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Abstract: This work focuses on designing a grammar detection system that understands both
structural and contextual information of sentences for validating whether the English sentences
are grammatically correct. Most existing systems model a grammar detector by translating the
sentences into sequences of either words appearing in the sentences or syntactic tags holding the
grammar knowledge of the sentences. In this paper, we show that both these sequencing approaches
have limitations. The former model is over specific, whereas the latter model is over generalized,
which in turn affects the performance of the grammar classifier. Therefore, the paper proposes a new
sequencing approach that contains both information, linguistic as well as syntactic, of a sentence.
We call this sequence a Lex-Pos sequence. The main objective of the paper is to demonstrate that the
proposed Lex-Pos sequence has the potential to imbibe the specific nature of the linguistic words
(i.e., lexicals) and generic structural characteristics of a sentence via Part-Of-Speech (POS) tags, and so,
can lead to a significant improvement in detecting grammar errors. Furthermore, the paper proposes
a new vector representation technique, Word Embedding One-Hot Encoding (WEOE) to transform
this Lex-Pos into mathematical values. The paper also introduces a new error induction technique
to artificially generate the POS tag specific incorrect sentences for training. The classifier is trained
using two corpora of incorrect sentences, one with general errors and another with POS tag specific
errors. Long Short-Term Memory (LSTM) neural network architecture has been employed to build
the grammar classifier. The study conducts nine experiments to validate the strength of the Lex-Pos
sequences. The Lex-Pos -based models are observed as superior in two ways: (1) they give more
accurate predictions; and (2) they are more stable as lesser accuracy drops have been recorded from
training to testing. To further prove the potential of the proposed Lex-Pos -based model, we compare
it with some well known existing studies.

Keywords: Natural Language Processing; deep learning; grammar error detection; word embedding

1. Introduction

With the advent and continuous advancement in Natural Language Processing (NLP) that aims
to enable a machine to understand the human language, the problem of designing a grammar error
detector for the natural language is also gaining much attention from researchers [1–4]. The non-native
speakers of a language find a hard time in writing grammatically correct sentences. For example,
there is a large section of English language learners who need a tool to check if their written content
contains grammatical errors [3]. The primary task of a grammar classifier is to predict whether a
sentence is grammatically valid or not. The automatic grammar detector can also be applied to grade
the writing style of a person by counting the incorrect sentences in their content [1]. Furthermore,
a grammar detector can be employed to evaluate the output of Machine Translation (MT) systems which
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are designed to produce grammatically correct sentences, by highlighting the translated sentences
which contain errors [2].

The language error detection problem is mostly considered as a sequence labeling task where
a supervised learning approach is adopted to predict whether the input sequence is grammatically
correct or not. Most of the existing studies use one out of two approaches to convert an English
sentence into a sequence for the classification task. In the first approach, the sentence is processed as
a sequence of words as they appear in the text [1,5]. We refer to this sequence as a lexical sequence.
For example, the sentence “I am reading a book” will be transformed into the sequence < I> <am>

<reading> <a> <book>. In the second approach, a sentence is converted into the sequence of tokens
which indicate its structural or syntactic information [6,7]. We call these types of sequences syntactic.
For example, the syntactic sequence of the same sentence will be <subject> <helping− verb> <verb>
<article> <object>. This is more like specifying the grammar-domain of words used in a sentence.
Researchers use various tools such as dependency parser and Part-Of-Speech (POS) tagger to obtain
the structural information of a sentence.

However, we observe that both types of sequences have their inherent limitations. The model
trained on lexical sequences is highly specific to the domain of vocabulary of the sentences. Therefore,
these models do not generalize well. This implies that, if the sentences in a training set are not enough
to cover the large aspect of the English language, the words in test sequences would appear strange to
the model. On the other hand, the model trained on syntactic sequences overcomes this limitation by
providing the structural characteristics of the sentences, and hence, allow the model to generalize the
rules. However, too much generalization is also not good for the model as it often provides insufficient
knowledge about the grammar used in a sentence. For example, both words “a” and “an” are articles
but they are used in a different context (e.g., “an apple”, “a banana”) which cannot be reflected by a
syntactic sequence only.

We address this problem by proposing a novel sequence named as Lex-Pos sequence that attempts
to capture the specific nature of the lexical sequence and generic nature of the syntactic sequence
of a sentence. The structural organization of a sentence in the Lex-Pos format is represented using
Part-Of-Speech tags. The required linguistic knowledge is added to the structural knowledge of the
sentence to prevent the grammar error classifier from over-generalization.

Since the proposed Lex-Pos sequence contains both lexical tokens and POS-tag tokens, we
introduce a new vector representation to represent this sequence in a machine-understandable format.
We infused two vector representation techniques viz; word embedding and one-hot encoding to
draw the vector of Lex-Pos sequences. We named this representation Word Embedding One-Hot
Encoding (WEOE). In this WEOEvector representation, the lexical tokens in a sequence are converted
into embedding vectors, whereas syntactic tokens are converted into binary vectors.

In order to design the grammar error detector algorithm, a large corpus containing a satisfactory
quantity of both correct and incorrect sentences is required. The correct sentences are acquired from
the Lang-8 English learner corpus (https://sites.google.com/site/naistlang8corpora/). However,
for designing a dataset of grammatically invalid sentences, an artificial error corpus is created by
inducing the grammatical errors into the correct sentences of the Lang-8 dataset. Talking about the
grammar error types, there are a variety of errors in English language and we distribute them in
two categories, viz, syntactic errors and semantic errors. Syntactic errors are caused due to varied
reasons for example, a word in a sentence does not spell right (misspelling error), a verb does not
conform to the subject (subject-verb agreement error) or a preposition is incorrectly used(preposition
error), etc. On the other hand, the sentences with semantic errors are structurally correct but does
not make any sense in real life, for example, ‘I am eating water’, ‘we are running a banana’, etc.
The proposed approach can detect all the syntactic errors in an English sentence and verifies the
grammatical structure of a sentence but does not ensure if a sentence is semantically valid, (i.e., if the
sentence is meaningful).

https://sites.google.com/site/naistlang8corpora/
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Since our target is to train the classifier to differentiate between a valid or invalid Lex-Pos sequence
which contain two kinds of tokens, i.e., lexical and POS-tag, two sets of incorrect sentences are designed,
one with general errors and another with POS-tag specific errors. The general errors are induced to
make the model aware of lexical specific mistakes. The existing error introduction techniques such as
missing verb errors, repeated word errors, subject-verb agreement errors, etc. [1] have been used to create
different types of such ungrammatical sentences. However, for designing the second set of error
corpus, a new error induction method has been implemented that induces POS-tags specific errors in
the correct English sentences.

