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Abstract. This paper presents algorithms for estimating the minimum volume bounding box based on a three-
dimensional point set measured by a coordinate measuring machine. A new algorithm, which calculates the
minimum volumewith high accuracy and reduced number of computations, is developed. The algorithm is based
on the convex hull operation and established theories about a minimum bounding box circumscribing a convex
polyhedron. The new algorithm includes a pre-processing operation that removes convex polyhedron faces
located near the edges of the measured object. As showed in the paper, the solution of the minimum bonding box
is not based on faces located near the edges; therefore, we can save computation time by excluding them from the
convex polyhedron data set. The algorithms have been demonstrated on physical objects measured by a
coordinate measuring machine, and on theoretical 3D models. The results show that the algorithm can be used
when high accuracy is required, for example in calibration of reference standards.
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1 Introduction

In various applications, it can be useful to circumscribe a
given set of three-dimension coordinate points by an ideal
shape rectangular parallelepiped. It was suggested by
Dupuis [1] to use the term cuboid when referring to a
rectangular parallelepiped. However, in the literature of
the computational geometry, the term box is commonly
associated with the rectangular parallelepiped. In this text,
we use the term side for the bounding box face. This term
may be also used while referring to the physical cuboid
object side. The term face is mainly used for the inscribed
convex polyhedron faces, which are the product of 3D
convex hull operation. All six sides (faces) of the box are
rectangles and each side is parallel with the opposite side
and orthogonal with the other four adjacent sides. These
four adjacent sides comprise a “closed loop”. For example,
the Top side has a “closed loop” of adjacent sides that
consists of: Front, Left, Right, and Back. The opposite,
Bottom side has the same “closed loop” of adjacent sides as
the Top side.

An estimation of the minimal volume bounding box
(MVBB) often includes an estimation of the minimal area
bounding rectangle (MABR). Both problems are commonly
used in computer graphics (e.g. collision detection, optimal
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layout detection etc.), image processing, medicine (e.g.
brachytherapy), metrology, automatic tariffing in goods-
traffic and many other applications. Together with other
association criteria (e.g. minimum zone, least squares), the
minimum volume criterion can be applied for estimation of
the flatness deviation of mechanical parts in industry [2].
Depending on an application, the MVBB algorithm may be
optimized either for computation time or for measurement
accuracy.

Based on the proposals of Shamos [3], Freeman and
Shapira [4], Toussaint presented an elegant unambiguous
MABR solution in [5]. This exact solution of the MABR
problem has O(n2) computing time with the use of the
rotating caliper algorithm for n-point set in ℝ2, and O(n)
time with the use of two pairs of rotating calipers
orthogonal to each other. A number of approximation
algorithms and heuristic alternatives are suggested to solve
the two-dimension problem. Among them, the searching
algorithms based on the R-tree data structures [6–8] and
the principle components [9,10].

The most exact solution of the MVBB problem for
n-point set in ℝ3 with computation time O(n3) was
provided by O’Rourke [11], which remains the state-of-the-
art so far. Alternative approximation algorithms have been
developed to reduce the computation time. Bespamyatnikh
and Segal [12] suggested an efficient O(n2) approximation
algorithm. A search based on Powell’s quadratic conver-
gent method was proposed by Lahanas et al. [13]. Later,
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Fig. 1. An example of themetrological issue: (a) a cuboid object with CMMmeasured points; (b) an example of the convex polyhedron
with the chamfer faces after convex-hull operation; 1–edges; 2–left side; 3–top side; 4–front side; 5–“chamfer” polyhedron faces; 6–
ordinary polyhedron faces.
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Barequet and Har-Peled [14] presented an approximating
algorithm with O(n+1/e4.5) computation time, and a
simplified version with O(nlogn+n/e3), where 0< e� 1.
Recently, Dimitrov et al. developed a faster algorithm
based on the discrete and the continuous versions of
principal component analysis (PCA) [10,15]. The continu-
ous version guarantees a constant approximation factor
but it is still limited by O(nlogn) � time required for
computation of a convex hull. The commonly used
solutions for MABR and MVBB are based on the convex
hull operation [3,16], in order to reduce the number of
considered points and avoid redundant computation.

