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Abstract

Facilitating exercise for the aging population is an important focus area in the years
to come. Exercise is one of the keys to healthy aging, and the most effective mea-
sure for preventing disease and loss of independence. Technology is already an
important tool in healthy aging, and in recent years exercise games (exergames)
have been shown to be a motivating, fun and efficient method of exercising. How-
ever, the existing technologies that facilitate use of exergames have some draw-
backs that could decrease usability and accessibility of exergames for older adults.
Advances in artificial intelligence have provided tools and methods that might be
useful for improving exergame technologies, but it is not known how well these
work in the context of balance exergames. The overall aim of this thesis is to ex-
plore how use of machine learning can improve existing solutions of core elements
of exergaming systems used for balance training in elderly.

Three research papers have been published as a result of the work in this thesis.
These address three core aspects of exergame technologies: motion capture tech-
nology, movement pattern assessment, and force estimation. These papers together
provide the following key findings:

• A deep learning image analysis system is a viable option for accurately ex-
tracting joint center locations from digital video for use in in-home exergame
settings.

• A machine learning model can classify correctly performed medio-lateral
weight-shifts in >9 out of 10 repetitions, without using pre-determined rules
or thresholds.

• Weight-shifting performance can be reliably estimated from joint center
kinematic data using a recurrent neural network.

In conclusion, we show that using machine learning models can make exergames
more available and easy to use by eliminating possible barriers of use related to
technological tools.
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Research overview.
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Chapter 1

Introduction

1.1 The Potential of Games to Facilitate In-Home Exercise for
the Aging Population

1.1.1 Exercise and Aging

FOR many of us, aging in good health is a major focus to preserve quality of
life in older age. We know that physical activity has a preventive effect on

many conditions and diseases that require help and assistance from our health care
systems [1]. The ability to live at home independently, manage activities of daily
living, and participate in the local community depends on the prevention of such
diseases and conditions. Even though information about the benefits of physical
activity abounds, only a small proportion of us actually reach the recommended
level of physical activity to achieve a preventive effect.

Among such preventive measures, those that target falls are essential. In elderly
living at home, 40% experience a fall each year, and 1 out of 40 falls lead to hos-
pitalization. Falls are the fifth most common cause of death in people above 65
years old [2]. Falls can also lead to increased fear of falling (again), thereby lead-
ing to reduced quality of life and reduced community participation, and increased
mortality [3]. However, research has shown that physical activity is an effective
preventive measure of falls [4].

Promoting and finding ways to deliver physical exercise to the aging population
is one of the key areas of focus in our society in the coming years. We are in a
demographic shift towards a higher proportion of elderly, which will require more
people to live at home for longer to maintain a sustainable health care system. The
question, then, becomes: How can we as a society enable and facilitate physical

3



4 Introduction

activity for the aging population? One of the keys to a possible solution is tap-
ping into how and why we choose to engage in physical activity - our motivation.
One exciting avenue to explore in this regard is gamification.

1.1.2 Technology and Gamification of Exercise

Gamification is a term coined to describe the uptake of aspects from gaming into
other areas of practice [5]. Here, elements that contribute to making games fun,
engaging, and motivating are adapted and implemented into activities that previ-
ously were perceived as tiresome, boring, and repetitive. Storytelling, competition,
and rewards are elements from games that have been adopted into serious settings
[6, 7], and a digital platform provides an opportunity for creating customized vir-
tual worlds. Gamification elements can be found in for example teaching, pro-
fessional training, sales work, and also in apps and solutions meant for physical
exercise. Ranking and competition is not a new concept in exercise, but imple-
menting the dimension of rewards using logged or tracked data from the perfor-
mance during the exercise itself has been shown to improve exercise adherence and
motivation [8]. This is also reflected in the number of exercise apps that implement
gamification, and in the creativity shown in the manner of implementing these el-
ements. You can for example choose to run from zombies (Zombies,Run!)1, walk
round and find, catch and compete with monsters (Pokémon GO!)2, explore the
universe by walking (Walkr: Fitness Space Adventure)3, build a superhero and
protect Earth through strength-training (Superhero Workout)4, and much, much
more.

This crossover from casual gaming to more serious activities was, and still is,
driven by the advancement of technological solutions in the past two decades. Both
hardware and software developments have provided high levels of immersion and
interaction between a person and a computer, paving the way for improved work-
flows, control, and feedback. Miniaturization makes devices small and low cost,
improving accessibility for a wider audience. We can use virtual reality to immerse
ourselves in a three-dimensional world, we can talk to our computers and receive
a more or less coherent response, and we can control devices using hand gestures
or other bodily movements. Motion-based control is what has been driving the
development of games that can be used for exercise purposes - commonly referred
to as exergames [9].