In this paper, the major focus is to show that the proposed Lex-Pos sequence which incorporates
both linguistic and structural information of a sentence can markedly enhance the performance of the
grammar error detection classifier. The source code for the proposed approach has been made available
for the researchers (https://github.com/Machine-Learning-and-Data-Science/Lex-POS-Approach).
The main contributions of the work are summarised as follows.

• A new sequence of the English sentence named Lex-Pos is proposed, which tends to infuse the
specificity of linguistic and generalization of syntactic characteristics of a sentence;

• A novel vector representation for Lex-Pos sequence of sentences named as Word Embedding
One-Hot Encoding (WEOE) has been presented by combining the word embedding and one-hot
encoded sequences;

• The novel error induction methods have been proposed to create negative samples containing
POS-tag errors for training;

• The grammar classifier is designed using LSTM deep learning architecture;
• Overall, nine experiments have been conducted on three designed datasets to reveal the potential

of Lex-Pos sequences; and
• A comparative study is presented where two replicas of existing grammar-aware systems

are designed and experiments are conducted to further demonstrate the strength of
Lex-Pos sequences.

The remaining of the paper is structured as follows: Section 2 discusses the literature about
grammar detection and correction systems. The proposed Lex-Pos sequence is explained in Section 3
and the datasets and pre-processing are presented in Section 4. In Section 5, different error induction
methods are discussed including the newly introduced tag specific error induction. Section 6 presents
a novel sequence representation technique that has been used for designing a grammar error detector
in this study. The experimental setup and results are discussed in Section 7. Section 8 provides a
comparison with existing studies. In Section 9, we have discussed a few limitations of our study,
and finally, Section 10 concludes the overall work of Lex-Pos feature-based Grammar Error Detection
system for the English Language.

2. Background Study

In the grammar detection problem, the sentences are mostly converted into some sequence to
obtain a feature set for experiments. Prior works have majorly focused on either considering the
sentence itself as a sequence of words or extracting the sequence of tokens which depicts the structure
of a sentence. For example, [1] has combined the POS tags of the sentence and the output of the XLE
parser (https://ling.sprachwiss.uni-konstanz.de/pages/xle/) to extract the feature set for identifying
grammatically ill-formed sentences. The authors also proposed the design of an artificial error corpus
for training the model by introducing four types of grammatical mistakes including missing word
errors, extra word errors, spelling errors, and agreement errors. The work is further extended in [2],
where probabilistic parsing features are incorporated with the POS n-grams and XLE-based features
to improve the results. In [6], the authors propose a classifier to detect grammatical mistakes in the
output produced by Statistical Machine Translation (SMT) systems. The structure of the sentences has

https://github.com/Machine-Learning-and-Data-Science/Lex-POS-Approach
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been captured using multi-hot encoding where the word vector represents three types of information:
POS tag, morphology and dependency relation.

A large section of researchers has focused on representing the sentences using word embedding
vectors. The authors of [8] propose the Grammar Error Corrector (GEC) model using the
convolutional encoder-decoder architecture which was trained on word embeddings of the sentences.
Another work [3] proposes word embeddings that considers both the grammaticality of the target
word and the error patterns. To create incorrect sentences in the corpus, the target word in the sentence
has been replaced with a similar but different word that often confuses the learners. For example,
replacing ‘peace’ with ‘piece’. Authors in [9] have designed a translation model that assists in
understanding the unseen word using its context. The encoder-decoder model which is capable of
handling the Out Of Vocabulary (OOV) words has been employed. [10] also utilizes the Convolutional
Neural Network (CNN) to build a GEC model. However, the problem is considered as a binary
classification rather than a sequence-to-sequence problem. The task of the model is to predict the
grammatical correctness of a word based on the context where it has been used in the sentence.
The authors also implement word embeddings to represent the sequence of a sentence and substitution
error induction method to artificially create the negative samples in the training set.

There are also several studies that attempt to integrate a different level of information of the
sentence in the sequence. For example, in [11], word-based sequences represented using word
embedding are applied to build a neural GEC model. They also infuse character-level information
in the neural network where the word embedding representation of OOV words depends on their
character sequences. Study [12] attempts to detect the prepositional mistakes in the sentences by
extracting the contextual information of the prepositions. The authors in this study integrated the
prepositional words (e.g., into or at) with the noun or verb phrases to predict the probability of
their correct usage in the sentences. Similarly, [13] worked on identifying prepositional errors by
combining POS-tagged and parsed information with English words. In our work, we convert the
complete sentence into a sequence that contains both structural as well as contextual information.
The structural tokens are represented using one-hot encoding and context tokens are represented using
word embedding.

Other studies on grammatical error detection focus only on specific errors, such as article errors,
adjective errors or preposition errors [7,14,15]. The authors of [7] proposed four error generation
methods to introduce article mistakes statistically in English sentences to create negative samples
that resemble grammar errors naturally occurring in second language learner texts. A model has
been designed to detect and correct article errors. Similarly, the authors in [16] put their efforts
into selectively correcting article errors in the sentences. Instead of using all the words in sentences,
the model is trained on the sequence of words surrounding the articles only, i.e., n words before and
after the article. Article [14] focuses on the mistakes committed by the learner while using adjectives
with nouns in sentences. In our study, an attempt is made to target all kinds of errors with special
attention to POS-tag specific errors. Therefore, our work utilizes two corpora for negative samples,
one with general errors and another with tag specific errors.

