: a strategic simulation-based seri-
ous game and a low-level technical cybersecurity exercise in-
frastructure. The glue that connects both of these perspectives
is a DSL and its corresponding ontology. The language was
used to (1) define the input needed to configure the simulation

game, (2) transform the game specification into an interme-
diate scenario format, and (3) use the concrete intermediate
scenario format to generate low-level infrastructure artifacts.
Additionally, we conducted a case study to evaluate realism

and efficiency.
We developed a serious game that provides a drag-and-

dropbased graphical user interface to configure the exercise
scenario based on the scenario language. This helped model
and test cybersecurity exercises scenario in a simulated en-
vironment before actual deployment in an emulated environ-
ment. The game provides a layer of abstraction to model cyber-
security exercise scenarios and test different attack and de-
fense strategies. In terms of cyber-security exercise scenario
modeling, we developed a DSL that enables modeling White
Team of the members’ role. The developed language allowed

for efficiently translating the cyber-security exercise scenario
developed in the game’s simulated environment to an emu-
lated environment of an actual infrastructure.

We conducted a case study in which we identified that the
game achieved its desired objectives for strategizing cyber at-
tack and defense. The results from the case study indicate that
the game realistically represents the cyber-security exercises
scenario. The toolset developed during the present research

produced an emulation for a cloud-native environment, which

is OpenStack based. The emulation supports most of the ap-
plication and network layer protocols, making it useful in con-
ducting cybersecurity exercises in a university setting. We
suggest that such a toolset is also useful for cyber-security ed-

20 c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 5 0

ucation, which is key because practicing cybersecurity strate-
gies in a simulated environment can result in skill improve-
ments.

Currently, the scenarios developed by our toolset offer low

fidelity and are not suitable for use in a military cyber oper-
ations center and for exercises conducted to train cyber mis-
sion planners. For such scenarios, complex, multi-sector, and

evolving organizational infrastructures are needed, for which

the developed game is not yet flexible enough. Moreover, in

terms of devising cyber defense strategies, the results are not
positive. This could be because of the participants’ profiles
with experience in attacking techniques. The game’s target
audience played the game from the attacker’s perspective,
which, according to our assessment, did not give them full in-
sights into a defender’s actions and strategies.

Serious games can be a viable tool to model new and

unique scenarios for cyber-security exercises. The modeled

scenarios can be realistic and can be used to realistically de-
vise cyber-attack strategies. In terms of cyber defense strate-
gies, the research results are inconclusive and require further
research. The developed game has been identified as a use-
ful tool for conducting cyber-security exercises in an efficient
manner, which helps in operational cyber-security skill set im-
provement. The target audience for the game was individuals
between the ages of 16 and 25, and the game can be useful
for their skill improvement. However, the developed toolset
is not suitable for complex military-grade cybersecurity exer-
cises yet.

In the future, we plan to use the data generated from the
game from devising attack and defense strategies to develop

autonomous attack and defense agents. These agents can em-
ulate Red and Blue Teams’ actions in an actual cyber-security
exercise. It would be interesting to assign different levels of ca-
pabilities to these agents and test different cyber warfare con-
cepts such as cyber asymmetry. Moreover, we plan to conduct
a longitudinal study during the Ethical Hacking course taught
at NTNU, which will help us identify the usability of the game
in providing continuous training and self-learning, hence pro-
viding new and unique scenarios. Moreover, to improve other
factors such as usability, completeness, and flexibility, we are
conducting further research.

Declaration of Competing Interest

The authors declare no conflict of interest in publishing the
article “Serious Games as a Tool to Model Attack and Defense
Scenarios for Cyber-Security Exercises”

CRediT authorship contribution statement

Muhammad Mudassar Yamin: Conceptualization, Inves-
tigation, Methodology, Software, Validation, Writing – origi-
nal draft. Basel Katt: Supervision, Writing – review & edit-
ing, Project administration. Mariusz Nowostawski: Supervi-
sion, Writing – review & editing, Project administration.

Acknowledgment

We would like to acknowledge the valuable contributions
of the three undergrad students Christian Bråthen Tverberg,
Maarten Dijkstra, and Nataniel Gåsøy, and one master’s stu-
dent, Mihkal Dunfjeld, all of whom took part in ongoing re-
search activities at the Norwegian Cyber Range and assisted

us in developing the necessary artifacts for this research.

Appendix A. Interview questioner

1. How much time did it take to deploy a specific cyber-
security exercise scenario manually?

2. How much time did it take to deploy a specific cyber-
security exercise scenario with the developed tool?

3. Is the deployed scenario usable for cyber-security exercise?
4. Does the deployed scenario provide the required function-

ality?
5. Is the deployed scenario flexible for changes?
6. What do you think can be improved in the developed tool?

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi: 10.1016/j.cose.2021.102450.

R E F E R E N C E S

Adam shostack: Tabletop infosec games. 2020.
https://adam.shostack.org/games.html . (Accessed on

06/20/2020).
Abbott RG , McClain JT , Anderson BR , Nauer KS , Silva AR ,

Forsythe JC . In: Technical Report. Automated Performance
Assessment in Cyber Training Exercises. Sandia National
Lab.(SNL-NM), Albuquerque, NM (United States); 2015 .

Allen L , Heriyanto T , Ali S . Kali Linux–Assuring Security by
Penetration Testing. Packt Publishing Ltd; 2014 .

Alotaibi F , Furnell S , Stengel I , Papadaki M . A review of using
gaming technology for cyber-security awareness. Int. J. Inf.
Secur. Res.(IJISR) 2016;6(2):660–6 .

Amorim JA , Hendrix M , Andler SF , Gustavsson PM . Gamified

training for cyber defence: methods and automated tools for
situation and threat assessment. Proceedings of the NATO

Modelling and Simulation Group (MSG) Annual Conference
2013 (MSG-111), 2013 .

Ben-Kiki O, Evans C, Ingerson B, 2005. Yaml ain’t markup

language (yaml version 1.1. Technical Report, yaml.org, 23.
Berg-Schlosser D , De Meur G , Rihoux B , Ragin CC . Qualitative

comparative analysis (QCA) as an approach, 1; 2009. p. 18 .
Beuran R , Tang D , Pham C , Chinen K-i , Tan Y , Shinoda Y .

Integrated framework for hands-on cybersecurity training:
cytrone. Comput. Secur. 2018;78:43–59 .

Casini M , Prattichizzo D , Vicino A . The automatic control telelab:
a user-friendly interface for distance learning. IEEE Trans.
Educ. 2003;46(2):252–7 .

Chadha R , Bowen T , Chiang C-YJ , Gottlieb YM , Poylisher A ,
Sapello A , Serban C , Sugrim S , Walther G , Marvel LM , et al .
Cybervan: a cyber security virtual assured network testbed.
In: Proceedings of the MILCOM 2016-2016 IEEE Military
Communications Conference. IEEE; 2016. p. 1125–30 .

c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 5 0 21

Cheung S , Lindqvist U , Fong MW . Modeling multistep cyber
attacks for scenario recognition, Vol. 1. IEEE; 2003. p. 284–92 .

Cyberforsvaret - forsvaret.no. 2020.
https://forsvaret.no/cyberforsvaret . (Accessed on 06/20/2020).

Cyber security strategy Norway 2012, 2012.
https://tinyurl.com/rxmw9t9m . (Accessed on 04/27/2021).

Dunfjeld M . Cyber security testbed provisioning using a domain

specific language. NTNU; 2019. Master’s thesis .
Endicott-Popovsky BE , Popovsky VM . Application of pedagogical

fundamentals for the holistic development of cybersecurity
professionals. ACM Inroads 2014;5(1):57–68 .

Ecsc2019. 2019. www.europeancybersecuritychallenge.eu .
Github - mdunfjeld/ctfgen. 2020.

https://github.com/mdunfjeld/ctfgen (Accessed on

03/30/2020).
Ford V , Siraj A , Haynes A , Brown E . Capture the flag unplugged:

an offline cyber competition. In: Proceedings of the 2017 ACM

SIGCSE Technical Symposium on Computer Science
Education. ACM; 2017. p. 225–30 .

Glass BD , Maddox WT , Love BC . Real-time strategy game training:
emergence of a cognitive flexibility trait. PLoS One
2013;8(8):e70350 .

Gurnani R , Pandey K , Rai SK . A scalable model for implementing
cyber security exercises. In: Proceedings of the International
Conference on Computing for Sustainable Global
Development (INDIACom). IEEE; 2014. p. 680–4 .

Maarten dijkstra / cyber security simulator. 2020,
https://ntnu.box.com/s/1ysjltlu025h0w0383gmgziqqsu0vp85 .

Heat openstack - orchestration. 2019.
https://wiki.openstack.org/wiki/Heat (Accessed on

12/01/2019).
Hendrix M , Al-Sherbaz A , Victoria B . Game based cyber security

training: are serious games suitable for cyber security
training? Int. J. Serious Games 2016;3(1):53–61 .

Hutchins EM , Cloppert MJ , Amin RM , et al . Intelligence-driven

computer network defense informed by analysis of adversary
campaigns and intrusion kill chains. Lead. Issues Inf. Warf.
Secur. Res. 2011;1(1):80 .

Knox BJ , Lugo RG , Sütterlin S . Cognisance as a human factor in

military cyber defence education. IFAC-PapersOnLine
2019;52(19):163–8 .

Le Compte A , Elizondo D , Watson T . A renewed approach to
serious games for cyber security. In: Proceedings of the 7th

International Conference on Cyber Conflict: Architectures in

Cyberspace. IEEE; 2015. p. 203–16 .
Liu P , Zang W , Yu M . Incentive-based modeling and inference of

attacker intent, objectives, and strategies. ACM Trans. Inf.
Syst. Secur. (TISSEC) 2005;8(1):78–118 .

list-of-measures–national-cyber-security-strategy-for-
norway.pdf. 2021. https://www.regjeringen.no/contentassets/
c57a0733652f47688294934ffd93fc53/
list- of- measures- - national- cyber- security- strategy- for- norway.
pdf. (Accessed on 04/26/2021).

Maines CL , Llewellyn-Jones D , Tang S , Zhou B . A cyber security
ontology for BPMN-security extensions. In: Proceedings of the
IEEE International Conference on Computer and Information

Technology; Ubiquitous Computing and Communications;
Dependable, Autonomic and Secure Computing; Pervasive
Intelligence and Computing. IEEE; 2015. p. 1756–63 .

Marshall J . The cyber scenario modeling and reporting tool
(cybersmart). In: Proceedings of the Cybersecurity
Applications & Technology Conference for Homeland

Security. IEEE; 2009. p. 305–9 .
National cyber security strategy for norway - regjeringen.no.

2020. https://www.regjeringen.no/en/dokumenter/
national- cyber- security- strategy- for- norway/id2627177/ .
(Accessed on 06/19/2020).

Norwegian cyber security challenge 2019 (ncsc19) finale. 2019.
https://www.ntnu.no/ncsc/ncsc19-finale .

Openstack docs: Openstack-ansible documentation. 2019.
https://docs.openstack.org/openstack-ansible/latest/ .
(Accessed on 12/01/2019).

Openstack docs: Openstack networking. 2021.
https://docs.openstack.org/neutron/train/admin/
intro- os- networking.html . (Accessed on 04/27/2021).

Owasp top ten vulnerabilities.
2020 https://www.owasp.org/index.php/ .

Pham C , Tang D , Chinen K-i , Beuran R . Cyris: A cyber range
instantiation system for facilitating security training. In:
Proceedings of the Seventh Symposium on Information and

Communication Technology. ACM; 2016. p. 251–8 .
Puppet - openstack. 2020. https://wiki.openstack.org/wiki/Puppet .
Pusey P , Gondree M , Peterson Z . The outcomes of cybersecurity

competitions and implications for underrepresented
populations. IEEE Secur. Priv. 2016;14(6):90–5 .

Russo E , Costa G , Armando A . Scenario design and validation for
next generation cyber ranges. In: Proceedings of the IEEE 17th

International Symposium on Network Computing and

Applications (NCA). IEEE; 2018. p. 1–4 .
Schmidt DC . Model-driven engineering. Comput. IEEE Comput.

Soc. 2006;39(2):25 .
Schreuders ZC , Butterfield E . Gamification for teaching and

learning computer security in higher education. Proceedings
of the { USENIX } Workshop on Advances in Security Education

({ ASE } 16), 2016 .
Schreuders ZC , Shaw T , Shan-A-Khuda M , Ravichandran G ,

Keighley J , Ordean M . Security scenario generator (secgen): a
framework for generating randomly vulnerable rich-scenario
VMS for learning computer security and hosting { CTF } events.
Proceedings of the { USENIX } Workshop on Advances in

Security Education ({ ASE } 17), 2017 .
Shiva S , Roy S , Dasgupta D . Game theory for cyber security. In:

Proceedings of the Sixth Annual Workshop on Cyber Security
and Information Intelligence Research. ACM; 2010. p. 34 .

The penetration testing execution standard. 2020.
http://www.pentest-standard.org.

Trendline analysis in excel. 2020. https://www.uwyo.edu/ceas/
resources/current-students/classes/esighelp/windows help

files/microsoft office/excel-trendline analysis.pdf.
Unity Technologies. https://unity.com/ .
Voelter M , Benz S , Dietrich C , Engelmann B , Helander M , Kats LC ,

Visser E , Wachsmuth G . DSL engineering: designing,
implementing and using domain-specific languages. dslbook.
org; 2013 .

Yadav T , Rao AM . Technical aspects of cyber kill chain. In:
Proceedings of the International Symposium on Security in

Computing and Communication. Springer; 2015. p. 438–52 .
Yamin MM , Katt B . Inefficiencies in cyber-security exercises

life-cycle: a position paper. Proceedings of the AAAI
Symposium on Adversary-Aware Learning Techniques and

Trends in Cybersecurity (ALEC 2018), 2018 .
Yamin MM , Katt B . Cyber security skill set analysis for common

curricula development. In: Proceedings of the 14th

International Conference on Availability, Reliability and

Security; 2019. p. 1–8 .
Yamin MM , Katt B . Modeling attack and defense scenarios for

cyber security exercises. In: Proceedings of the 5th

Interdisciplinary Cyber Research Conference 2019; 2019. p. 7 .
Yamin MM , Katt B , Gkioulos V . Cyber ranges and security

testbeds: scenarios, functions, tools and architecture. Comput.
Secur. 2019:101636 .

Yamin MM , Katt B , Torseth E , Gkioulos V , Kowalski SJ . Make it and

break it: an IoT smart home testbed case study. In:
Proceedings of the 2nd International Symposium on

Computer Science and Intelligent Control. ACM; 2018. p. 26 .

22 c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 5 0

Muhammad Mudassar Yamin is currently doing his Ph.D. at the
Department of Information and Communication Technology at
the Norwegian University of Science and Technology. He is the
member of the system security research group and the focus of his
research is system security, penetration testing, security assess-
ment, intrusion detection. Before joining NTNU, Mudassar was an

Information Security consultant and served multiple government
and private clients. He holds multiple cyber security certifications
like OSCE, OSCP, LPT-MASTER, CEH, CHFI, CPTE, CISSO, CBP.

Basel Katt is currently working as an Associate Professor at the De-
partment of Information and Communication Technology at the
Norwegian University of Science and Technology. He is the techni-
cal project leader of Norwegian cyber range. Focus of his research

areas are: Software security and security testing Software vulner-

ability analysis Model driven software development and model
driven security Access control, usage control and privacy protec-
tion Security monitoring, policies, languages, models and enforce-
ment

Mariusz Nowostawski is an Associate Professor at Norwegian Uni-
versity of Science and Technology. Previously, an academic lec-
turer at University of Otago, New Zealand. His MSc studies were
focused on AI and machine learning, and his Ph.D. on autonomous
systems and computational modelling of the biological process of
life. Mariusz has worked on high-end networking applications on

GPUs and multicore systems with Sun Microsystems and Oracle.
He is currently involved in forensics research with Europol. Bitcoin

anonymity. Cryptocurrencies.

2.5. Modeling and Executing Cyber Security Exercise Scenarios in Cyber Ranges 103

2.5 Modeling and Executing Cyber Security Exercise Scenarios
in Cyber Ranges

Computers & Security 116 (2022) 102635

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

TC 11 Briefing Papers

Modeling and executing cyber security exercise scenarios in cyber

ranges

Muhammad Mudassar Yamin

∗, Basel Katt

Department of Information Security and Communication Technology, Norwegian University of Science and Technology, Teknologivegen 22, Gjøvik 2815,

Innlandet, Norway

a r t i c l e i n f o

Article history:

Received 15 April 2021

Revised 13 January 2022

Accepted 31 January 2022

Available online 9 February 2022

Keywords:

Cyber range

Security

Exercises

Scenario

Modeling

a b s t r a c t

The skill shortage in global cybersecurity is a well-known problem; to overcome this issue, cyber ranges

have been developed. These ranges provide a platform for conducting cybersecurity exercises; however,

conducting such exercises is a complex process because they involve people with different skill sets for

the scenario modeling, infrastructure preparation, dry run, execution, and evaluation. This process is very

complex and inefficient in terms of time and resources. Moreover, the exercise infrastructure created

in current cyber ranges does not reflect the dynamic environment of real-world systems and does not

provide adaptability for changing requirements. To tackle these issues, we developed a system that can

automate many tasks of the cybersecurity exercise life cycle. We used model-driven approaches to (1)

model the roles of the different teams present in the cybersecurity exercises and (2) generate automation

artifacts to execute their functions efficiently in an autonomous manner. By executing different team roles

such as attackers and defenders, we can add friction in the environment, making it dynamic and realistic.

We conducted case studies in the form of operational cybersecurity exercises involving national-level

cybersecurity competitions and a university class setting in Norway to evaluate our developed system

for its efficiency, adaptability, autonomy, and skill improvement of the exercise participants. In the right

conditions, our proposed system could create a complex cybersecurity exercise infrastructure involving

400 nodes with customized vulnerabilities, emulated attackers, defenders, and traffic generators under

40 minutes. It provided a realistic environment for cybersecurity exercises and positively affected the

exercise participants’ skill sets.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Conducting operational cybersecurity exercises is a difficult

and challenging task (Pham et al., 2016), and creating the en-

vironment for such exercises is error-prone and mostly man-

ual (Beuran et al., 2018). Creating such cybersecurity exercise envi-

ronments and executing exercise scenarios can be done using cy-

ber ranges (Yamin et al., 2020). Exercise scenarios can help with

conducting hands-on operational cybersecurity exercises, as well as

discussion-based or table-top exercises for educational purposes.

Although both types of cybersecurity exercises are very important,

we identified that there were inefficiencies in operational-based

exercises (Yamin and Katt, 2018b), hence hindering their capabil-

ities to be widely used for cybersecurity education, as well as for

other public or private institutions.

∗ Corresponding author.

E-mail address: muhammad.m.yamin@ntnu.no (M.M. Yamin).

Multiple researchers have been trying to make the process of

executing operational cybersecurity exercises more efficient and

less manual labour intensive (Pham et al., 2016; Russo et al., 2020;

Schreuders et al., 2017; Yamin and Katt, 2019). These researchers

were successful in dealing with the inefficiencies in cybersecurity

exercises. However, most of the proposed solutions are just limited

to deploying the exercise infrastructure only. Moreover, because

of the dynamic nature of evolving cybersecurity threats, there is

a need to model scenarios so that they are adaptable enough to

accommodate changes in scenario requirements before and after

scenario deployment. Additionally, for a realistic cybersecurity ex-

ercise environment, there is a need to autonomously execute cy-

bersecurity exercise operations (Jones et al., 2015; Yamin et al.,

2020). These operations range from emulating virtual users and

generating network traffic to executing offensive and defensive op-

erations within the exercise environment. Traditionally, these tasks

have been the responsibility of human teams; therefore, there is

the need to increase the automation level to make the exercise life

https://doi.org/10.1016/j.cose.2022.102635

0167-4048/© 2022 Elsevier Ltd. All rights reserved.

M.M. Yamin and B. Katt Computers & Security 116 (2022) 102635

cycle more efficient. So in the current work, we investigate four

research questions:

1. How can we model and execute realistic cybersecurity exercise

scenarios more efficiently?

2. Is it possible to make cybersecurity exercise models adaptable

to changing requirements?

3. What operations in cybersecurity exercises can be executed au-

tonomously to reduce dependability on human teams?

4. How much do such exercise scenarios improve the skills of cy-

bersecurity exercise participants?

In the present work, we developed a software-based solution

that addresses these questions. We used our solution to model,

verify, deploy, test, and execute cybersecurity exercise scenarios

in a controlled and safe environment. We performed a case study

with top cybersecurity talents in Norway to evaluate our solution’s

performance on a set of defined matrices. Our developed solution

is now being actively used in research and educational activities

at the Norwegian University of Science and Technology (NTNU), the

details of which are presented in the current paper.

To demonstrate the capabilities of the proposed system, two

case studies were conducted during Norwegian Cyber Security Chal-

lenge (NCSC) 2020. NCSC is a national competition in Norway in

which individuals ranging from 16–25 years old participate. NCSC

has multiple rounds, and our developed solution was used in its

final rounds for two case studies. The first case study involves a

penetration testing scenario in which a small organization network

was orchestrated. The network had three subnets: public, demili-

tarized zone, and internal network. Red team members had direct

access to the public network, but they had to exploit vulnerabili-

ties in the public network to pivot into the demilitarized zone and

internal network. The participants were asked to find vulnerabili-

ties in the network and achieve a very specific objective: updating

the content of a file in a specific machine present in the internal

network.

The second case study was also conducted during the NCSC

2020 finals, in which an attack/defense scenario was created. The

scenario topology comprised five identical isolated networks and

the execution was divided into two parts. In the first part, teams

were tasked with patching the vulnerabilities present in their cor-

responding networks in a particular amount of time. In the second

part, the isolated networks were interconnected, and the teams

were tasked with attacking each other’s network.

The paper is structured as follows: In Section 2 , we provide the

necessary background and related work for this research. Contin-

uing that, in Section 3 , we present the methodology that we em-

ployed for this research. Following that, in Section 4 , we present

the requirement and our design for modeling and executing cyber-

security exercises. After that, in Section 6 , we discuss the imple-

mentation details of our solution and its evaluation through a case

study. Finally, in Section 7 and 8 , we conclude the article with a

discussion and conclusion respectively.

2. Background and related work

2.1. Background

2.1.1. Cyber ranges

The word “Cyber Range” was first used during the 1970s and

1980s to describe a class of mainframe super computers devel-

oped by Control Data Corporation (CDC) (Lord, 1985; Weeden and

Cefola, 2010). These computers were used in mathematically in-

tensive tasks and the modeling of complex natural phenomena.

Moving forward, in 2004, the US Congress directed the Center for

Technology and National Security Policy (CTNSP) to develop a pro-

gram ”to find practical ways in which the defense IT community can

gain a mutual understanding of defense needs and industry capabil-

ities and identify opportunities to integrate IT innovations in the U.S.

military strategy.” (Kramer et al., 2006). In the report findings, the

US Northern Command suggested the creation of a “Cyber range”

for homeland security and homeland defense. Cyber ranges pro-

vide an interactive representation of an organizational environ-

ment, including tools, application, network architecture, and peo-

ple functions; they are used for cybersecurity training, testing, and

educational scenarios in a controlled and safe environment for pro-

viding hands-on cybersecurity experiences (NIST, 2020).

We conducted a detailed study on unclassified cyber

ranges (Yamin et al., 2020) in which we discussed the sce-

narios, functions, tools, and architecture of such platforms. We

developed a taxonomy of cyber ranges and proposed a functional

architecture for building future cyber ranges. In the proposed

architecture, there are six modules for the cyber range, which

are presented in Fig. 1 . One of the modules that deal with the

run-time environment has different functions such as running

the exercise infrastructure on emulated, simulated, or hardware

infrastructure, generating attacks, user behavior, and traffic to add

necessary realism into the environment.

This run-time environment is the prime necessity for conduct-

ing operational cybersecurity exercises. Other modules of cyber

ranges also depend on this run-time environment for the scenario

management and the exercise monitoring. This run-time environ-

ment also facilitates the operations of training, testing, and educa-

tional modules. Because of their central role, a lot of research has

been conducted on cyber ranges (Pham et al., 2016; Russo et al.,

2020; Schreuders et al., 2017; Yamin and Katt, 2019), and creating

such a dynamic environment is usually the responsibility of the

different teams present in cybersecurity exercises, which we dis-

cuss in Section 2.1.2 .

2.1.2. Cyber security exercises

There are multiple teams involved in the cybersecurity exercise

life cycle that perform different roles, as follows:

1. White Team

White team members are subject matter experts who define

the cybersecurity exercises objective and plan the scenario.

They can assist the other participating teams in understating

the scenario and can provide hints.

2. Green Team

Green team members are responsible for deploying the cyber-

security exercises infrastructure as per the specification of the

white team members’ developed scenario. They are also re-

sponsible for the monitoring and maintenance of exercise in-

frastructure during the cybersecurity exercises.

3. Red Team

Red team members are the attackers in the cybersecurity exer-

cises. They attack the cybersecurity infrastructure developed by

the green team members for achieving the objectives defined

by the white team members.

4. Blue Team

Blue team members are the defenders in the cybersecurity ex-

ercises. They defend the cybersecurity infrastructure developed

by the green team members for achieving the objectives de-

fined by the white team members.

2.1.3. Cyber security exercises scenarios

There are different types of operational cybersecurity exercise

scenarios. We categorized them based on the network topology

that is employed to execute the scenarios.

1. Jeopardy Style CTF

The jeopardy-style capture-the-flag (CTF) competition uses the

simplest network topology in which individuals and teams of

2

M.M. Yamin and B. Katt Computers & Security 116 (2022) 102635

Fig. 1. Cyber range functional architecture Yamin et al. (2020) .

Fig. 2. Simple jeopardy-style CTF scenario network topology.

attackers have access to the machine over a network that has

vulnerabilities. Attackers must exploit those vulnerabilities and

retrieve a unique string, which is called the flag. The flag is

then used for scoring purposes. The exercises are time-bound,

so whoever scores the most will be declared the winner at the

end. A simple representation of a jeopardy-style CTF competi-

tion network topology is presented in Fig. 2 .

2. Attack/Defense

Attack/defense cybersecurity exercises are team-based exercises

in which each team has access to a network for which they are

responsible for maintaining/defending the services of the dif-

ferent machines present in the network. The teams have the

capability to launch attacks on the other team networks and

disrupt the running of services. Flags and service availability

statistics are mostly used for scoring purposes. A simple rep-

resentation of an attack/defense cybersecurity exercise scenario

network topology is presented in Fig. 3 .

3. Red Team/Blue Team

Red team/blue team exercises are objective-oriented, in which a

team of attackers/red team is assigned an objective to penetrate

into an organization and perform specific tasks such as data ex-

filtration and manipulation. The blue team performs actions re-

lated to incident response and forensics to figure out the red

team’s objectives. The exercise is conducted for skill improve-

ment for the both red and blue teams and is mostly evaluated

based on which team clearly achieved its objectives. A simple

representation of the red team/blue team cybersecurity exercise

scenario network topology is presented in Fig. 4 .

2.1.4. Cyber security exercises life cycle

Developing, verifying, testing, and evaluating cybersecurity ex-

ercise scenarios is a challenge in and of itself. There is a

whole life cycle involved in conducting cybersecurity exercises,

Vykopal et al. (2017b) presented the lessons learned from an

operation-based cybersecurity exercise in a cyber range. After an-

alyzing multiple cybersecurity exercises, the researchers shared

their cybersecurity exercise life cycle . The life cycle has five phases,

as follows:

• Preparation

In this phase, the exercises’ objectives are defined, the scenario

for the exercise is developed, and the necessary infrastructure

for the scenarios is deployed. This phase takes from weeks to

months in the cybersecurity exercise life cycle because it in-

volves a lot of planning and development.

3

M.M. Yamin and B. Katt Computers & Security 116 (2022) 102635

Fig. 3. Simple attack/defense scenario network topology.

Fig. 4. Simple red/blue scenario network topology. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)

• Dry run

In this phase, the developed scenario and deployed infrastruc-

ture are tested by a team of experts. Changes are made to en-

sure that everything is working as planned. This phase also

takes a few weeks because it involves debugging the exercises

scenario and infrastructure for any error.

• Execution

In this phase, the cybersecurity exercise is executed by differ-

ent teams to try to achieve the objectives defined in the exer-

cise scenario. This phase usually takes from a few days to few

weeks, depending on the nature of the exercise.

• Evaluation

In this phase, the different participating teams’ performance in

the cybersecurity exercise is evaluated based on the achieved

objectives. This phase usually takes a few days to evaluate team

performance.

• Repetition

In this phase, the overall exercise is analyzed to identify any

technical and nontechnical problems that need to be addressed

before rerunning the exercise. This phase usually takes a few

days to fix newly identified issues.