Some approximation algorithms may provide a large
systematic error. The majority of approaches presented
above are mainly focused on reducing the computation
time, but at the expense of accuracy. In this paper, we
consider calculation of the minimum bounding box on
reference standards used for calibration of dimensional
measuring systems; hence, the accuracy must be ensured.
The elegant approach provided by O’Rourke is the
accurate solution, but it does not take into account some
metrological issues related to the discrete point measure-
ment with CMM, which are discussed below.

The physical edges (denoted by 1 in Fig. 1a) of the
cuboid object are typically not measured and there is
always a distance between the edges and the measured
points. As a result, there is an intermediate space between
the measured points on all pairs of the adjacent sides (e.g.
side 2 and side 3, side 3 and side 4 in Fig. 1a) of the cuboid
object. This intermediate space is transformed into a large
number of the convex polyhedron faces after appliance of
the convex hull operation. Such newly constructed faces
provide acute angles and look similar to “chamfer” faces
(denoted by 5 in Fig. 1b). These faces cut off the physical
cuboid object and they will lead to unnecessary computa-
tion in the O’Rourke algorithm. Obviously, these “chamfer”
faces cannot be a part of the minimum bounding box
solution and these faces should be excluded from the
algorithm.

In this paper, we deal with the minimum bounding box
problem for physical objects with an actual shape close to
the perfectly rectangular bounding box. The proposed
algorithms for estimation of MVBB take into account the
effect of the “chamfer” faces. The most accurate algorithm
searches for the minimum solution according to the
conditions defined by two theorems related to the MABR
and theMVBB problems presented in Section 2. A detailed
overview of the three conventional geometrical algorithms
suggested by the author are given in Section 3. Implemen-
tation of the methods is presented in Section 4 with
description of the experimental setup and computational
results.
2 Theoretical background

The solution of the three-dimension MVBB problem
involves the two-dimension case. After the orientation of
one side of the bounding box is locked in the MVBB
algorithm, all points are projected onto the xy-plane, and
the orientations of other adjacent sides of the bounding box
can be found by theMABR algorithm as the two-dimension
problem.

2.1 Minimum-area bounding rectangle

The earliest known solution of the MABR problem was
presented by Freeman and Shapira [4]. They presented the
following theorem, which is the basis for minimum
bounding rectangle algorithms: The rectangle of minimum
area enclosing a convex polygon has a side collinear with
one of the edges of the polygon.

The MABR solution is based on the 2D convex hull
operation [3], which is applied as the first step. In the
second step, we search for the minimum-area bounding
rectangle circumscribing the convex polygon constructed
by the convex hull algorithm in the first step. The theorem
mentioned above limits the number of bounding rectangles
that are candidates for the minimum-area bounding
rectangle.

2.2 Minimum-volume bounding box

The second theorem presented here was formulated and
proved for the MVBB problem by O’Rourke [11]: A box of
minimal volume circumscribing a convex polyhedron must



Fig. 2. Examples of convex polyhedrons: (a) a regular tetrahedron with edge length
ffiffiffi
2

p
circumscribed by minimal box with edge

length 1; (b) convex polyhedron related to Model B; (c) convex polyhedron related to Model C; 1–the edge is flush with the Top side;
2–the edge is flush with the Left side.
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have at least two adjacent sides flush with edges of the
polyhedron.

It is not necessary that one of the sides of the bounding
box is coplanar with one of the faces of the convex
polyhedron. In fact, the bounding box with minimal
volume circumscribing a regular tetrahedron has all six
sides coplanar with the tetrahedron edges without flushing
with any tetrahedron faces (Fig. 2a).