3. Lex-Pos Sequence

Earlier studies have mainly focused on either lexical knowledge of the sentences such as words
appearing in the text or the syntax knowledge of the sentences such as POS tags, as features for training
the grammar detection model. In a lexical-based approach, an English sentence can mostly be directly
converted into a sequence of words by splitting it with space. Whereas, in a syntactic-based approach,
the sentence is first converted into the grammatical structure using tools like dependency parser
(http://www.nltk.org/howto/dependency.html) or tagger (https://www.nltk.org/book/ch05.html)
and then a sequence is designed by extracting the relevant information.

However, lexical-based models highly depend on the vocabulary of sentences in the training
set, therefore, these models are difficult to generalize. For example, a model trained on sentence S1:

http://www.nltk.org/howto/dependency.html
https://www.nltk.org/book/ch05.html
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“I have an umbrella” might fail to understand the grammaticality of the sentence S2: “I have a cat” during
testing as the words “a” and “cat” appear new to the model. Therefore, the model trained on the words
vocabulary of the sentences is highly vulnerable to categorizing unseen sentences as incorrect.

On the other hand, the learning structure of the sentences allows the model to generalize the
rules. For example, the NLTK pos-tagger converts both of the above sentences (S1 and S2) into the same
sequence of POS tags, i.e., <PRP> <VBP> <DT> <NN> for denoting the personal pronoun, present
tense verb, determiner and noun respectively. Therefore, the model trained on syntactic features of the
sentence, “I have an umbrella” can easily predict the structure of the sentence, “I have a cat” as correct.
However, too much generalization can also increase the false alarms. For example, the pos-tagger
tool generates the same sequence for the two sentences “I have a umbrella” and “I have an umbrella”,
i.e., <PRP> <VBP> <DT> <NN>. Here the articles a and an are both categorized under same
tag <DT>.

Therefore, in this paper, we introduced a new sequence, viz, Lex-Pos by combining the specificity
level of the lexical approach and generalization of structural characteristics of sentences. In this feature
set, we embed the required linguistic knowledge in the POS-tag sequence of the sentence so that the
model can learn to generalize the structure of sentence “I have an umbrella” to “I have a cat”, and at the
same time, also distinguish it from the sentence “I have a umbrella”.

In order to construct the Lex-Pos sequence, we first need to identify the problematic POS tags
which overgeneralize the structure of a sentence. For example, in the sentences, “I have an umbrella”
and “I have a umbrella”, <DT> is the tag which causes the problem. Once we identify these problematic
POS tags, we embed additional linguistic knowledge to such tags. For example, the <DT> tag is
integrated with two tokens; first the article (i.e., a/an/the) itself, and second the pronouncing alphabet
of the word that follows the article as shown in sentences 1, 2 and 3 in Table 1. The pronouncing
(https://pypi.org/project/pronouncing/) library of python has been used to obtain the pronounced
letter of the word.

In case of the NLTK pos-tagger, the other tags which were found problematic include <PRP>
representing personal pronoun (e.g., he, she, I, we, or you), <VBP> representing verb such as am, are,
or have, and <IN> representing preposition/subordinating conjunction e.g., in, at, or on. All these
tags in the syntactic sequence of a sentence are provided with extra linguistic information. Algorithm 1
illustrates the step-wise designing of the Lex-Pos sequence.

Algorithm 1: Lex-Pos Sequence.

begin
Input: Sequence;
Output: Lex_Pos_Seq;
Calculate pos-tag sequence of Sentence (Pos_Seq);
Initialize the list of problematic tags (Prob_Tags);
Initialize empty Lex_Pos sequence (Lex_Pos_Seq);
foreach Pos_tag in Pos_Seq do

if Pos_tag in Prob_Tags don then
Append (Pos_tag + Linguistic information) to Lex_Pos_Seq;

else
Append Pos_tag to Lex_Pos_Seq;

end
end

end

https://pypi.org/project/pronouncing/
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Table 1. Examples of Lex-Pos sequences.

ID Sentence Lexical Sequence POS-tag Sequence Lex-Pos Sequence Label

1 I have an umbrella <i><have><an>
<umbrella>

<PRP><VBP><DT>
<NN>

<PRP><I><VBP>
<have><DT><an><A>
<NN>

correct

2 I have a cat <i><have><a>
<cat>

<PRP><VBP><DT>
<NN>

<PRP><I><VBP>
<have><DT><a><K>
<NN>

correct

3 I have a umbrella <i><have><a>
<umbrella>

<PRP><VBP><DT>
<NN>

<PRP><I><VBP>
<have><DT><a><A>
<NN>

incorrect

4 You are here <you><are><here> <PRP><VBP><RB> <PRP><you><VBP>
<are><RB>

correct

5 I are here <i><are><here> <PRP><VBP><RB> <PRP><I><VBP>
<are><RB>

incorrect

6 I am here <i><am><here> <PRP><VBP><RB> <PRP><I><VBP>
<am><RB>

correct

7 I am sitting on the table <i><am><sitting>
<on><the><table>

<PRP><VBP>
<VBG><IN><DT>
<NN>

<PRP><I><VBP>
<am><VBG><sitting>
<IN><on><table><DT>
<NN>

correct
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Table 1 shows a few instances of Lex-Pos sequences. It can be seen in Table 1 that the two tags
<PRP> and <VBP> are appended with the information of personal pronoun and helping verb in
sentences 4, 5 and 6. In the case of <IN> tag, three lexical tokens, namely, preposition, word preceding
the preposition and word following the preposition are appended. However, if the preceded or
followed word comprises some <DT> tag words such as the, or some, then these words are ignored
and the next word in the sequence is appended as shown for the last sentence in Table 1.