From our previous research, we have identified that the

current way of conducting cybersecurity exercises is not effi-

cient (Yamin and Katt, 2018b). Here, introducing automation at dif-

ferent phases of the cybersecurity exercise life cycle can greatly re-

duce the time required for such exercises (Yamin et al., 2018). An-

other problem with the current way of conducting cybersecurity

exercises is their static nature because they do not offer active op-

position to attackers and defenders (Jones et al., 2015) and are not

adaptable to real-life environments. Hence, we propose a modern

cybersecurity operation triad that can be applied to the cyberse-

curity exercise life cycle to make them more efficient and address

these shortcomings.

2.2. Related work

A lot of research has been carried out in the development of

security testbeds and cyber ranges; we will highlight some of the

related works in the field. In 20 0 0, the development of EMU-

LAB/Netbed began (White et al., 2002), which is a combination of

software and specialized hardware facilities. It has two parts: end

nodes and core nodes. The end nodes host the experimental arti-

facts, while the core nodes are designed to be used as end nodes,

simulated routers, traffic shaping nodes, and traffic generators. The

core nodes allow the EMULAB/Netbed infrastructure to be recon-

figured, making it useful for a variety of networking and cyberse-

curity experiments.

In 2004, the cyber-Defense Technology Experimental Research

laboratory (DETER) (Mirkovic et al., 2010) started an over 300-node

facility. DETER uses physical nodes and provides access to stu-

dents over SSH DETER uses Emulab for the programming of routers

present in the network to create new network topologies. At its in-

ception, most of the work in DETER lab was done manually, with

a later edition of the automation of traffic generation.

In 2008, the first phase of the Cyber Range and Training Envi-

ronment (CRATE) (Almroth and Gustafsson, 2020) started. CRATE

provides a hybrid cyber range environment; that is, it runs on both

emulated virtual machines and dedicated hardware. CRATE sup-

ports the design, deployment, and execution of cybersecurity sce-

narios through a set of dedicated APIs that use JSON as the input.

4

M.M. Yamin and B. Katt Computers & Security 116 (2022) 102635

CRATE is deployed over local servers, and access to users is pro-

vided through VPN. CRATE uses a high level of automation and

divides the cyber range network into parts, first event plane and

then control plane . In the event plane, internet traffic and attacks

are emulated to add realism in the environment, while in the con-

trol plane, the cybersecurity exercise is conducted.

In 2012, researchers presented Telelab (Willems and

Meinel, 2012), which was used to develop a single virtual

machine-based lab environment for cybersecurity exercises. The

interesting thing about this is that it uses an XML-based lab

requirement specification to inject vulnerabilities in a virtual

machine through a local agent running on the machine. Similar

to Telelab, researchers created SecGen (Schreuders et al., 2017),

which also uses XML configuration language for creating a virtual

machine with vulnerabilities randomly selected from a catalog.

They used Puppet and Vagrant for automating the process of

vulnerability injection. Similar to Telelab and Secgen, in 2019,

researchers developed Alpaca (Eckroth et al., 2019), which creates

single virtual machines for cybersecurity exercises using Ansible.

However, it has a prolog-based exercise planner, which is used to

develop multi-step attack scenarios for complex training.

In 2016, researchers presented Cyber Range Instantiation System

for Facilitating Security Training (CyRIS) (Pham et al., 2016). They

automated the process of designing and deploying infrastructure

for cybersecurity exercises using a YAML-based language. The re-

searchers used Libvirt (lib, 2021) virtualization API for deploying

exercises infrastructure on local servers. Continuing this, in 2017,

they developed CyTrONE (Beuran et al., 2017), an integrated cyber-

security training framework. CyTrONE uses YAML-based language

to do two things: first, create content for a learning management

system (LMS), which is a mobile-based application and second is

to design, deploy, and emulate attacks on a virtual environment.

For the infrastructure orchestration, CyTrONE uses CyRIS.

In 2016, researchers presented (Yasuda et al., 2016) a mimetic

network environment construction system Alfons. It was developed

to mimic a realistic environment for malware execution and dy-

namic analysis in a local environment. It was written in Ruby us-

ing an XML-based environment composition file with SpringOS API

calls to deploy the infrastructure on StarBed virtualized nodes. Al-

fons was not designed for conducting cybersecurity exercises, but

it was developed to provide a platform to conduct forensic analy-

ses for blue team members.

In 2017, researchers presented the KYPO Cyber

Range (Vykopal et al., 2017a), which uses a JSON-based scenario

definition language , which is used for designing and deploying the

exercise infrastructure on an Openstack-based cloud environment.

The scenario specification is translated into Ansible and Puppet

scripts, which are then used for infrastructure orchestration. It

supports the execution of attacks on infrastructures such as for

phishing and DoS through SDL-defined templates. It is useful for

conducting CTF-like competitions and has a physical facility for

conducting cybersecurity exercises as well; however, it can also be

accessed remotely.

In 2020, researchers presented the Cyber Range Automated Con-

struction Kit (CRACK) (Russo et al., 2020), which supports the

design, automated verification, deployment, and automated test-

ing of complex cyber range scenarios. The CRACK framework

is built on the extended version of a scenario definition lan-

guage (SDL) (Russo et al., 2018), which is YAML based. SDL was

developed to be compatible with open TOSCA (Ope, 2021) stan-

dards and is suitable for deploying infrastructure on the cloud

in an agnostic manner. The researchers combined their SDL with

Datalog logic programming for verification of the scenario proper-

ties, and they performed a case study for conducting a cybersecu-

rity exercise on the infrastructure of a small organization. In the

case study, three networks were behind firewall protection. Also,

in 2020 researchers presented the AIT cyber range (Leitner et al.,

2020), which uses Ansible and Terraform infrastructures for creat-

ing a cybersecurity exercise environment. The conducted exercises

involved nearly 350 students.

We consider EMULAB, DETER, and CRATE as hardware-specific

reliant testbeds that support cybersecurity exercises. We believe

they can support large-scale cybersecurity exercises; however, this

will require a lot of human effort f or setting up the exercise en-

vironment. Telelab, Secgen, and Alpaca can be used for small-scale

training exercises but are not suitable for large-scale exercise. The

CYRIS, KYPO, CRACK, and AIT cyber ranges can support large-scale

exercises using infrastructure as code and cloud technologies; how-

ever, they do not provide enough flexibility to change the exercise

infrastructure after deployment. Moreover, the above solutions do

not provide the necessary friction (Jones et al., 2015) for conduct-

ing realistic cybersecurity exercises.

In our solution, we utilized previous suitable techniques and

added new elements to make the cybersecurity exercises more re-

alistic. We utilized similar techniques from TELELAB to make vir-

tual machines vulnerable in an agentless manner. We developed a

JSON-based SDL similar to KYPO for infrastructure provisioning. We

implemented a similar solution from CRACK for scenario infras-

tructure verification. We added similar capabilities in the CRATE

event plane for emulating attacks, presenting user behavior, and

generating network traffic. Finally, we introduced emulated de-

fenders in the cyber range environment to make the exercise more

realistic.

If we compare the proposed solution with other systems identi-

fied in the literature we can see that most systems are focusing on

preparation of cybersecurity exercise environment. While CRACK is

using formal verification for Dry Run purposes. KYPO , CRACK and

our proposed system are using widely adapted cloud technologies

that make them more computationally repeatable in terms of in-

frastructure deployment compare to other systems that are using

very specific hardware and virtualization technologies. For dry run

we used formal modeling and analysis for verification of different

scenario properties before the scenario actual operational deploy-

ment. In terms of execution, the proposed system is introducing

new capabilities like attacker and defender agents for conducting

cybersecurity exercises in a more efficient manner. The process of

evaluation can be automated in different ways, like flags style scor-

ing. However, for complex exercises, detailed root cause analysis of

system compromise is required which needs further investigation.

A comparison between our proposed solution and other systems

present in the literature based upon cybersecurity exercise life cy-

cle is presented in Fig. 5 .

3. Methodology

The overall research methodology that we used is DSR (design

science research) (Vaishnavi and Kuechler, 2015). DSR focuses on

the development and performance improvement of artifacts for in-

creasing the functional performance of the artifact. These artifacts

are usually algorithms and systems that involve human-computer

interactions. DSR has three parts 1) knowledge flows, 2) process

steps, and 3) output. Knowledge flows recursively integrate the in-

formation identified in the previous process steps into the next

process steps. The process steps involve six processes: 1) aware-

ness of problem, 2) suggestions, 3) development, 4) evaluation, and

5) conclusion. The execution of these processes results in the out-

put in the form of 1) proposal, 2) tentative design, 3) artifacts, 4)

performance measurement, and 5) results. We published our find-

ings related to the proposal and tentative design in the following

research articles (Yamin and Katt, 2018b; 2019; Yamin et al., 2020;

2018), in which we identified that the current way of executing cy-

5

M.M. Yamin and B. Katt Computers & Security 116 (2022) 102635

Fig. 5. Comparison between different cyber range systems with respect to cybersecurity exercise life cycle.

bersecurity exercises is not efficient and that automation can help

to reduce this inefficiency.

For the artifact’s development and to reduce these inefficien-

cies, we used MDE (model-driven engineering) (Schmidt, 2006).

Model-driven approaches provide the ability to express complex

domain-specific concepts in an abstract manner, which was very

difficult in third-generation programming languages. This helps in

increasing the productivity by a factor of 10 and improves con-

sistency, traceability, and maintainability in the software develop-

ment process (Chang et al., 2019). MDE combines two important

technologies:

1. DSML (Domain specific modeling languages)

In DSML, domain experts specify the domain knowledge in the

form of a model. The model contains the concepts from the do-

main, their key semantics, relationship, and constraints associ-

ated with combining different concepts. DSML is used to specify

the specific problem related to a specific domain in a DSML’s

instance, which is the abstract and human-readable representa-

tion of the problem.

2. Transformation engines and generators

Transformation engines and generators take the DSML’s in-

stance and transform them into concrete software artifacts in

an automated manner. This automated process of software ar-

tifact generation involves multiple steps, which include, but are

not limited to, the following:

• Text-to-model transformation

In this step, the human-readable DSML instance is trans-

formed into a computer-readable model. The DSML instance

is usually the source code of a program that is transformed

into a computer model using different parsing rules.

• Model validation

In this step, the model is verified using a set of defined se-

mantic rules to ensure it is correct, which is done by con-

struction implementation of the model.

• Model to model, or model to code, transformation

In this step, the model is transformed into another model,

or a concrete code, that represents the problem specified in

the DSML’s instance.

The proposed system has an abstract scenario modeler that can

generate two artifacts: one is a concrete DSL domain specific lan-

guage instance that can be deployed to execute the cybersecu-

rity exercise scenario, and the other is as a formal model of the

scenario in Datalog, which can be used to analyze the different

properties of the scenario before deployment. A model-to-model

translation methodology was used in scenario modeler, which gave

us the ability to logically verify some of the scenario properties.

We developed a JSON-based DSL and used text-to-model trans-

formation for orchestrating the exercise infrastructure and execut-

ing different cybersecurity operations. We used logic program-

ming (Lloyd, 2012) to formally verify and analyze and verify dif-

ferent properties of the scenario for model validation before actual

deployment. We used model-to-model transformation to combine

the DSL model with a formal model, hence providing meta-model

conformance . For the practical implementation of the artifact, we

used different programming languages and operating system au-

tomation techniques, ranging from Python, Bash, Power shell, HEAT

templates, and many more. The programming languages and tech-

niques were selected with no particular preferences and were em-

ployed as the functionality’s need arose. The artifact was developed

in a very modular way. Each module can work independently from

each other, providing us with a lot of flexibility in executing differ-

ent cybersecurity operations.

For performance measurement of the developed artifact, we

employed applied experimentation in operational cybersecurity

exercises (Edgar and Manz, 2017). In applied experimentation , the

performance of the developed artifact is measured against a set of

predefined test cases and benchmarks. These were used to evaluate

the overall performance of the artifact. Because the developed arti-

fact involved system performance for deploying the exercise infras-

tructure and skill improvement of exercise participants, we used a

mixed methods approach to gather quantitative and qualitative re-

search data. We conducted a case study in which a cybersecurity

exercise scenario was deployed and executed. We measured dif-

ferent quantitative matrices such as the scenario deployment effi-

ciency, its usability in cybersecurity exercises, its flexibility to ac-

commodate new changes, its adaptability to be used in contexts

other than the defined context, and its scalability. We conducted

pre and post-exercise surveys to measure the qualitative matrices,

6

M.M. Yamin and B. Katt Computers & Security 116 (2022) 102635

for example, realism and skill improvement from the cybersecurity

exercise scenario execution.

4. Design

4.1. Requirements for modern cyber security operations

With the rapid advancement of technologies such as IaC infras-

tructure as code (Wha, 2020) and SOAR security orchestration, au-

tomation, and response (Wha, 2020), it has become increasingly

apparent that cyber operations are evolving. This advancement was

made to execute such operations in an efficient, adaptable, and au-

tonomous manner. This enabled us to reduce the cybersecurity ex-

ercise life cycle’s inefficiencies and execute them in an efficient,

adaptable, and autonomous manner.

4.1.1. Efficient

As stated earlier, preparing the environment for cybersecurity

exercises takes anywhere from weeks to months. Efficiency in this

context implies that the process of creating the exercise scenario

and infrastructure should not take more than a couple of hours to

a few days and should be applicable and accurate, as per the spec-

ified requirements. Efficiency means reducing the time required for

creating the scenario, which does not affect the scenario’s applica-

bility and accuracy. Applicability measures whether the deployed

scenario is employable for conducting practical cybersecurity ex-

ercises. In comparison, accuracy measures whether the deployed

scenario fulfills the specified requirements in the scenario model.

Multiple factors can affect the timeline, which may include the size

and complexity of the exercise, but these factors need to be ad-

dressed in a systemic manner to remove inefficiency.

4.1.2. Adaptable

Here, adaptability implies that the deployed cybersecurity exer-

cise infrastructure is flexible and scalable enough to adapt to new

changes per the chaining scenario requirements. Flexibility mea-

sures the deployed scenario’s capability to accept changes after

deployment; in comparison, Scalability measures whether the de-

ployed scenario is expandable enough to accommodate additional

teams in the scenario. The adaptability will enable the cybersecu-

rity exercises scenario developers to adapt the scenario for partic-

ipants with different skill levels, creating a balanced environment

for different participants.

4.1.3. Autonomous

In this context, autonomous implies that most of the cybersecu-

rity operations are executed with minimum or no human interfer-

ence. If we consider the example of autonomous cars, we can iden-

tify six levels of autonomy: 0: no automation, 1: driver assistance,

2: partial automation, 3: conditional automation, 4: high automation ,

and 5: full automation (Taxonomy, 2020). Cyber operations such as

an attack and defense scenario can be autonomous in a cybersecu-

rity exercise environment. Human intervention is still possible in

monitoring the situation; however, this intervention must be con-

ditional, which would be in contrast to the second level, where

human monitoring is required.

4.2. Integrating modern operations with cyber security exercise life

cycle

After an in-depth analysis of the five phases of the cybersecu-

rity exercise life cycle, we divided these phases in to eight inde-

pendent modular activities, and those eight modular process have

11 technical functions. The updated cybersecurity exercise life cycle

is presented in Fig. 6 , and details of the new activities and func-

tions of the cybersecurity exercise life cycle are given below.

4.2.1. Preparation

Scenario Modeling In this phase of the scenario, a logical net-

work topology with vulnerabilities was modeled, attacker and de-

fender capabilities to exploit or defend those vulnerabilities were

defined, and probable attack and defense strategies were analyzed

and logically verified. We developed a DSL to specify different cy-

bersecurity operational requirements during the exercise. A DSL

provides a layer of abstraction to solve domain-specific problems

without dealing with the necessary overhead of general purpose

programming language. We simplified the cybersecurity operation

in an exercise into five general operations: infrastructure orchestra-

tor, vulnerability injector, attacker agent, defender agent , and traffic

generator . These operations have their specific properties in a cy-

bersecurity exercise scenario; to simplify things, the properties of

our scenario modeling language are presented in BNF (Backus-Naur

form). BNF is a notation technique for context-free grammar and is

also used to describe the syntax of languages used in computing,

such as computer programming languages.

1. Scenario Language Design

The scenario modeling was performed through our developed

scenario language, which was verified logically by Datalog. Our

scenario language has multiple parts whose requirements are

presented in the coming sections. Before defining the actual

scenario modeling language, we first define some of the basic

variables that were used in the language:

These basic variables are used to define the characters, strings,

integers, IP addresses, ranges, and CIDR used in rest of the lan-

guage.

• Infrastructure Orchestrator

The infrastructure orchestrator has two parts subnet and ma-

chine . Subnet is used to represent the network with which

machines are connected. It requires three things to be spec-

ified in the language:

(a) CIDR (CIDR value like 10.10.0.10/24)

(b) Name (String value that indicates the name of subnet,

like Public)

(c) A network interface (String value of Network ID from

Openstack)

The second part machine is a host; hosts are virtual ma-

chines that are connected to the specified subnet and in

which vulnerabilities are injected. It requires r things to be

specified in the language:

(a) Name (String value that indicates the name of a machine

like Machine1)

(b) Operating system (String value operating system id that is

already uploaded over Openstack)

(c) Key (String value SSH key that can be used for mainte-

nance and monitoring)

(d) Depends (String value name of subnet with whine Ma-

chine is connected)

The BNF representation for specifying the requirements of

infrastructure orchestration is as follows:

• Vulnerability Injector

When the machines are deployed, then the vulnerability in-

jection can be done. The process vulnerability injection re-

quires the following properties:

(a) MachineIP (IP address value of a deployed machine like

10.10.1.10)

(b) MachineUserID (String value that indicates admin user

account on a deployed machine like root)

(c) MachineUserPassword (String value that indicates the

admin user password of the deployed machine like toor)

(d) OS (String value that indicates the name of a machine

like Machine1)

7

M.M. Yamin and B. Katt Computers & Security 116 (2022) 102635

Fig. 6. Modern cybersecurity operations integrated with cybersecurity exercise life cycle.

(e) Vulnerability (String value that indicates the type of vul-

nerability that needs to be injected in the machine like

WeakPassword)

(f) Parameter (String value that indicates the vulnerability-

specific parameter like “passwd|apollo”)

The BNF representation for specifying the requirements of

the vulnerability injection is as follows:

• Attacker Agent After the vulnerabilities are injected, they

can be verified by an attack agent . It can also be used to em-

ulate attacker behavior during a cybersecurity exercise. The

attacker agent requires six properties to be specified before

its execution.

(a) ToolName (String value that indicates the tool name to

be used by the agent like nmap)

(b) AgentIP (IP address value of a Kali Linux -based machine

present in the network topology like 10.10.1.5)

(c) AgentUserID (String value that indicates admin user ac-

count of the Kali Linux machine like root)

(d) AgentUserPassword (String value that indicates admin

user password of the Kali Linux machine like toor)

(e) Argument ((String value that indicates attacker agent

action-specific parameter like -sS -sV)

(f) Target (IP address value of a deployed machine like

10.10.1.10)

The BNF representation for specifying the requirements of

attacker agent behavior is as follows:

• Defender Agent

To add friction and realism in cybersecurity exercises, a

host-based defender agent is developed that can be injected

into the deployed machines. It has the following five prop-

erties.

(a) MachineIP (IP address value of a deployed machine like

10.10.1.10)

(b) MachineUserID (String value that indicates the admin

user account on deployed machine like root)

(c) MachineUserPassword (String value that indicates the

admin user password of the deployed machine like toor)

(d) OS (String operating system name of the deployed ma-

chine like Windows)

(e) Parameter (String value that indicates the action-specific

parameters of the defender agent in a CSV file like netstat

-ano| taskkill /F /PID ??)

The BNF representation for specifying the requirements of

defender agent behavior is as follows:

• Traffic Generator

8

M.M. Yamin and B. Katt Computers & Security 116 (2022) 102635

To make the scenario execution dynamic with realistic

traffic, two modules have been developed. First, there is

TcpRelay, which can replay traffic from prerecorded network

traffic using PCAP files. Second, there is VncBot, which can

emulate user behavior from prerecorded VDO files. These

modules have similar six requirements as those of the at-

tack agent:

(a) ToolName (String value that indicates the tool name to

be used by the agent like VncBot)

(b) AgentIP (IP address value of a Kali Linux -based machine

present in network topology like 10.10.1.5)

(c) AgentUserID (String value that indicates the admin user

account of the Kali Linux machine like root)

(d) AgentUserPassword (String value that indicates the ad-

min user password of the Kali Linux machine like toor)

(e) Argument ((String value that indicates an attacker agent

action-specific parameter like Test.vdo|toor where toor is

the password of the VNC-enabled machine deployed in

the exercise infrastructure)

(f) Target (IP address value of a deployed machine like

10.10.1.10)

The BNF representation for specifying the requirements of

the traffic generator is as follows:

2. Formal Scenario Specification

Multiple models have been proposed for modeling the at-

tackers’ and defenders’ behavior during a cyber engagement.

These models focus on the chain of events that lead up

to compromising the computer systems. Lockheed Martin

Hutchins et al. (2011) put forward the cyber kill chain methodol-

ogy to protect computer network damage espionage. The cyber

kill chain consists of the following steps and stages:

(a) Reconnaissance: Looking out for intrusions, via email, con-

ferences, and so forth.

(b) Weaponization: Malicious intent realized through PDF and

word files for intrusion purposes.

(c) Delivery: Sending the intrusion payload 2004–2010 accord-

ing to Lockheed Martin mostly sent through email attach-

ments, USB, and websites.

(d) Exploitation: Intrusion is in and focuses on its target

(e) Installation: Providing a means of access to the compro-

mised system to the adversary

(f) Command and control: After getting access, obtaining all the

controls of the compromised, intruded system, and control-

ling it, done manually, not automatically via an internet con-

troller server.

(g) Actions on objectives: To get access to the information and

resources for which the last six phases took place.

They (Hutchins et al., 2011) also proposed the defender’s course

of action against the attacker in cyber kill chain , including what

type of visibility the defender has and what tools and tech-

niques a defender can use to stop the attacker. The course of

action matrix is presented in Fig. 7 .

Other models like MITRE (MIT, 2020) and the unified kill

chain (Pau, 2020) provide more technical details of the at-

tacker’s and defender’s steps, but at this stage, we chose the

cyber kill chain for two main reasons: First, it is very well es-

tablished and well-known modeling technique, and second, it

offers a layer of simplicity and abstraction compared with other

models, which focus more on core technical steps.

(a) Scenario Formalization Background

We used Datalog (Dat, 2020) for formal modeling of the sce-

nario and to verify the different scenario properties. Dat-

alog is a programming language based on a declarative

logic (Lloyd, 2012). It is employed by researchers for large-

scale software analyses (Naik, 2020), automatic evaluations

of cybersecurity matrices (Zaber and Nair, 2020), and the

verification of cybersecurity exercise scenarios (Russo et al.,

2020), making it suitable as a formal model for cybersecu-

rity exercise scenarios. It consists of two parts: facts and

clauses. A fact conforms to the parts of the elements of the

predicated phenomenon. A clause refers to information de-

riving from other subsets of information. Clauses rely on

terms, which can contain variables; however, facts cannot.

It adjudicates whether the specific term is adherent to the

specified facts and clauses. If it happens to be so, the spe-

cific query is validated via a query engine, providing the

prerequisite facts and clauses.

When running a Datalog operation, the specified conditions

include a combination of two facts along with a singular

clause. We assign a condition that if the query is valid, a

specific response is to be expected at the end. The con-

clusion of the said experiment is that the specific response

is received and that the query is satisfied. By utilizing the

clauses via their variables, the engine can pinpoint and find

the result. For a concrete example (Ceri et al., 1989), con-

sider the facts “John is the father of Harry” and “Harry is

the father of Larry”. A clause will allow us to deduce facts

from other facts. In this example, consider we want to know

“Who is the grandfather of Larry?”. We can use three vari-

ables X,Y and Z and make a deductive clause: If X is the par-

ent of Y and Y is the father of Z , then X will be the grandfa-

ther of Z . To represent facts and clauses, Datalog uses horn

clauses in a general shape:

L 0 : −L 1 ..., Ln

Each instance of L represents a literal in the form of a pred-

icate symbol that contains one or multiple terms . A term

can have a constant or variable value. A Datalog clause has

two parts: the left hand side part is called the head, while

the right hand side part is called the body. The body of

the clause can be empty, which makes the clause a fact.

A body that contains at least literal represents the rules in

the clause. Lets us represent the above mentioned facts that

“John is the father of Harry” and “Harry is the father of Larry”

as follows:

F ather (John, Har r y)

F ather (Har r y, Lar r y)

The clause if X is the father of Y and Y is the father of Z ,

then X will be the grandfather of Z can be represented as

follows:

GrandF ather(Z, X) : −F ather(Y, X) , F ather(Z, Y)

(b) Scenario Formalization

We have defined four basic predicates for our scenario mod-

eling, which are 1) link, 2) vulnerable, 3) capability, and 4)

killchain . The facts for the scenario model are presented as

follows:

The Link predicate is logically represented as Link(H,N) , and

it has the two variables of host H and network N . H is a

string value that indicates the machine name (virtual ma-

chine name), while N is a string value that indicates the

name of the network with which it is connected. For a con-

crete example, say a Host name ‘Machine1’ connected with

network name ‘Public’ can be represented as follows:

Link (′ Machine 1

′ , ′ P ublic ′)
The Vulnerable predicate is logically represented as vulnera-

ble(H,V) , it has two variables host H , which is the specified

machine name and V , a string value that indicates the pres-

ence of a particular vulnerability in H . A concrete example

9

M.M. Yamin and B. Katt Computers & Security 116 (2022) 102635

Fig. 7. Cyber kill chain course of action matrix for attacker and defender Hutchins et al. (2011) .

could be that ‘Machine1’ is vulnerable to a ‘SSHBruteforce’ at-

tack and can be represented as follows:

V ul nerabl e (′ Machine 1

′ , ′ SSHBruteF orce ′)
The capability predicate is logically represented as capabil-

ity(’V’,’A’,’DE’) , and it has three variables V , which is the vul-

nerability present in H , A , which is a Bool value that indi-

cates whether a particular vulnerability V is exploitable by

the attacker and DE that indicates whether a particular vul-

nerability V is defendable by the defender. A concrete exam-

ple of a ‘SSHBruteforce’ vulnerability that can be exploited by

an attacker but cannot be defended by the defender is rep-

resented as follows:

Capability (′ SSHBruteF orce ′ , ′ Y ES ′ , ′ NO

′)
The KillChain predicate is logically represented as

KillChain(H,R,W,D,E,C,O) . It has seven variables host H

and raw cyber kill chain process of reconnaissance R ,

weaponization W , delivery D , exploitation E , command and

control C , and actions and objectives O . The cyber kill chain

process variables have Bool values that were assigned based

on V present in H . A concrete example for a host ‘Machine1’

that is completely exploitable as per the cyber kill chain can

be represented as follows:

Kil l Chain

(′ Machine 1

′ , ′ Y ES ′ , ′ Y ES ′ , ′ Y ES ′ , ′ Y ES ′ , ′ Y ES ′ , ′ Y ES ′ ,
′ Y ES ′

)

A detailed scenario model with all its facts and clauses for

the scenario presented in Fig. 10 is given in Appendix B .

We used the clauses for logical verification of the scenario,

which are presented in next section.

3. Formal Scenario Verification

We developed a tool for scenario modeling and verification. The

tool integrates the concepts of our scenario language with Data-

log modeling and provided us with the capability to model and

verify cybersecurity exercise scenarios at the same time. In the

scenario modeler, a user can specify the following:

(a) The networking topology that is required for the scenario

(b) The type of machines that are present in the network

(c) The type of vulnerabilities present in the machine

(d) The capabilities of the attacker and defender who can ex-

ploit or defend those vulnerabilities

After the specification is given to the modeler, the modeler can

generate the instance required for the orchestration of cyberse-

curity exercise operations and a formal model in Datalog. Dif-

ferent type sof logical analyses can be performed before the

actual deployment; some examples of security properties and

questions that can be verified include the following:

(a) Which machines are reachable from a specific point in the

network?

(b) Which machines are vulnerable to attack and can be

reached by an attacker?

(c) Which machines are vulnerable to an attack but can be de-

fended by the defender to limit attacker ingress into the

network?