However, in practise (to be shown in the experimental
part, Sect. 4.2), the minimal solution may also correspond
to the case when one or more sides of the bounding box are
coplanar with faces of the convex polyhedron. An example,
where each side of the bounding box is coplanar with face of
the polyhedron (Model B) is shown in Figure 2b. The
vertex coordinates of this convex polyhedron are given as
the Model B in Table 1. The Model B was derived from the
reference Model A. The Model A is based on a regular cube
with edge length 1 and chamfers with distances 0.1� 0.1
(normalized units). So that each side of the Model A is
given by five points. There is one point in the middle of a
face, and there are four points in the corners of the face. The
modified coordinates of Model B and Model C relative to
theModel A are marked by bold text in Table 1. Figure 2c
shows the other example, where two adjacent sides of
MVBB are coplanar only with two edges 1 and 2 of the
convex polyhedron. Optimization curves for the minimum
volume versus an orientation angle between a bounding
box side and a face of the Model C are illustrated in
Figure 3. The relationship of the minimal volume versus
the orientation angle of the Models may appear either
linear (Fig. 3a) or nonlinear (Fig. 3b). The beginning of
both curves corresponds to the volumewhere one side of the
bounding box is coplanar with the polyhedron face.
The end of the curves corresponds to the volume where
the same side of the bounding box is coplanar with its
adjacent polyhedron face. The other points on the curves
correspond to the volume for orientation angles where
one side of the bounding box coincides with the polyhedron
edge.
3 Computation methods

In the following sections, three methods for finding the
Minimum Volume Bounding Box (MVBB) are considered.
The methods are denoted as the “side-”method (MVBBS),
the “face-” method (MVBBF) and the “edges-” method
(MVBBE). All three methods differ from each other by
accuracy, complexity and hence the computation time.

All the three methods utilizes the MABR algorithm
[4]. Two of the methods (“face-”, “edges-”) include the
specific data pre-processing algorithm (Sect. 3.3), which
distinguishes these methods from other known methods.
Only the MVBBE method completely satisfies to both
theorems given in Sections 2.1 and 2.2, and therefore it
can be used as the reference for the other alternative
methods.

3.1 The minimum area bounding rectangle (MABR)
algorithm

TheMABR algorithm is based on 2D convex hull operation
[3]. After a convex polygon P is constructed, the angles ui
between the polygon edges and the x-axis are calculated as
follows:

ui ¼ atan 2ðyiþ1 � yi; xiþ1 � xiÞ; � p � u � p ð1Þ
where atan 2 is the four-quadrant tangent inverse function.
The polygon vertices (p1, p2,… , pn) are rotated in such way
that the first convex polygon edge e1 is parallel with the
x-axis. Then at least three other points pi with extreme
(x, y) coordinates are defined� two in orthogonal direction
to the x-axis (ymax, ymin), and another two coordinates in
orthogonal direction to the y-axis (xmin, xmax). The
polygon vertices continues rotating with angle �ui in
clockwise direction from one edge ei to another ei+1 until all
polygon edges are checked. The two-dimension rotation
matrix is a follows:

RðuiÞ ¼
cosðuiÞ sinðuiÞ
�sinðuiÞ cosðuiÞ

" #
ð2Þ

A new rectangle area Ai is calculated for each rotation.
The corresponding rectangle length Li= xmax� xmin and
widthWi= ymax� ymin are updated, when a new minimum
areaAmin=Li ⋅Wi is obtained. An example of theMABR is
shown in Figure 4. One of the edges of the polygon is
collinear with one of the sides of the bounding rectangle.
The algorithm also checks whether the solution is unique
or not.



Table 1. The coordinates of points for the theoretical models (in normalized units).

Side Model A Model B (Fig. 2b) Model C (Fig. 2c)

X Y Z X Y Z X Y Z

Front

0.90 0.40 0.5 0.91 0.40 0.5 0.91 0.40 0.5
0.90 0 0.1 0.90 0 0.1 0.90 0 0.1
0.9 0.8 0.9 0.9 0.8 0.9 0.9 0.8 0.9
0.9 0.8 0.1 0.9 0.8 0.1 0.9 0.8 0.1
0.9 0 0.9 0.9 0 0.9 0.9 0 0.9

Back

−0.1 0.4 0.5 −0.11 0.4 0.5 −0.11 0.4 0.5
−0.1 0 0.1 −0.1 0 0.1 −0.1 0 0.1
−0.1 0.8 0.9 −0.1 0.8 0.9 −0.1 0.8 0.9
−0.1 0.8 0.1 −0.1 0.8 0.1 −0.1 0.8 0.1
−0.1 0 0.9 −0.1 0 0.9 −0.1 0 0.9