4. Datasets and Pre-Processing

Training of grammar classifiers requires both correct and incorrect sentences in a dataset. We used
the Lang-8 Corpus of the Learner English dataset as grammatically valid English sentences for our
experiments. The dataset contains over 5 million sentences with the length of the sentences ranging
from 1–80 words. We selected sentences with a length of less than 15 words in order to reduce the
variation in the length of the sentences during the training of the model. Finally, we obtained around
1 million correct sentences. The incorrect sentences are obtained from the correct corpus by writing
error induction programs which are explained in detail in Section 5.

Although the sentences in the Lang-8 corpus are already verified as grammatically correct,
we performed a few pre-processing functions so as to design an efficient dataset for training. First,
we converted the sentence into lower case. Then, we replaced the contracted form of auxiliaries in
the sentences with their long-form (e.g., “I’m not” → “I am not”). Also, numbers in the sentences
are replaced with the keyword digit to reduce variation (e.g., “I am 16 years old”→ “I am digit years
old”). However, we did not remove any punctuation marks from the sentences as they hold significant
knowledge of the structure of the sentences. The python libraries, nltk (https://www.nltk.org/) and re
(https://docs.python.org/3/library/re.html), were used to pre-process the sentences.

5. Error Induction Methods

In this section, we describe the procedure used to generate an artificial error corpus from the
Lang-8 dataset which has been made available for the researchers (https://github.com/Machine-
Learning-and-Data-Science/Lex-POS-Approach). Our target is to train the machine learning based
model to differentiate the correct sequence of the sentence from the wrong ones. Various researchers
have used the notion of breeding artificial error data for training the grammar detector model [1,2].
A sentence can be grammatically invalid due to varied reasons, for example, a word in a sentence
does not spell right, a verb does not conform to the subject, or a preposition is incorrectly used.
Training requires a large set of grammatically incorrect sentences containing enough samples for
each kind of error, which is hard to collect in the sentences produced by native language speakers
or writers. However, the dataset of grammatically incorrect sentences with a sufficient number of
sentences can be created by performing certain transformations in the grammatically correct sentences
(e.g., inserting, replacing, repeating or deleting words from the correct sentences). While inserting the
errors, proper linguistic knowledge is required in order to ensure that the sentence produced by the
script is grammatically unacceptable. For example, consider the sentence “she bought two fresh apples”,
and only deleting the word “fresh” from the sentence does not make the sentence incorrect.

In this work, two types of error induction methods, namely General Error Induction and
Tag-specific Error Induction, are employed. Sentences with general errors assist the detector in
mainly learning the lexical mistakes and tag-based errors helps in making the model learn about
POS-tag related mistakes. Both error induction methods are discussed in the following sub-sections.

5.1. General Error Induction Methods

General errors contain those methods which have been mostly adopted by the earlier studies
for creating incorrect sentences. In our dataset, we introduce 5 types of errors, i.e., misspelled error,
repeated word error, subject-verb agreement error, word order error, and missing verb error. Table 2 provides
a brief description of the list of these general errors.

https://www.nltk.org/
https://docs.python.org/3/library/re.html
https://github.com/Machine-Learning-and-Data-Science/Lex-POS-Approach
https://github.com/Machine-Learning-and-Data-Science/Lex-POS-Approach
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In order to ensure that the sentences created by the error induction procedure are grammatically
invalid, a few things were taken into consideration. First, we ensure that we do not misspell the words
which are proper nouns. Nouns are something for which a dictionary is unlimited, such as the name of
a person. For example, “Alice is having tea”, “Aliceee is having tea”, and “Ali is having tea” are all correct
sentences. Therefore, we avoid misspelling proper nouns while creating negative references.

Table 2. Examples of General Errors.

Type Error Induction Procedure Correct Sentence Negative Sample

Misspelled Misspell an appropriate word
in a sentence

Boys are playing outside. Boys are playing outsde.

Repeated Duplicate an appropriate word
in a sentence

Boys are playing outside. Boys are are playing
outside.

Subject-Verb
Agreement

Replace the verb with a verb
disagreeing with the subject

Boys are playing outside. Boys is playing outside.

Word Order Swap the position of two
appropriate words in a
sentence

Boys are playing outside. Boys playing are
outside.

Missing Verb Delete a verb from the sentence Boys are playing outside. Boys playing outside.

For creating sentences with subject-verb agreement errors, we replace the singular verbs with the
plural verbs or the other way round to create incorrect sentences. For example are is replaced with is or
“has” is replaced with “have”.

While generating the repeated errors, we avoided repeating words like very or so, as a repetition
of such words does not make a sentence grammatically incorrect. For example, both sentences “I like
you very much” and “I like you very, very much” are treated as correct in grammar.

While creating word-order errors, we avoid swapping helping-verb with its subject if the sentence
is interrogative as both sentences “am I working” and “I am working” are correct in the English language.

Table 3 provides the distribution of errors in the incorrect dataset. It can be noted from the table
that the number of sub-verb agreement and missing verb errors are less when compared to other types
of errors as these errors are limited to verbs in the sentences, whereas the domain of other types of
errors is not limited to verbs only. It should be noticed that multiple errors can be introduced in a
single sentence, i.e., a sentence can have more than one kind of error. Even though the total number of
errors created is 85,092, the total number of negative samples produced by the general error method is
only 62,899.

Table 3. Distribution of General Errors.

Type of Error #Negative Samples

Misspelled 31,067
Repeated 24,648
Subject-Verb Agreement 5756
Word Order 16,158
Missing Verb 7463

Total 85,092

5.2. Tag-Specific Error Induction Methods

As discussed in the earlier sections, < DT >, < PRP >, < VBP > and < IN > are the tags
which provide insufficient knowledge about the structure of a sentence, therefore, these tags must be
provided with some additional linguistic knowledge for training a machine learning-based model
to differentiate between grammatical correct and incorrect sentences. While creating the tag-specific
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errors, we introduce errors particularly for these problematic tags to obtain enough negative examples
for assisting the model to learn such errors in the sequence structure. Table 4 provides examples of tag
specific instances of the sentences.