This is achieved by defining clauses that contain specific rules

related to the scenario. First, we need to logically inter link dif-

ferent hosts . This can be done by creating a rule for a direct

bidirectional link connection between the hosts using variables

X and Y , as follows:

CanReach (X, Y) ≤ Link (Y, X)

Second, similar to the grandfather and grandchildren case, to

identify which hosts are indirectly connected in the network,

we can create a new CanReach with variable Z . This can be used

to find a direct link between X and Y , as well as an indirect link

between X and Z through Y :

CanReach (X, Y) ≤ Link (X, Y)

CanReach (X, Y) ≤ Link (X, Z)

To check which machines are connected to a machine, for

example, Machine1 , with a specific vulnerability, for example,

BufferOveflo w , we can verify this by the following clause:

CanReach (′ Mahine 1

′
, Y) & V ul nerabl e (Y, ′ Bu f f er O v er F low

′
)

To check which host s are connected to a vulnerable host , for

example, Machine1, which is not defendable by a defender, we

can verify it with the following clause:

Capability (V, ′ Y ES ′ , ′ NO

′) & CanReach (′ Mahine 1

′
, Y)

& V ul nerabl e (Y, V)

To integrate cyber kill chain concepts into the model, we can

specify the impact of a vulnerability injected in the host regard-

ing whether it allows the attacker to perform steps like recon-

naissance , exploitation , and so forth. This impact is a bool value

that suggests the cyber kill chain stage the attacker can theoret-

ically reach. We can create the following clause:

Capability (V, ′ Y ES ′ , ′ NO

′) & CanReach (′ Mahine 1

′
, Y)

10

M.M. Yamin and B. Katt Computers & Security 116 (2022) 102635

& V ul nerabl e (Y, V) & Kil l Chain (Y, ′ Y ES ′ , ′ Y ES ′ , ′ Y ES ′ , ′ Y ES ′ ,
′ Y ES ′ , ′ Y ES ′ , ′ Y ES ′)

The verification of the scenario can be done on run time before

the actual deployment of the exercise infrastructure. The verifica-

tion process used the facts and clauses generated in Datalog syntax

through our developed tool. With the help of mathematical logical

operation, specially transitive relation, the Datalog engine can re-

turn properties verification results based upon given quires. The

queries are similar to SQL quires and can use logical operators like

AND or OR for verification of different properties. If the property

is verified then the Datalog engine will return the output contain-

ing the elements that were verified by the query. If the output is

empty then it is considered that the property is not verified. A

complete scenario model with its properties verification steps are

presented in Appendix B .

Infrastructure Orchestration In this phase, the modeled scenario

that has been formally verified is transformed into an emulated

network topology. This transformation is achieved by utilizing in-

frastructure as code technologies in which the template for the

infrastructure orchestration is generated; this is deployed over a

cloud instance. Multiple cloud providers like Microsoft, Google, and

Amazon provide infrastructure orchestration technologies, but they

are a closed source and paid solution. We opted for an open source

solution called Openstack , which provides a functionality similar to

Microsoft, Google, and Amazon ; however, it also provides the capa-

bility to set up local cloud infrastructures without relying on third-

party infrastructure. Openstack provides infrastructure orchestra-

tion to HEAT templates. HEAT templates provide an interface to

specify the requirement for the network topology and the type

of system present in the network. Vulnerability Injection Vulnera-

bility injection in this type of network topology is a difficult pro-

cess (Russo et al., 2018). Researchers have used different infrastruc-

ture configuration technologies like Ansible and Puppet for vulner-

ability injection (Leitner et al., 2020). However, we opted for a fun-

damentally different technique for vulnerability injection and de-

veloped our own custom vulnerability injector. Vulnerabilities are

injected per the scenario model requirement using different op-

erating system automation techniques. These OS automation tech-

niques basically open an SSH connection in the machines deployed

in the emulated network and manipulate software, services, and

configuration using Bash , Powershell , and Python scripts. This en-

abled us to modify the scenario after infrastructure deployment

and inject new vulnerabilities to make the scenario more flexible

and balanced, if required.

4.2.2. Dry run

In the dry run phase, different scenario properties are checked

to identify whether the deployed scenario fulfills the specified re-

quirements in the scenario model. We divided this phase into two

parts. Manual Testing Manual testing is performed as a quality as-

surance process for verifying different scenario requirements. In

this phase, the deployed infrastructure is manually checked for any

abnormalities. This is done by manually executing a dry run, which

involves checking the network topology and exploiting the injected

vulnerabilities. Automated Verification A manual dry run of the ex-

ercises usually takes a lot of time as well. To address this issue, we

used the attacker agent to verify different scenario properties au-

tomatically. The attacker agent is a Kali Linux-based host machine

present in the deployed network infrastructure. It receives the in-

struction of what actions to take from the scenario language. When

a vulnerability is modeled to be injected into a host, a model for

the attacker agent action is also generated to verify the vulnera-

bility properties. This automatic verification includes different net-

work link connections and vulnerability presence, along with ex-

ploitability.

4.2.3. Execution

Preparation and the resulting dry run take the most time in

the cybersecurity exercise life cycle. When these parts are com-

pleted, the exercise can be executed; however, finding the right

people for the exercise was a challenge because if you want to

conduct a blue team exercise, you need a red team or vice versa.

To address this issue, we added automation in the execution part

as well, so our proposed exercises could be executed in the be-

low ways. Automatic In automatic execution, attacker and defender

actions can be specified for testing different cybersecurity scenar-

ios in an automated manner. We used agent-based techniques for

this purpose, in which we can inject attacker and defender agents

within the exercise infrastructure. This agent follows the require-

ments specified in the DSL to execute attacker and defender ac-

tions. Hybrid In hybrid execution, an automated agent can emulate

an attacker or defender against a human team in a cybersecurity

exercise. In a hybrid execution, an adversary team’s requirement is

removed, making the cybersecurity exercise life cycle less reliant

on human input and reducing the inefficiencies related to finding

human teams. Manual In manual execution, a normal cybersecu-

rity exercise is conducted in which all participants are human. De-

pending on the training requirements, the proposed system sup-

ports the manual execution of cybersecurity exercises. In manual

execution, both red and blue teams consist of human participants

who perform a cyber-attack and defense within the exercise infras-

tructure.

4.2.4. Evaluation

Most operational cybersecurity exercises are evaluated using

flags. Flags are a textual string that the participants must cap-

ture from a system to receive a score. A different variation of this

method is called dynamic scoring. Time is taken to capture the

flag, and the number of times the flags are captured are also taken

into account for awarding higher and lower scores. We could eas-

ily integrate such a scoring mechanism into our system. However,

we opted for more systemic evaluation methods, which are given

below. Log Analysis We have collected the command line history

of exercise participants, which can be used to analyze the partic-

ipants’ capability and what type of skills they have. We plan to

train an AI model for this purpose and use it to classify exercise

participants’ skill sets based on the cyber kill chain . Because we

are still collecting data from the exercises and working on this

part, this is not included in this paper. Surveys We used pre and

post-exercise surveys to identify any skill improvements of the ex-

ercise participants and get qualitative data about the exercises. Re-

searchers have previously used these methods (Moore et al., 2017)

for such purposes.

4.2.5. Repetition

In this phase, the feedback from the surveys is analyzed, and

problems are identified in the scenarios, including whose solutions

were incorporated in the next iterations of the exercise.

4.3. Full system workflow

We have presented the whole system workflow in Fig. 8 which

we discussed in Section 4.2 . In the workflow, different parts of the

cybersecurity exercise life cycle are presented in different colors.

The system uses our scenario language to model the scenario in a

coherent, logical model that is platform independent. The logical

model is used to verify different scenario properties, and if they

fulfill the scenario requirement, then the platform-independent

model is transformed into platform-dependent artifacts. These ar-

tifacts create the network topology, inject vulnerabilities, generate

traffic, and emulate various exercise teams. After this, the scenario

is manually tested and automatically verified from the attacker

11

M.M. Yamin and B. Katt Computers & Security 116 (2022) 102635

Fig. 8. Cyber security exercise operation workflow.

agent, and if it satisfies the scenario specification, then the exercise

is executed. After exercise execution, relevant data are collected for

exercise experience improvement in the next exercises.

The concept defined in the our scenario language instance is

presented in concrete syntax for the orchestrator to understand

and generate the necessary artifacts. The concrete syntax is JSON

Java script object notation representations, which is specifically cho-

sen because of its excellent capability to represent different models

into objects with minimum or no changes in the code data struc-

ture. The details of the concrete syntax with respect to the specific

concept is presented below:

Our scenario language input is transformed into emulated arti-

facts, and these artifacts can be used together or independently in

five different processes for the execution of the cybersecurity exer-

cise life cycle. The orchestrator is developed using the.Net frame-

work, in which C# played a major role; secondary components

of the orchestrator were developed using python scripts, whose

calls were controlled by the C# base program. This modular de-

sign approach allowed us to include many existing system automa-

12

M.M. Yamin and B. Katt Computers & Security 116 (2022) 102635

Fig. 9. Cyber security exercise operation orchestrator.

Fig. 10. Case study scenario.

tion techniques inside a single platform that provided much flexi-

bility from scenario generation to scenario execution in a semiau-

tonomous manner. The logical operation of the scenario orchestra-

tor is presented in Fig. 9 . The details of each component are given

below.

Although some technical functions in the cybersecurity exercise

life cycle are still manual, such as manual testing and survey, they

are included to increase the exercise quality from a human per-

spective.

5. System implementation

The system is developed in a highly modular way, and differ-

ent modules are used to automate different phases of the cyber-

security exercise lifecycle. Each module can run independently, or

all the modules can run as a whole through a common API that

uses our developed DSL for the exercise environment orchestra-

tion. The system is implemented in a web application that pro-

vides the interface to the developed API. It can take input from the

developed DSL for orchestrating different cybersecurity operations

roles. The website can be deployed in a local environment or on

the cloud. The developed solutions require Openstack base cloud

for performing infrastructure provisioning. While Vulnerability in-

jection, attacker and defender emulation, and traffic generation can

be done on a system supporting standard SSH protocol.

A variety of programming languages were used for the devel-

opment of the application. The front end of the application was

developed in Asp.net. Similarly, the API was developed in C#; how-

ever, the API runs multiple Python, Bash, and HEAT scripts in the

back end. Package managers were used to installing vulnerabili-

ties in Linux-based systems, while a silent install technique was

used to install vulnerable software on Windows-based machines.

In the case of the configuration and services, SSH-based automa-

tion techniques were used to make the system vulnerable. The

source code of the developed orchestrator application can be found

here NCR (2021) . The repository contains pre-requisite information

and detailed installation instruction for its easy deployment.

The system has three interfaces that are used to provide input

and platform access. The first interface is for the administrator; the

administrator can design and deploy customized cyber ranges hav-

13

M.M. Yamin and B. Katt Computers & Security 116 (2022) 102635

ing access to detailed network configuration and vulnerability in-

jection modules. The second interface is for a teacher or a coach

who need to deploy a scenario in a very short amount of time, so

the teacher or a coach can specify the type of vulnerabilities and

the number of machines that are needed to be deployed for the

scenario and the things deployed automatically. The final interface

is for students who need to access the platform for practicing cy-

bersecurity skills. They can access the platform and have access to

multiple predefined scenarios that they can deploy by themselves

and practice in the environment.

If we want to start the exercise from scratch, we can use all

the modules that are presented in Fig. 9 . We can perform (1) sce-

nario modeling and orchestration for deploying exercise infrastruc-

ture, (2) vulnerabilities’ injection and verification, (3) traffic gener-

ation, and (4) attacker and (5) defender agents for executing the

exercise scenarios. If the infrastructure is already present, the im-

plemented system can be used to inject vulnerabilities based upon

the given requirement. Additionally, if the infrastructure is vulnera-

ble, the developed solution can generate an attack model to verify

those vulnerabilities. This modular system gives us the flexibility

to adapt to various cybersecurity scenarios for dynamic cybersecu-

rity exercises. The system module’s usage for modeling an exercise

scenario is presented in the form of a case study. It highlights the

different modules developed during the research and their usage

for conducting this research work.

6. Case studies

The competition organizers gave the scenario requirements, in

which they requested two scenarios: a penetration testing scenario

and an attack and defenses scenario. For the penetration testing

scenario, the competition organizers gave the following scenario

requirements:

1. The scenario should represent the IT infrastructure of a small-

or medium-sized organization.

2. The scenario should have vulnerabilities that are exploitable in

a particular amount of time

3. The scenario should be suitable for participants with various

skill set levels.

We created a sample scenario description, which is provided in

Appendix A and a rough network topology presented in Fig. 10 to

translate the high-level requirements in to low-level technical arti-

facts based on our experience for conducting such exercises (Yamin

and Katt, 2019; Yamin et al., 2018). We presented these ideas to the

competition organizers and after their feedback and approval, we

used it for the penetration testing scenario. We will used this net-

work topology, as presented in Fig. 10 , to showcase that a scenario

can be modeled and orchestrated on a virtualized environment in

the cloud. The scenario was logically verified and tested by an at-

tacker agent, and the scenario also incorporated a defender agent

in one of the scenario machines, which was included to add the

friction and make the scenario more realistic. This case study was

used to evaluate the efficiency and autonomy offered by our pro-

posed solution.

In the second case study, the competition organizers provided

the machines required for an attack/defense scenario with the dia-

gram of the network topology. The requirement from the organiz-

ers was the following:

1. Deploy the machines in identical isolated networks for the first

phase of the attack/defense scenario.

2. Update the network topology in the second phase of the at-

tack/defense scenario so that the deployed networks can be in-

terconnected.

Listing 1. Defining the basic variables.

Listing 2. Defining infrastructure.

Listing 3. Defining vulnerabilities.

Because this scenario involved integrating external machines

and updating network topology at run time, we used the adapt-

ability to evaluate our proposed solution.

6.1. Preparation

6.1.1. Formal scenario modeling and analysis

We used our developed scenario modeler and verifier tool for

the preparation of the scenario presented in Fig. 10 . The scenario

description is presented in Appendix A . The formal model gener-

ated by our tool is presented in Appendix B . The formal model

of the scenario allowed us to verify different scenario properties.

A Datalog analysis engine execution allowed us to logically verify

different scenario properties, such as which machines present in

the network were directly or indirectly accessible to the attackers.

This allowed us to identify different edge cases like attacker acces-

sibility without machine exploitation so that we could update the

scenario before emulated network deployment. In Appendix B of

the formal scenario model, we present the process of verifying a

condition. An example of Datalog 1 query execution for identifica-

tion of an attacker accessibility to different subnets is presented in

Listing 7 :

Similarly, in another example presented in Appendix B of the

formal scenario model, we used the Datalog analysis engine exe-

1 Definition in pydatalog ref: https://sites.google.com/site/pydatalog/home .

14

M.M. Yamin and B. Katt Computers & Security 116 (2022) 102635

Listing 4. Defining attacker agent behavior .

Listing 5. Defining defender agent behavior.

Listing 6. Defining traffic generator behavior.

Listing 7. Analysis of an attacker that can reach other machines through direct and

indirect links in different subnets like public, demilitarized zone, and internal.

cution for identifying which hosts were vulnerable to specific vul-

nerabilities and were reachable by attacker machines. This allowed

us to determine the probable attacks’ paths based on attacker ca-

pabilities and remove any edge cases where an attacker could not

exploit the machines present in the logical representation of the

exercise environment. A sample execution of the machines that

were exploitable by a particular attacker capability is presented in

Listing 8 :

When different scenario properties are verified then the infras-

tructure is orchestrated.

6.1.2. Infrastructure orchestrator

The infrastructure orchestrator takes the JSON input from our

scenario language and transforms it into HEAT templates. The

Listing 8. Analysis of a host Machine1 that can reach machines vulnerable to Buffer-

Overflow vulnerability.

Listing 9. Concrete syntax for infrastructure generation.

HEAT templates were used to deploy the infrastructure using

Openstack orchestration API. It should be noted that the required

operating system images for the exercise are needed to be up-

loaded on Openstack before running the HEAT template. The or-

chestrator is currently only generating the exercise infrastructure

in Openstack, but it is possible to transform our scenario language

instance to other cloud orchestration technologies.

An example of the infrastructure is presented in Listing 9 :

6.1.3. Vulnerability injector

The vulnerability injector can inject three types of vulnerabili-

ties into the deployed infrastructure: software, services, and con-

figuration. For software, the vulnerability injector reads the exe-

cutable of the vulnerable program from the local drive and uses

SSH to move it to a specified remote machine and then install it

using different OS automation techniques. For services, the vulner-

ability injector reads a docker container file containing vulnerable

services and moves it through SSH to the specified remote machine

and deploys it automatically using different OS automation tech-

niques. For configuration, a set of predefined bad configurations

are integrated on the orchestrator, which can be specified in our

scenario language and employed on remote machines using SSH.

The configuration ranges from setting a user with a weak password

to open directory shares for exploiting different vulnerabilities.

An example of our developed scenario language instance for

vulnerability injection is presented in Listing 10 :

In “Vuln 1,” the vulnerability is “VulnerableProgram,” and the

parameter is “BufferOverflow.exe.” This code will take the buffer

overflow vulnerable program of SDL orchestrator machine and de-

ploy it over a remote machine with the specified IP address using

SSH and OS automation techniques.

In “Vuln 2,” the vulnerability is “WeakPassword,” and the pa-

rameter is “root2,toor.” This code will create a new user account

“root2” with “toor” as a password on a remote machine using an

SSH connection and OS automation techniques.

In “Vuln 3,” the vulnerability is “DockerInject,” and the

parameter is “”docker run -d -p 80:80 -p 330 6:330 6 -e

MYSQL_Pass = m ̎ypassv ̎ulnerables/.”” It will take “web-dvwa.tar”

from the orchestrator machine and automatically deploy the

docker on the remote machine using a SSH connection and OS au-

tomation techniques.

15

M.M. Yamin and B. Katt Computers & Security 116 (2022) 102635

Table 1

Vulnerability type, property and parameter mapping.

Vulnerability Type Vulnerability Property Parameter Property Description

Software VulnerableProgram IntgratedHomePro.exe Name of executable

Software VulnerableProgram Icecast.exe Name of executable

Software VulnerableProgram WingFTP.exe Name of executable

Service DockerInject docker run -d -p 80:80 -p 3306:3306 -e

MYSQL_Pass = \ ”mypass \ ” vulnerables/

Service command to be run or deploy and its parameters

Service EnableTelnet Install-WindowsFeature -name Telnet-Client Service command to be run or deploy and its parameters

Service EnableRDP Invoke–Command –Computername “server1”,

“Server2” –ScriptBlock {Set–ItemProperty

–Path “HKLM: \ System \ CurrentControlSet

\ Control \ Terminal Server” –Name

“fDenyTSConnections” –Value 1}

Service command to be run or deploy and its parameters

Configuration WeakPassword root,toor Usename and password

Configuration DisableFirewall NetSh Advfirewall set allprofiles state off Disabling security service

Configuration EnableLocalShare net share Docs = E: \ Documents

/grant:everyone,FULL

Changing local drive access settings

Listing 10. Concrete syntax for vulnerability injection.

The orchestrator contains a mapping list between potential val-

ues of the vulnerability property and the vulnerability type such

that the orchestrator understands the type of the vulnerability

that needs to be injected by reading that property value. Conse-

quently, the orchestrator expects a specific information in the pa-

rameter property. Table 1 shows a sample keys of these parame-

ters and the vulnerability types they represent, including software,

services and configuration vulnerability types. The complete list of

the orchetrator include over 800 vulnerabilities related to both

Windows and Linux environments. This list is constantly expand-

ing with new vulnerabilities. For example, the vulnerability prop-

erty VulnerableProgram is mapped to the software vulnerabil-

ity type, and indicates a program that contains a software prob-

lem (c.f. Table 1). In this case, the parameter property indicates the

name of the vulnerable executable.

If we want to allow multiple vulnerabilities of the same

type, then we add two vulnerabilities with the same vulnerabil-

ity property and different parameter properties. For example, if

we want to allow two “bufferoverflow” software vulnerabilities

in same machine, (1) we define two vulnerabilities, whose vul-

nerability property is VulnerableProgram , and (2) each one

refer to different buffer overflow executable to be deployed,

e.g., bufferoverflow1.exe and bufferoverflow2.exe .

The rest of the values like MachineIP , MachineUserID ., will remain

same in case both vulnerabilities are being deployed on the same

machine. It should be noted that this simple classification of vul-

nerabilities can be mapped to other types of classifications, like

CWE and CVE, however this is out of scope of this work.

6.1.4. Attacker agent

The attacker agent is a Kali Linux machine deployed within

the exercise infrastructure. The Kali Linux machine is controlled

through SSH by the orchestrator and performs the steps speci-

fied in our scenario language. These steps include performing net-

work scanning, launching actual exploits, and post-exploitation.

Different automation techniques have been used to achieve this

process. One such technique for automating Metasploit is pre-

sented in Fig. 11 . Here, we used Metasploit resource scripts to

specify and pre and post-attacker steps during exploitation. In

Fig. 11 vulnserver.rb is the Metasploit exploit, which is then au-

tomated in step 1 and transformed into vul.rc, which is the Metas-

ploit resource script. The resource script is sufficient for launching

the attack, but we integrated post-exploitation steps in it to mimic

a real attacker. In Step 2, gather.rc is integrated, which emulates

post-exploitation steps such as capturing network information, as

indicated in Fig. 11 . It should be worth mentioning that there can

be multiple attacker agents in the scenario, with each one per-

forming different types of attacks independent of each other.

An example of our scenario language for attacker behavior em-

ulation in the scenario is presented in Listing 11 :

6.1.5. Defender agent

The defender agent is a portable executable that can be injected

into the machine that is present in the scenario environment. A

configuration file is also injected with the agent, and the CSV file

contains a list of actions that an attacker can perform and a list of

reactions against those actions that the defender agent can take.

For a Windows-based environment, the defender agent analyzes

Windows security event logs to identify the attacker actions spec-

ified in the configuration file and execute the appropriate reaction

for stopping the attacker. The defender agent’s internal working is

based on our exploit chain detection algorithm (Yamin et al., 2019).

Here, we looked for a particular Windows security event ID 4688

and analyzed the command line argument for the identification of

malicious behavior, as we presented in (Yamin and Katt, 2018a). It

should be worth mentioning that there can be multiple defender

agents running with different configurations within the scenario,

reacting to different types of attacks independent of each other.

An example of our scenario language for defender behavior em-

ulation in the scenario is presented in Listing 12 :

16

M.M. Yamin and B. Katt Computers & Security 116 (2022) 102635

Fig. 11. Automated exploitation and post exploitation using metasploit.

Listing 11. Concrete syntax for attacker behavior emulation.

Listing 12. Concrete syntax for defender behavior emulation.

6.1.6. Traffic generator

The traffic generator is a Kali Linux machine deployed within

the exercise infrastructure. The Kali Linux machine is controlled

through SSH by the orchestrator and performs the steps specified

in our scenario language. These steps included replaying already

captured network traffic and exercising specific email generation

Listing 13. Concrete syntax for traffic generation.

to emulate benign user behavior. For emulating benign users, Vnc-

dotool (vnc, 2020) is used, enabling us to mimic user behavior in

the GUI over VNC-enabled remote machines using a prerecorded

VNC session. This added an extra layer of realism within the cy-

bersecurity exercise environment. It should be noted that there can

be multiple traffic generators in the scenario, generating different

types of traffic independent from each other.

An example of our scenario language for the traffic generation

and user behavior emulation in presented in Listing 13 .

6.2. Dry run

The attacker agent developed during the research has two uses.

Besides its role during the execution of the exercise, it can also

perform a dry run on the developed infrastructure to test and ver-

ify that everything is working as expected. Some of the attacker

agent’s functionality tested during the dry run is presented in the

form of the logs at Appendix C . Because our attacker agent is a

Kali Linux machine, it can perform a network scan both actively

and passively to check and verify that the machines in the scenario

are up and running. Listing 14 shows the log of a passive scan that

identifies the running machine in the scenario. Listing 15 shows

the log generated by launching a brute-force attack on one of the

deployed machines in the scenario. Similarly, Listing 16 shows the

log of an automated exploit execution using Metasploit.

Additionally, the attacker agent can play the role of traffic gen-

erator using different Kali Linux functionalities. An example of

an agent generating and replaying random network traffic is pre-

17

M.M. Yamin and B. Katt Computers & Security 116 (2022) 102635

sented in Listing 13 . As stated earlier, for emulating user behavior,

VNCDOTOOL was used. A sample script for emulating a user to an

open notepad and writing a few lines is presented in Listing 18 .

Moreover, a sample of the successful and unsuccessful email gener-

ation from our scenario language is presented in Listing 19 . These

functionalities can be used in different ways, depending on the

scenario requirements.

6.3. Execution and evaluation

The platform was used for multiple qualifying rounds at NCSC

2020. The challenge had multiple rounds of qualifications, and in

the first round, which was online, 150 people participated from all

around Norway. Twenty-five individuals were invited for the sec-

ond and third rounds, which were deployed by the proposed sys-

tem. In the second round, 17 individuals participated in a penetra-

tion testing scenario. In the third and final round, the participants

took part in an attack and defense scenario. The platform was eval-

uated for its efficiency in creating a realistic cybersecurity exercise

infrastructure. Its capability to execute operations that are tradi-

tionally performed by human participants, along with its capabil-

ity to adapt changes based on changing requirements. Moreover, it

was also evaluated for improving the skill set of the cybersecurity

exercise participants.

6.3.1. Platform deployment evaluation

The platform was evaluated by deploying the scenario pre-

sented in Fig. 10 . The scenario had nine exploitable machines, one

machine with no known vulnerability, and one machine running

the defender agent. The machine running the defender agent had

a similar vulnerability present in one of the exploitable machines.

The machines were divided into three subnets: public, demilita-

rized zone, and internal network. Each team had five Kali machines

present in the public network, which they could access over the

internet using SSH. The scenario was deployed within five min-

utes using the orchestrator, but this does not accurately reflect the

complexities involved in deploying such a scenario. For deploy-

ing the scenario, we needed to (1) collect the required operating

system, vulnerable programs, services, and configuration details,

which took a few hours to days, depending on the scenario re-

quirement; (2) upload the required operating system on the cloud

in the form of RAW images, which took a few minutes to hours

depending on the internet speed; (3) specify the scenario accord-

ing to the scenario language, which took a few minutes to hours

depending on scenario complexity; (4) deploy the scenario on the

cloud using the proposed system, which also took a few minutes

to hours depending on scenario complexity; and (5) verify sce-

nario properties using the emulated dry run, which took a few

minutes to hours depending on scenario complexity. When all the

perquisites for deploying and testing the scenario were fulfilled,

our scenario language was able to provide the functionality and

was very efficient in deploying the scenario. We then evaluated

the proposed solution based on a set of five qualitati ve matrices:

efficiency, usability, completeness, flexibility, scalability, and adapt-

ability.

6.3.2. Efficiency

As stated earlier, multiple factors are involved in the efficiency

of deploying cybersecurity scenarios. Consider the case of cook-

ing a dish as an example of those factors. First, you must gather

all the ingredients and then follow a recipe to make a dish. Here,

we can measure the efficiency with respect to time in three ways:

(1) cooking time, (2) the time required to gather the ingredients,

and (3) the time required to grow the ingredients. The standard

way of measuring how fast a dish is made is based on the cooking

time, so we are ignoring the time required to gather the necessary

components and artifacts for deploying the scenario and are only

measuring the time our scenario language took to deploy the sce-

nario, which was approximately five minutes. This figure can vary

greatly because we deployed the scenario on a highly customized

cloud infrastructure (Ope, 2021) that is specifically optimized for

such infrastructure orchestration. Technically, the cloud infrastruc-

ture comprised 608 CPUs, 5.5 TB RAM for general purpose and 84

CPUs, 1792 GB RAM, 2 Tesla v100, 2 Tesla a100 for GPU-accelerated

workloads with 133 TiB of total SSID storage. We suspect that the

deployment efficiency result will be different in different cloud in-

frastructures, but we will investigate this in future research. Ap-

plicability Applicability measures whether the deployed scenario

is employable for conducting operational cybersecurity exercises

without manual tuning of the infrastructure. We tested the de-

veloped orchestrator in two different cybersecurity exercises that

involved the top cybersecurity talent present in Norway, finding

that the deployed scenario’s performance was up to par with sim-

ilar systems (Leitner et al., 2020; Russo et al., 2020; Vykopal et al.,

2017a). The deployed infrastructure faced some failures during the

exercises like some services failing to respond after continuing at-

tacks; however, these issues were mitigated on the spot to ensure

smooth running of the exercises.

Accuracy Accuracy measures whether the deployed scenario ful-

filled the requirements specified in our scenario language accu-

rately, such as the network topology and vulnerabilities present in

the machines. Our developed scenario language fulfilled the tech-

nical requirement for deploying the infrastructure, injecting vul-

nerabilities, and executing a dry run as specified; the experimen-

tally validated details of which are presented in Section 6.2 and

Section 6.3.5 .

6.3.3. Adaptability

Adaptability refers to the capability of developed solutions to

accept and accommodate changes from different sources and im-

plement the exercise scenario. We used another qualifying round

for NCSC to check this capability. This qualifying round was an

attack/defense scenario in which the vulnerable machine was de-

veloped by one of our colleagues using another source code vul-

nerability injector solution. Our colleague shared the four vulner-

able machines with us, and using our scenario language, we de-

ployed the scenario in an attack/defense network topology. Five

teams participated in the attack/defense scenario, and they were

assigned five identical isolated networks with four vulnerable ma-

chines each. The attack/defense scenario had two parts: in the first

part, the teams had to patch the vulnerabilities in their assigned

network. In the second part, the teams’ networks were intercon-

nected and were tasked to exploit the vulnerabilities in the other

teams’ machines. This changing network topology, while accom-

modating unknown machines, was used to verify the adaptability

of our developed system. The deployed attack/defense scenario on

Openstack is presented in Fig. 12 .