Left

0.4 −0.1 0.5 0.4 −0.11 0.5 0.4 −0.11 0.5
0 −0.1 0.1 0 −0.1 0.1 0 −0.1 0.1
0.8 −0.1 0.9 0.8 −0.1 0.9 0.8 −0.1 0.9
0.8 −0.1 0.1 0.8 −0.1 0.1 0.8 −0.1 0.1
0 −0.1 0.9 0 −0.1 0.9 0 −0.1 0.9

Right

0.4 0.9 0.5 0.4 0.91 0.5 0.4 0.91 0.5
0 0.9 0.1 0 0.9 0.1 0 0.95 0.1
0.8 0.9 0.9 0.8 0.9 0.9 0.8 0.95 0.9
0.8 0.9 0.1 0.8 0.9 0.1 0.8 0.9 0.1
0 0.9 0.9 0 0.9 0.9 0 0.9 0.9

Top

0.4 0.4 1 0.4 0.4 1.01 0.4 0.4 1.01
0.8 0.8 1 0.8 0.8 1 0.8 0.8 1
0 0 1 0 0 1 0 0 1
0.8 0 1 0.8 0 1 0.8 0 1.5
0 0.8 1 0 0.8 1 0 0.8 1.5

Bottom

0.4 0.4 0 0.4 0.4 −0.01 0.4 0.4 −0.01
0 0.8 0 0 0.8 0 0 0.8 0
0.8 0 0 0.8 0 0 0.8 0 0
0 0 0 0 0 0 0 0 0
0.8 0.8 0 0.8 0.8 0 0.8 0.8 0
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3.2 The minimum volume bounding box side
(MVBBS) Method

This MVBBS approximation method is well known and
often used in practice. It is fast and straightforward, based
on an assumption that the test object has one perfectly flat
side e.g. Bottom, which is aligned with the support surface
(Zmin). Such assumption allows a substantial simplifica-
tion, both the measurement procedure and the computa-
tion procedure. However, because of the assumption of one
perfectly flat side, the estimated minimal volume by this
method can be not accurate. Groen et al. [17] developed an
operational automatic system for measurement of parcels
and suitcases on a conveyor belt based on this principle.
The flowchart of the MVBBS method is illustrated in
Figure 5.

The principle of this method is to define the height as
Hmin=Zmax�Zmin and the smallest area Amin of the
bounding rectangle for the xy-projection of all measured
points. As long as we consider a single 2D projection of the
convex polyhedron, then the MABR algorithm (Sect. 3.1)
is applied only once.

3.3 Data pre-processing

In this paper, we focus on solving the minimum bounding
box problem for physical objects that are rectangular
objects close to the perfectly shaped bounding box. The
measurement points of each side of the objects are given as
six sets of points: Front, Back, Right, Left, Top and
Bottom. The data set of each side is a n� 3 matrix
containing x- y- and z-coordinates for the n number of
points.

In order to reduce the number of points for further
computation, the 3D convex hull operation is applied. The
input of the convex hull operation are the point coordinates
from the six sets of points jointed together as illustrated in
Figure 6. The output from the convex hull operation is



Fig. 3. The optimization functions of volume versus orientation angle between two faces (ModelC): (a) around the edge 2 on the Left
side (small angle); (b) around the edge 1 on the Top side (large angle).

Fig. 4. The MABR of a convex polygon based on 2D point set.

Fig. 5. The flowchart of the MVBBS method with the MABR
algorithm.
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a matrix SPol
m;3 with m rows. Each row of the matrix is a

convex polyhedron face ’i defined by its vertices. The
vertices are given as indices that refer to the input data to
the convex hull operation.