The total number of negative samples produced by the tag-specific error method is 50,015, which
is less than the total number of errors in Table 5 for the same reason as for the general errors. Table 5
provides the distribution of errors in the incorrect dataset.

Table 4. Examples of Tag-specific Errors.

Type Correct Sentence Negative Sample

<DT> error I am eating an apple. I am eating a apple.

<PRP> error He is coming tomorrow. You is coming tomorrow.

<VBP> error I am reading a book. I are reading a book.

<IN> error I am sitting on the table. I am sitting to the table.

Table 5. Distribution of Tag-specific Errors.

Type of Error #Negative Samples

<DT> error 18,169
<PRP> error 15,008
<VBP> error 20,295
<IN> error 9872

Total 63,344

6. Feature Representation

In the proposed work, we convert every sentence (correct and incorrect) in the dataset to the
Lex-Pos sequence as discussed in the earlier section. However, for training the machine learning-based
model, the Lex-Pos sequence needs to be converted into some machine-understandable (mathematical)
form. Researchers have employed a variety of ways to represent a linguistic sequence into useful
features, e.g., Bag of Words (BoW), N-grams, TF-IDF, word embedding, and one-hot encoding [17], etc.
The approaches such as Bag of Words (BoW), N-grams and TF-IDF rely on the set of tokens and their
frequency in the dataset and are therefore insufficient to capture the exact structure of a sentence.

However, in one-hot encoding representation, each word in the vocabulary is assigned a unique
binary vector. Therefore, in this encoding, all the distinct words receive distinct representation and
the length of the one-hot vector is decided by the number of words in the vocabulary. Usually,
the size of POS-tags vocabulary is limited, and hence employing one-hot encoding is a good choice
to represent the POS-tag sequences. But the one-hot vector to represent an English word seems an
inefficient approach as the length of the binary vector could be extremely long due to the large size of
English vocabulary.

Word embedding is another feature representation technique in which every distinct word
in the vocabulary is mapped to a numeric vector so that semantically similar words share similar
representations in the vector space. One good advantage of using word embedding is that the words
can be represented in a much lower dimension than the one-hot encoding. Therefore, word embedding
seems an optimal choice to represent the English tokens.

Earlier studies have represented the sequences using either the one-hot vector or embedded-word
vector. Since the proposed Lex-Pos sequence consists of both POS tags and English words, we present
the feature representation that combines both techniques, named as WEOE. In this technique, we first
maintain a list called tag-list which contains all the POS-tag tokens generated by NLTK pos-tagger along
with their index values. The tag-list assists in identifying the tokens in the Lex-Pos sequence which need
to be represented in one-hot encoded form. We also appended pronouncing alphabets of the words to
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the tag-list for adding the linguistic information to the <DT> tag as mentioned in Section 3. In order to
obtain the word embedding vectors of the English tokens in the Lex-Pos sequence, Google’s pre-trained
Word2Vec model has been utilized. The model includes 300-dimensional word-vectors for around
3 million English words. The Gensim library (https://pypi.org/project/gensim/) of python has been
used to extract the embeddings from the Word2Vec model.

The Algorithm 2 explains the procedure explains the procedure of changing the Lex-Pos sequence
into the Word Embedding and one-hot Encoding (WEOE) representation. Three arguments are passed
to the algorithm as input: (1) Lex-Pos sequence; (2) tag-list; and (3) Word2Vec model. The sentVector
variable is initialized to store the vector representation of each token in the sequence. Also, every token
of the Lex-Pos sequence is initialized with a fixed length (n) vector having all zero entries. In our case,
the size of the tag-list is less than the size of the embedding vectors of the Word2Vec model. Therefore,
the value of n ranges from min to max, where the minimum value is the number of tokens in the tag-list,
and the maximum value is the length of the embedded vector of the Word2Vec model.

Algorithm 2: WEOE representation of a Lex-Pos Sequence.

begin
Input: Lex_Pos_Seq, POS_tag_list, word2vec;
Output: Word Embedding and one-hot Encoding Vector WEOE_Sent_Vec;
WEOE_Sent‘_Vec = [];
foreach token in Lex_Pos_Seq do

Initialize a zero vector with n length (WEOE_token_Vec);
if token in POS_tag_list then

WEOE_token_Vec[POS_tag_list[token]] = 1;
else

if token in word2vec_model then
WEOE_token_Vec = word2vec(token)[:n];

end
Append WEOE_token_Vec to WEOE_Sent_Vec;

end
end

In order to generate the WEOEfeature vector representation, every token of the Lex-Pos sequence
is first passed through a filter to check if this token exists in tag-list. If found, the zero vector of the
token is replaced with the respective binary vector, otherwise the token is searched in the Word2Vec
model. If a token is found in the model, the zero vector is replaced with its embedded representation.
The token is considered as unknown if it is not found in either of the lists. Finally, the vector values of
a token are appended to the sentVector.

7. Experiments and Results

In Section 4, we discussed the corpus of grammatically correct sentences, and in Section 5,
we presented two types of error induction methods for creating two different corpora of negative
samples, i.e., one with incorrect sentences containing general errors and another with incorrect
sentences having POS-tag specific errors. All three corpora are utilized to create three datasets
in the following manner.