Flexibility Flexibility measures the capability of the deployed

scenario to accept changes after deployment. We developed the

scenario orchestrator in a modular way, in which the infrastruc-

ture was independent of the vulnerability injection steps. This en-

abled us to inject new vulnerabilities after the scenario had been

deployed. We consider this a highly useful feature because it en-

abled us to use the same network topology with different types of

vulnerabilities for individuals with different skill sets. Moreover we

could change the network topology, add additional machines with

new vulnerabilities, and launch new attacks to make the scenario

more dynamic based on the given requirements. Scalability Scala-

bility measures whether the deployed scenario is expandable and

can accommodate additional teams in the scenario. There were a

total of 15 machines that were allocated to one team, but there

were a total of five teams involved in NCSC, so the scenario was

18

M.M. Yamin and B. Katt Computers & Security 116 (2022) 102635

Fig. 12. Deployed Attack/defense scenario.

Fig. 13. Deployed penetration testing scenario.

replicated within five minutes to instantiate 75 virtual machines,

which enabled us to assign a completely segregated network to

each team. The fully deployed five networks comprising 75 ma-

chines that implemented the case study scenario are presented in

Fig. 10 and can be seen in Fig. 13 :

Because we conducted this research to perform cybersecurity

exercises that are scalable for a large number of participants, we

used the developed tool to create and deploy the exercise infras-

tructure for one of the cybersecurity courses taught at NTNU. The

course had 84 students, and the infrastructure was required for a

four-week-long red and blue team exercise. The infrastructure in-

cluded nearly 400 machines with 19 teams and one research net-

work and was deployed in approximately 37 minutes. The deploy-

ment time was noted form the Openstack SystemUsageData which

includes the timestamps for when the Stack CREATE started and

when the Stack CREATE is completed Sys (2021) . It should be noted

that each network was deployed as a separate HEAT template, and

we added a one-minute break after each network deployment to

manage Openstack API calls. The deployed network topology is

presented in Fig. 14 .

19

M.M. Yamin and B. Katt Computers & Security 116 (2022) 102635

Fig. 14. Deployed red and blue team cybersecurity exercise scenario. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

6.3.4. Autonomy

Autonomy refers to the capability of a developed solution to

perform tasks that have been traditionally performed by a hu-

man. We used the developed solution to perform an emulated dry

run automatically on the scenario infrastructure, as discussed in

Section 6.2 . This provided us with the capability to replace hu-

mans in the dry run phase of cybersecurity exercises. Second, two

machines in the scenario had the same vulnerability, but one ma-

chine was running the proposed defender agent. Five teams played

the scenario, and two teams were able to exploit the vulnerability

and get the flag on the machine that was not running the defender

agent. The teams did not have any knowledge about a defender

agent running on the system and were incentivized to exploit the

machine to get additional points, as stated in Appendix A . With

this experiment, we concluded that the defender agent was work-

ing as expected and could be a useful addition to cybersecurity

exercises to add friction for increased realism.

6.3.5. Preliminary skill improvement evaluation

The skill improvement was measured in the final round of

NCSC, in which 17 individuals, who qualified from the nationwide

CTF of Norway, participated. The participants aged between 16–

25, more than half of the participants were high school and uni-

versity students, while others were employed in different public

and private sectors. They participated in the form of randomly as-

signed groups in the CTF consisting of 3–4 individuals each. We

employed a multitude of quantitative and qualitative methods for

identifying skill improvements in exercise participants that were

highlighted in Maennel (2020) . First, we conducted pre and post-

exercise surveys to identify any skill improvement in the indi-

viduals. This methodology was employed in a case study where

individuals measured specific skill set levels over the passage of

time (Moore et al., 2017). In summary a total of 7 technical skills

were measured that were required to solve the challenges present

in the exercise. The pre and post self-classification of skill level

were presented in Fig. 15 and details of the results are provided

in Section 6.3.5.1 and 6.3.5.2 .

Secondly, we used CTF instrumentation suggested

in Chothia and Novakovic (2015) ; however, each group was

assigned their own separate exercise infrastructure and unique

flags were injected manually to avoid Flag Plagiarism . Additionally,

we asked the exercise participants to provide a Penetration Test

Report to evaluate their performance in a qualitative manner. The

20

M.M. Yamin and B. Katt Computers & Security 116 (2022) 102635

Fig. 15. Self-classification of skill level Pre and Post Exercise.

Fig. 16. Self-classification of skill level.

Fig. 17. Experience in CTF competitions.

survey questions are presented in Appendix D , and the results of

the survey and CTF instrumentation are given below:

Pre-exercise Survey For the first question, we asked the partici-

pants about their self-classification of skill sets. The majority of the

participants had medium and high cybersecurity skills, 35% each,

while 29% reported that they had low cybersecurity skills. Details

of the participants’ answers about their self-classification of skill

level are presented in Fig. 16 :

The second question we asked was about the participants’ ex-

periences in CTF competitions. The question was intended to get

information that could be used to measure the CTF quality in

post-exercises surveys. Most participants (47%) replied that they

had participated between in five and 10 CTFs before, 41% partic-

ipated in more than 10 CTFs, while only 12% participated between

one and five CTFs. Experience in CTF competitions is presented in

Fig. 17 :

The third question we asked was rating their skill-specific cy-

bersecurity tools from 1 to 5, where 1 is the lowest and 5 is the

highest value. These tools included Kali Linux, Nmap, Meatsploit,

Burp, hydra, Wireshark, and Immunity Debugger. Most of the par-

ticipants were familiar with Kali Linux, with a mean score of 3.06

out of 5, while most were not familiar with Immunity Debugger,

with a mean score of 1.65 out of 5. Details of their pre–exercise

skill set response related to specific tools are presented in Fig. 18 .

Post-Exercise Survey After the pentest scenario, we conducted

a post-exercise survey to measure the skill improvement of the

scenario participants. The first question we asked was related to

skill improvement with respect to specific tools. The participants

reported that they saw skill improvements in Kali Linux, Nmap,

Metasploit, Burp, and Hydra but did not see any improvements

in their Wireshark and Immunity Debugger skills. Details of their

post–skill set responses related to specific tools are presented in

Fig. 19 .

The second question we asked was related to their overall skill

improvement, in which 24% reported that they had a definite skill

improvement, while 41% reported that they saw some skill im-

provement after playing the scenario. Here, 35% reported that they

did not have any skill improvement, which was expected because

35% represented the six seniors who were already highly skilled.

Details of their post–exercise overall skill improvement are pre-

sented in Fig. 20 .

21

M.M. Yamin and B. Katt Computers & Security 116 (2022) 102635

Fig. 18. Pre-exercise skill set specific to tools.

Fig. 19. Post-exercise skill set.

Fig. 20. Post-exercise skill improvement.

Fig. 21. Scenario realism.

The third question was related to the realistic level of the sce-

nario; here, we asked the participants to rate the scenario’s realism

from 1 to 5. The scenario received a total rating of 2.47 out of 5.

We consider this sufficient because most of the scenario was gen-

erated by our scenario language. Details of scenario’s realism rating

are presented in Fig. 21 :

The last question we asked was related to scenario difficulty

level, in which 59% of the participants considered the scenario to

be difficult, 24% considered the difficulty level as medium, while

18% considered the difficulty level as easy. Details of the scenario

difficulty level are presented in Fig. 22 :

CTF Instrumentation We used CTFd CTF (2021) for scoring and

instrumentation purposes. CTFd is widely used for scoring pur-

poses for such exercises and is very user friendly and easy to de-

ploy. The CTFd score board indicated how each group is performing

in solving different challenges with respect to time as indicated in

Fig. 23 . This helped us to compare the skill set required to solve

a challenge with the skill set stated by the participants in pre and

post-exercises surveys.

For instance, if we analyze the task complemented by the one

of the leading group we can see that it completed a task related

to debugging of an application and brute force attack on another

application as indicated in Fig. 24 where NewBie is for brute-force

and Debugger1 is for debugging. Other groups were struggling with

those tasks, which was reflected in post exercise survey where

participant self assessed their skills lower then compare to pre-

exercise survey. Similarly majority of exercise participants were

able to complete tasks that involved Metasploit , Nmap and Kali

Linux which was positively reflected in post exercise survey. This

helped us to measure the actual skill set compare to perceived

skill set of the exercise participants. Finally a thematic analysis on

the submitted penetration test reports were performed. Individual

feedback for each participating group was given for focusing on

particular skill set in future.

22

M.M. Yamin and B. Katt Computers & Security 116 (2022) 102635

Fig. 22. Scenario difficulty level.

Fig. 23. Final Score Board of CTF.

7. Discussion

In the course of this research, we investigated inefficiencies in

the cybersecurity exercise lifecycle. Conducting cybersecurity ex-

ercises is a complex and challenging task involving a whole cycle

which includes phases of Preparation , Dry run , Execution , Evalua-

tion and Repetition . Each phase brings a new set of challenges and

inefficiencies for cybersecurity exercise organizers. The challenges

range from preparing operational exercise infrastructure to finding

skilled individuals to perform dry run on it. Moreover, identifying

skilled individuals to play the role of Red or Blue team members

is also challenging during the exercise execution phase which adds

additional inefficiencies. We proposed a system to address those

inefficiencies and make the execution more efficient. The results

and limitations of the prospered research work are presented be-

low:

7.1. Results

We investigated 4 Research Questions in this work, Question 1

was to identify systems and methods with which we can model

and execute realistic cybersecurity exercise scenarios more effi-

ciently. We proposed our developed orchestrator for addressing

this question, we used model-driven engineering to develop a DSL

that can use to specify cybersecurity exercise models involving re-

alistic adversaries and traffic generation. Using our orchestrator,

the DSL can computationally execute various functions of different

teams present in the cybersecurity exercise environment to con-

duct exercises with minimal human effort, which makes the exer-

cise execution efficient.

In Research Question 2 we investigated the following query: Is it

possible to make cybersecurity exercise models adaptable to changing

Fig. 24. Challenge Completion Analysis.

requirements? . We addressed this question by conducting three cy-

ber security exercises involving around 100 people. The exercises

were conducted over the period of 6 months with changing re-

quirements. The first exercise Penetration testing exercise was con-

ducted to test the developed platform. The second Attack and De-

fense exercise was conducted to check the adaptability and flex-

ibility of the developed platform, in which the developed plat-

form incorporated machines from other sources. The third exer-

cise which was a large Red VS Blue team exercise was conducted

to test and validate the scale-ability and performance of developed

autonomous agents.

In Research Question 3 we investigated What operations in cyber-

security exercises can be executed autonomously to reduce depend-

ability on human teams? . Our work indicated that in terms of au-

tomation, White, Green, and partially Red teams that are involved

in the Preparation and Dry run phases are automated completely.

For exercise execution, forensic traces for a “Red vs Blue” team

exercise can be created, which removes the need for a human

Red team in such scenarios. Similarly, autonomous defense agents

can be injected into the machines present in the network to pre-

vent the human attacker to achieve their objectives in a penetra-

tion testing scenario. A separate case study highlighting the inter-

nal working of attack and defense agents will be published soon.

We are currently working on an AI model to analyze cybersecurity

23

M.M. Yamin and B. Katt Computers & Security 116 (2022) 102635

skills based on the participants’ bash history. We are in the ad-

vanced stages of its development but lack sufficient data for proper

training of the AI model. To address this, we are conducting cyber-

security exercises, collecting relevant data from them, and planning

to publish a separate study.

In Research Question 4 we investigated How much do such ex-

ercise scenarios improve the skills of cybersecurity exercise partici-

pants? . Our work indicated that the developed cybersecurity ex-

ercise execution platform has a positive impact on exercise par-

ticipants. The participants reported skill improvement on 5 out 7

tested technical skills which was co-related with the type of chal-

lenges completed in the exercises. The results are positive, yet not

definitive, and further studies are required for better assessment of

the skill improvement.

7.2. Limitations

Although the proposed system addresses the problems in con-

ducting cybersecurity exercises efficiently and realistically, never-

theless it has few limitations. One of the first limitations of the

proposed system is in vulnerability injection. The proposed system

uses its own classification of vulnerabilities based upon operational

requirements of the software, services, and configuration, which

isn’t commonly used in standards like CVE and CWE. We will ad-

dress this in our future work by integrating other classification

standards into the vulnerability classification of the vulnerability

injection function. Secondly, for the evaluation, only 17 people par-

ticipated and provided their feedback on the system for qualitative

evaluation. However, we would like to emphasize that the 17 sur-

vey participants were selected from the pool of 150 people who

competed in a nationwide CTF in Norway. The 17 participants were

actively participating in the study and the exercises. On the other

hand, one of ENISA report from 2021 Tow (2022) indicated that

while the number of participants in cyber security competitions

can be high, the active participants are a small portion of the total

number (ca. 11%). We are targeting very specific skill sets and in-

corporating a large group is very challenging, especially during the

pandemic. Similarly, from the same report, it was also indicated

that the average training group for different European countries is

around 20 people. Based upon this information we believe that the

data presented in the qualitative evaluation surveys might not be

conclusive, but it has meaningful insights. We would further like to

highlight similar studies Abbott et al. (2015) ; Moore et al. (2017) ;

Peker et al. (2016) ; Yamin et al. (2021) that involve 26, 30, 28, and

25 people, respectively.

8. Conclusion and future work

In the current work, we presented a cybersecurity exercise

modeling and execution tool for cyber ranges. At the core of the

tool, we have proposed a scenario language that unifies concepts

of different operations present in cybersecurity exercises. This en-

abled us to computationally orchestrate their functionality. We

used our tool to conduct multiple cybersecurity exercises in an ef-

ficient, adaptable, and autonomous manner, which resulted in de-

creasing the inefficiencies in the cybersecurity exercise life cycle.

This will enable the utilization of operational cybersecurity exer-

cises on a wide scale for education and training purposes, helping

overcome the ever-growing cybersecurity skill shortage.

This research work resulted in the development of a DSL that

can be used to model cybersecurity exercises scenarios. The mod-

eled scenarios can be executed in an efficient and realistic man-

ner using the orchestrator developed during this research. The

proposed models are adaptable based upon changing cybersecu-

rity exercise scenario requirements. This is achieved through the

automation of various roles in cybersecurity exercises. The white

team role is automated to specify the scenario requirements and

automatic deployment of exercise infrastructure. The red team role

is automated to perform dry runs and act as an automated ad-

versary during exercise execution. While blue team role was auto-

mated to provide active defense during cybersecurity exercise ex-

ecution. We evaluated the developed system by conducting multi-

ple cybersecurity exercises and measured exercises participant skill

improvement.

In the future, we are planning to expand the current version

of our scenario language and add a new concept called “module.”

The “module” concept will specify a template of an organizational

infrastructure, for example, an bank or an internet service provider

ISP. When the “module” specification is given to our scenario lan-

guage, the infrastructure will be provisioned for automatic deploy-

ment. One key feature that we are planning to integrate into such

infrastructure provisioning is multi-cloud orchestration because we

are going to emulate the whole infrastructure of an organization,

which will be quite resource-demanding for single cloud deploy-

ment. This will also help us realistically model different segregated

organizations on the internet for cybersecurity scenarios. Finally,

we are planning to use TLA+ to model the attacker and defender

steps during a cybersecurity exercise. This will enable us to per-

form a more formal analysis on different attack and defense strate-

gies. We will conduct more in-depth case studies for autonomous

cybersecurity exercise execution and then analyze such technol-

ogy’s effectiveness in training human attackers and defenders.

Declaration of Competing Interest

The authors declare no conflict of interest in publishing the ar-

ticle “Modeling and Executing Cyber Security Exercise Scenarios in

Cyber Ranges”.

Appendix A. Scenario Description

NCSC 2020 Penetration Test Scenario

A1. Good corp LLC

Good Corp LLC is a SME (Small and Medium Enterprise) work-

ing in the Management Consultancy area. It provides assistance to

various government and non-government entities in making deci-

sions that are economically feasible, environmentally sustainable

and socially acceptable. Good Corp LLC is currently conducting a

study that is focusing on economic benefits of increased Baltic sea

area by forecasting success of recent DS (Delete Sweden) move-

ment.

While the DS movement got allot of support from Nordic re-

gions and is economically feasible and environmentally sustain-

able. However, it is not socially acceptable by some people, so

they launched an anti-DS movement Ref: https://www.change.org/

p/sweden- anti- delete- sweden .

But the anti-DS movement didn’t get any significant public sup-

port, so a group of 5 social activist hackers decided to take things

in their own hands. They planned to launch a cyber-attack on

Good Corp LLC and tamper with the data on its servers in order

to change its report that it is going to present to the government.

A2. Good corp LLC employees

Good Corp LLC is an equal opportunity organization and pro-

vide people from diverse backgrounds and environments to grow

and achieve success. New employees come and go. Some learn new

things while other earn. Due to current COVID situation Good Corp

LLC is struggling to provide orientation sessions to new employees

24

M.M. Yamin and B. Katt Computers & Security 116 (2022) 102635

which includes overview of company values and basic cybersecu-

rity awareness. Mike is a young and passionate researcher who re-

cently joined Good Corp LLC but missed the orientation sessions.

Good Corp LLC is facing a lot of cybersecurity challenges as it is

involved in very high-profile research, so it invited a cybersecurity

firm to pentest their employees and infrastructure. The firm identi-

fied a lot of security issues in Good Corp LLC infrastructure. Some

of them were related to very famous ransomware vulnerabilities

while others were related system configuration and bad password

policies. One shocking finding of the pentest was a data breach

that was identified but thankfully it didn’t contain some impor-

tant information. Just some old file and custom software programs

that Good Corp LLC uses in its day to day operations. The good

thing that was identified in the pertest was that the CEO Jason

was found to be very well secured while one of the mangers has

no zero day vulnerabilities. The CEO decided to continue the oper-

ations of the company while patches were implemented and issues

with data breach were resolved. Link to data breach:

A3. Rules

1. You are tasked to discover, exploit, analyze and report vulnera-

bilities in Good Corp LLC infrastructure.

2. Every system has a file flag.txt. Locate it and post the content

of it in the scoreboard.

3. Take a screenshot of the flag content with IP address of ex-

ploited machine and use it as evidence in the report.

4. Bonus point for putting a file in CEO computer with content

“DS is not recommended”

5. Not allowed to use any sort of DoS Attacks

6. Not allowed to share any information about the scenarios with

anyone other than your teammates

Appendix B. Formal Scenario Model and Verification for the

Use Case

Lets us consider this scenario in which 10 machines are con-

nected to 3 sub-nets. In the scenario two subnets are directly con-

nected PUblic and MilitrizedZone while a machine present in the

network have dual network interface which provide access to sub-

net Internal . We can define the scenario model the following way.

1. Defining Links

To check which machines are connected to which network and

can reach which machines we can define a new Term CanReach

with variable X , Y and Z .

2. Defining Vulnerabilities

To check which machine is connected to machine with a spe-

cific vulnerability e.g. BufferOveflo w we can verify it by the fol-

lowing clause:

3. Defining Capabilities

To check which machine is connected to vulnerable machines

which are not defendable by defender we can create the fol-

lowing clause:

25

M.M. Yamin and B. Katt Computers & Security 116 (2022) 102635

4. Defining KillChain

To integrate Cyber Kill Chain concepts to the model we can cre-

ate the following clause:

Appendix C. Dry Run Logs

Listing 14. Sample log for passively checking network connection.

Listing 15. Sample log generated by launching a brute-force attack during dry run.

Listing 16. Sample log generated from launching a Metasploit exploit from our sce-

nario language.

Listing 17. Sample log for network traffic generation.

26

M.M. Yamin and B. Katt Computers & Security 116 (2022) 102635

Listing 18. Sample VDO configuration for emulating a user behavior.

Listing 19. Sample log for successful and unsuccessful phishing email generation.

Appendix D. Survey Questions

D1. Pre-Exercise

1. You classify yourself as a Senior or Junior? ∗

• Senior

• Junior

2. You classify yourself as a low/medium/high skilled individual in

cybersecurity? ∗

• Low

• Medium

• High

3. How many CTF you previously played

∗

• 1 to 5

• 5 to 10

• More then 10

4. Rate your skills in different cybersecurity tools from 1 to 5,

where 1 is the lowest value and 5 is the highest value: ∗

• Kali linux

• Nmap

• Metasploit

• Burp

• hydra

• Wireshark

• Immunity Debugger

D2. Post-Exercise

1. Rate your skills in different cybersecurity tools from 1 to 5,

where 1 is the lowest value and 5 is the highest value: ∗

• Kali linux

• Nmap

• Metasploit

• Burp

• hydra

• Wireshark

• Immunity Debugger

2. How do you rate the difficulty of played CTF

Easy/Medium/Hard

∗

• Low

• Medium

• High

3. How realistic was the CTF compare to other CTF you played be-

fore? Give it rating from 1 to 5, where 1 indicates the lowest

value and 5 indicates the highest value.

4. Did you havve any skill improvement after playing the CTF? ∗

• Yes

• No

• Somewhat

CRediT authorship contribution statement

Muhammad Mudassar Yamin: Conceptualization, Resources,

Investigation, Writing – original draft. Basel Katt: Supervision,

Writing – review & editing.

References

Abbott, R.G. , McClain, J.T. , Anderson, B.R. , Nauer, K.S. , Silva, A.R. , Forsythe, J.C. , 2015.

Automated Performance Assessment in Cyber Training Exercises. Technical Re-
port. Sandia National Lab.(SNL-NM), Albuquerque, NM (United States) .

Almroth, J. , Gustafsson, T. , 2020. Crate exercise control–a cyber defense exercise
management and support tool. In: 2020 IEEE European Symposium on Security

and Privacy Workshops (EuroS&PW). IEEE, pp. 37–45 .

Beuran, R. , Pham, C. , Tang, D. , Chinen, K.-i. , Tan, Y. , Shinoda, Y. , 2017. Cytrone: an in-
tegrated cybersecurity training framework. SCITEPRESS–Science and Technology

Publications 157–166 .
Beuran, R. , Tang, D. , Pham, C. , Chinen, K.-i. , Tan, Y. , Shinoda, Y. , 2018. Integrated

framework for hands-on cybersecurity training: cytrone. Computers & Security
78, 43–59 .

Ceri, S. , Gottlob, G. , Tanca, L. , et al. , 1989. What you always wanted to know about

datalog(and never dared to ask). IEEE Trans Knowl Data Eng 1 (1), 146–166 .
Chang, W. , Zhao, S. , Wei, R. , Wellings, A. , Burns, A. , 2019. From java to real-time

java: a model-driven methodology with automated toolchain. In: Proceedings
of the 20th ACM SIGPLAN/SIGBED International Conference on Languages, Com-

pilers, and Tools for Embedded Systems, pp. 123–134 .
Chothia, T. , Novakovic, C. , 2015. An offline capture the flag-style virtual machine and

an assessment of its value for cybersecurity education. 2015 { USENIX } Summit

on Gaming, Games, and Gamification in Security Education (3GSE 15) .
Ctfd : The easiest capture the flag platform. 2021. (Accessed on 10/13/2021) https:

//ctfd.io/ .
Datalog: Deductive database programming. 2020. (Accessed on 09/30/2020) https:

//docs.racket-lang.org/datalog/index.html .
Eckroth, J. , Chen, K. , Gatewood, H. , Belna, B. , 2019. Alpaca: Building dynamic cyber

ranges with procedurally-generated vulnerability lattices. In: Proceedings of the

2019 ACM Southeast Conference, pp. 78–85 .
Edgar, T.W. , Manz, D.O. , 2017. Research methods for cyber security. Syngress .

Hutchins, E.M. , Cloppert, M.J. , Amin, R.M. , 2011. Intelligence-driven computer net-
work defense informed by analysis of adversary campaigns and intrusion kill

chains. Leading Issues in Information Warfare & Security Research 1 (1), 80 .
Jones, R.M. , O’Grady, R. , Nicholson, D. , Hoffman, R. , Bunch, L. , Bradshaw, J. , Bolton, A. ,

2015. Modeling and integrating cognitive agents within the emerging cyber do-

main. In: Proceedings of the Interservice/Industry Training, Simulation, and Ed-
ucation Conference (I/ITSEC), Vol. 20. Citeseer .

Kramer, F. , Starr, S. , Wentz, L. , 2006. Actions to enhance the use of commercial in-
formation technology (it) in department of defense (dod) systems. In: Fifth In-

ternational Conference on Commercial-off-the-Shelf (COTS)-Based Software Sys-
tems (ICCBSS’05). IEEE, pp. 8–pp .

Leitner, M. , Frank, M. , Hotwagner, W. , Langner, G. , Maurhart, O. , Pahi, T. , Reuter, L. ,

Skopik, F. , Smith, P. , Warum, M. , 2020. Ait cyber range: Flexible cyber security
environment for exercises, training and research. In: Proceedings of the Euro-

pean Interdisciplinary Cybersecurity Conference, pp. 1–6 .
Lloyd, J.W. , 2012. Foundations of logic programming. Springer Science & Business

Media .
Libvirt: The virtualization api. 2021. (Accessed on 02/25/2021) https://libvirt.org/ .

Lord, D. , 1985. Worldwide networking for academics. Data Processing 27 (5), 27–31 .
Maennel, K. , 2020. Learning analytics perspective: Evidencing learning from digi-

tal datasets in cybersecurity exercises. In: 2020 IEEE European Symposium on

Security and Privacy Workshops (EuroS&PW). IEEE, pp. 27–36 .
Mirkovic, J. , Benzel, T.V. , Faber, T. , Braden, R. , Wroclawski, J.T. , Schwab, S. , 2010. The

deter project: Advancing the science of cyber security experimentation and test.
In: 2010 IEEE International Conference on Technologies for Homeland Security

(HST). IEEE, pp. 1–7 .

27

M.M. Yamin and B. Katt Computers & Security 116 (2022) 102635

Moore, E. , Fulton, S. , Likarish, D. , 2017. Evaluating a multi agency cyber security
training program using pre-post event assessment and longitudinal analysis. In:

IFIP World Conference on Information Security Education. Springer, pp. 147–156 .
Mitre att&ck®. 2020. (Accessed on 09/30/2020) https://attack.mitre.org/ .

Ncr orchestrator application. 2021. (Accessed on 10/15/2021) https://tinyurl.com/
4y57t3vb .

Naik, M. , 2020. Petablox: Large-Scale Software Analysis and Analytics Using Data-
log. Technical Report. GEORGIA TECH RESEARCH INST ATLANTA ATLANTA United

States .

NIST, 2020. Cyber ranges. (Accessed on 11/09/2020) https://www.nist.gov/system/
files/documents/2018/02/13/cyber _ ranges.pdf .

Openstack at ntnu - skyhigh - ntnu wiki. 2021. (Accessed on 03/24/2021) https:
//www.ntnu.no/wiki/display/skyhigh/Openstack+at+NTNU .

Opentosca. 2021. (Accessed on 02/25/2021) https://www.opentosca.org/ .
Paul-pols—the-unified-kill-chain.pdf. 2020. (Accessed on 09/30/2020) https://www.

csacademy.nl/images/scripties/2018/Paul- Pols- - - The- Unified- Kill- Chain.pdf .

Peker, Y.K. , Ray, L. , Da Silva, S. , Gibson, N. , Lamberson, C. , 2016. Raising cybersecurity
awareness among college students. Journal of The Colloquium for Information

Systems Security Education, Vol. 4 . 17–17
Pham, C. , Tang, D. , Chinen, K.-i. , Beuran, R. , 2016. Cyris: A cyber range instantiation

system for facilitating security training. In: Proceedings of the Seventh Sympo-
sium on Information and Communication Technology, pp. 251–258 .

Russo, E. , Costa, G. , Armando, A. , 2018. Scenario design and validation for next gen-

eration cyber ranges. In: 2018 IEEE 17th International Symposium on Network
Computing and Applications (NCA). IEEE, pp. 1–4 .

Russo, E. , Costa, G. , Armando, A. , 2020. Building next generation cyber ranges with
crack. Computers & Security 101837 .

Schmidt, D.C. , 2006. Model-driven engineering. Computer-IEEE Computer Society-
39 (2), 25 .

Schreuders, Z.C. , Shaw, T. , Shan-A-Khuda, M. , Ravichandran, G. , Keighley, J. , Or-

dean, M. , 2017. Security scenario generator (SecGen): A framework for generat-
ing randomly vulnerable rich-scenario vms for learning computer security and

hosting { CTF } events. 2017 { USENIX } Workshop on Advances in Security Educa-
tion ({ ASE } 17) .

Systemusagedata - openstack. 2021. (Accessed on 10/12/2021) https://tinyurl.com/
a8y3bed .

Taxonomy and definitions for terms related to driving automation systems for on-

road motor vehicles - sae international. 2020. (Accessed on 09/25/2020) https:
//www.sae.org/standards/content/j3016 _ 201806/ .

Towards a common ecsc roadmap – enisa. 2022. https://www.enisa.europa.eu/
publications/towards- a- common- ecsc- roadmap . (Accessed on 01/11/2022).