Some of the faces of the polyhedron described by
SPol
m;3will have vertices from two or three sides of the

physical object. For example, the measured points from the
Top side may be combined with measured points from the
Front side into common faces, or “chamfer” faces between
the sides. When defining the minimum bounding box in
measurement and calibration of rectangular objects, these
combined faces and their edges will not contribute to the
solution, and they should not be used in the permutation
part of the algorithm.
Two data structures are constructed from the output
matrix SPol

m;3 by the pre-processing algorithm. The first
structure represents six matrices SF, SB, SR, SL, ST, SM of
face vertices vi,j separated according to the reference object
sides (Front, Back,…Bottom) without common faces



Fig. 6. The flowchart of the data pre-processing with the output of two data structures I and II.

Fig. 7. The flowchart of the MVBBF method.

Fig. 8. Coordinate transformation of an arbitrary polyhedron face.
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(Fig. 6, denoted by I); the second is a data matrix Pk,4
with x- y- and z-coordinates for face vertices (Fig. 6,
denoted by II).
3.4 The minimum volume bounding box face
(MVBBF) method

The MVBBF method developed by the author is more
accurate than the MVBBS method, but it is still an
approximation version. The flowchart of the algorithm of
MVBBF method is shown in Figure 7.

The theorem presented in Section 2.2 does not provide
an upper limit for how many edges that can be coplanar
with one side of the bounding box, and then wemay assume
that one side is coplanar with more than one edge. It is
a well-known fact that two distinct but intersecting lines
uniquely determine a plane. Hereby, if a side is coplanar
with two edges then it is coplanar with a face of the convex
polyhedron. Obviously, one side of the bounding box
cannot be coplanar with more than one face of the convex
polyhedron. The second adjacent bounding box side must
flush with at least one edge or face of the convex
polyhedron.

In order to compensate the computation complexity of
theMVBBFmethod, first we apply the data pre-processing
(Sect. 3.3). Then, the MVBBF algorithm searches through
the six matrices SF, SB, ...SMassociated with sides of the
measured object and checks all faces within each sample.
When a side and the first face ’ of the polyhedron are
chosen, three vertices v1,1, v1,2, v1,3 of the face are defined.
Two vectors e1 {a1, b1, c1} , e2 {a2, b2, c2} are constructed
based on the three given pointsP1(x1, y1, z1), P2(x2, y2, z2),
P3(x3,y3, z3),Figure8.Thecrossproductof thetwovectors in
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ℝ3 is a new vector n, which is perpendicular to both given
vectors [18], and this vectorn is a normal vector to the face’:

n ¼ e1 � e2 ¼
î

x2 � x1

x3 � x1

ĵ
y2 � y1
y3 � y1

k̂
z2 � z1
y3 � y1

������
������

¼
î
a1
a2

ĵ
b1
b2

k̂
c1
c2

������
������: ð3Þ

Then coordinates of the normal vector n {A, B, C} can
be found as the minors of the matrix in (3) as following:

A ¼ b2
b1

c2
c1

����
����; B ¼ c2

c1

a2
a1

����
����; C ¼ a2

a1

b2
b1

����
����: ð4Þ

In order to combine the polyhedron face ’ with an
associated bounding box side (e.g. xy-plane), we need to
align the normal vector n with positive z-axis, Figure 8.
The first step is to move the vector n to the origin by using
a translation matrix M with the row vector coordinates of
the point P1(x1, y1, z1) [19]:

M ¼
1
0
0

�x1

0
1
0

�y1

0
0
1

�z1

0
0
0
1

2
664

3
775; ð5Þ

which gives us a vector n0. The projections na, nb of the
vector n0 on planes yz (x=0) and zx (y=0) respectively
(Fig. 8), give us two angles a and b:

a ¼ arcsin
ny

na

� �
¼ arcsin

nyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nz

2 þ ny
2

p
 !

ð6Þ

b ¼ arcsin
nx

nb

� �
¼ arcsin

nxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nz

2 þ nx
2

p
 !