Dataset 1: Correct sentences + incorrect sentences with general errors;
Dataset 2: Correct sentences + incorrect sentences with tag-specific errors;
Dataset 3: Correct sentences + incorrect sentences with both general and tag-specific errors;

Earlier studies on grammar classifiers have employed either lexical sequences or POS-tag
sequences of a sentence for grammar classification. This work presents a Lex-Pos sequence which tends

https://pypi.org/project/gensim/
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to imbibe the specificity quality of lexical sequences and generalization trait of POS-tag sequences.
Therefore, we compare the efficiency of a classifier trained on Lex-Pos sequences with the classifiers
modeled using lexical and POS-tag sequences. We evaluate the performance of the proposed work
on detecting grammatical errors using the 3 datasets described above. Sentences of each dataset are
converted into the three types of sequences, lexical sequence, POS-tag sequence and Lex-Pos sequence
as shown earlier in Table 1. There are a total of 3 datasets and 3 types of sequences to represent a
sentence in each dataset, thus, in total, nine experiments are conducted for comparing the performances
of the proposed grammar detector model.

In Section 6, we discussed the one-hot encoding and word embedding representations to denote a
linguistic sequence in numeric form. In the experiments, we represent lexical sequences of sentences
using a word embedding vector as it allows to represent a word in lower dimensions. The POS-tag
sequences are represented using one-hot encoded vectors as the list of POS-tags is very limited.
The Lex-Pos sequences are represented using the WEOE-feature vector. Before training the model,
all three datasets were balanced by randomly removing the extra instances from the dataset where it
was required. The final size of each dataset used in the experiments is shown in Table 6.

Table 6. Statistics of Corpuses.

Dataset #Positive Samples #Negative Samples #Total Samples

1 60,000 60,000 (general errors) 120,000
2 50,000 50,000 (specific errors) 100,000
3 60,000 30,000 (general) + 30,000 (specific) 120,000

The Long Short-Term Memory (LSTM) neural network architecture has been employed to build a
classifier. An LSTM network is a variant of a Recurrent Neural Network (RNN) which is extensively
used in solving NLP problems as they are capable of learning the structure of sequential data. All the
datasets are split in the ratio of 80:20 for training and testing respectively. The Keras framework has been
used for implementation. In all of the nine experiments, we have used sparse-categorical-crossentropy as
a loss function and adam as an optimizer with a batch size of 2000. The outmost layer of the network
is a dense layer with 2 nodes and a softmax activation function. Since we are using balanced datasets,
the accuracy metric has been evaluated to assess the performance of the models.

The results shown in Tables 7 and 8 are for the grammar classifiers which were trained on
lexical and POS-tag sequences of the sentences respectively. If we compare the vocabulary size
(i.e., unique number of tokens in the training sets) of datasets of both sequences, it can be seen that the
vocabulary size of pos-tag sequences (38 or 39) is much smaller than the lexical ones (15,796 to 20,725).
This indicates the generalization capability of keeping the structure of the sentences in its syntactic
form. The accuracy obtained on the testing sets of lexical sequences is 80%, 96% and 80% for dataset
1, 2 and 3 respectively. On the other hand, accuracy values obtained on the testing sets of POS-tag
sequences are 79%, 75% and 73%, which are significantly lower than the accuracy recorded for the
lexical-based classifier. This indicates that the classifier performs better with lexical sequences than the
POS-tag sequences in all the datasets.

Table 7. Lexical Sequence—Word Embedding Representation.

Training Testing

Dataset Voc. Size Loss Accuracy Loss Accuracy

1 20,725 0.30 0.87 0.46 0.80
2 15,796 0.55 0.98 0.19 0.96
3 19,777 0.29 0.87 0.48 0.80
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Table 8. POS-tag Sequence—One-hot Encoding Representation.

Training Testing

Dataset Voc. Size Loss Accuracy Loss Accuracy

1 39 0.38 0.83 0.44 0.79
2 38 0.41 0.79 0.49 0.75
3 39 0.45 0.77 0.52 0.73

Also, while creating the specific-tag errors, we mention that these are basically those errors for
which the POS-tag classifier finds it difficult to discriminate. The statement is also reflected in the
results of Table 8, where it can be seen that the pos-tag classifier achieves better accuracy in dataset 1,
which contains general errors in negative samples (79%) than dataset 2, which contains specific errors
in negative samples (75%).

However, it can also be noticed in the results shown in Tables 7 and 8 that the accuracy-drops from
training to testing sets are higher for lexical sequences by significant margins. For example, the accuracy
obtained in the training set for dataset 3 of lexical sequences (87%) is reduced to 80% in the testing
set, i.e., a 7% decrement in the accuracy. The value of loss also increases from 0.29 (training) to 0.48
(testing), i.e., a 19% increase in the loss value. On the other hand, while evaluating the performances of
the POS-tag based classifiers on the training and testing sets of dataset 3, there is 4% reduction in the
accuracy value and 7% increment in the loss values. This indicates that although the POS-based model
is not as accurate as the lexical-based model, it is more stable than the lexical-based model.

The objective of this paper is to combine the effectiveness and stability characteristics into one
model by converting English sentences into the Lex-Pos sequences. Table 9 shows the results of the
classifiers trained on the Lex-Pos sequences of the sentences with WEOEfeature representation. It can
be seen that the vocabulary size of Lex-Pos sequences (1026 to 2122) in the training set lies between the
vocabulary size of lexical (15,796 to 20,725) and POS-tag sequences (38 to 39). This indicates that the
Lex-Pos sequences tend to maintain a balance between the generalization and specialization of the two
sequence types. It is evident from the results that the Lex-Pos classifier outperforms both lexical and
POS-tag based classifiers in all the three datasets. The accuracies obtained by the Lex-Pos models on
datasets 1, 2 and 3 are 84%, 97% and 87% respectively.

The results also put the Lex-Pos sequences on top from the aspect of stability as they obtain
lower values for both metrics, increment in the loss and decrement in the accuracy while deploying the
classifiers from the training to the testing environment. For example, in dataset 3, the loss values of the
Lex-Pos system for training and testing are 32% and 26% respectively (see Table 9), thereby, a total of
6% increment in the loss. The value is significantly lesser than the loss increment values for lexical
(19%, see Table 7) and POS-tag systems (7%, see Table 8). A similar pattern is observed for the accuracy
drop. In dataset 3, the value of accuracy decreases from 89% in training to 87% in testing in the case of
Lex-Pos , a total of 2% drop in the accuracy. This accuracy drop of 2% is also markedly lower than the
values obtained by lexical (7%) and POS-tag (4%) classifiers.