Vaishnavi, V.K. , Kuechler, W. , 2015. Design science research methods and patterns:
innovating information and communication technology. Crc Press .

Vykopal, J. , Ošlejšek, R. , Čeleda, P. , Vizvary, M. , Tovar ̌nák, D. , 2017. Kypo cyber range:

design and use cases. SciTePress .
Vykopal, J. , Vizváry, M. , Oslejsek, R. , Celeda, P. , Tovarnak, D. , 2017. Lessons learned

from complex hands-on defence exercises in a cyber range. In: 2017 IEEE Fron-
tiers in Education Conference (FIE). IEEE, pp. 1–8 .

vncdotool. pypi. 2020. (Accessed on 10/08/2020) https://pypi.org/project/vncdotool/ .
What is infrastructure as code (iac)? | ibm. 2020. (Accessed on 09/25/2020) https:

//www.ibm.com/cloud/learn/infrastructure- as- code .
What is soar? security definition | fireeye. 2020. (Accessed on 09/25/2020) https:

//www.fireeye.com/products/helix/what- is- soar.html .

Weeden, B.C. , Cefola, P.J. , 2010. Computer systems and algorithms for space situa-
tional awareness: history and future development. Advances in the Astronauti-

cal Sciences 138 (25), 2010 .
White, B. , Lepreau, J. , Stoller, L. , Ricci, R. , Guruprasad, S. , Newbold, M. , Hibler, M. ,

Barb, C. , Joglekar, A. , 2002. An integrated experimental environment for dis-
tributed systems and networks. ACM SIGOPS Operating Systems Review 36 (SI),

255–270 .
Willems, C. , Meinel, C. , 2012. Online assessment for hands-on cyber security train-

ing in a virtual lab. In: Proceedings of the 2012 IEEE Global Engineering Educa-

tion Conference (EDUCON). IEEE, pp. 1–10 .
Yamin, M.M. , Katt, B. , 2018. Detecting malicious windows commands using natu-

ral language processing techniques. In: International Conference on Security for
Information Technology and Communications. Springer, pp. 157–169 .

Yamin, M.M. , Katt, B. , 2018. Inefficiencies in cyber-security exercises life-cycle: A
position paper. CEUR workshop proceedings .

Yamin, M.M. , Katt, B. , 2019. Modeling attack and defense scenarios for cyber secu-

rity exercises. In: 5th interdisciPlinary cyber research conference 2019, p. 7 .
Yamin, M.M. , Katt, B. , Gkioulos, V. , 2019. Detecting windows based exploit chains by

means of event correlation and process monitoring. In: Future of Information
and Communication Conference. Springer, pp. 1079–1094 .

Yamin, M.M. , Katt, B. , Gkioulos, V. , 2020. Cyber ranges and security testbeds: sce-
narios, functions, tools and architecture. Computers & Security 88, 101636 .

Yamin, M.M. , Katt, B. , Nowostawski, M. , 2021. Serious games as a tool to model at-

tack and defense scenarios for cyber-security exercises. Computers & Security
110, 102450 .

Yamin, M.M. , Katt, B. , Torseth, E. , Gkioulos, V. , Kowalski, S.J. , 2018. Make it and break
it: An IoT smart home testbed case study. In: Proceedings of the 2nd Interna-

tional Symposium on Computer Science and Intelligent Control, pp. 1–6 .
Yasuda, S. , Miura, R. , Ohta, S. , Takano, Y. , Miyachi, T. , 2016. Alfons: A mimetic

network environment construction system. In: International Conference on

Testbeds and Research Infrastructures. Springer, pp. 59–69 .
Zaber, M. , Nair, S. , 2020. A framework for automated evaluation of security metrics.

In: Proceedings of the 15th International Conference on Availability, Reliability
and Security, pp. 1–11 .

Muhammad Mudassar Yamin is currently doing his Ph.D. at the Department of In-
formation and Communication Technology at the Norwegian University of Science

and Technology. He is the member of the system security research group and the

focus of his research is system security, penetration testing, security assessment,
intrusion detection. Before joining NTNU, Mudassar was an Information Security

consultant and served multiple government and private clients. He holds multiple
cyber security certifications like OSCE, OSCP, LPT-MASTER, CEH, CHFI, CPTE, CISSO,

CBP.

Basel Katt is currently working as an Associate Professor at the Department of In-
formation and Communication Technology at the Norwegian University of Science

and Technology. He is the technical project leader of Norwegian cyber range. Focus
of his research areas are: • Software security and security testing • Software vulner-

ability analysis • Model driven software development and model driven security •
Access control, usage control and privacy protection • Security monitoring, policies,
languages, models and enforcement

28

132 Research Articles

2.6 Detecting Windows Based Exploit Chains by Means of Event
Correlation and Process Monitoring

Future of Information and Communications Conference (FICC) 2019

14-15 March 2019 | San Francisco

1 | P a g e

Detecting Windows Based Exploit Chains by Means

of Event Correlation and Process Monitoring

Norwegian University of Science

and Technology,

Department of Information Security

and Communication Technology

Gjøvik, Norway

muhammad.m.yamin@ntnu.no

Basel Katt

Norwegian University of Science

and Technology,

Department of Information Security

and Communication Technology

Gjøvik, Norway

basel.katt@ntnu.no

Vasileios Gkioulos

Norwegian University of Science

and Technology,

Department of Information Security

and Communication Technology

Gjøvik, Norway

vasileios.gkioulos@ntnu.no

 This article presents a novel algorithm for the detection of

exploit chains in a Windows based environment. An exploit chain

is a group of exploits that executes synchronously, in order to

achieve the system exploitation. Unlike high-risk vulnerabilities

that allow system exploitation using only one execution step, an

exploit chain takes advantage of multiple medium and low risk

vulnerabilities. These are grouped, in order to form a chain of

exploits that when executed achieve the exploitation of the system.

Experiments were performed to check the effectiveness of

developed algorithm against multiple anti-virus/anti-malware

solutions available in the market.

Keywords—Exploit Chain, Event Correlation, Process

Monitoring, Windows, process correlation

I. INTRODUCTION

Recently, the Pwn2own 2018 researchers introduced
multiple Zero Day exploits, which were primarily based on a
chain of multiple exploits for the exploitation of systems and
services [1]. Traditional anti-virus and anti-malware software
uses process monitoring and process isolation techniques for
detection, according to suspicious process behavior pattern [2].
Yet, as we see in the Pwn2Own 2018 results, the researchers
were able to break such process isolation and sandboxing
process protection techniques. Examples of exploits that cannot
be detected using traditional techniques are the guest-to-host
exploits [3], and the macro-less DDE (dynamic data execution)
in an MS office application [4]. In this article, we present a novel
technique for the detection of such exploits using process
execution monitoring my means of event correlation. The
technique performs detection in a signature free and fully
autonomous manner, using only the process names for
monitoring and detection of exploitations. We use event
correlation with respect to events extracted from process
monitoring logs to create a chain of suspicious processes
generated by the application to identify a detection. This article
is organized in six sections. The first section introduces the
problem, while in the second section we discuss related work
and provide additional information about the problem
background. The following sections present the proposed
algorithm and initial experimentation results, while in the last
sections we provide a discussion, future work and conclude the
article.

II. RELATED WORK

 The authors were not able to identify in the literature any
viable existing technique for the detection of complex exploit
chains such as guest-to-host exploits, while most cloud security
vendors use defense in depth architectures to avoid security
incidents involving guest-to-host exploits [5]. Existing
techniques for securing a host from guest-to-host exploits use a
multistep approach. Initially, an external process hook or agent
is added in each virtual machine, which is then updated for
malware and virus definitions from an external source [6].
Another technique used for securing virtual machines, relies on
VMI (Virtual Machine Introspection) based process monitoring,
for malware detection on a virtual machine from an external
source [7]. Graph based event correlation (on the virtual
machine) for anomaly detection using machine learning
techniques [8]. The problem faced by existing techniques, is that
they mostly focus on the protection of the virtual machine,
without taking into account the new guest-to-host exploits,
which exploit guest isolation using an exploit chain and allow
the guest virtual machine to access the host operating system.
Furthermore, in respect to the macro-less DDE in MS office
applications [4], the research focus is on using malicious
PowerShell commands for exploiting the system. For the
detection of malicious PowerShell commands, researchers are
currently using machine-learning techniques [9]. Yet, such
existing detection techniques are vulnerable to the use of
command line obfuscation for avoiding detection [10].

III. PROBLEM BACKGROUND

To further explain the problem a brief technical background is

given.

A. Exploit Chains

In a normal IT security environment one vulnerability is enough

to compromise the security of a system. However, due to

continue system security improvements finding such

vulnerabilities is becoming harder day by day. On the other

hand low impact vulnerabilities are usually easy to find,

researcher demonstrated multiple exploits which use these low

impact vulnerabilities [4][5], and chain them together to

compromise system security. To further explain the flow of a

single exploit and an exploit chain we created a simple flow

Muhammad Mudassar Yamin

Future of Information and Communications Conference (FICC) 2019

14-15 March 2019 | San Francisco

2 | P a g e

chart for easy understating. Flow chart showing comparison of

traditional exploits and an exploit chain flow is given in figure

1:

Fig (1) Example of traditional exploit with a single

vulnerability

In comparison to a vulnerability that is exploited by a single

exploit, in an exploit chain multiple vulnerabilities are

involved. Each exploit uses the output of the previous to

accomplish the objectives. A flow chart representation of

exploit chain is seen in the figure 2:

Fig (2) Example of exploit chain with multiple vulnerability

Similar concepts exists in literature such as attack chain or

attack paths which is set of possible steps that an attacker could

take to compromise a system, involving multiple nodes on

which exploitation is performed. In contrast, exploit chaining is

the process of linking multiple vulnerabilities of one node

which are present in a system and executing them in a specific

order to compromise security.

B. Window Event logging Mechanism

The Microsoft Security Event logging mechanism is present in

every new release of Windows since Windows XP. This event

logging mechanism allows the identification of the type of

computer events happening in Windows based systems when

an exploit is executed. Researchers at JPCERT [15] provided

details of such security events in there technical report. In this

research paper we focus on Event ID 4688 [11]. Which is a

Windows new process creation event. Each 4688 event contains

the following fields

• SubjectUserSid : Security id of account from where

the process is executed

• SubjectUserName : Account name from where the

process is executed

• SubjectDomainName : Domain Name

• SubjectLogonId : Logon id of account from where

the process is executed

• NewProcessId : Unique hexadecimal new process

identifier

• NewProcessName : New process name executed by

parent process

• ProcessId : Unique hexadecimal process identifier

• CommandLine : Command which is executed

• TargetUserSid : Security id of account on which

process executed

• TargetUserName : User name

• TargetDomainName : Computer name

• TargetLogonId : Login id of account on which

process executed

• ParentProcessName : Name of process which

executes new process

• MandatoryLabel : Secure object control integrity

label assigned to new process

 From the information present in the fields of 4688 event we

used NewProcessId, ProcessId, TargetDomainName in our

detection algorithm. The ProcessId is a unique identifier issued

by computer operating system to a running process.

NewProcessId is a unique identifier issued by computer

operating system to a process that is executed by another

running process.TargetDomainName is the unique name of the

computer on the domain.

C. Guest-to-host exploit

A recent report from SpiceWork [13] shows that server

virtualization adoption reached 85% in comparison to 15% of

physical IT infrastructure in 2017, as seen in figure 3.

Future of Information and Communications Conference (FICC) 2019

14-15 March 2019 | San Francisco

3 | P a g e

Fig (3) [13] Server virtualization trends

This trend leads security researchers to develop exploits that

can break guest isolation and compromise the host machine. A

list of few vulnerabilities is given below

• CVE-2017-4924: An out of bound memory corruption

vulnerability in Vmware 12.x to 12.5.7 Implementation of

SVGA(Virtual graphic card) allows attackers to execute

code host system

• CVE-2017-4934: An heap buffer overflow vulnerability in

Vmware 12.x to 12.5.8 Implementation of VMNET

(virtual machine network) allows attackers to execute code

host system

• CVE-2017-4936: An out-of-bounds read vulnerability in

Vmware 12.x to 12.5.8 JPEG2000 parser in the TPView.dll

allows guest to execute code or perform a DOS (Denial of

Service) on the Windows OS.

 A detailed list of guest-to-host escape vulnerabilities can

be found online [14]. An example of these vulnerabilities is

CVE-2017-4924 in which an out of bound memory corruption

in vmwar-vmx.exe with incorrect memory mapping exists. This

allows Data Execution Prevention bypass which leads to code

execution on host from virtual machine.

 Exploit writers were able to exploit this vulnerability and

they created a POC (Proof of Concept) [17] for its exploitation.

In the POC first the guest isolation is escaped by out of bound

memory corruption and then CMD is executed by exploiting

host Windows task registry. From CMD, PowerShell is

executed to achieve remote shell level access on host.

Schematically the exploit chain presented in figure 4.

 Memory Corruption exploit (CVE-2017-4936)

Task Registry exploit (CVE-2017-0103)

 Host CMD executes

 PowerShell for further exploitation

Fig (4) Guest to host escape exploit chain

 Ideally the virtualization provide isolation between Guest

OS and Host OS, where only the relevant services are shared as

seen in the figure 5:

Fig (5) Isolated guest and host in virtualized environment

Fig (6) Broken isolation between guest and host

D. Macro-less DDE Attacks

To transfer data between different applications Windows

provides the functionality of Dynamic Data Execution. The

communication or COM Objects of Microsoft word and

Microsoft excel, have public access to this DDE functionality.

The functionality allows Microsoft Word and Excel to execute

system commands legitimately. Exploit writers misused this

functionality and were able to develop complex exploits such

as macro-less DDE code execution [4]. It is also very difficult

to detect with traditional detection techniques since the

functionality is legitimate feature and is not blocked and

patched by Microsoft [4]. Anti-virus and anti-malware

solutions are using signature-based detection mechanism for

the detection of macro-less DDE but the signature-based

detection was also easily bypass able using command

obfuscation techniques [9]. The exploit execution of macro-less

DDE is similar to guest-to-host escape but in this case

Microsoft Word or Excel is used to create exploit chain. First

DDE on Microsoft Word or Excel is exploited which allows

Guest OS

Host CMD

Host PowerShell

Future of Information and Communications Conference (FICC) 2019

14-15 March 2019 | San Francisco

4 | P a g e

the exploited process to use COM object in Windows and pass

data related to secondary logon elevation vulnerability in

windows through which CMD is executed. Now when the

CMD process is started a command line argument containing

malicious PowerShell script is passed to obtain a remote shell

of the host a schematic repression of the explication chain is

seen in figure 7:

 Macro-less DDE Exploit (CVE-2017-11826)

Secondary logon elevation (CVE-2016-0099)

 Host CMD executes

 PowerShell for further exploitation

Fig (7) Guest to host escape exploit chain

IV. DETECTION METHODOLGH

The detection algorithm is developed by analyzing Windows

security logs. Consider the following Windows security logs of

Vmware guest-to-host Escape exploit. It breaks the Guest

isolation, executes a CMD command on the host to run a

PowerShell Exploit. The logs generated by the exploit can be

seen in the figure 8:

Fig (8) Windows event logs generated from a guest to host

exploit

After analyzing the logs a clear link is established between the
processes generated by the exploit, as the ProcessID of a process
is the NewProcessID of previous process involved in the exploit
chain. We identified that by co-relating multiple events based
upon the relation of ProcessID and NewProcessID we can create
a process execution chain of the exploit. Accordingly a detection
algorithm has been developed based on this finding. The
proposed algorithm works in the following manner:

Exploit Chain Detector (ECD) Algorithm

Input: a list of ordered Windows event logs A; a list of process names to be monitored B

/* an event logs has the following attributes: NewProcessId, ProcessId, ProcessName, TargetDomainName*/

/* B contains a list of process names that are executed after a vulnerability is exploited retrieved from report1 [15] */

Output: a list of string stacks D, a Boolean represents if exploit chains are detected c

/* D will contain all exploit chains detected by the algorithm, and c is true if one chain is found*/

Initialization: create an empty event log a ; initialize c with the value false ; create integer m with initial value 0

1 for (i=0; i<Size(A); i++) do

2 if (Ai.ProcessId ∈B) then

3 a=Ai

4 for (j=i; i<Size(A); j++) do

5 if (a. ProcessId == Aj.NewProcessId && a.TargetDomainName == Aj.TargetDomainName) then

6 Dm.Push(a.ProcessName)

7 a=Aj

8 if(A(j+m).NewProcessId==Null) then

9 c=true

10 m=m+1

11 end if

12 end if

13 end for

14 end if

15 end for

1 (The list is created according to the JPCERT report Detecting Lateral Movement through Tracking Event Logs, which

suggest the following processes for active tracking: cmd, powershell, regsvr32, rundll32, mshta)

MS Word

Host CMD

Host PowerShell

Future of Information and Communications Conference (FICC) 2019

14-15 March 2019 | San Francisco

5 | P a g e

 The ECD (Exploit Chain Detector) algorithm requires only

two inputs for execution. First is the security monitoring logs

on which detection is performed A, and second is the list of

process names that need to be monitored B. A is directly

retrieved from host which contains individual events with

multiple fields like ProcessId, NewProcessId ,ProcessName,

TargetDomainName etc. B is the list of process names given by

JPCERT[15] that are executed after a vulnerability is exploited.

In output the algorithm returns whether an exploit chain is

detected or not in a boolean variable c. If detected then it also

shows the exploit chains in a stack D. For initializing the

algorithm we need an empty event log a, an integer m with

value 0 and c will be initialized with the value false..

 When the algorithm starts processing it reads all the event

logs available in A, then it start checking one by one if the

ProcessName of an event in A is present in B. If a match is

found the single event of A is stored in a and ProccessName is

pushed to the stack D. Now a second comparison is performed

on those events of A which are present after a, in the comparison

ProcessId of a and ComputerName of a is compared with the

ProcessId of the next event of A and ComputerName of that

event in the coming logs. If a match is found ProccessName is

pushed to a stack D and value of a is updated with current value

of event at A .This process is performed until there is no

NewProcessID in A. When this happens true value is assigned

to c while the stack D contains the whole exploit chain. We

calculated the algorithm complexity and it was

O (n log n)
The algorithm complexity is good for detection of exploit chain

in environment with small or medium amount of security logs

data but in an environment with large amount of event log data

the algorithm will take considerable amount of time for

detection of exploit chains.

V. IMPLEMENTATION

We developed our proposed algorithm on a simple python

based Windows logging mechanism. It is based on the standard

pywin32 library presented at python library blog post [12],

while the detection algorithm is built around this logging

mechanism. The logs come in a recursive manner, as post

exploitation is done after the initial exploitation with respect to

time. We developed our detection algorithm POC on Microsoft

Visual Studio 20172 on python environment 3.6. Our

implementation contains the following primary functions.

1) Get-All-System-Events

This function takes all event logs from system which include

application events, security events, setup events, system events

and forwarder events and write them to separate files on disk.

2) Event-Parser

Event log parser read the event from the disk and parse them to

individual readable events and forward it to next function Get

All Event Logs

3) Get-All-Event Logs

 Get-All-Event-Logs is the core function of our detection

algorithm. It takes parsed events from Event-parser, then

performs event process comparison and event corelation for the

detetction of exploit chains.

To test the algorithm we run the developed tool on a Core i5

3320M 2.60 ghz system with 16 gb of RAM against 17098

Windows security events and two executed exploits guest-to-

host, macro-less DDE. The Execution took 7.3s for the

detection of the exploit chains, which can be seen in the figure

9:

Fig (9) Implemented algorithm process execution time and

function calls

The implementation works without any malware, virus or

malicious command signature for the detection of the exploit

chain. We performed detailed experimentation on the

developed algorithm to check the effeteness of our algorithm.

The following section elaborates the experimental details and

results:

VI. EXPERIMENTATAION AND RESULTS

Two experiments were performed to check the effectiveness of

the developed algorithm one is a guest-to-host exploit the other

is a macro-less DDE exploit details of which are given below:

A. Guest-to-host exploit

1. Experimental Setup

We created our experimental setup on a 64-bit Windows 10
machine running on a VMware Workstation 12.5.5. A Guest
Windows 10 operating system is installed on the Vmware. For
detection comparison analysis we installed Bit Defender Home,
Avira Home, Kasper Sky Home, Avast Home and Panda
Security Suite on the Host OS and deactivated them.

2. Controlled Exploit Execution

We executed a guest-to-host proof of concept for CVE-2017-
4924 [16], [17] on Guest windows 10 operating system. The
exploit breaks the Guest isolation and executed an CMD on host
machine and then executed PowerShell. Execution of exploit on
Process Hacker can be seen in the figure 10:

2 https://www.visualstudio.com/

Future of Information and Communications Conference (FICC) 2019

14-15 March 2019 | San Francisco

6 | P a g e

Fig (10) Guest to host exploit execution

3. Scenarios

We created two scenarios for comparison of our developed
algorithm with different anti-virus/anti-malware solution
available in the market. In the first scenario we executed the
exploit only against our detection algorithm. In the second
scenario we executed the exploit against different anti-
virus/anti-malware solution available in the market. Details of
which is given below:

a) Detection against developed algorithm

We executed our detection algorithm on the Windows 10 Host

OS and executed the exploit on Windows 10 Guest OS and we

were able to detect the exploit chain in the first run successfully.

Vmware CMD PowerShell

 The detection of the exploit chain by the developed algorithm

can be seen in the figure 11:

Fig (11) Guest-to-host exploit detection

The exploit chain detected by our algorithm is according to the

process execution tree shown at process hacker. However, due

to the event correlation capabilities of the developed algorithm

with respect to malicious process monitoring, we are able to

mark the chain as being malicious.

b) Detection against anti-virus/anti-malware solutions

We ran Bit Defender Home, Avira Home, Kasper Sky Home,
Avast Home and Panda Security Suite on the Windows 10 Host
OS one by one while executing the guest-to-host exploit on a
Window 10 Guest OS for the possible detection of exploit chain
we weren’t able to identify any malicious activity.

4. Experimental Results

We ran a comparative analysis of our detection techniques with

different anti-virus and anti-malware solution available in the

market. The table 1 shows the result of detection by different

security software.

Solution Detection Yes/No

Proposed Algorithm Yes

Windows Defender No

Bit Defender Home No

Avira Home No

Kasper Sky Home No

Avast Home No

Panda Security Suite No

Table (1) Result of Comparative Detection Analysis of

Developed algorithm and Different Software Security

Software

B. Macro-less DDE exploit

1. Experimental Setup

We used Microsoft Office 2013 running on 64-bit Window 10
for the experimentation purpose.

2. Controlled Exploit Execution

For macro-less DDE Exploit we developed an obfuscated DDE
Exploit for CVE-2017-11826.The exploit first executes CMD
from MS Word then from CMD it executes PowerShell for
further exploitation. The exploit execution on Process Hacker
can be seen in the figure 12:

Fig (12) Macro-less DDE exploit execution

3. Scenarios

We created two scenarios for the evaluation of our developed
algorithm in the first scenario we executed the exploit on the
Experimental setup to check the detection against our developed
algorithm. In the second scenario we used online service
VIrustototal3 which performed detection analysis against 59
anti-virus/anti-malware solution details of the scenarios is given
below:

a) Detection against developed algorithm

We executed our detection algorithm on the Windows 10

running MS Word and we were able to detect the exploit chain

in the first run successfully.

Word CMD PowerShell

The detection of the exploit chain by the developed algorithm

can be seen in the figure 13:

Fig (13) Macro-less DDE exploit detection

3 https://www.virustotal.com/#/file/27c058180a47a5f73ac013e908dde0ec823a28a561408749872e54e6944a4c3f/detection

Future of Information and Communications Conference (FICC) 2019

14-15 March 2019 | San Francisco

7 | P a g e

The exploit chain detected by our algorithm is according to the

process execution tree shown at Process Hacker. However, due

to the event correlation capabilities of the developed algorithm

with respect to malicious process monitoring, we are able to

mark the chain as being malicious.

b) Detection against anti-virus/anti-malware solutions

As stated earlier we developed an obfuscated macro-less DDE

exploit which have zero detection signature against 59 anti-

virus and anti-malware solution on Virus Total3 as seen in the

figure 14:

Fig (14) Obfuscated macro-less DDE exploit

4. Experimental Results

Our analysis is being performed on 59 anti-virus and anti-
malware solution for saving space few results are omitted but
details of analysis can be found online*. Table 2 presenting the
detection result compare to different anti-virus and anti-malware
solution is given below:

Solution Detection Yes/No

Proposed Algorithm Yes

Ad-Aware No

AegisLab No

AhnLab-V3 No

ALYac No

Antiy-AVL No

Arcabit No

Avast No

Avast Mobile Security No

AVG No

Table (2) Result of comparative detection analysis of

developed algorithm and different software security software

VII. DISCUSSION

 The key factor of failure of other detection techniques

compare to our techniques is that other detection techniques

focus on signature and illegitimate behavior of processes that

are being executed. As shown above legitimate behavior of an

application can be used for malicious purposes. Similarly

signatures of malicious code can be obfuscated as well to avoid

detection. Our detection technique works completely different

in comparison to other techniques it tries to identify the chain

of processes that are being executed by a process and then co-

relate them for the identification of malicious processes in the

chain. Therefore it has the capability to detect those exploits

which are not detected by other available solutions.

 We believe that the algorithm complexity is not ideal and

there is a lot of room for improvement. But the approach which

the algorithm use is quite unique for detection of malicious

exploit chains. We intend to further refine the technique for

other detection like the detection malicious activates of user by

means of event correlation.

VIII. CONCLUSION AND FUTURE WROK

With the proposed detection technique we are able to identify

complex exploit chains. We assume that some complex user

administration automation scripts may cause false positives due

to their complex execution nature, but overall the detection

technique is satisfactory in detecting complex exploit chains.

A significant benefit of this technique is that it works

completely blindly, without any signature and behavior metrics.

In the future, we intent to further refine our technique to trace

the exploit chain when the process migrates to another process.

Furthermore we will perform our experiments in a large

network for identification of false positives in our detection

algorithm.

REFERENCES

[1] Pwn2own 2018 – Day Two Results and Master Of Pwn

https://www.zerodayinitiative.com/blog/2018/3/15/pwn2own-2018-day-
two-results-and-master-of-pwn Accessed 17 May 2018

[2] Srinivasan, Deepa, Zhi Wang, Xuxian Jiang, and Dongyan Xu. "Process
out-grafting: an efficient out-of-vm approach for fine-grained process
execution monitoring." In Proceedings of the 18th ACM conference on
Computer and communications security, pp. 363-374. ACM, 2011.

[3] Mandal, Debasish, and Yakun Zhang. THE GREAT ESCAPES OF
VMWARE: A RETROSPECTIVE CASE STUDY OF VMWARE
GUEST-TO-HOST ESCAPE VULNERABILITIES. PDF. London:
Blackhat, December, 2017.

[4] Sensepost

https://sensepost.com/blog/2017/macro-less-code-exec-in-msword/
Accessed 17 May 2018

[5] Neumann, William C., Thomas E. Corby, and Gerald Allen Epps.
"System for secure computing using defense-in-depth architecture." U.S.
Patent 7,428,754, issued September 23, 2008.

[6] Win, Thu Yein, Huaglory Tianfield, and Quentin Mair. "Big data based
security analytics for protecting virtualized infrastructures in cloud
computing." IEEE Transactions on Big Data 4, no. 1 (2018): 11-25.

[7] Wang, Xiaoguang, Yong Qi, Zhi Wang, Yue Chen, and Yajin Zhou.
"Design and Implementation of SecPod, A Framework for Virtualization-
based Security Systems." IEEE Transactions on Dependable and Secure
Computing (2017).

[8] Ucci, Daniele, Leonardo Aniello, and Roberto Baldoni. "Survey on the
Usage of Machine Learning Techniques for Malware Analysis." arXiv
preprint arXiv:1710.08189 (2017).

[9] Hendler, Danny, Shay Kels, and Amir Rubin. "Detecting Malicious
PowerShell Commands using Deep Neural Networks." arXiv preprint
arXiv:1804.04177 (2018).