: ð7Þ

Then a rotation matrix Rx(a) with the angle a for
rotating counterclockwise around x-axis can be written:

RxðaÞ ¼
1
0
0
0

0
cosðaÞ
�sinðaÞ

0

0
sinðaÞ
cosðaÞ
0

0
0
0
1

2
664

3
775: ð8Þ

A rotation matrix Ry(b) with the angle b for rotating
clockwise around y-axis can be expressed in the following
way:

RyðbÞ ¼
cosðbÞ

0
�sinðbÞ

0

0
1
0
0

sinðbÞ
0

cosðbÞ
0

0
0
0
1

2
664

3
775: ð9Þ

The final transformation matrix T’ to combine the
polyhedron face ’ with xy-plane as the bounding box side
will be as follows (equivalent to alignment of n with
z-axis):

T ’ ¼ M½ � RxðaÞ½ � RyðbÞ
� �

: ð10Þ

The transformed face ’ and normal vector n are
denoted as ’ 0 and n 0 in Figure 8. In order to rotate the
convex polyhedron, the transformation matrix T’ is
applied to the matrix Pk,4 (Fig. 6, denoted by II) of the
unique polyhedron vertices.

After the coordinate transformation is completed, all
newly transformed points are projected into the xy-plane.
Then the MABR algorithm (Sect. 3.1) is applied for these
projected points. It defines an orientation of the “close-
loop” of adjacent sides (Sect. 1) and, hence the estimation of
widthWk and length Lk of theminimum bounding box. The
height Hk is defined as a difference between maximum and
minimum z-values: Zmax�Zmin. Thus, the volume is:
Vk=Hk ⋅Wk ⋅Lk.

The described procedure is repeated for each face of the
chosen matrix and for all six matrices (SF, SB, ...SM). The
minimum volume Vk is calculated in each iteration. After
all iterations are completed, the smallest value Vmin is
chosen as the solution.

3.5 the minimum volume bounding box edge
(MVBBE) method

The third method corresponds to the conditions of the
theorems presented in Section 2.2 and therefore this is the
most accurate method, which guarantees the global
minimum solution. However, the algorithm is more
complex and hence slower than two previous methods.
In this case, the data pre-process (Sect. 3.3) becomes the
crucial part of the algorithm due to a significant reduction
of unnecessary computation of the “chamfer” faces and
corresponding edges of the convex polyhedron. The
MVBBE algorithm is shown in Figure 9.

The MVBBE method is applied after the 3D convex
hull operation and the data pre-process are completed. As
before, we use six matrices (SF, SB, ...SM) associated with
the cuboid reference object sides as the output of the data
pre-processing algorithm (Fig. 6, denoted by I). The
algorithm checks for each pair of faces with common edges.
Since such pair of two faces with their vertices ’1 [v1,1, v1,2,
v1,3] , ’2 [v2,1, v2,2, v2,3] are found, it gives us the four non-
collinear points P0(x0, y0, z0), P1(x1, y1, z1), P2(x2, y2, z2),
P3(x3, y3, z3) and three non-collinear vectors corresponding
to the polyhedron edges e1 {x1� x0, y1� y0, z1� z0},
e2 {x2� x0, y2� y0, z2� z0} and e3 {x3� x0, y3� y0, z3� z0}
or as a simplified form e1 {a1, b1, c1}, e2 {a2, b2, c2} and
e3 {a3, b3, c3} respectively, (Fig. 10).

Thus, the plane corresponding to the face ’1 can be
defined by the two non-collinear vectors e2, e1 in the
following parametric form:

x� x0

a2
a1

y� y0
b2
b1

z� z0
c2
c1

������
������ ¼ 0; ð11Þ



Fig. 9. The flowchart of the MVBBE method.

Fig. 10. Coordinate transformation of two arbitrary polyhedron
faces ’1, ’2 with the common edge e1.
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and similarly by e1, e3 for the face ’2:

x� x0

a1

a3

y� y0

b1

b3

z� z0

c1

c3

�������
������� ¼ 0: ð12Þ
The angle u between the faces ’1 and ’2 is the angle
between the normal vectors n {A, B, C} , n2 {A2, B2, C2}
[18]:

u ¼ p� arccos
AA2 þBB2 þ CC2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þB2 þ C2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
2 þB2

2 þ C2
2

q
0
B@

1
CA ð13Þ

whereA,B,C,A2,B2,C2 are three corresponding minors of
matrix (11) and (12), which can be calculated by using of
equation (4).