Table 9. Lex-Pos Sequence—WEOE Representation.

Training Testing

Dataset Voc. Size Loss Accuracy Loss Accuracy

1 2122 0.29 0.88 0.39 0.84
2 1026 0.26 0.99 0.11 0.97
3 1918 0.26 0.89 0.32 0.87

8. Comparative Study

In this section, we compare the proposed work with two well known existing studies in order to
further demonstrate the potential of Lex-Pos sequences. The experiment results show that the Lex-Pos
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sequences represented using WEOE-feature vectors have more potential to capture the grammatical
structure of English sentences than the POS-tag sequences and lexical sequences, and so, are more
suitable for designing the grammar aware systems. We compare our work with two other existing
studies, [5,16]. In each comparison, we replicate the models proposed by the authors in their work and
conduct two sets of experiments. In the first experimental setup, we feed the sequence mentioned by
authors in [5,16] as input to the implemented model, and in the another setup, we feed the Lex-Pos
sequence as input to the implemented model to see and compare the results.

In [5], the authors designed an essay scoring system to evaluate the writing skills. The objective
of the system is to assign a rating (i.e., 0–5) to an English essay that reflects the quality of its content
based on various parameters including grammatical correctness. The authors experimented with
several deep learning models such as CNN, RNN, LSTM and LSTM+CNN and observed that the
LSTM-based system outperformed the others. For comparison, we implemented a similar LSTM-based
system which was claimed by the authors as the best. The values of the hyper-parameters are set same
as by the authors. Table 10 lists the settings of these hyper-parameters used for training the model,
referred to here as Essay model.

Table 10. Hyper-parameters settings for Author Model [5].

Parameters LSTM Nodes Dropout Epoch Optimizer Learning Rate

Values 300 0.5 50 RMSProp 0.001

The authors evaluated the quality of English essays, including short ones, on a scale of 0 to 5.
However, here, we evaluate the quality of English sentences based on its grammatical structure
on the scale of 0 or 1 where 0 score refers to a correct and 1 score refers to an incorrect sentence.
The three datasets discussed in Section 7 have been used for training and testing the Essay model.
For comparison, two experimental setups have been established. In the first round of experiments,
the Essay model takes the word embeddings of the lexical sequences of sentences (as mentioned by the
authors in their work) as input. In the other round, we provided our proposed WEOE-feature vectors
of Lex-Pos sequences as input features to the model.

The results obtained from the two rounds of experiments are shown in Tables 11 and 12
respectively. It can be seen that on the training set, the author methodology (lexical sequence and
LSTM model) with the accuracies 0.89, 0.98 and 0.91 shows slightly better performance than the same
model trained using Lex-Pos sequences on datasets 1, 2 and 3 respectively. However, while testing
the Lex-Pos sequences-based trained model outperforms in all three datasets with accuracy values
0.84, 0.96 and 0.87 respectively. This confirms that models learn more efficiently on Lex-Pos sequences
of sentences. Also, if we notice the accuracy drops from training to testing, we observe that it is less
in the author model trained from Lex-Pos based features. The accuracy drops are 7%, 3% and 6% for
the author model trained on lexical sequences of three datasets respectively, whereas the values, 4%,
1% and and 3% have been recorded for the author model trained on Lex-Pos sequences. These results
further confirm that the Essay model trained on Lex-Pos sequences are more capable of generalization
and so, are more stable and efficient.

Table 11. Performance of Model [5] on lexical sequences.

Training Testing

Dataset Loss Accuracy Loss Accuracy

1 0.08 0.89 0.13 0.82
2 0.02 0.98 0.04 0.95
3 0.07 0.91 0.11 0.85
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Table 12. Performance of Model [5] on Lex-Pos sequences.

Training Testing

Dataset Loss Accuracy Loss Accuracy

1 0.09 0.88 0.12 0.84
2 0.02 0.97 0.03 0.96
3 0.08 0.90 0.10 0.87

For the second comparison, we carry out experiments on the work proposed by the authors
of [16]. In that paper, the authors developed a deep learning model with convolution and pooling
layers for detecting article errors in the English sentences. We refer here to this model as the Article
model. The Article model takes a sequence of k words before and after the article as input in order to
learn the surrounding context of the articles. The sequence is translated into a mathematical vector
using pre-trained word embeddings. In order to replicate the Article model, we also design a similar
CNN model with the same parameters as mentioned in the paper. Table 13 provides the values of
these hyper-parameters.

Table 13. Hyper-parameters settings for Author Model [16].

Parameters Context-Window Size (k) Filter Windows Dropout Rate Regularizer Classifier Layer

Values 6 3, 4, 5 0.5 l2-constraint softmax

The output of the Article model is multiclass with labels a, an, the and ε where ε indicates no
article. The three datasets that have been used so far for training cannot be applied in training this
author-model as these datasets have labels 0 and 1 for denoting the correct and incorrect sentences
respectively. Therefore, for this comparative study, we design a new dataset from the correct sentences
that have been earlier used for training the models and assign three labels 0, 1, and 2 depending
on whether the sentences contain a, an or no article respectively. We do not consider “the” article
for prediction as the dataset contains instances of single sentences only which are not sufficient to
provide enough knowledge of specific and non-specific nouns. Similar to the first comparison study,
we conduct two rounds of experiments. In the first experiment, we extract the context words from the
sentences with window size 6 as mentioned by the authors, and translate this sequence into numeric
vectors using word embeddings. Afterward, these feature values are supplied to the CNN-based
author-model for training and testing. In the second set up, we provide the Lex-Pos sequences of
sentences transformed using WEOE-feature vectors as input to the Article model.