[10] Dosfuscation: Exploring the Depths Of Cmd.exe Obfuscation and
Detection Techniques « Dosfuscation: Exploring the Depths Of Cmd.exe
Obfuscation and Detection Techniques

Future of Information and Communications Conference (FICC) 2019

14-15 March 2019 | San Francisco

8 | P a g e

Daniel Bohannon - https://www.fireeye.com/blog/threat-
research/2018/03/dosfuscation-exploring-obfuscation-and-detection-
techniques.html Accessed 19 May 2018

[11] 4688(s) A New Process Has Been Created. (windows 10)

Mir0sh - https://docs.microsoft.com/en-us/windows/security/threat-
protection/auditing/event-4688 Accessed 19 May 2018

[12] URLhttps://www.blog.pythonlibrary.org/2010/07/27/pywin32-getting-
windows-event-logs/ Website TitleThe Mouse Vs. The Python Date
Accessed May 27, 2018

[13] Server Virtualization and Os Trends

Spiceworks, Inc -
https://community.spiceworks.com/networking/articles/2462-server-
virtualization-and-os-trends Accessed 24 May 2018

[14] Virtual Machine Escape

https://en.wikipedia.org/wiki/Virtual_machine_escape Accessed 17 May
2018

[15] Research Report Released: Detecting Lateral Movement Through
Tracking Event Logs (version 2)

https://blog.jpcert.or.jp/2017/12/research-report-released-detecting-
lateral-movement-through-tracking-event-logs-version-2.htm Accessed
17 May 2018

[16] Comsecuris/vgpu_shader_pocs

Comsecuris - https://github.com/Comsecuris/vgpu_shader_pocs
Accessed 18 May 2018

[17] 0patch Blog Luka Treiber -
http://blog.0patch.com/2017/10/micropatching-hypervisor-with-
running.html Accessed 18 May 2018

2.7. Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 141

2.7 Use of Cyber Attack and defense agents in Cyber Ranges:
A Case Study

Use of Cyber Attack and defense agents in Cyber
Ranges: A Case Study

Muhammad Mudassar Yamin and Basel Katt

Norwegian University of Science and Technology, Gjøvik 2815, Norway
{muhammad.m.yamin,basel.katt}@ntnu.no

Abstract. With the ever-changing cybersecurity landscape, the need for
continuous training for a new cybersecurity skill set is a requirement. This
training can be delivered on platforms like cyber ranges. Cyber ranges sup-
port training by providing a simulated or emulated representation of com-
puter network infrastructure besides additional training and testing services.
Cyber attack and defense skills can be gained by attacking and defending
the infrastructure; however, to provide more realistic training, there is a
need for necessary friction in the environment, which can be related to both
the attacker’s and defender’s actions. The actions of human teams—both
attackers and defenders—provide this friction. Involving human teams in
large-scale cybersecurity exercises is relatively inefficient and not feasible for
standardizing training because different teams apply different tactics. Cur-
rently, the proposed solutions for cyber range training platforms focus on
automating the deployment of the cybersecurity exercise infrastructure but
not on the execution part. This leaves room for improving exercise execu-
tion by adding realism and efficiency. This research presents an agent-based
system that emulates cyber attack and defense actions during cybersecurity
exercise execution; this helps provide realistic and efficient cybersecurity
training. To specify agents’ behavior and decision making, a new model,
called the execution plan (EP), was developed and utilized in this work.

Keywords: Cyber attack agent · Cyber defense agent · Cyber Range ·
Security Exercise.

1 Introduction

Conducting operational cybersecurity exercises is a difficult and inefficient task [YK18a].
We have found that automating the different roles involved in cybersecurity ex-
ercises can reduce these inefficiencies [YKT+18]. These roles primarily involve a
human team required to set up the exercise technical network infrastructure. Ad-
ditionally, there is a team that attacks the deployed infrastructure as an attacker
and a team that defends it as a defender [YKG20]. There can be multiple ways
with which a cybersecurity exercise can be executed that may or may not involve
both attackers and defenders at the same time. However, in a realistic environ-
ment, to train attackers, the systems being attacked are expected to be defended
by somebody. Because of shortage in the cybersecurity skills, it is very difficult to

2 Yamin and Katt

find people with the relevant skill set [YK19a] to conduct continuous cybersecu-
rity exercises. Moreover, different people have different tactics and techniques in
cybersecurity operations, making a standardized assessment of cybersecurity ex-
ercises difficult [HWD+17]. Therefore, there is a need for automating attack and
defense roles in cybersecurity exercises. Despite its importance, there is a lack of
research dealing with realism and efficiency in cybersecurity exercise execution in
cyber ranges. Most of the related work deals with automating the creation and
deployment of the exercise infrastructure. This leaves room for researchers to im-
prove the realism and efficiency of cybersecurity exercise execution. We tackle this
issue by proposing an agent-based system, one in which we model the attacker and
defender roles and automate their execution as required. In particular, we devel-
oped a new modeling technique: execution plan (EP). EP is a multi-level model
for specifying behavior and decision-making process for attacking and defending
agents. We argue that such agents will add the necessary friction in the cyberse-
curity exercise environment to make them realistic and reduce the human input of
attackers and defenders to make exercise execution more efficient. Therefore, in the
current research, we aim to answer the following research question (RQ):

RQ: How can cybersecurity attack and defense scenario models be executed
autonomously in a cybersecurity exercise to make cybersecurity exercise execution
realistic and efficient?

We present our experience in developing and using cyber-attack and defense
agents during cybersecurity exercises against human adversaries. The current pa-
per focuses on the conceptual design, agent decision modeling, practical implemen-
tation and user experience with cyber-attack and defense agents. The system is
evaluated using a case study against defined benchmarks. The case study involved
an operational cybersecurity exercise in which the attack and defense agents were
deployed along with human participants. The attack agents were used to create
forensic traces for blue team members, which were verified in their forensic reports.
At the same time, the defense agents were used to add friction or realism in the
exercise environment and were evaluated based on the compromised status of the
systems on which they were deployed. The paper is structured as follows: first, we
share the research background and related work. After that, we state our research
methodology. We then present the conceptual design and technical implementation
of cyber attack and defense agents. Finally, we present the experimental results and
conclude the article.

2 Research Background and Related Work

Cybersecurity is important both against individual inexperienced hackers and against
coordinated teams of hackers that might or might not have governmental support.
The conventional methods of teaching cybersecurity include lectures, assignments,
seminars, and hands-on labs. Hands-on methods include competitions, challenges,
and exercises such as the following:

Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 3

1. Capture the flag (CTF), which focus on attacking, defending, or attack and
defense at the same time.

2. Cyber defense exercises (CDX), which focus primarily on defending.

These competitions, challenges, and exercises are conducted in isolated safe en-
vironments, which are called cyber ranges. Cyber ranges can host single standalone
challenges for CTF competitions or represent a sector/organization’s complex com-
puter network infrastructure for CDX exercises [YKG20].

An important element missing from virtual environments is an element of active
opposition. A training simulation environment has static defenses (access control,
firewalls, fixed set of intrusion methods, etc.) but lacks active opposition (e.g.,
monitor logs, blocked connections, exploit switching, or information gathering).
This results in the cyber operators behaving as though opponents do not have a
tangible existenceand higher-level goals. Second, it ignores an opportunity to tailor
the student’s learning experience through adjustable adversary behavior [JON+15].

Cyberwarfare is an imminent threat to military and civilian systems; it could
damage the economy and national security. Cyber aggressors are guided by cogni-
tive behavior (script-kiddies, ideological activists, investigators, financial criminals,
intelligence agents, or cyber warfighters). Building an effective training system for
cyberwarfare currently faces many barriers. Current training environments are un-
able to capture the purpose, creativity, and adaptability of cyber warfighters, and
cyber warfighters need to be effectively trained against a cunning and adaptive
opponents.

We conducted a detailed study on cyber ranges [YKG20] and identified that
after 2014, different operations in cybersecurity exercises have become automated

2.1 Related Work

Multiple researchers have worked in the development of cyber attack and defense
agents. Here, we discuss some of the work relevant to our research. For emulating
attacker steps, a lot of research work has been carried out, resulting in open source,
free, and commercially available solutions. Some of them are the following:

Splunk attack range [spl] is a limited cyber range deployment tool in which a
small infrastructure can be deployed on cloud and local machines. The infrastruc-
ture is monitored by various Splunk attack monitoring and detection engines. Differ-
ent attacks of the infrastructures are simulated using ART (Atomic Red Team) [red].
ART follows the MITRE attack chain model [MIT] and can simulate an attack on
Windows, Linux, and Mac OS systems. It uses YAML-based inputs to execute
atomic tests for adversary actions on the target systems.

APTSimulator [APT] is an open source advanced persistence threat simulation
tool. The tool uses batch scripts with various hacking utilities to create system
compromise traces like command and control, defense evasion, lateral movement,
and so forth. It is used for endpoint detection agent assessment, testing security
monitoring and detection capabilities, and preparing the digital forensic class envi-
ronment. It roughly follows the MITRE attack chain model and is also limited to
emulating attacks on Windows-based host machines.

4 Yamin and Katt

Metta [ube] is an open source information security preparedness tool. The tool
uses Virtualbox, with different development tools like Redis/Celery, python, and
vagrant, to simulate adversarial actions. Input is given to the tool in the form
of a YAML file, which is parsed to execute the attacker’s action on the host- and
network-based systems. Metta follows the MITRE attack chain model and is limited
to emulating attacks on Windows-based systems.

In the case of cybersecurity exercises, there is a need for the repeatable [HS16]
execution of attacker steps for standardized training. Moreover, there are legal and
ethical concerns in developing autonomous cyber-attack agents [YB18], so for an
attack agent, the attack execution steps need to be planned while keeping a human
in the loop before executing them in a cybersecurity exercise environment.

For the defense agent, most related work has focused on network- and host-
based detection systems, while some have looked into introducing active attack-
repellent features in defense agents. Randolph el al. [JON+15] conducted research
about modeling and integrating cognitive agents in the cyber domain. The purpose
was to develop agents that can produce the necessary friction during cybersecurity
exercises to create realism. They developed a novel model for cyber offense and
defense; they used the model to create software adapters that translate from task-
level actions to network-level events to support agent-network interoperability for
cybersecurity operations. They presented a high-level defender goal hierarchy in
which the defender has to (1) establish a baseline, (2) detect an ongoing attack, (3)
stop an ongoing attack, and (4) prevent future attacks.

Kott et al. [KTD+18b] put forward the idea of the development of a ”Hello
world” program for the intelligent autonomous defense agent. The researchers stated
that the autonomous agent, should have the following six capabilities to be consid-
ered intelligent:

1. The agent should be strictly associated with its environment and should be
useless outside its designed environment.

2. The agent should interact with its environment using appropriate sensors.
3. The agent should act to achieve its stated goals.
4. The agent activities should be sustained overtime to be autonomous.
5. The agent should have an internal world model that can express its states with

performance measures.
6. The agent should learn new knowledge and modify its model and goals over

time based on new knowledge.

Paul et al. [TKD+18] proposed the reference architecture for autonomous intel-
ligent cyber defense agents (AICA). In their proposed architecture, the researchers
stated that AICA has five main high-level functions:

1. Sensing world state information
2. Planning and action selection
3. Collaboration and negotiation
4. Action execution
5. Learning and knowledge improvement

Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 5

The researchers also suggested a functional architecture for AICA and stated that
according to their assessment, the development of such agents is not beyond the
current technical capabilities and can be developed within ten years.

Although other researchers are also investigating autonomous intelligent cy-
ber defense agents, the work is still in the design stage [KTD+18b,TKD+20]. One
implementation of such an agent was proposed by Randolph et al. [JON+15], in
which the researchers suggested the idea of adding friction in cybersecurity exer-
cises. Their approach utilized cognitive modeling of human cybersecurity experts
to model the behavior of the agent based on human expertise. We consider such an
approach not suitable for agent development because human experts have different
subjective experiences, which can result in unintentional bias in their behavior, as
observed in data-driven AI algorithms [YUUK21]. Kott et al. [KTD+18b] and Paul
et al. [TKD+18] provided the baseline requirement and functional needs of the cy-
ber defense agent, which we considered suitable to fulfill our requirements. For the
attack agent, we find the ART, APTSimulator, and META approaches suitable for
usage in cybersecurity to conduct cybersecurity exercises. We integrated multiple
ideas and approaches suggested by various researchers for the development of our
attack and defense agents. Our attack agent follows a systemic step-by-step execu-
tion of attacks similar to ART, APTSimulator, and META, but it is integrated with
a cybersecurity exercise orchestrator, making it suitable for computationally repeat-
able cybersecurity exercises and experiments. Our defense agent is also integrated
with our cybersecurity exercise orchestrator and provides example implementation
of the design presented by Kott et al. [KTD+18b].

3 Methodology

We employed numerous research methodologies during this research activity. We
used the DSR design science research methodology [HC10] for the overall develop-
ment of the necessary artifacts for this research. DSR is a very well-known research
methodology that has five phases 1) awareness of the problem, 2) suggestion, 3)
development, 4) evaluation, and 5)conclusion. These phases are iterative in nature,
and the results of these phases are used to improve the overall design to produce a
research artifact that addresses the research problem [KV08].

In awareness of the problem, the research problem can be identified, so we leaned
on certain studies for this phase [YK18a,YKT+18,YKG20]. In the suggestion phase,
the solution’s designs are proposed to address the research problem, and we con-
ducted this step using certain studies [YKG20,YK19b].We are currently developing
and evaluating the artifacts, and the present paper is presenting the results of
this phase. For the development of such an artifact, model-driven approaches are
widely employed [BCD+19]. In such an approach, a complex problem is abstractly
defined in the form of a model, and automation techniques are used to generate
low-level artifacts from the abstract model. In our previous work, we developed a
DSL domain specific language to formally specify the cybersecurity exercise envi-
ronment [YK22]. The environment contains the exercise infrastructure and agents

6 Yamin and Katt

running within the environment. In this work, we used the DSL developed for au-
tomating the creation and deployment of the exercise environment. Additionally,
we augmented the DSL with a new modeling technique based on attack/defense
trees that we call execution plans (EPs). EPs enable a designer to model the be-
havior and decision making of attack and defense agents. Finally, in this work, we
use applied experimentation in operational cybersecurity exercises against de-
fined benchmarks to gather the analytical data for evaluating the performance of
developed cybersecurity defense agents [EM17].

4 Conceptual Design

This research work is a part of a larger initiative in which the whole process of the
cybersecurity exercise life cycle is automated. To achieve this, a DSL is developed to
transform abstract concepts related to the cybersecurity exercise life cycle [YK18a]
into concrete artifacts. These abstract concepts include defining the network topol-
ogy, defining the vulnerabilities in the nodes connected to the network, defining
benign network traffic, and defining attacker and defender behavior. In this work,
our scope is limited to attacker and defender behavior, so we only focus on the
concepts involved in attack and defense agent development. Figure 1 illustrates the
DSL meta-model for defining attacker and defender properties used to generate
agent artifacts. Later in section 5, a concrete syntax will be presented, which will
give an example of an instantiation of this DSL meta-model.

The attack agent comprises of a total six concepts. The first one is the attack-
action-id, which is an identifier of a potential attack action. In case the attack action
causes a particular tool to be executed, the tool name can be used as an identifier.
The second, third, and fourth concepts are Agent IP, Agent User ID, and Agent
User Password. These concepts provide the information about the agent from which
the attacker action is going to be performed. The fifth concept is Argument, which
represents one of the properties that are needed for the attacker’s action to be
executed. In terms of an a tool that represents an attacker’s action, this concept
represents the tool’s specific arguments. The sixth and final concept for the attack
agent is Target, which is the IP address of a machine on which the attack agent
performs its actions. Similarly, the defense agent has five properties. The first three
are Agent IP, Agent User ID, and Agent User Password, which provide the
information necessary to install the defense agent on a system. The fourth property
is the Operating System, which provides the information of the operating system the
defense agent is working on. The final property is the Parameter, which provides
the defender with a specific knowledge base. The parameter contains a list of pairs,
each of which consists of an attacker action and the defender reaction to it.

The DSL uses an orchestrator that implements the abstract concepts defined in
it to concretely create operational artifacts for establishing the necessary exercise
infrastructures, generating network traffic, emulating benign users, launching cyber
attacks, and defending against these attacks. The orchestrator has a master control
unit connected to the attack agent and used to control them in a semi-autonomous

Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 7

Fig. 1: A meta-model of the attack and defense agents

manner, while the orchestrator configures the defense agents before deployment
so that they can work in an autonomous mode. The operational artifacts contain
network topology templates for cloud deployment, specification of the vulnerabili-
ties in the form of software, service and configuration, and the specification of the
benign, attacker, and defense agents’ behaviors present in the deployed network.
The specification is given to the orchestrator in JSON, and it starts generating the
necessary artifacts in five steps, as shown in Figure 2. First, the exercises network
infrastructure is generated through a HEAT template for infrastructure deployment
in Opestack-based cloud. In the second step, software, service, and configuration
are invoked in the deployed infrastructure using a custom SSH-based installation
and configuration module to make the infrastructure vulnerable. In the third step,
part of the deployed infrastructure is used to generate benign traffic using various
automated tools like TCP relay and VNCD tool. In the fourth step, an attack agent
is used to test and verify the vulnerabilities present in the exercise infrastructure. In
the fifth and final step, a defense agent is deployed in part of the infrastructure to
add the necessary friction in the cybersecurity exercise. The DSL implementation
related to exercise network infrastructure generation and generating benign user

8 Yamin and Katt

Fig. 2: Cyber security exercise operation orchestrator

behavior and traffic is part of another research work. In the current work, we are
only focusing on the DSL instance of attackers and defenders.

There can be multiple ways attack and defense agents can be designed and de-
ployed. This depends on the eventual goal of the agent, that is, what is expected
from the agent. We can model the goals of the attack and defense agents based
on the responsibilities of the red and blue teams. Lockheed Martin’s cyber kill
chain course of action matrix [HCA+11] provides a simplified way to model the at-
tack and defense phases. For the attacker, there are seven phases reconnaissance,
weaponization, delivery, exploitation, installation, command and control, and ac-
tions on objective. These attack phases utilize a set to tools and techniques to
achieve the attacker’s eventual objectives and goals, which could be the disrup-
tion of services or extraction of data. On the defense side, there are six phases to
stop the attacker: detect, deny, disrupt, degrade, deceive, and destroy. The defender
uses different network/host intrusion detection and prevention systems, firewalls,
antivirus software, and honeypots to achieve the objective of stopping the attacker.

There are other models like MITRE ATT&CK that can be applied for model-
ing attacker actions and relevant defender reactions. However, MITRE ATT&CK
strictly focuses on concrete actions, tactics, and techniques that are specific to an

Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 9

operating system. The cyber kill chain is very general and can easily model attack
and defense in a different operating environment. We consider the generality of the
cyber kill chain suitable for modeling attack and defense scenarios for cybersecurity
exercises.

Theses attack and defense phases are executed by utilizing different tools and
techniques. These tools and techniques provide relevant information to the agents
so that they can make intelligent decisions. However, it should be noted that this
intelligent decision making is strictly dependent on the amount of information being
shared, which is related to the agent’s goals.

If we look carefully at the information sources, there are primarily two types: ex-
ternal and internal. For an attack agent, external information can be gathered from
scanning networks and identifying software, services, and configurations, while its
internal information can be the knowledge about the exploits on the identified soft-
ware, services, and configurations. A defense agent’s external information sources
contain information from the environment such as network activity, while inter-
nal information sources contain information about the system’s internal activities
such as event logs, which are widely used to detect system exploitation and lateral
movement [Cen17]. These information sources are combined to provide security
information and event management capabilities for defending against the attacks
by correlating information from multiple sources. However, information correlation
requires manually defining security events to look for and manually take actions
against them to stop the attacker in its tracks. A defense agent can assess the type
of traffic to identify whether it is benign or malicious. An attacker can overwhelm
the defender by launching multiple attacks at the same time, which could make
intelligent decision making very difficult. It will also create a new threat vector
for the defender because decision making depends on external sources that can be
manipulated.

Let us analyze the course of action matrix [HCA+11] for attackers and defend-
ers. Here, the attacker’s reconnaissance and weaponization goals can be detected
by external information sources like web analytics and NIDS (network intrusion
detection systems). In contrast, exploitation and installation can be detected by
HIDS (host intrusion detection system). Although detecting an attack is desirable
at an early stage, a host-based system can be better suited to respond directly to
the attack; it can detect a security event and automatically respond to it by mak-
ing operational changes such as applying local firewall rules and installing patches
through its knowledge base without relying on an external input to deny the at-
tacker actions. The knowledge base can contain information about the expected
attacker’s actions and the appropriate defender response. This knowledge can be
useful for known attack tactics and techniques; however, it needs to be updated
for new attack detection and responses, which require some intelligence. This intel-
ligent behavior can be learned by analyzing the attack vectors and implementing
security actions against them, manually first and automatically later. The attack
vectors can be learned by constantly monitoring the system state and detecting
changes. When a change is detected, the events that lead to that change can be
fetched for identifying the malicious actions. A set of predefined reactions can be

10 Yamin and Katt

specified for implementation against a particular set of actions to deny the attacker
from using them for further exploitation.

All components and parts of a cybersecurity exercise environment are considered
a system, and each system is running software and services with system-specific
configurations. The system for the attack agent is a Kali Linux machine controlled
by another system running our developed orchestrator software and using SSH as
a service for communication with the Kali machine. The orchestrator can control
multiple Kali machines to lunch multiple attacks at the same time. Similarly, for
the defender part, the orchestrator can inject a defense agent with its knowledge
base as software that can independently run on the injected system to protect its
software, service, and configuration. Additionally, there are traffic generators that
are present in the cybersecurity exercise environment, which are basically attack
agents performing benign activities such as replying PCAP files and automating
GUI user behavior using VNCDtool. The agents and their interactions are presented
in 3, which is mapped with the third, fourth, and fifth steps of the orchestrator,
as presented in Figure 2.

The developed agents operate in a cloud-based cybersecurity exercise environ-
ment. The environment has attack and vulnerable machines on which the attack
and defense agents are operating. The vulnerable machines have vulnerabilities re-
lated to software, services, and configurations that an attack agent can remotely
sense. The behavior of the agents in the environment is governed by the world state.
The world state is the software’s, services’, and configurations’ specific informa-
tion provided to the agents. New information about the world state is gathered
from the environment in which the agents are operating by using their sensing
capability. The sensing capability indicates which type of systems the agent is in-
teracting with and triggers an action when it finds some specific information about
the world state [KTD+18b,KTD+18a]. For the attack agent, active and passive re-
connaissance tools like arp-scan and Nmap are used to gather information about
the services running in the network. This information is used to create the world
model for the attack agent, and changes in these services will update the world
state for the attacker. When the attack agent senses a vulnerable service, it triggers
a change in its world state, upon which an attack action is selected and executed
on the vulnerable machine. Similarly for the defense agent, Windows security logs
provides an active sensing capability to create a model of the world state, which
includes the type of software and services running on the system and any changes
in their configuration. When an attacker interacts with the system defended by the
defense agent, it creates logs that are then used to update the world state and trig-
ger a reaction from the defense agent. The decision-making process of the proposed
agents are discussed in section 4.1.

When the attacker’s action is executed, an event is created in the vulnerable
machine environment. The defense agent has a list of malicious events, the current
world state, and responses to those events. The defense agent can sense the known
events generated by attacker actions, which can trigger a change in its world state.
The defense agent then selects an appropriate response and executes it to counter
the attack agent’s actions. The interactions between the attack and defense agents

Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 11

Fig. 3: Attack and defense agent environment and interactions

in the cybersecurity exercise environment is presented in Figure 3, and details of
the attack and defense agent work flows are presented in Figure 6 and Figure7
respectively:

In terms of deploying the agents in the cybersecurity exercise environment, there
are certain considerations. Some researchers have implemented script execution
techniques on the machine [Gen] to generate attack logs; however, we deployed the
attack agents on a remote machine to emulate realistic adversary behavior. On the
other hand, the defense agents were deployed on the machines because a central
command and control unit could have been compromised to disable the defenders’
functionality.

12 Yamin and Katt

4.1 Agent Decision Modeling

On an abstract level, our agents have five properties— Knowledge, Goals, Con-
ditions, Actions, and Commands, where the knowledge is provided through the
DSL. The Knowledge of an agent contains information about the world state, like
the software, services, and configuration running in the environment. An agent’s
Condition is used to perform condition-specific actions on the software, services,
and configuration. These conditions are triggered based on events that change the
world state. An Action is executed using a set of Commands. A set of successful
action executions result in the achievement of a Goal, which is modeled based on
the CKC course of action matrix. For the attacker, these goals are Reconnais-
sance, Delivery, Exploitation, Installation, Command and Control and Actions on
Objective. Similarly, for the defender, these goals are Detect and Deny.

The DSL instance is translated into EPs (Execution Plans) for the achieve-
ment of specific Goals. We adapted the concepts from the attack and defense
trees [KMRS14], as well as the hierarchy of action plans [Kot05], to develop the EP
models. The EP models consist of three levels of decisions high, medium, and low.

4.1.1 EP Model EPs are tree-structured models that represent the agent’s
decision-making process. An EP describes the goals, conditions, and commands
of an agent, as well as showing the path that needs to be taken to reach the final
conditions and fulfill the goals. These conditions result in one of the following EP
outputs: plan fulfilled, plan not fulfilled, or plan maybe impractical.

The root of an EP tree is the goal of an agent, and an end-leaf of an EP tree
represents the commands that will fulfill an agent’s goal. An EP consists of three
decision levels-Level 1, Level 2, and Level 3-and each level is represented as a sub-
tree of the EP tree. The root of Level 1 of an EP tree is the root of the EP tree.
The leaves of one sub-tree are the roots of the next level sub-tree. A parent node
is connected with its children nodes using two possible operators, AND and OR,
which are represented by ∧ and ∨, respectively. The semantics of the nodes and
operators in an EP tree depend on the level where the node exists.

Level 1 The Level 1 sub-tree of an EP tree is the first high level sub-tree of the EP tree.
The root node of a Level 1 sub-tree of an EP tree represents the main goal of
the EP tree, and the leaves represent a set of sub-goals. The operator ∧ is used
if all the sub-goals needs to be fulfilled for the parent goal to be achieved. On
the other hand, ∨ can be used if the fulfillment of one sub-goal will result in
the fulfillment of the parent goal.

Level 2 The Level 2 sub-tree of an EP tree is the second medium-level sub-tree of the
EP tree. The root of the Level 2 sub-tree is a leaf in the Level 1 tree or the
root of the EP tree where the Level 1 sub-tree consists of one node. Level 2
represents a sequence of conditions that need to be checked to decide which
actions should be executed. The nodes of a Level 2 sub-tree are conditions with
two possible outputs Yes/No, meaning that only ∨ operators are allowed in
a Level 2 sub-tree. Each parent node is connected to, at most, two children

Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 13

nodes, which represents the next conditions to be checked. A special type of
condition is called ”Not Fulfilled.” It is a final condition with no children, and
it is denoted by the symbol —; reaching this condition means that the plan
is not or cannot be fulfilled. A leaf in a Level 2 sub-tree can be either an NF
”Not Fulfilled” condition or an action.

Level 3 The Level 3 sub-tree of an EP tree is the third low-level sub-tree of the EP tree.
Level 3 roots are actions represented in the leaf nodes of the Level 2 sub-tree,
and the nodes represent concrete commands. Both ∧ and ∨ are allowed in a
Level 3 sub-tree. ∧ means all the children’s commands need to be executed to
achieve the action, while ∨ means that the execution of any of the commands
can achieve the action.

Output Plan output ”Fulfilled” is reached when all the commands in the EP tree leaves
are executed successfully and the goal is achieved. Plan output ”Impractical” is
reached when the result of the execution of one command leaf is not successful.
Plan output ”Not Fulfilled” is reached when the agent cannot reach an action
leaf because of knowledge or resource limitations. The EP plan in this case will
stop at the Level 2 sub-tree.

4.1.2 EP Formal Model We use Datalog [Dat] for formal modeling of the
agents decisions and to verify the different decision properties like: is the goal fulfilled
or not?. Datalog is a programming language based on a declarative logic [Llo12].
It is employed by researchers for large-scale software analyses [Nai20], automatic
evaluations of cybersecurity matrices [ZN20], and the verification of cybersecurity
exercise scenarios [RCA20], making it suitable as a formal model for cybersecurity
exercise scenarios. It consists of two parts: facts and clauses. A fact conforms to the
parts of the elements of the predicated phenomenon. A clause refers to information
deriving from other subsets of information. Clauses rely on terms, which can contain
variables; however, facts cannot. It adjudicates whether the specific term is adherent
to the specified facts and clauses. If it happens to be so, the specific query is
validated via a query engine, providing the prerequisite facts and clauses.