In order to find the minimum volume solution, the
polyhedron points Pk,4 need to be rotated around the
common edge e1 to the angle u, from the face ’1 to the face
’2. A one-degree step is used for each iteration, but at least
three iterations are applied if the angle u is less than 2°.

A certain alignment may be done to simplify the
rotation of the polyhedron around the edge. First, xy-plane
is made flush with the face ’1 by alignment of the normal
vector n with z-axis. The same technique is applied as it
was described in Section 3.4. The vector n moves to the
origin by the translation matrix M(x0, y0, z0) in (5), rotate
counterclockwise with angle a around x-axis by using the
rotation matrix Rx(a) in (8), and clockwise with angle b
around y-axis by using the rotation matrix Ry(b) in (9).
The next, the common edge e1 is aligned with x-axis by
following rotation matrix Rz(g) around z-axis with angle,
for clockwise (the example in Figure 10 has positive
g-counterclockwise):

RzðgÞ ¼
cosðgÞ
sinðgÞ
0
0

�sinðgÞ
cosðgÞ
0
0

0
0
1
0

0
0
0
1

2
664

3
775: ð14Þ

Thus, a full transformation matrix Te for alignment of
normal vector n with z-axis and the polyhedron edge e1
with x-axis, can be written in this way:

Te ¼ M½ � RxðaÞ½ � RyðbÞ
� �

RzðgÞ½ �: ð15Þ

A result of transformation of the two faces ’1, ’2 into
’1

00, ’2
00 and the edge e1 into e 0

1 is shown in Figure 10.
The alignments of the face ’1

00 with xy-plane, and the
edge e 0

1 with x-axis provide a transformed edge denoted as
e 00

1 (Fig. 10). Then, the rotation of all points Pk,4 around
the edge e 00

1 with one-degree step angle du=p/180° can be
proceeded by using the rotation matrixRx(du) given earlier
in equation (8). After each rotation step, newly trans-
formed points are projected into xy-plane and the MABR
algorithm (Sect. 3.1) is applied for the projected points to
estimate the width Wk and the length Lk of the minimum
bounding box. The height Hk is defined as a difference
between maximum and minimum Zmax�Zminvalues.
Finally, the volume of the bounding box is: Vk=Hk ⋅Wk
⋅Lk.

The above procedure is carried out for each common
edge of all six matrices SF, SB, ...SM (Fig. 6, denoted by I).
The volume Vk is calculated in each rotation step, and the
smallest volume Vmin is the solution.



Fig. 11. CMM measurement of the test object.
Fig. 12. The result of the 3D convex hull operation.

Table 2. The computation results of the MVBBS, MVBBF, MVBBE methods for the first test.

Method Width,
mm

Length,
mm

Height,
mm

Volume,
mm3

Number
of solutions

MVBBS 140.016 210.035 119.980 3528388.312 1
MVBBF 139.997 210.010 119.978 3527436.353 1
MVBBE 139.997 210.010 119.978 3527436.353 1
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4 Implementation

The algorithms described in the previous sections are
developed and implemented in MATLAB

®

programming
environment based on CMM measurement data. The
measurements have been performed in a Leitz PMM-C-600
CMMwith an analogue probe. The PC-DMIS software was
utilized for operation of the CMM.

4.1 Experiment setup

For the experimental tests, we have used a cuboid object
with the following nominal dimensions (the true values are
unknown): length 210mm, width 140mm, and height
120mm. The test object is shown in Figure 11. The
measured data is arranged into separated data samples
according to the cuboid sides: Front, Back, Right, Left, Top
and Bottom. Each sample is a n� 3 matrix with three
columns and n-rows of xyz-coordinates corresponding to
the n-measured points as shown in Figure 6. We have used
a uniform distribution of measured points with 15mm
distance between the points. The total number of the
measured points is N=650.

In order to get complete measurements of all six sides of
the test object in a common coordinate system, we have
measured the object in two setups. The measurements of
the two setups have been combined by using common
alignment points in the two setups.
5 Results and discussion

The collected date is further exported to a MATLAB
code as an input for the developed algorithms. The first
MVBBS method can be applied straightforward on the
data � no data pre-process is required. We consider only
the Bottom side as a support side. For the other two
methods, we apply the data pre-process algorithm after
the 3D convex hull operation. The result of the convex
hull operation for measured data is shown in Figure 12.
There are 166 faces combined together into one convex
polyhedron and 88 faces after applying of the data pre-
process algorithm (almost 50% of calculations were
reduced). The computation results of all three methods
are tabulated in Table 2 (the results are rounded to 1e–3).