1Six to Start, https://zombiesrungame.com/
2Niantic, https://pokemongolive.com/en/
3Fourdesire, http://walkrgame.com/en/
4Six to Start, https://www.sixtostart.com/superhero-workout
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Figure 1.1: The Nintendo Wii controller and console (left), and Xbox 360 console and
Kinect camera (right).

1.1.3 Exergames

The use of exergames in serious health settings can be largely attributed to two
devices that were originally designed for casual gaming: The Nintendo Wii (Nin-
tendo Co., Ltd., Japan) Motion Controller, and the Kinect (Microsoft Corporation,
USA) camera system for Xbox and Windows (Figure 1.1). These devices in com-
bination with sports game collections such as "Wii Sports" (Nintendo Co., Ltd.)
and "Kinect Adventures" (Microsoft Game Studios), created a consumer market
for motion-controlled casual games, as the technology enabling this type of in-
teraction was emerging. Here, a variety of sports could be played either solo or
in multiplayer mode, such as tennis, bowling, or imaginary games performed for
example under water or while flying. Casual games often have in common tasks
that require a player to move in a specific manner to avoid in-game obstacles, hit
targets, lean sideways, or step in specific directions. This was quickly recognized
as being a possible facilitator for making people perform exercises in more serious
settings, such as in fitness training or rehabilitation after injury. The motivational
aspect is obvious, playing a game by moving in a specific manner to regain, main-
tain or improve physical function has huge potential, which is reflected in a rapidly
expanding body of research on exergames and motivation [10, 11, 12].

For the aging population, gaming through digital devices is not yet seen as a typical
or common activity. Nevertheless, both health care workers and elderly living
in assisted care facilities have picked up on the potential for exergames as a fun
and at the same time possibly fruitful tool. Research has documented that this
demographic enjoys playing exergames as well [12], both for general activity and
in more targeted exercise situations such as rehabilitation after injury [13, 14].
The exercise efficacy of exergames has been documented in many geriatric patient
populations as well, such as stroke survivors [15], frailty [16], and patients with
neurological disease [17]. In healthy older adults, exergames have been shown to
be as effective or even more effective than the traditional exercise programs that
would have been prescribed for balance training [18, 19] and falls prevention [20].
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Additionally, using digital devices to facilitate exercise allows for individually tai-
lored exercise programs. Tasks and objectives in the game can be created to elicit
specific movement patterns, and the difficulty level can be adjusted to the person
playing to facilitate mastering the task. This makes it possible to target specific
physical functions, and the game can be set to elicit repeated performances of that
specific movement in a fun and motivating manner, thus providing an opportunity
for increased time spent exercising that specific function [7]. This is highly rele-
vant for exercising physical function, as repetition and specificity are crucial for
progress and efficiency in such training [21, 22]. The game can also be changed
visually or aurally to reflect the preferred scenes and interests of the player. For
example, you can receive in-game rewards by reaching for apples in a French or-
chard, or by squatting and leaning sideways to ski down your favorite slope in the
Alps.

The combination of effective movement patterns for targeted, guided exercise and
a highly motivational component addressing the lack of adherence typically seen
in traditional exercise makes exergames an especially promising avenue to pursue.
This has major potential for becoming a highly useful tool, especially as you can
receive real-time feedback on the performance of movement patterns during train-
ing. This feedback can be delivered both by being rewarded for good performances
and by being guided on how to improve improper performance using visual and
auditory information.

1.1.4 Filling the Gaps with Machine Learning

Despite this potential of using exergames for targeted exercise, there are some as-
pects of exergame systems that need to be addressed before they can be employed
in widespread use. Current technological solutions are based on casual gaming sit-
uations for entertainment, where the accuracy of movement tracking and feedback
are not essential. This resulted in technology that might not represent or analyze
the players’ movement patterns in a manner adequate for a serious setting such
as exergaming for physical training. Studies have shown that in a clinical setting,
trust and perceived usefulness are essential for successful implementation and ac-
tual usage of technology [23, 24]. This means that the shortcomings of existing
systems for casual gaming might be detrimental to trust and perceived usefulness,
for example, if the users experience a poor match between their real-world move-
ments and the movements captured by the system. Based on these considerations
we identified three major features of exergame technology that could potentially
be improved using modern data-analysis methods within machine learning.