When running a Datalog operation, the specified conditions include a combi-
nation of two facts along with a singular clause. We assign a condition that if the
query is valid, a specific response is to be expected at the end. The conclusion of
the said experiment is that the specific response is received and that the query is
satisfied. By utilizing the clauses via their variables, the engine can pinpoint and
find the result. For a concrete example [CGT+89], consider the facts ”John is the
father of Harry” and ”Harry is the father of Larry”. A clause will allow us to
deduce facts from other facts. In this example, consider we want to know ”Who is
the grandfather of Larry?”. We can use three variables X,Y and Z and make a
deductive clause: If X is the parent of Y and Y is the father of Z, then X will
be the grandfather of Z. To represent facts and clauses, Datalog uses horn clauses
in a general shape:

L0 : −L1...,Ln

Each instance of L represents a literal in the form of a predicate symbol that
contains one or multiple terms. A term can have a constant or variable value. A

14 Yamin and Katt

Datalog clause has two parts: the left hand side part is called the head, while the
right hand side part is called the body. The body of the clause can be empty, which
makes the clause a fact. A body that contains at least literal represents the rules
in the clause. Lets us represent the above mentioned facts that ”John is the father
of Harry” and ”Harry is the father of Larry” as follows:

Father(John,Harry)

Father(Harry ,Larry)

The clause if X is the father of Y and Y is the father of Z, then X will be the
grandfather of Z can be represented as follows:

GrandFather(Z ,X) : −Father(Y ,X),Father(Z ,Y)

For our agents we define 4 basic predicates for decision modeling which are 1)
Goal, 2) Condition, 3) Action and 4) Fulfilled. The facts for the decision model
with their definitions are as follows:

Definition 1. The Goals predicate is logically presented as Goals(Goal, SubGoal),
and it has two variables Goal and SubGoal. The Goal is a string value which
indicates attack and defense goals like ’Exploit System’ for attack and ’Prevent
Attacks’ for defense. The SubGoal is also a string values which contains sub goals
for achieving the Goal like ’Reconnaissance’ and ’Exploitation’ for attack and
’Detect’ and ’Deny’ for defense. A concrete example of Goals predicate for attack
is presented as fallows:

Goals(′ExploitSystem ′,′ Reconnaissance ′)

Goals(′ExploitSystem ′,′ Exploitation ′)

Similarly for defense Goals can be represented as fallow:

Goals(′PreventAttacks ′,′ Detect ′)

Goals(′PreventAttacks ′,′ Deny ′)

Definition 2. The Condition predicate is logically presented as Condition(Goal,
Parameter, Command) and it has three variables Goal, Parameter and Command.
Goal is a string value which is the leaf of Level 1 tree consisting goals and sub
goals like ’Reconnaissance’, Parameter is a string value that is condition specif
to achieve the goal like ’Active’ for performing active reconnaissance, Command
contain the parameter for performing a low level action like service and version scan
using Nmap ’-sS -sV’. A concrete example of Condition predicate is presented as
fallows:

Condition(′Reconnaissance ′,′ Actvie ′,′−sS − sV ′)

Similarly a defense Condition can be represented as fallow:

Condition(′Deny ′,′ shell .exe ′,′ taskkill/IM ”shell .exe”/F ′)

Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 15

Definition 3. The Action predicate is logically presented as Action(ActionName,
ActionTarget), and it has two variables ActionName and ActionTarget. Action-
Name is a string value which contain low level goal action execution like Nmap
for attacker and Deny for defender. ActionTarget is string value which contain
the information of machine address on which the action is to be executed for the
attacker and the pattern on which the action is triggered by the defender. A concrete
example of Action predicate is presented as fallows:
For attacker:

Action(′Nmap′,′ 172.168.2, 2′)

For defense:
Action(′Deny ′,′ shell .exe ′)

Definition 4. The Fullfilled predicate is logically presented as Fullfilled(Goal,
ActionName) and it has two variables Goal and ActionName. Goal is a string
value that indicates high level goal like ’Reconnaissance’ and ActionNamel is a
string value that indicates concrete tool or action to achieve the high level goal like
’Nmap’. A concrete example of Fullfilled predicate is presented as follows:

FullFilled(′Reconnaissance ′,′ Nmap′)

For defense: FullFilled(’Deny’,’shell.exe’)

4.1.3 EP Model Verification The decision model presented in section 4.1 help
us to verify various agent properties before their execution, like:

– How high level goal can be translated into to low level actions
– Can the agent fulfill the given goal?
– What information is missing to achieve the goal?

To verify the decision model we define a new predicate CheckGoals which takes two
variables Goal and SubGoal and is logically presented as CheckGoals(Goal,SubGoal).
A logical relationship is defined between the Goal and SubGoal so it can be estab-
lished whether the Goal is the leaf for Level 2 conditions or the SubGoal.

CheckGoals(Goal , SubGoal) ≤ CheckGoals(SubGoal , Goal)

FullFilled predicate is used to link the Goal and SubGoals which is presented as
fallows:

FullFilled(Goal , SubGoal) ≤ CheckGoals(Goal , SubGoal)

Furthermore, it is defined whether a SubGoal needs to be completed in order to
achieve the Goal. A relationship is established between Goal, SubGoal and Action
using transitive property which is presented as fallows:

FullFilled(Goal , SubGoal) ≤ CheckGoals(Goal , Action))
& FullFilled(SubGoal , Action) & (Goal ! = SubGoal)

16 Yamin and Katt

To verify the attack decision for achieving high level goal using low level action
based upon certain conditions following clause can be defined:

FullFilled(′Reconnaissance ′, SubGoal) & Condition(Goal , ′Active ′, Commands)
& Action(SubGoal , ActionTarget)

The clause will return the high level goal, and the low level specific action to be exe-
cuted based upon the specific command. Similarly for the defense decision following
clause can be defined:

FullFilled(′Deny ′, SubGoal) & Condition(′Deny ′, SubGoal , Commands)

The clause will return the low level pattern through which the action is triggered
and the low level command to deny that action.

4.1.4 EP Model Representation A schematic representation of the attack
and defense agent EP models all three levels is presented in Figure 4 and Figure
5, respectively.

In Figure 4, a high-level Goal is given to an agent that has the aim of performing
system exploitation. The sub-goals are Reconnaissance and Exploitation. The
agent will check information in its knowledge base to make medium-level decisions,
for example, whether information about the target is provided or not. If the target
information is provided, it will check whether it is accessible or not; if it is accessible,
then the agent will check if some specific argument is present to perform a specific
kind of reconnaissance like nbtscan, which is a low-level decision. Otherwise, it
will use a default reconnaissance technique like nmap or netcat. Similarly, if the
target information is not provided, the agent will check whether there is a network
interface and if on that network interface it can perform arp-scan a medium-level
decision.If the condition returns true, then the agent can perform an arp-scan using
default commands, which is a low-level decision.

In Figure 5, a high-level Goal is given to an agent to prevent the attackers
from performing any actions. The sub-goals are to Detect and Deny attacker
actions. Whenever an attacker performs an action, it creates an event. If the event is
detected, then it is checked in the knowledge base of the defender; this is considered
a medium-level decision. If the knowledge base contains information about the
reaction to this specific action, then it will execute a specific command to the
counter-attacker’s action; this is considered a low-level decision, for example, killing
a specific malicious process using taskkill. In another case, if there is no specific
command to react to the attacker’s action, then the agent will execute a general
defense command to counter the action, such as closing the ports using netstat or
npx-kill-port. If the action of the attacker is not detected, then the agent will fail
to defend the system.

Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 17

Fig. 4: Attack agent EP

18 Yamin and Katt

Fig. 5: Defense agent EP

Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 19

4.1.5 Attack Agent Conceptually, the attack agent’s goal is to perform the
steps involved in exploiting vulnerable systems during a cybersecurity exercise. The
steps involve performing scanning, identifying vulnerable services, and launching an
attack on them. Multiple adversary emulation tools already exist in academia and
industry, here using various techniques ranging from logical programming [Yue15]
to AI [Sto18] for achieving this goal.

A model-driven approach for executing the attacks during a cybersecurity exer-
cise can provide repeatable and standardized training. The model needs to follow
penetration testing execution standards [PTE] to leave realistic attack and exploita-
tion traces for the defender or blue team members to identify. This can be achieved
by specifying the attacker’s actions in a DSL, hence enabling the precise execution
of attack steps and helping in the evaluation by the defenders in incident response
and forensic analysis.

We combined complex attacker operations into six components of a DSL, whose
concrete syntax instance is presented in Listing 1. These components specify the
attack techniques that are going to be used by the attacker and on which target
it needs to be performed. The DSL instance components are used to provide the
necessary information to the EP model to specify the behavior of the attacker based
on the cyber kill chain. Once the model has been created, it is verified by executing
it in different operational cybersecurity exercises with the same network topology
to check whether its execution is repeatable for standardized training.

Listing 1: Concrete syntax for attacker DSL instance

[

{

"nbtscan": {

"AgentIP": "192.168.81.128",

"AgentUserID": "root",

"AgentUserPassword": "toor",

"Argument": "",

"Target": "172.168.2.17"

}

}

]

The attack agent DSL model has the following properties:

1. It can perform actions from the following list: Reconnaissance, Delivery, Ex-
ploitation, Installation, Command and Control, and Actions on Objectives.

2. It has six attributes: agent action name, agent to use, agent credential user
ID and password, action-specific parameters and the target on which action is
needed to performed.

3. It runs in a separate attack machine in the exercise network environment, where
it has network-level access to vulnerable machines present in the exercise net-
work.

20 Yamin and Katt

4. It interacts with exercise networks using the specific actions, which can collect
information about the software, services, and configurations present in exercise
machines and then preform other actions to exploit those machines. Deciding
on which actions and commands to execute is specified in the EP model.

Utilizing the above-mentioned properties, the attack agent launches attacks in
a semi-autonomous manner, as defined in the EP models. These EPs consist of exe-
cuting the attack phases presented in CKC by utilizing its attack agent properties.
The attack agent’s overall workflow is represented in Figure 6. Itrepresents how the

Fig. 6: Attack agent’s work flow

agent functions. The agent then does the following: (1) First, the agents loads the
goals and related EPs. (2) The agent checks the world state. Initially, the world
state is empty for a newly deployed agent. (3) An EP model for the loaded goal is
utilized by the agent to decide which actions to perform and fulfill the goal. (4) The
agent decides which low-level commands to execute based on the EP model (4.1),
and it will fail in case the goal was not fulfilled or was impractical (4.2). (5) The
selected command(s) will be executed. (6) The agent (continuously) monitors the
environment to detect any changes in the world state and to get the output and
results of executing its commands. (7) The sensors detect new knowledge. (8) New
knowledge updates the world state. (9) The agent checks the new world state.

4.1.6 Defense Agent The defense agent’s primary goal is to defend its system
from external and internal attackers. This primary goal has additional sub-goals

Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 21

in which the defense agent has to Detect, Deny, Disrupt, Degrade, Deceive, and
Destroyan attacker. The focus of this work is on detect and deny.These sub-goals
are achieved by the usage of different tools and techniques at different stages of an
attack. These tools and techniques include but are not limited to network and host
intrusion detection and the prevention system, web analytics, security configuration,
and system user training.

Our DSL instance is used to specify the defense agent’s properties. Based on
these properties, the EPs are executed by our orchestrator. The orchestrator inserts
the agent in the machine present in the exercise network with the knowledge base
of the events generated by the attacker’s actions Conceptually, the defense agent
has the following properties:

1. It can detect and deny the actions performed by the attacker.

2. It has a knowledge base that contains information about the attacker’s actions
and their countermeasures.

3. It runs on the exercise machines being attacked.

4. It interacts with the events generated by the attacks and implements specified
countermeasures on the machine it is running.

Utilizing the above-mentioned properties, the defense agent can perform defense
measures against launched attacks in a semi-autonomous manner, as defined in the
EP models. These EPs consist of executing the defense phases presented in CKC
by utilizing the defense agent properties. One key difference between the attack
and defense agent is that the defense agent is not controlled by a Master and is
independent in its execution. The Master only configures the knowledge base of the
defense agent one time and uploads it on the machine that needs to be defended. The
defense agent’s overall workflow uploaded to a machine is represented in Figure 7
In the work flow, the agent does the following:(1) First, the agent loads the goals
and related EPs.(2) The agent checks the world state based on the EP model of
detecting the attacker. Initially, the world state is empty for a newly deployed
agent. (3) The agent will use its sensors to detect an event generated by attacker
actions based on its knowledge base. (4) In the detection phase, if the attacker’s
action event is detected, then the agent will check its knowledge base to counter
the attacker’s action (4.1). If the attacker’s actions were not detected by the agent,
then it will fail to deny the attacker (4.2). (5) The agent will update its world state
and act on new EP models to deny the attacker. (6) To deny the attacker, the agent
will check its knowledge base. (7) For denying the attacker, the agent will execute
a low-level command that changes the world state. If the agent’s knowledge base
has information about the specific action, then it will execute a specific command
(7.1). If the agent does not have specific countering information, then it will execute
a general command (7.2). (8) New knowledge is updated in the world state of the
agent. (9) The agent checks the new world state.

22 Yamin and Katt

Fig. 7: Defense agent’s work flow

5 Technical Implementation

5.1 Attack Agent

The attack agent is a Kali Linux automation utility that can automate most of the
Kali Linux environment tools. These tools can perform red team operations such
as reconnaissance, weaponization, delivery exploitation, installation, command and
control, and actions on objectives. In a cybersecurity exercise environment, one or
more Kali Linux machines can be deployed to perform the attacker’s actions. The
orchestrator has a remote Master control unit that controls these machines using a
dedicated SSH connection. The Kali Linux agents and the Master control unit work
in a Botnet Command and Control [ZM09,FSR09] manner. The attacker’s actions
are modeled in the DSL, which the Master control unit interprets and forwards to
the Kali Linux machines as EP.

Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 23

The Mastercontrol unit contains the EP of various attack stages, such as
Nmap scripts for scanning and Metasploit scripts for exploitations. The resource
script [Res] of Metasploit is used to perform post-exploitation on the exploited ma-
chines. An extensive logging mechanism is integrated into the Master control unit,
which can collect logs from the Kali machines to confirm whether the launched
attack steps were successful or not. A schematic diagram presenting the main com-
ponents existing in an attack agent is shown in Figure 8. Each component represents
a category of tools that can be used by the attack agent. For example, these com-
ponents include scanners to collect information about the exercise environment and
vulnerability executors to perform a particular attack or exploit. The results of the
attacks are logged to update the world state and to inform the Master control unit
about successful attacks.

Fig. 8: Attack agent

5.1.1 Scanner The scanner can work both passively and actively. In passive
mode, the scanner uses ARP resonance techniques for the identification of targets
using Netdiscover [net]. When the targets are identified, it can switch into an active
scanning mode and use Nmap for the identification of vulnerable services running on
the system. The information of vulnerable services and their exploitation methods
are provided in the DSL parameters.

5.1.2 Vulnerability Executor The vulnerability executor can take the infor-
mation from the scanner to launch an attack based on predefined conditions, or it
can follow the concrete action steps provided in DSL and the EP. DSL contains the

24 Yamin and Katt

general static information for the attack agent, and the EP contains the execution
plan to fulfill the attacker’s goals. The conditions include finding a specific service
or application signature and launching the relevant, very well-known approach. On
the other hand, the concrete action steps from EP provides a repeatable execution
of vulnerability exploits. The DSL constructs include (1) the tool or action name
needed to be executed, (2) the agent’s IP and credentials from which the action is
to be executed, and (3) the specific vulnerability parameters and the target address
on which the attack is executed.

5.1.3 Post Exploitation When a vulnerability is exploited, the post-exploitation
module performs different tasks like credentials and memory dumps, backdoor in-
jection, pivoting and lateral movement, and so forth. The post-exploitation steps are
predefined, and because the cyber kill chain does not incorporate post-exploitation
steps, concepts from MITRE Attack [MIT] are incorporated in it. For a Windows-
based environment, most of the post-exploitation is performed through predefined
Mimikatz commands with standard Meterpreter modules [Mim] and Powershell
scripts [Pow]. For a Linux-based environment, a set of bash scripts [Lin] is used in
an automated manner for post-exploitation.

5.1.4 Logger The logger logs all the different agents’ activities with respect to
time, the commands used, and their results in textual format. The logs are used to
verify different attack agent success parameters in scanning, exploiting, and post-
exploitation of the vulnerabilities in the cybersecurity exercise environment.

5.2 Defense Agent

The defense agent is a portable executable that can be deployed in a Windows-
based machine. The defense agent’s EP is generated based on the DSL instance,
that is, on which system it is needed to be deployed on and what kind of action it
needs to take, as presented in the Listing 2.

Listing 2: Concrete syntax for defender behavior emulation

[

{

"Defender 1": {

"MachineIP": "192.168.81.132",

"MachineUserID": "root",

"MachineUserPassword": "toor",

"OS": "Windows",

"Parameter": "Actions1.csv"

}

}

]

Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 25

The defense agent has multiple components, such as knowledge base, monitor-
ing, analysis engine, event collector, and event responder. The knowledge base of
the defender can be configured to adjust the agent behavior based on the scenario
requirement, the details of which are given below and presented in Figure 9. The
defense agent is deployed in a Windows-based environment. It uses a a custom
monitor and analysis engine that collects security events from Windows event logs
and that act as sensors to collect information about the environment. When an
event is detected whose information is present in the defense agent knowledge base,
a trigger will change its world state, resulting in the selection and execution of
different responses against the attacks using the information present in the knowl-
edge base. This defense step execution is mapped with different CKC phases and
is conceptually represented in Figure 3.

Fig. 9: Defense agent

5.2.1 Knowledge Base The knowledge base for the defense agent is a simple
CSV file that contains the list of attacker actions and defender reactions. This ap-
proach of segregating the knowledge of the defense agent from the program provides
the flexibility to use different levels of knowledge against the different skill set levels
of attacker. For example, in a cybersecurity exercise for novice and expert hackers,
the knowledge base can be adjusted to create a balanced environment [MTWP15].
We analyze some example attacker actions and defender reactions below.

5.2.2 Attacker Actions We can consider the example of Pass the hash attackon
a remote Windows-based system. The attack will generate a 4688 Windows security
event log that contains the following command line information:

26 Yamin and Katt

Listing 3: Process command line information

C:\Windows\System32\wbem\WMIC.exe

This event and command line information can be inserted into the knowledge base
to give the capability to the defender to detect such an attack signature. If the
attacker is skilled enough, then the attacker can use various payload obfuscation
techniques to bypass the defender’s detection.

5.2.3 Defender Reaction The defender’s reaction can be variable based on the
scenario requirement, the knowledge for preventing the above attack can be added
in the CSV file.

Listing 4: Defender reaction to the detected event

Reg add

\HKEY_LOCAL_MACHINE\SYSTEM\CurentControlSet\Control\Terminal

Server" /v fDenyTSConnections /t REG_DWORD /d 1 /f

↪→

↪→

The defense agent can disable the service being exploited to prevent the known
attack; however, it will not be able to prevent the attacks that it has no information
about. To address this, the defense agent has a monitoring and analysis engine to
detect and respond to new attack patterns. Most of the attacks result in events
that have similar patterns as the defined attack action; for example, opening a port
from different exploits will have similar signature. The defense agent can utilize
such information to prevent the attack.

5.2.4 Monitoring and Analysis Engine The monitoring and analysis engine
provides the defense agent the capability to acquire and apply new knowledge. We
can consider a case where the attacker was able to bypass the detection mechanism
of the defender; then, the attacker will try to achieve its goals and objectives. For
instance, an attacker can try to tamper with the content of the file, which was
specified in the knowledge base to be monitored. This action will also generate an
event log that can be traced back to the original process using our exploit chain
detection algorithm [YKG19]. Using this information, the knowledge base of the
defense agent can be updated automatically to kill the exploited process or close
the vulnerable port using standard system commands.

Listing 5: Sample commands used for detecting file manipulation

type <filename.txt>

more <filename.txt>

Listing 6: Sample commands used for detecting user manipulation

Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 27

whoami /all

net user

net user <user> <pass> /add

net localgroup administrators <user> /add

net user <pass> /del

Listing 7: Sample commands used for detecting host information gathering

systeminfo

driverquery

tasklist

fsutil fsinfo drives

net time

net file

net session

net use

5.2.5 Event Collector The event collector collects Windows security event
logs. The event logs contain a lot of information that can be used in event corre-
lation and for a process analysis. The event collectors parse the event logs, remove
irrelevant information, and forward them to the monitoring and analysis engine
for further processing. The event collector can be configured to collect the security
logs from the active directory to perform network-centric cyber defense. However,
currently, it is only working on Windows-based host systems.

Figure 10 represents sample attacker actions for the event collector in the defense
agent in which attacker is trying to retrieve clear text WLAN credentials. One
attacker action is to open a CMD shell on a compromised system; then, the attacker
can fetch the WLAN profiles present on the system through a CMD command.
The WLAN profiles contain information about the WIFI networks with which the
system is or was connected. The attacker then fetches the clear text credentials of
a WIFI network SSID through another command. The attack scenario involves the
total execution of three commands. In Figure 10, it can be seen that the process ID
for initiating the CMD console is 0x34f8, which then executed two child processes
with the process ID 0x1a44 and 0x82c.

5.2.6 Event Responder The event responder is running on the host system
with system-level privileges. It merely takes input from the monitoring and analysis
engine and performs relevant operating system security tasks. These tasks involve
executing Windows command line and Powershell for managing and implementing
security setting changes on the system.

All these processes in Figure 10 create events in the Windows security logs and
can be monitored by the monitoring and analysis engine. If the command entered

28 Yamin and Katt

Fig. 10: Sample event collector

in the CMD console is being monitored and detected, then the parent process ID
0x34f8 will be used to kill the process. If the action of the attacker is not detected
and a secure resource is retrieved, here being the credentials of the WLAN SSID,
then the process is traced back, and the command parameters used for leading to the
information retrieval are saved in the knowledge base to prevent future exploitation.

An attacker can bypass the defender command and event monitoring capability
using different command-line obfuscation techniques [asi]. The techniques use spe-
cial characters and encoding schemes to evade any pattern matching algorithms; an
example of such technique is presented in Figure 11, where the command whoami
is executed in a CMD shell of a Windows 10 machine using various obfuscation
techniques. Although machine learning–based techniques are developed to detect
such obfuscated commands [YK18b,HKR18], we did not integrate such a solution
in the defense agent yet.

Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 29

Fig. 11: Sample techniques for defense agent detection bypass

6 Experimentation

6.1 Experimental Setup of the Cyber Range

The experimental environment setup was created using our cybersecurity exercises
scenario modeling language [YK19b]. The experimental setup was used to conduct
three cybersecurity exercises, in which one was against the attack agent and two
were against the defense agent. A total of 101 people who were from 20–25 years
old and from Norway participated in the exercises; quantitative methods were used
to evaluate the agents’ performance.

The attack agents were used in a digital forensic and incident response cyber-
security exercise at the Norwegian University of Science and Technology [Cou],
in which 84 people participated in 17 groups on a multi-subnet exercise network
environment of 408 machines. Each group was provided with individual networks
compromised by human attackers and attack agents. Each network contained 11
Windows- and Linux-based machines, and 2 out of 17 networks were compromised
by the attack agent. The participants did not have any knowledge about the at-
tacker and how they exploited the machine.

The defense agents were used in two cybersecurity exercises, which were con-
ducted at the Norwegian Cyber Range [OmN]. The first exercise was a 48-hour
long qualification round for the Norwegian national team for the European Cy-
ber Security Challenge [Nor,Eur], in which 17 people participated in 5 groups on a
multi-subnet exercise network environment of 75 machines. The second exercise was
a 2-week-long exercise conducted during the Ethical Hacking course taught at the
Norwegian University of Science and Technology, in which 84 people participated
in 17 groups on a multi-subnet exercise network environment of 408 machines. Both
exercises were focused on a penetration testscenario of a small organization.

The organization infrastructure has a multi-subnet network containing 11 Windows-
and Linux-based machines. The participants had access to the public network
through 5 dedicated Kali machines. For the attack agents, two Kali machines were
used for launching attacks and creating forensic traces. In the organization’s in-
frastructure, 2 out of those 11 machines had the same vulnerabilities, but a single

30 Yamin and Katt

machine was running the proposed defense agent. Each group was assigned a seg-
regated replica of the organization network and tasked with doing a pen-test. The
scenario’s ultimate goal was to tamper with the content of a file in the scenario
machine running the defense agent, and the participants were incentivized with
extra points to achieve the goal. However, they did not know the presence of the
defense agent. A schematic diagram representing the experimental infrastructure is
presented in the Figure 12.

Fig. 12: Experimental setup of the cyber range

6.2 Test Cases

6.2.1 Attack Agent We defined four test cases to evaluate the attack agent per-
formance. These test cases were selected based on the information we gathered from
cybersecurity exercises [YKG20]. These include scanning the network, performing
exploitation, post-exploitation, and launching attacks that were not successful. De-
tails of the test cases are as follows:

1. Perform network scan on all the machines present in the exercise network.

Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 31

2. Exploit n of the machines present in the exercise network.
3. Perform post-exploitation on n of the machines present in the exercise network.
4. Launch unsuccessful attacks on n of the machine present in the exercise

network.

In Listing 8, a snippet of the test cases execution is provided. The agent’s goal
according to EP was to exploit system. The agent with the IP address of 10.10.4.96
first performed a full network scan using Nmap on sublet 10.10.1.1/24 to emulate a
realistic adversary. Then, the second action was to launch a successful FTP exploit
on 10.10.1.4; the FTP exploit was designed as Metasploit resource script, so it
performed the post-exploitation steps automatically. After that, the agent launched
an unsuccessful attack on 10.10.1.5 using the same exploit and a successful attack
on 10.10.1.6 using a different exploit.

Listing 8: Concrete syntax for attacker behavior emulation

[

{

"ActiveScan": {

"AgentIP": "10.10.4.96",

"AgentUserID": "root",

"AgentUserPassword": "toor",

"Argument": "SV",

"Target": "10.10.1.1/24"

},

"MetaSploit": {

"AgentIP": "10.10.4.96",

"AgentUserID": "root",

"AgentUserPassword": "toor",

"Argument": "FTPexploit",

"Target": "10.10.1.4"

},

"MetaSploit": {

"AgentIP": "10.10.4.96",

"AgentUserID": "root",

"AgentUserPassword": "toor",

"Argument": "FTPexploit",

"Target": "10.10.1.5"

},

"MetaSploit": {

"AgentIP": "10.10.4.96",

"AgentUserID": "root",

"AgentUserPassword": "toor",

"Argument": "Vulnserver",

"Target": "10.10.1.6"

}

32 Yamin and Katt

}

]

6.2.2 Defense Agent In case of the defense agent, we used three cases to eval-
uate their performance indicators:

1. Number of machines exploited not running the defense agent.
2. Number of machines exploited running the defense agent.
3. Files that are tampered with and that were monitored by the defense agent.

We used the knowledge base similar to Listing 4, 5, 7, and 6 in the case study for
test case execution. The defender’s goal according to EP was to detect and deny the
attacker using its knowledge base. In the knowledge base, different attacker actions
such as information gathering and user and file manipulation were presented, and
the defender’s actions against those activities were given.

6.3 Evaluation

We employed both quantitative and qualitative evaluation metrics to evaluate the
agents. The quantitative metrics were used formally analyses the agent properties
and to measure the efficiency of the developed artifacts in which the performance
of humans was compared with the proposed agent in similar task with respect to
time and resources; this is discussed in sections 6.3.2 and 6.3.3. The qualitative
metrics used to measure the realism through a survey conducted on the participants
who took part in the experimental scenario. The questions we asked are given in
Appendix A, and its details are presented in section 6.3.4.

6.3.1 Agent Decision Modeling and Verification The EP model presented
in section 4.1 helps us to analyze different test cases before their actual execution
by the agents. This analysis helps us to verify different model properties like

– How high level goal can be translated into to low level actions
– Can the agent fulfill the given goal?
– What information is missing to achieve the goal?

This enables us to fine-tune agent decisions based upon model analysis for their
precise execution. Listing 9 and 10 presents the implementation and logical ver-
ification conditions of the EP model for attack and defense decisions in a PyDat-
alog [pyD]. While listing 11 presents a sample analysis of the presented models.
PyDatalog is an implementation of Datalog and in python and is used for its easy
interoperability with rest of the technology stack used in this research for artifact
development.