The MVBBS method provides a significant overesti-
mation of the volumeVS of the bounding box relative to the
other two methods: DV=VS�VE= 951.959 mm3. Mean-
while, there is no difference between estimated volumes
from the MVBBF and the MVBBE methods. A possible
reason for such coincidence may be a small form deviation
and as a result, small angles between polyhedron faces.

An extra test was applied for estimation of MVBB for
the cuboid object with the same nominal dimensions but
with larger flatness deviations. The computation results
are given in Table 3.

The second test demonstrates the difference between
MVBBF and MVBBE methods. The following difference



Table 3. The computation results of the MVBBS, MVBBF, MVBBE methods for the second test.

Method Width,
mm

Length,
mm

Height,
mm

Volume,
mm3

Number
of solutions

MVBBS 140.016 210.195 120.068 3533662.007 1
MVBBF 139.995 210.195 120.054 3532743.929 1
MVBBE 139.994 210.195 120.055 3532735.210 1

Table 4. The computation results of the developed methods for Model B and Model C (in normalized units).

Method Width, Length, Height, Volume, Number
of solutions

MVBBS (Model B) 1.0197 1.0197 1.02 1.0605 2
MVBBS (ModelC) 1.02 1.06 1.51 1.6326 1
MVBBF (Model B) 1.0197 1.02 1.0197 1.0605 4
MVBBF (ModelC) 1.0197 1.0600 1.5195 1.6424 1
MVBBE (Model B) 1.0197 1.02 1.0197 1.0605 4
MVBBE (ModelC) 1.0198 1.0598 1.5098 1.6319 1
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can be observed from Table 3: DV=VF�VE= 8.675 mm3,
where VF is the solution of the MVBBF method and VE is
the solution of the MVBBE method.

In order to verify the proposed approaches, the
developed methods were applied on Model B and Model C,
which are illustrated in Figure 2b,c. The vertex coordinates
of the theoretical models are given in Table 1. The
computation results for estimation of MVBB based on the
developed methods for Model B and Model C are given in
Table 4 (the results are rounded to 1e–4).

It can be observed a difference between the solutions for
MVBBS, MVBBF and MVBBE methods for Model C.
The MVBBE method provides the smallest solution for
Model C.The results forModelBand forall threemethodsare
equal.

TheMVBBEmethodmay provide theminimal solution
and yet, it includes all solutions of theMVBBFmethod and
therefor it is more reliable and accurate.

6 Conclusion

Three methods have been proposed and demonstrated in
this work for estimation of the minimum volume of
bounding box with the proposed data pre-process algo-
rithm for the metrological applications. The first two
methods are based on a number of assumptions allowing
decreasing of a computation time but often with over-
estimated results. The minimal and the most optimal
solution is provided by the MVBBEmethod. Furthermore,
the solution of the MVBBE method is based on theorems
presented in this paper (Sects. 2.1 and 2.2) and hence, its
estimation is the most accurate. Relying on type of
dimensional measurement system, different methods may
be applicable while the MVBBE method should utilize as
the reference.
However, the MVBBE method includes a large
number of an additional calculation. The proposed pre-
process data algorithm (Sect. 3.3) based on the specific
metrological conditions (described in Sect. 1) allows a
significant reduction of the computation (about 50%)
preserving the initial accuracy at the same time. Thus, the
MVBBE method should be used for those metrological
tasks, where the accuracy is the critical factor, particu-
larly when a large geometry form deviation is expected.
The principles outlined in this work could also improve the
functionality of operation software for the measuring
systems.

The authors wish to thank Dr. Christoph A. Thieme, NTNU,
Trondheim, for valuable advices and comments. The authors
acknowledge the financial support of the Research Council of
Norway, Grant No. 235315.
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