Firstly, the quality of the motion capture is essential for an exergame system to
function properly, as this is the basis for interaction with the exergame. The motion
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capture system has to accurately measure player movement to be able to control the
game, assess the movement patterns, and subsequently provide rewards, guidance,
and feedback. Two factors make the typically used depth-sensing cameras such
as the Kinect sub-optimal for in-home exergaming. This is a separate, specialized
device that needs to be acquired, set up properly, and maintained, and the quality
of the data provided by these cameras is varying, resulting in the tracking of the
player being unsatisfactory for serious settings [25].

Secondly, the assessment of movement pattern quality is typically based on rules
and thresholds. Here, a player receives points based on a comparison between
the performed movement pattern and a pre-determined template, or set of rules.
However, if the player has a body shape that does not fit this template or rule set, or
is unable to perform the movement according to the template or rule set because of
physical limitations, they will not receive an in-game reward even though they have
performed the movement correctly based on their individual prerequisite. Because
the older adult population is a heterogeneous group, with widely varying levels of
physical function, exergames that assess movement patterns according to templates
or rules might exclude some people from using the systems in a useful manner.

Thirdly, there are several shortcomings in existing systems that specifically target
balance training for older adults. Balance training is a vital part of physical ex-
ercise for fall prevention [26], and being able to perform guided balance training
using exergames in an in-home setting would be a major advantage for both users
and health care providers. The issue is that accurately assessing performance, and
providing feedback, during weight-shifting or leaning exercises requires equip-
ment that measures how much force you exert on the ground. Devices that do
this with sufficient accuracy are typically found in specialized laboratories, as they
are very costly and not feasible to use in an in-home setting. An exergame sys-
tem capable of providing force information in a simple, accessible manner would
facilitate guided exergaming that enables balance training for fall prevention.

Exploring advancements in machine learning (ML) that have occurred in the past
two decades is an avenue that holds great potential for finding solutions addressing
the above-identified gaps, thereby more useful and available exergame systems for
balance exercise. Image analysis methods, classification algorithms, and estima-
tion models are all ML tools that have been used previously in similar tasks as the
ones mentioned above. However, the knowledge of how these ML tools would
perform in motion tracking, assessment, and enabling exergaming is still missing,
particularly with the ease of use and accuracy in motion tracking and feedback as
the overall goal of using such methods for analyzing exergaming data.
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1.2 Aim of the thesis
The overall aim of the thesis is to explore how the use of machine learning and
deep learning could improve existing solutions of core elements of exergaming
systems used for balance training in the elderly. Specifically, the thesis aimed at
investigating the use of image analysis methods for more accessible motion cap-
ture, classification models for more accurate movement pattern evaluation, and re-
current neural networks for enabling weight shifting analysis using only kinematic
data.

1.2.1 Research questions

The main research questions addressed in the papers are the following:

• RQ1 How does a state-of-the-art deep learning 2D image analysis system
perform with regard to segment length variability compared to a 3D motion
capture (3DMoCap) system and Kinect system?

• RQ2 To what extent can machine learning classification models identify
correctly performed movement patterns during balance exergaming?

• RQ3 What accuracy does a recurrent neural network model achieve on esti-
mation of force data, using kinematic data from 2D and 3D motion capture
systems?

1.2.2 Thesis overview

This thesis is based on the work conducted during four years of study, from 2017
to 2021. Three studies were undertaken, with the main data collection supplying
data for all three studies. From each study, original research papers were produced
and published as detailed below. The papers can be found in full in part II.

Paper I - Comparison of a Deep Learning-Based Pose Estimation System to Marker-
Based and Kinect Systems in Exergaming for Balance Training (referred to as
"Pose Estimation" hereafter) details the study conducted to answer RQ1. The pa-
per from this study was submitted in October 2020 and published in Sensors in
December 2020.

Paper II - Assessment of Machine Learning Models for Classification of Movement
Patterns during a Weight-Shifting Exergame (referred to as "Movement Classifica-
tion" hereafter) details the study conducted to investigate RQ2. The paper from this
study was submitted in May 2020 and published in IEEE Transactions of Human-
Machine Systems in the spring of 2021.
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Paper III - Estimation of Ground Reaction Force from Kinematic Data in Bal-
ance Exergaming (referred to as "Force Estimation" hereafter) details how we
conducted the research to answer RQ3. The paper written on this study was sub-
mitted to the Journal of NeuroEngineering and Rehabilitation in June 2021 and is
currently under review.