Table 14 displays the results of both experiments where it can be clearly noticed that the author
model performed extremely well on the Lex-Pos sequences of the new dataset by obtaining 99%
accuracy, significantly higher than the accuracy yielded by the context-based sequence model, i.e., 90%.
The high performance of the Lex-Pos model could be the result of adding phonetic information of the
word used immediately after the article into the syntactic sequence of a sentence.

Table 14. Performance of Context-based and Lex-Pos Sequence on Author Model [16].

Training Testing

Sequence Type Loss Accuracy Loss Accuracy

Context-based Lexical Sequence 0.27 0.92 0.33 0.90
Lex-Pos Sequence 0.01 0.99 0.02 0.99

In order to make sure that the proposed approach is statistically significant, we further conducted
a number of experimental trials to determine if the Lex-Pos-based classifier can be trusted over the
author model. In this regard, 15 pairs of training and testing subsets were constructed by randomly
selecting 10,000 and 2000 instances for each pair from the main training and testing set respectively.
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Afterward, on each pair, both Lex-Pos-based and author model [5] were trained and the respective
accuracy values have been recorded. Figure 1 presents a plot drawn from these accuracy values
where the x-axis and y-axis represent values obtained by author classifier [5] and Lex-Pos-based
classifier respectively. The graph clearly shows that for every pair of subset, Lex-Pos based classifier
has performed better by obtaining a higher accuracy score. We also applied paired Student’s t-tests
(https://www.ruf.rice.edu/~bioslabs/tools/stats/ttest.html) on the two sets of accuracy scores to
know if the distribution difference is statistically significant. We recorded the t-value as 11.516
with a p-value less than 0.05 which implies that the accuracy distribution of the two models is
statistically different. Therefore, there is sufficient evidence to consider that the Lex-Pos model is better
than the author model [5]. It is to be noted that statistical significance test was not conducted for
comparing Lex-Pos-based grammar detector with author model [16] as we observed a considerably
large improvement in the results, i.e., 9% increment in accuracy.

Figure 1. Accuracy values on 15 trials.

9. Discussion and Limitations

In this work, we have proposed the concept of converting an English sentence into a Lex-Pos
sequence represented using a WEOE-feature vector in order to design a grammar detector that is
capable of taking the advantage of both kinds of sequences, i.e., the specific nature of the lexical
sequences and generic nature of syntactic sequences. We compare the performances of the Lex-Pos
classifier with the models which are individually trained on lexical and POS-tag sequences of sentences.
Lexical sequences were represented using word embedding vectors, while POS-tag sequences were
represented using one-hot vector encoding. It is evident from the results that in terms of accuracy,
the lexical-based models perform better than POS-tag-based models, whereas, in the context of stability,
the POS-tag-based model proved to be more trustworthy. However, Lex-Pos sequence-based classifiers
have proven to be the best systems in both aspects, accuracy and stability. This confirms the usefulness
of providing additional linguistic knowledge to the POS-tag sequences of sentences and shows that
the Lex-Pos sequences are more efficient in capturing the grammar structure of the English language.

In order to further demonstrate the potential of Lex-Pos , two grammar aware models of existing
studies have been replicated. The first replica (LSTM-based Essay model) is designed to score the
English sentence based on its correctness of grammar. And the second replica (CNN-based Article
model) is modeled to classify the article errors in the sentence. The experiments show that both author
models performed better on the Lex-Pos sequences than the sequences used in the respective papers.
Furthermore, in these experiments also, Lex-Pos based trained author models are observed as more
stable with lower accuracy-drops from training to testing.

Although the Lex-Pos models are found to be more efficient and trustworthy, there are also a few
limitations associated with the present work. First, it does not ensure if a sentence is semantically valid,
i.e., if the sentence is meaningful. The proposed model only verifies the grammatical structure of the

https://www.ruf.rice.edu/~bioslabs/tools/stats/ttest.html


Electronics 2020, 9, 1686 16 of 17

sentence, and therefore, it will not be able to discriminate the two sentences, S1: “I am eating a banana”
and S2: “I am running a banana”. Both sentences are valid on syntax grounds but the second sentence
fails on semantic context since “I am running a banana” does not make any sense in real life. Secondly,
the proposed model is limited to individual sentences only and does not consider dependency between
sentences. For example, consider the two sentences, S3: “I talked to a boy” and S4: “She is great”. If these
two sentences are considered independently, then both are correct. But if these two sentences are
considered in combination where the second sentence follows the first one, then instead of “She” as a
subject in the S4, “He” should have been used. These limitations have been considered as the future
scope in the proposed work’s direction.

10. Conclusions and Future Scope

In this paper, our main aim was to demonstrate that the proposed sequence, namely, Lex-Pos
which incorporates both linguistic and structural information of a sentence, can lead to a significant
improvement in the performance of grammar error detection. Since the Lex-Pos sequences contain both
lexical and POS-tag tokens, these sequences have been translated into numerical values by providing
a new embedding technique, i.e., WEOE-encoding. Also, the two types of error corpora have been
designed for making the model learn about the lexical and POS-tag specific mistakes respectively.
A total of three types of datasets have been used for conducting the experiments where an LSTM
architecture was employed to design the grammar detection system.

In the experiments, we found that classifiers trained on lexical sequences yield more accurate
results than the classifiers trained on POS-tag sequences. On the contrary, POS-tag-based models are
observed as more stable than the lexical- ones. However, Lex-Pos based classifiers outperform the
others in both parameters, accuracy and stability. Lex-Pos sequences are also found to be more efficient
and trustworthy on the replica systems designed on the basis of existing studies. The comparative study
shows that the Lex-Pos sequences can be further employed to design other grammar aware systems
other than error detection, e.g., essay scoring system and grammar error correction system. The future
scope can be to extend these sequences by imbibing semantic information using methods like named
entity recognition in order to make the model learn about semantically valid or invalid sentences.
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