Listing 9: EP Decision Model implementation for attack

Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 33

#Defining necessary term for the model

pyDatalog.create_terms('Goal','SubGoal','Condition','Action',

'CheckGoals','FullFilled','ActionName','ActionTarget','Commands')

#Defining root goal with sub goals of attack agent with an AND

relation↪→

+Goal('Exploit System','Reconnaissance')

+Goal('Exploit System','Exploitation')

#Defining sub goal of attack agent with an OR relation

+Goal('Exploitation','Service' or 'Configuration')

#Defining attack actions

+Action('Default', '172.168.2.1')

+Action('ping', '172.168.2.1')

+Action('Nmap', '172.168.2.1')

#Defining fulfillment requirements for attack agent

+FullFilled('Reconnaissance','ping')

+FullFilled('Reconnaissance','Nmap')

+FullFilled('Reconnaissance','WirShark')

+FullFilled('Reconnaissance','NetCat')

+FullFilled('Reconnaissance', 'Default')

#Defining conditions for attack agent

##Checking action target information is provided

FullFilled('Reconnaissance', SubGoal) &

Action(SubGoal,ActionTarget) or print ('NotFullFilled')↪→

##Condition to check is target accessible or not

+Condition('Reconnaissance', 'TargetAccess', '-i 4')

##Validating target access

Condition(Goal, 'TargetAccess', Commands) &

FullFilled('Reconnaissance', SubGoal) &

Action(SubGoal,ActionTarget) or print ('NotFullFilled')

↪→

↪→

##Condition to check is network interface enabled

+Condition('Reconnaissance', 'NetworkInterface', 'netstat -i')

##Validating network interface is enabled

34 Yamin and Katt

Condition(Goal, 'NetworkInterface', Commands) &

FullFilled('Reconnaissance', SubGoal) &

Action(SubGoal,ActionTarget) or print ('NotFullFilled')

↪→

↪→

##Condition to check is arp-scan is present

+Condition('Reconnaissance', 'arp-scan-check', 'man arp-scan')

##Validating network arp-scan is present

Condition(Goal, 'arp-scan-check', Commands) &

FullFilled('Reconnaissance', SubGoal) &

Action(SubGoal,ActionTarget) or print ('NotFullFilled')

↪→

↪→

##Checking action name information is provided

FullFilled('Reconnaissance', SubGoal) &

Action(SubGoal,ActionTarget) or Action('Default',ActionTarget)↪→

##Defining the attacker action to execute

+Condition('Reconnaissance', 'Active', '-sS -sV')

+Condition('Reconnaissance', 'Passive', 'arp-scan -interface=eth0

-localnet')↪→

+Condition('Reconnaissance', 'Default', 'nc -zv ')

Listing 10: EP Decision Model implementation for defense

#Defining goals and sub goals of defense agent

+Goal('Prevent Attacks','Detect')

+Goal('Prevent Attacks','Deny')

#Defining defense actions

+Action('Deny', 'shell.exe')

+Action('Deny', 'port 8080')

#Defining fulfillment requirements for defense agent

+FullFilled('Detect','shell.exe')

+FullFilled('Detect','rootkit.exe')

+FullFilled('Detect','chroot.exe')

+FullFilled('Detect','port 8080')

#Check the attack action is detected or not

FullFilled('Detect', SubGoal) & Condition('Deny', SubGoal,

Commands) or print ('NotFullFilled')↪→

Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 35

#Defining conditions for defense agent to prevent attack action

+Condition('Deny', 'shell.exe', 'taskkill /IM "shell.exe" /F')

+Condition('Deny', 'Default', 'npx kill-port 8080')

Listing 11: EP Decision Model analysis

#Establishing links between goals, sub goals

CheckGoals(Goal,SubGoal) <= CheckGoals(SubGoal,Goal)

FullFilled(Goal,SubGoal) <= CheckGoals(Goal,SubGoal)

#Establishing links between sub goals and conditions

CheckGoals(SubGoal,Condition) <= CheckGoals(SubGoal,Condition)

FullFilled(SubGoal,Condition) <= CheckGoals(SubGoal,Condition)

#Establishing links between conditions and action

CheckGoals(Condition, Action) <= CheckGoals(Action,Condition)

FullFilled(Condition, Action) <= CheckGoals(Action,Condition)

#Check a goal can be full filled to perform specific action

FullFilled(Goal,SubGoal) <= CheckGoals(Goal,Action) &

FullFilled(SubGoal,Action) & (Goal != SubGoal)↪→

#Sample analysis condition for attack agent EP decision

Condition(Goal, 'Actvie', Commands) & FullFilled('Reconnaissance',

SubGoal) & Action(SubGoal,ActionTarget)↪→

#Sample analysis condition for defense agent EP decision

FullFilled('Detect', SubGoal) & Condition('Deny', SubGoal,

Commands)↪→

While translating high-level goals to low-level action and task is a complex and
challenging task, our model can perform it based upon the given conditions. Fur-
thermore, the agents’ different decisions were verified, highlighting the decisions
that can result in goals not fulfilled or impractical. This allowed us to plan agent
decisions based upon the scenario requirement. Like in some scenarios, the agents
need to make wrong decisions against human adversaries to maintain realism. Sim-
ilarly, in some scenarios, the agents were required to execute the actions as fast as
possible, like performing dry runs on exercise infrastructure, so their decision model
can be tuned to avoid unfulfilled and impractical decisions to save time. A sample
decision model verification for attack and defense agent decisions highlighted in
Figure 4 and Figure 5 is presented in Figure 13.

6.3.2 Attack agent Results

36 Yamin and Katt

Fig. 13: Agent decision model verification

6.3.2.1 Task performed by humans: Human teams of attackers were given
the task to perform penetration testing on the segregated exercise networks pre-
sented in Figure 12. They had to discover, exploit, analyze, and report the identified
vulnerabilities in a penetration testing report. The penetration testing report was
used for their evaluation and comparison with the attack agent’s performance.

6.3.2.2 Task performed by agent: The attack agent was tasked with per-
forming penetration testing on the similar segregated exercise network presented in
Figure 12. First, the attack agent performed a full network scan of the network to
emulate an adversary’s scanning. Then, the attack agent created forensic evidence
by launching attacks and performing post-exploitation. Out of the 11 machines,
the attack agent was tasked to compromise 4 machines, perform post-exploitation,
launch failed attacks on 3 machines, and launch no attack on 4 machines. The at-
tack agent was programmed to emulate a human adversary, so it created successful
and unsuccessful attack traces for forensic investigators.

6.3.2.3 Comparison of human and attack agent performance: The hu-
mans and attack agents were given same task, but the humans participated in
teams of five, and most teams compromised a minimum of four machines, while
one team compromised eight machines in the exercise network. The human teams
took around 50 hours to complete the assigned task, while the attack agent were
able to emulate the human performance in approximately 10 minutes.

6.3.2.4 Verification of performance: Human and attack agent performance
was measured in the same way. The human participants in the digital forensic and
incident response exercise were tasked with performing the forensic analysis of the
compromised network by the human teams and the attack agent and to present

Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 37

their findings in a digital forensic and incident response report. The report was
used to assess the performance of the attack agent in the cybersecurity exercise,
the summary of the findings are presented in Table 1:

Exercise 1

Group task Compromised ma-
chines identified

Post-exploitation
identified

Attack attempts
identified

Forensic analysis of
machine compro-
mised by humans

3 3 3

Forensic analysis
of machine com-
promised attack
agent

4 4 3

Table 1: Results of the cybersecurity exercise against the attack agent

6.3.2.5 Summary of the results: The human participants detected most of the
successful attacks, post-exploitation, and unsuccessful attack attempts. The attack
traces were identical to the attack traces generated by an human attacker, and
the participants were not able to identify that they were generated by an attack
agent. This indicates that the attack agent was providing the necessary realism and
removing the need for a red team member for launching attacks, thus increasing
the efficiency by automating different CKC phases like Reconnaissance, Delivery,
Exploitation, Installation, Command and Control, and Actions on Objectives. It
was identified that the proposed agent was working as expected and suitable in
a cybersecurity exercise for creating digital forensic traces. We didn’t include the
factor of time in this work, which can be used by an experienced forensics analysts
for distinction between human and attack agent generated forensic traces. However,
over the passage of time we are incorporating the concepts of technical injects that
are executed according to a scenario timeline to make the generation of forensic
traces as realistic as possible.

6.3.3 Defense Agent Results

6.3.3.1 Tasks performed by humans: Teams of humans were tasked to com-
promise a vulnerable machine that was or was not running the defense agent. In
the scenario, the human teams were incentivized with additional points to exploit a
particular machine known as the CEO Machine, which had the same vulnerabilities
present in another machine Machine9 but was running the defense agent.

6.3.3.2 Tasks performed by agents: The defense agent was tasked to block
or prevent the attacks launched by the human attackers. The defense agent had

38 Yamin and Katt

a knowledge base to prevent particular attacks from a specific vulnerability also
present in Machine9. Additionally, the defense agent was also monitoring a local
file to prevent access to the attacker in case the attacker exploited a vulnerability
not present in the defense agent’s knowledge base.

6.3.3.3 Comparison of human and attack agent performance: In the
exercise environment, there were no machines actively defended by human adver-
saries, so comparing the performance regarding efficiency of the human and defense
agents is a bit difficult. However, the machines that were defended by the proposed
agents were difficult to exploit compared with the undefended machines. According
to IBM, the average detection time for a data breach is 206 days [Cos19]; we are
not arguing that our proposed solution will drastically improve this, but we are
arguing that having an active agent running in a system will restrict the attacker’s
actions and improve system security.

6.3.3.4 Verification of performance: In the second exercise, three out of
five groups compromised the vulnerable machine not running the defense agent. In
comparison, one group compromised the machine running the defense agent using
a vulnerability that was not in the defense agent’s knowledge base but could not
tamper with the file because of the defense agent’s actions. Similarly, in the third
exercise, 8 out of 17 groups compromised the vulnerable machine, and 2 groups were
able to compromise the machine running the defense agent using a vulnerability
not present in the defense agent’s knowledge base but were not able to tamper with
the content of the file. The results of the experiments are presented in Table 2.

Exercise 2

Number of
Groups

Groups Exploited
Vulnerable Machine

Groups Exploited
Vulnerable Machine
Running Defense
Agent

Groups Tampered
with the File

5 3 1 0

Exercise 3

17 8 2 0

Table 2: Results of the cybersecurity exercise against the defense agent

6.3.3.5 Summary of the results: The results indicate that the defense agent
created the necessary friction and added realism by preventing attacks present
in its knowledge base during an operational cybersecurity exercise. The defense
agent removed the need for an active blue team member during the exercise, thus
increasing the efficiency by automating certain tasks in CKC like Detect and Deny
for the defender. The inclusion of the defense agent made the exercise environment
more dynamic and challenging because some groups were not able to compromise
the machines running the defense agents.

Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 39

6.3.4 Qualitative feedback from the exercise participants The qualita-
tive feedback consists of survey responses from the 3 teams, which represent 15
students. The survey was conducted in a semi-informal way. The participants were
asked to answer a list of pre-defined open-ended questions using digital communica-
tion apps, hence following COVID-19 restrictions. Fallow-up questions were asked
if the answers needed further explanation. The survey was conducted in a relaxed
and friendly environment, and the participants were given sufficient time to reflect
on their experience and properly answer the question to avoid any biases. No per-
sonally indefinable information was collected during the survey to avoid any GDPR
(General Data Protection Regulation)-related issues. During the survey, when we
asked the participants if they found the scenario realistic, one survey participant
stated the following:

Scenarios were pretty realistic for the hacking phase

This sentiment was shared by the majority of the survey participants. The exercise
was conducted in two phases Ethical Hacking and Incident response & Forensics.
The participants were very impressed by the complexity and dynamism of the
scenario in the Ethical Hacking phase; this can be attributed to the presence of
a dynamic defense agent in the exercise environment. However, for the Incident
response & Forensics, they were not that impressed because the environment was
static. The participants expected continuing attacks during this phase to make it
more dynamic. The feedback of the participants was noted for implementing active
attack execution in the Incident response & Forensics phase in the future. When
we asked about the difficulty of the scenario, one participant stated the following:

I think it is good that the scenario is large and consist of both easy machines and
more difficult ones. This allows weaker students to be able to get points and

provides a challenge for stronger students with much experience. In my opinion,
the project is good from a grading perspective

This sentiment was also shared by most of the survey respondents. The participants
indicated that they found the machines to exploit having a variety of difficulty levels
easy, medium, and hard, which allowed the participants with ranging skill sets to
practice their skills. This indicates that the presence of the developed agents in the
scenario provided balance in the lab, which made some machines difficult to exploit
because of them having similar vulnerabilities to other easily exploitable machines.
When we asked about the number of machines exploited by their teams, two teams
stated that they exploited four machines, while one team exploited nine machine.
Continuing from this, we asked a specific question about the machine that was not
running the agent Machine9 and the machine that was running the defense agent
CEO machine. Two teams were not able to exploit both machines, while one team
was able to exploit it Machine9. When we asked why they were not able to exploit,
it they responded with the following:

No exactly each planned attack went through except for one where we were trying
to do an smb exploitation but we couldn’t figure out and came to the conclusion

that it was rabbit hole and moved on

40 Yamin and Katt

The rest of the questions were asked to improve the quality of the exercise scenario
and are not relevant to this study. From the qualitative feedback, it can be concluded
that the exercise scenario that incorporated our agents are quite realistic and offer
the opportunity to exercise participants to practice their skills against realistic
computational adversaries.

7 Discussion and Conclusion

In this work, we investigated the cyber-attack and defense agents’ usage of cyber
ranges for improving the realism and efficiency of cybersecurity exercise execution.
We identified that such agents could provide the necessary level of friction during
an exercise. For example, in a red team exercise, a defense agent will try to prevent
attackers from achieving their objectives. On the other hand, in a blue team exer-
cise, an attack agent will conduct various attacks and create forensics traces, such
that the need for a human red team is reduced. This makes cybersecurity exercise
execution more realistic and efficient.

We proposed EP models for specifying the agents’ decision making. An EP
model contains three levels of decisions: high, medium, and low. These decisions
were translated using a DSL into goals, actions, and commands. We presented the
workflows of the attack and defense agents to showcase how they made their deci-
sions during the execution of a cybersecurity exercise. We employed the proposed
agent-based system in cybersecurity exercises and presented their performance re-
sults in the form of a case study.

For the attack agent, we consider its performance satisfactory when applied in a
semi-autonomous manner. The attack agents create realistic forensic traces during
a cybersecurity exercise, which is verified by the human participants. On the other
hand, our developed cyber defense agents currently have the six capabilities high-
lighted by Kott [KTD+18b]. However, we do not consider these agents suitable for
deployment in the actual production environment for active cyber defense because
they were tested in a controlled environment of cyber ranges. Yet, they can be
considered a first step to achieve autonomous cyber defense. One of the limitation
of the proposed defense agents is in the way they respond to attacks. If an agent
detects a new attack on a specific port, it will update the knowledge base with some
information about the attack’s signature. Then, it will close the port or service for
the next attack with a similar signature without analyzing the impact of its action,
which is not suitable for real-world systems. We will address this issue in our future
research, and we are planning to develop state machines that can help the defense
agent take the optimal action to deal with the attacker.

In the future, we are also planning to integrate specific test cases with the attack
agent to automatically perform the security assurance of systems and provide a
quantitative score of the state of system security [KP18,KP19]. Finally, we plan
to use our developed cyber-attack and defense agents in additional cybersecurity
exercises with different network topology positions. This will help us analyze the
impact of such agents at different stages of attacks and defenses, for example, an

Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 41

exercise designer can use such agents in an outer network on dispensable systems to
obtain the attacker’s tactics and techniques for preventing attacks in the internal
network.

References

[APT] APTSimulator/test-sets at master · NextronSystems/APTSimulator.
https://github.com/NextronSystems/APTSimulator/tree/master/test-sets.
– (Accessed on 01/27/2021)

[asi] Dosfuscation. https://i.blackhat.com/briefings/asia/2018/asia-18-bohannon-
invoke dosfuscation techniques for fin style dos level cmd obfuscation-
wp.pdf - (Accessed on 01/28/2021)

[BCD+19] Braghin, Chiara ; Cimato, Stelvio ; Damiani, Ernesto ; Frati, Fulvio ;
Mauri, Lara ; Riccobene, Elvinia: A model driven approach for cyber secu-
rity scenarios deployment. In: Computer Security. Springer, 2019, S. 107–122

[Cen17] Center, JPCERT C.: Detecting lateral movement through tracking event logs.
2017

[CGT+89] Ceri, Stefano ; Gottlob, Georg ; Tanca, Letizia u. a.: What you always
wanted to know about Datalog(and never dared to ask). In: IEEE transactions
on knowledge and data engineering 1 (1989), Nr. 1, S. 146–166

[Cos19] Cost of a Data Breach Study — IBM. https://www.ibm.com/security/data-
breach. Version: 2019. – (Accessed on 06/16/2021)

[Cou] Course - Incident Response, Ethical Hacking and Forensics - IMT3004 -
NTNU. https://www.ntnu.edu/studies/courses/IMT3004#tab=omEmnet

[Dat] Datalog: Deductive Database Programming. https://docs.racket-
lang.org/datalog/index.html. – (Accessed on 09/30/2020)

[EM17] Edgar, Thomas W. ; Manz, David O.: Research methods for cyber security.
Syngress, 2017. – 271–297 S.

[Eur] European Cyber Security Challenge — ECSC.
https://europeancybersecuritychallenge.eu/ - (Accessed on 01/28/2021)

[FSR09] Feily, Maryam ; Shahrestani, Alireza ; Ramadass, Sureswaran: A sur-
vey of botnet and botnet detection. In: 2009 Third International Conference
on Emerging Security Information, Systems and Technologies IEEE, 2009, S.
268–273

[Gen] Generating Realistic Non-Player Characters for Training Cyberteams.
https://insights.sei.cmu.edu/blog/generating-realistic-non-player-characters-
for-training-cyberteams/. – (Accessed on 04/19/2021)

[HC10] Hevner, Alan ; Chatterjee, Samir: Design science research in information
systems. In: Design research in information systems. Springer, 2010, S. 9–22

[HCA+11] Hutchins, Eric M. ; Cloppert, Michael J. ; Amin, Rohan M. u. a.:
Intelligence-driven computer network defense informed by analysis of adver-
sary campaigns and intrusion kill chains. In: Leading Issues in Information
Warfare & Security Research 1 (2011), Nr. 1, S. 80

[HKR18] Hendler, Danny ; Kels, Shay ; Rubin, Amir: Detecting malicious PowerShell
commands using deep neural networks. In: Proceedings of the 2018 on Asia
Conference on Computer and Communications Security, 2018, S. 187–197

[HS16] Holm, Hannes ; Sommestad, Teodor: Sved: Scanning, vulnerabilities, exploits
and detection. In: MILCOM 2016-2016 IEEE Military Communications Con-
ference IEEE, 2016, S. 976–981

42 Yamin and Katt

[HWD+17] Herold, Nadine ; Wachs, Matthias ; Dorfhuber, Marko ; Rudolf,
Christoph ; Liebald, Stefan ; Carle, Georg: Achieving reproducible net-
work environments with INSALATA. In: IFIP International Conference on
Autonomous Infrastructure, Management and Security Springer, Cham, 2017,
S. 30–44

[JON+15] Jones, Randolph M. ; O’Grady, Ryan ; Nicholson, Denise ; Hoffman,
Robert ; Bunch, Larry ; Bradshaw, Jeffrey ; Bolton, Ami: Modeling and
integrating cognitive agents within the emerging cyber domain. In: Proceedings
of the Interservice/Industry Training, Simulation, and Education Conference
(I/ITSEC) Bd. 20 Citeseer, 2015

[KMRS14] Kordy, Barbara ; Mauw, Sjouke ; Radomirović, Saša ; Schweitzer,
Patrick: Attack–defense trees. In: Journal of Logic and Computation 24
(2014), Nr. 1, S. 55–87

[Kot05] Kotenko, Igor: Agent-based modeling and simulation of cyber-warfare be-
tween malefactors and security agents in Internet. In: 19th European Simula-
tion Multiconference “Simulation in wider Europe, 2005

[KP18] Katt, Basel ; Prasher, Nishu: Quantitative security assurance metrics:
REST API case studies. In: Proceedings of the 12th European Conference
on Software Architecture: Companion Proceedings, 2018, S. 1–7

[KP19] Katt, Basel ; Prasher, Nishu: Quantitative Security Assurance. In: Ex-
ploring Security in Software Architecture and Design. IGI Global, 2019, S.
15–46

[KTD+18a] Kott, Alexander ; Théron, Paul ; Drašar, Martin ; Dushku, Edlira ;
LeBlanc, Benôıt ; Losiewicz, Paul ; Guarino, Alessandro ; Mancini, Luigi
; Panico, Agostino ; Pihelgas, Mauno u. a.: Autonomous Intelligent Cyber-
defense Agent (AICA) Reference Architecture. Release 2.0. In: arXiv preprint
arXiv:1803.10664 (2018)

[KTD+18b] Kott, Alexander ; Thomas, Ryan ; Drašar, Martin ; Kont, Markus ;
Poylisher, Alex ; Blakely, Benjamin ; Theron, Paul ; Evans, Nathaniel
; Leslie, Nandi ; Singh, Rajdeep u. a.: Toward Intelligent Autonomous
Agents for Cyber Defense: Report of the 2017 Workshop by the North At-
lantic Treaty Organization (NATO) Research Group IST-152-RTG. In: arXiv
preprint arXiv:1804.07646 (2018)

[KV08] Kuechler, Bill ; Vaishnavi, Vijay: On theory development in design science
research: anatomy of a research project. In: European Journal of Information
Systems 17 (2008), Nr. 5, S. 489–504

[Lin] Linux Post Exploitation Command List · mubix/post-exploitation Wiki.
https://github.com/mubix/post-exploitation/wiki/Linux-Post-Exploitation-
Command-List. – (Accessed on 01/25/2021)

[Llo12] Lloyd, John W.: Foundations of logic programming. Springer Science &
Business Media, 2012. – 1–31 S.

[Mim] Mimikatz - Metasploit Unleashed. https://www.offensive-
security.com/metasploit-unleashed/mimikatz/. – (Accessed on 01/25/2021)

[MIT] MITRE ATT&CK®. https://attack.mitre.org/. – (Accessed on 01/25/2021)

[MTWP15] Mirkovic, Jelena ; Tabor, Aimee ; Woo, Simon ; Pusey, Portia: Engaging
Novices in Cybersecurity Competitions: A Vision and Lessons Learned at
{ACM} Tapia 2015. In: 2015 {USENIX} Summit on Gaming, Games, and
Gamification in Security Education (3GSE 15), 2015

Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 43

[Nai20] Naik, Mayur: Petablox: Large-Scale Software Analysis and Analytics Us-
ing Datalog / GEORGIA TECH RESEARCH INST ATLANTA ATLANTA
United States. 2020. – Forschungsbericht

[net] netdiscover. https://manpages.debian.org/unstable/netdiscover/netdiscover.8.en.html.
– (Accessed on 01/23/2021)

[Nor] Norwegian Cyber Security Challenge - NCSC - NTNU.
https://www.ntnu.no/ncsc. – (Accessed on 01/28/2021)

[OmN] Om Norwegian Cyber Range - NTNU. https://www.ntnu.no/ncr. – (Accessed
on 01/28/2021)

[Pow] PowerShellMafia/PowerSploit: PowerSploit - A PowerShell Post-Exploitation
Framework. https://github.com/PowerShellMafia/PowerSploit. – (Accessed
on 01/25/2021)

[PTE] PTES Technical Guidelines - The Penetration Testing Execution Standard.
https://tinyurl.com/6cgn3cu. – (Accessed on 01/20/2021)

[pyD] pyDatalog. https://sites.google.com/site/pydatalog/home - (Accessed on
09/03/2021)

[RCA20] Russo, Enrico ; Costa, Gabriele ; Armando, Alessandro: Building Next
Generation Cyber Ranges with CRACK. In: Computers & Security (2020),
S. 101837

[red] Aatomic-red-team: Small and highly portable detection tests based on MITRE’s
ATT&CK. https://github.com/redcanaryco/atomic-red-team. – (Accessed on
01/27/2021)

[Res] Resource Scripts — Metasploit Documentation.
https://docs.rapid7.com/metasploit/resource-scripts/. – (Accessed on
01/19/2021)

[spl] splunk/attack range: A tool that allows you to create vulnerable instru-
mented local or cloud environments to simulate attacks against and collect
the data into Splunk. https://github.com/splunk/attack range. – (Accessed
on 01/27/2021)

[Sto18] Stoecklin, Marc P.: Deeplocker: How AI can power a stealthy new breed of
malware. In: Security Intelligence, August 8 (2018)

[TKD+18] Theron, Paul ; Kott, Alexander ; Drašar, Martin ; Rzadca, Krzysztof ;
LeBlanc, Benôıt ; Pihelgas, Mauno ; Mancini, Luigi ; Panico, Agostino:
Towards an active, autonomous and intelligent cyber defense of military sys-
tems: The NATO AICA reference architecture. In: 2018 International confer-
ence on military communications and information systems (ICMCIS) IEEE,
2018, S. 1–9

[TKD+20] Theron, Paul ; Kott, Alexander ; Drašar, Martin ; Rzadca, Krzysztof ;
LeBlanc, Benôıt ; Pihelgas, Mauno ; Mancini, Luigi ; De Gaspari, Fabio:
Reference architecture of an autonomous agent for cyber defense of complex
military systems. In: Adaptive Autonomous Secure Cyber Systems. Springer,
2020, S. 1–21

[ube] Uber-Common:An information security preparedness tool to do adversar-
ial simulation. https://github.com/uber-common/metta. – (Accessed on
01/27/2021)

[YB18] Yamin, Muhammad M. ; Basel, KATT: Ethical Problems and Legal Issues in
Development and Usage Autonomous Adversaries in Cyber Domain. (2018)

[YK18a] Yamin, Muhammad M. ; Katt, Basel: Inefficiencies in Cyber-Security Exer-
cises Life-Cycle: A Position Paper. In: AAAI Fall Symposium: ALEC, 2018,
S. 41–43

44 Yamin and Katt

[YK18b] Yamin, Muhammd M. ; Katt, Basel: Detecting malicious windows commands
using natural language processing techniques. In: International Conference on
Security for Information Technology and Communications Springer, 2018, S.
157–169

[YK19a] Yamin, Muhammad M. ; Katt, Basel: Cyber Security Skill Set Analysis for
Common Curricula Development. In: Proceedings of the 14th International
Conference on Availability, Reliability and Security, 2019, S. 1–8

[YK19b] Yamin, Muhammad M. ; Katt, Basel: Modeling attack and defense scenarios
for cyber security exercises. In: 5th interdisciPlinary cyber research conference,
2019, S. 7

[YK22] Yamin, Muhammad M. ; Katt, Basel: Modeling and executing cyber security
exercise scenarios in cyber ranges. In: Computers & Security 116 (2022), S.
102635

[YKG19] Yamin, Muhammad M. ; Katt, Basel ; Gkioulos, Vasileios: Detecting Win-
dows Based Exploit Chains by Means of Event Correlation and Process Mon-
itoring. In: Future of Information and Communication Conference Springer,
2019, S. 1079–1094

[YKG20] Yamin, Muhammad M. ; Katt, Basel ; Gkioulos, Vasileios: Cyber ranges
and security testbeds: Scenarios, functions, tools and architecture. In: Com-
puters & Security 88 (2020), S. 101636

[YKT+18] Yamin, Muhammad M. ; Katt, Basel ; Torseth, Espen ; Gkioulos,
Vasileios ; Kowalski, Stewart J.: Make it and break it: An IoT smart home
testbed case study. In: Proceedings of the 2nd International Symposium on
Computer Science and Intelligent Control, 2018, S. 1–6

[Yue15] Yuen, Joseph: Automated cyber red teaming / DEFENCE SCIENCE AND
TECHNOLOGY ORGANISATION EDINBURGH (AUSTRALIA) CYBER
AND 2015. – Forschungsbericht

[YUUK21] Yamin, Muhammad M. ; Ullah, Mohib ; Ullah, Habib ; Katt, Basel:
Weaponized AI for cyber attacks. In: Journal of Information Security and
Applications 57 (2021), S. 102722

[ZM09] Zeidanloo, Hossein R. ; Manaf, Azizah A.: Botnet command and control
mechanisms. In: 2009 Second International Conference on Computer and
Electrical Engineering Bd. 1 IEEE, 2009, S. 564–568

[ZN20] Zaber, Matthew ; Nair, Suku: A framework for automated evaluation of se-
curity metrics. In: Proceedings of the 15th International Conference on Avail-
ability, Reliability and Security, 2020, S. 1–11

A Survey Question

1. Did you find the scenario realistic?
2. Did you find the scenario difficulty hard, medium, or easy?
3. How many machines did you exploited?
4. Did you find similarities between Machine9 and CEO machines?
5. Did you identify any of your attacks get blocked?
6. If yes, did you exploited both or only one and why?
7. What can be improved in the scenario?

ISBN 978-82-326-5470-3 (printed ver.)
ISBN 978-82-326-6809-0 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2022:134

Muhammad Mudassar Yamin

Modelling and Analyzing Attack-
Defense Scenarios for Cyber-
RangesD

oc
to

ra
l t

he
si

s

D
octoral theses at N

TN
U

, 2022:134
M

uham
m

ad M
udassar Yam

in

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e
of

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
t.

of
 In

fo
rm

at
io

n
Se

cu
rit

y
an

d
Co

m
m

un
ic

at
io

n
Te

ch
no

lo
gy

	Introduction
	Synopsis
	Research Context
	Motivation
	Aim and Scope
	Research Questions
	Background
	Cyber Ranges
	Cybersecurity Exercises
	Operation-Based Cybersecurity Exercises
	Cyber Security Exercise life-Cycle

	Related Work
	Cyber Range State of The Art

	Methodology
	Verification and Validation

	Summary of Contributions
	List of Publications
	List of Major Contributions

	Limitations
	Conclusion and Future Work

	Research Articles
	Inefficiencies in Cyber-Security Exercises Life-Cycle: A Position Paper
	Make it and Break it - An IoT Smart Home Testbed Case Study
	Cyber ranges and security testbeds: Scenarios, functions, tools and architecture
	Serious games as a tool to model attack and defense scenarios for cyber-security exercises
	Modeling and Executing Cyber Security Exercise Scenarios in Cyber Ranges
	Detecting Windows Based Exploit Chains by Means of Event Correlation and Process Monitoring
	Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study

	Blank Page