The studies are ordered in this manner due to the themes in each study: pose esti-
mation comes first, as motion capture is the basis for using exergames; assessment
of the captured movement comes next; followed by the use of kinematic data to
enable force feedback during exergaming.

The remainder of this thesis is structured as follows. Chapter 2 outlines the back-
ground and context in which this thesis is situated. Chapter 3 details the technical
frameworks the thesis is based on, along with the related work, positioning the the-
sis in the current literature. Chapter 4 gives an overview of the methods employed
in the thesis, including ethical considerations, participant recruitment, practical de-
tails of data collection, and the analysis and evaluation methods used. In chapter
5, an overview of the results from the three studies is presented. These are then
discussed in chapter 6, along with contributions and implications. The conclusion
of the thesis can be found in chapter 7. Part II of the thesis contains the full papers
this thesis is based on.
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Chapter 2

Background

This chapter provides an overview of the setting in which this thesis was con-
ducted. It provides a general description of the status and challenges within the
relevant fields, meant to inform the reader about the rationale for the research
questions posed in chapter 1.

2.1 Elderly, Balance and Exercise
In daily life, being able to successfully navigate and overcome challenges of bal-
ance (or postural control) is a key factor in health and well-being. We climb stairs,
avoid obstacles, lean over to one foot to reach something, turn, and walk - among
other activities - all common movements that are part of our activities of daily liv-
ing (ADL). As we age, our capacity to complete these movements gradually deteri-
orates, as our physical and mental functions are affected by the processes of aging
[27]. The effect aging has on our ability to maintain postural control has been well
documented. Our reaction time gets slower [28], muscles become weaker [29],
and the processing demands for actions increase [30], all contributing to a reduced
capacity to successfully navigate the world around us. One of the most serious
consequences of deteriorated balance is the increased risk of experiencing a fall.
Even though the immediate effects of a fall such as physical injury can be severe
for an elderly person, the long-term effects can be even worse. Quality of life
can deteriorate because of reduced independence, community participation, and
inability to perform activities of daily living safely [31]. The mechanisms causing
falls are complex and highly variable, but one commonality in people experiencing
fear of falling is decreased physical capacity [32]. Exercises aimed at improving
muscle strength and balance function are one of the best prevention tools against
falls [4].

11
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While becoming aware of these factors, we find ourselves in a demographic tran-
sition towards a higher proportion of elderly in our societies, and at the same time
life expectancy keeps increasing [33]. This means that not only will there be a
larger population of elderly in our society, but also that these elderly will live
longer. Elderly people have a higher rate of diseases and conditions that require
assistance from health care personnel. To have a sustainable health care system
in the coming years, it is therefore essential that elderly persons stay healthy and
independent, and are able to live at home for longer than they do now.

To achieve this, maintaining physical and mental function - and thus quality of
life - will be an extremely important effort to undertake. As research has shown,
the best way to achieve this is through a healthy and active lifestyle [31]. Exer-
cise aimed at balance or postural control is one of the cornerstones for achieving
this, along with other types of physical activity [26, 34]. This is because balance
training maintains and improves our ability to avoid a potentially hazardous fall by
responding quickly enough to destabilizing conditions and thus staying in control
of our balance [35, 36], and keeping a steady and stable gait pattern [37]. Because
of the importance of balance exercise for maintaining balance function and pre-
venting falls, weight-shifting exercises are recommended in exergames for older
adults.

As exercise can prevent or mediate the decline in physical and mental functions,
focus on exercise for elderly persons has increased in recent years. Healthy and
active aging is a major topic in both national and international forums, such as
the World Health Organization (WHO1). This is also reflected in the vast amount
of resources being funneled towards finding methods, models, and pathways of
delivering efficient, safe, and motivating exercises to this population, as seen by
the European Research Council (ERC2). An important outcome from these studies
has been that delivering exercise through technological solutions is one of the most
promising avenues to pursue (e.g. [38, 39, 40]).

2.2 The Use of Technology in Exercise

Elderly Also Cheat in Videogames

Technological advances in the past two decades have driven the development of
health care to what can be defined as a new era [41]. Specifically, regarding ex-
ercise for physical and mental functions, technology is now commonly used to
track, evaluate and suggest exercises in all age groups, and from (re)habilitation to

1https://www.euro.who.int/en/health-topics/Life-stages/healthy-ageing
2https://ec.europa.eu/info/research-and-innovation/funding/funding-opportunities/funding-

programmes-and-open-calls/horizon-europe/cluster-1-healthen
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world-class athletics. This is facilitated in particular by technology that allows for
devices that have long battery life, are small and light in size and that can provide
accurate enough tracking of human activity. This is combined with advances in
software development that provide possibilities for individually tailored feedback
and guidance.

In its most basic definition, physical exercise is the movement of our limbs per-
formed by a complex interplay between our muscular, skeletal, and neurological
systems. The purpose of physical exercise is to improve our strength, balance,
endurance, coordination, and/or motor control, and the movement patterns we
perform during exercise are specifically aimed at training for example leg mus-
cle strength or endurance capacity. The movement patterns are designed to make
these exercises as efficient as possible, by tailoring the range of motion over the
joint, movement speed, and movement direction. Although there is some leniency,
the most efficient exercise is where the movement patterns are performed as close
to the intended movement as possible. This is also why guided exercise is more
efficient than non-guided exercise [42]. Getting feedback on your movement pat-
terns makes it easier to perform them correctly, as you can correct mistakes and
are more incentivized to keep performance at a high level.

Being able to provide access to feedback and guidance to elderly exercising at
home is a core issue, because of the major positive effect independent at-home
exercise could have in mediating the coming strain on our healthcare system. If
you do not have to see a clinician or a physical therapist for exercise, but instead
can perform your exercises at home with a therapist-approved, safe and motivat-
ing system, each therapist can help a larger number of patients without sacrificing
the quality of care. Furthermore, elderly persons can then exercise independently,
while knowing that they are efficiently performing exercises. They could also, for
example, choose from a set of pre-determined exercises, which can encourage peo-
ple to take more responsibility for their exercise. This is another interesting aspect,
as we know that agency, control, and participation in one’s progress also improve
adherence [43]. As we perceive the world around us mostly using vision, having
a visual representation that provides feedback on performance while exercising
can be very useful in making sure that we are performing the intended movement
patterns correctly. Using visual biofeedback during exercise leads to more effec-
tive exercise than not using it, as shown in for example [44]. In addition, the rise
of gamification has inspired the further development of screen-based visual feed-
back systems. Here, elements from games and gaming that could be useful for
motivation and feedback have been identified and utilized, which has driven the
development of screen-based exercise games.

Screen-based exergames typically present the user with an avatar that represents
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the position and movements of the user’s body in the virtual world [9]. The player
then has to move their body to make the avatar perform tasks such as hitting targets
or avoiding obstacles in the game, and receive rewards in the game based on the
completion of these tasks. This means that the accuracy with which a users body
and movements are represented in the virtual world is vital for gaining rewards -
and by extension, for the user’s motivation. Two facets are essential for exergames
to be useful and motivating. One is the technical aspect, i.e., the ability of the
system to successfully track and represent the player. The other is the assessment
of movement pattern performance in relation to the intended task. These two are
closely related, as the assessment of performance is based on the body representa-
tion from the motion tracking system. These two facets can produce two separate
ways in which the player is not appropriately rewarded. If the motion tracking
system is inaccurate, the actual performance of the user might not be captured by
the system. This can lead to the system believing the user for example extended
their arm properly, while they did not in real life, resulting in an undeserved re-
ward. Or they did in fact extend their arm properly, but the system did not capture
the movement properly and failed to deliver a deserved reward. Similarly, if the
assessment of the movement pattern is inaccurate, the same two scenarios might
happen: the user properly extends his arm, relative to his body and ability, but the
system classifies it as wrong because of an internal rule that was not able to adapt
to the individual player.

Such discrepancies between real-world movement patterns and what the system
captures and assesses have resulted in situations where users, deliberate or not,
find the easiest or least amount of movement necessary to receive a reward. In
casual gaming settings, this is exemplified in game systems like the Nintendo Wii
Sports (Nintendo, Japan), where a mere fine-tuned flick of the wrist while sitting
on the couch can give you a bowling strike. In more serious settings, players
have been shown to do this as well, by performing what is described as a "low
effort" movement pattern [45, 46]. The reward is provided undeservedly, making
the exercise effect much less than it could have been.

To call this behavior "cheating" might be too strong a term if it is done unwittingly,
but it does present a shortcut that provides rewards without the player having to
do the work that the game was initially designed for. The result is a situation
where the technical side of an exergame system is not robust enough to capture
and assess the actual movement pattern that was performed in real life. Whether
or not the user realizes this is happening, it is likely detrimental to progress or
maintenance of physical function, as they are not made aware that they are not
performing the exercises correctly. In addition, it can negatively affect motivation
if the exergaming system is perceived as unreliable and not trustworthy in the
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rewards that are provided.

Another facet of this is the issues related to using consumer-grade products in-
tended for entertainment or casual gaming for serious settings, like balance exer-
cise to improve or regain function. For example, the Wii Balance Board (Nintendo,
Inc) is a force sensing device that reports center of pressure (CoP) while a person
is standing on it, and the promise of being able to report force data in a resource-
friendly manner has piqued the curiosity of using this for serious settings, as shown
in systems being developed for this purpose (e.g., [47, 48, 49, 50]). However, it
has also been demonstrated that the Wii Balance Board is not able to represent the
CoP to an accurate enough degree to be used in such serious settings [51, 52, 53].
Its usefulness has also been shown to be limited due to experiences of technical
difficulties in setting up the system, which was happening for both health care
personnel and patients [54].

Thus, the key challenge in the development of balance exergame systems is to
develop accessible technological solutions for motion tracking and feedback, as
proper reward systems are based on this information. This challenge is arguably
the very backbone for the usefulness and motivational aspects of exergames.

2.3 Artificial Intelligence and Machine Learning
Artificial Intelligence (AI) is a term coined to describe the efforts of making com-
puters think. Since computers were invented, we have wondered if this was pos-
sible - can computers be programmed to reason the way humans do [55]? The
word "artificial" in this context refers to the fact that computers are human-made
tools, and "intelligence" is the ability to discern patterns and make decisions based
on available information - i.e., "thinking". The goal is to mimic the way humans
understand and reason by elucidating intricate relationships in data by remember-
ing past experiences, and learning from them [56]. The increase in attention and
research on AI has been driven by the increased possibility to collect and store
so-called big data due to technology being increasingly used in all areas of society.
This is also why applications using AI in some cases are referred to as data-driven
or big data applications [57]. There are several different avenues within artificial
intelligence, some of which are out of the scope of this thesis. There are branches
specifically focused on, for example, speech, or text, recognition, image analysis,
or robotics. The current thesis, however, is concerned with using machine learning
models, a versatile branch of AI, that is being used in a wide variety of areas and
tasks.
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2.3.1 Machine learning

Machine learning (ML) is an area where the focus is creating and developing mod-
els that are tailored to specific tasks and specific areas of research. Here, the
goal is more geared towards improving with experience, as defined my Mitchell
[55](pp.2): "A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P, if its performance at tasks in
T, as measured by P, improves with experience E." There are two major sub-fields
within machine learning: supervised and unsupervised learning. In supervised
learning, the models are trained on data sets with the correct answers, or targets,
available (while keeping a small part of the data hidden for validation purposes). In
unsupervised learning, there are no target labels, so the models try to find patterns
or groups in the input data. In the current thesis, the task is to model relation-
ships between the data and known target variables, which places this work in the
supervised learning realm.

Because of the huge potential for improving workflows and supporting decision-
making processes, ML is currently used, or in the process of being used, in many
areas of business and research. This has led to a proliferation of different model
types and configurations, each tailored to a specific task at hand. Despite this, the
same main approaches in supervised learning provide the foundation for all these
models. The main tasks are regression and classification, which are commonly
used for forecasting, estimation, and prediction. There are several models within
each approach, but each machine learning model is an approximation of the true
function f , the hypothesis that best represents the relationship in the data. It is an
approximation because we do not have enough training data available to model the
true relationship [55]. This makes it essential to evaluate the performance of an
ML model on unseen data, a test of how well the model can generalize to other
data, i.e., how close the approximation is to the true function.

Thus, training a machine learning model is the task of finding the hypothesis in
the hypothesis space that yields the highest accuracy on the test set. To do this, we
need to provide the model with training data that represents, as best as possible,
the true relationship between the features and the target data. The features are
the input data provided to the model, for example, the color values of each pixel
in an image or stock information, and the targets are the true identification or
class related to the input data, for example, "car" or "dog", or actual closing stock
price [58]. Since the input data is the only information given to the model, the
quality of the input data is essential for the model to be able to approximate the
true relationship in the data. The term "GIGO" captures this well, which is an
acronym for "Garbage in, garbage out", referring to the generalization inability of
a model trained on a data set of poor quality. Hence, feature selection (finding
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a subset of the original feature space that represents well the relationships in the
data) and feature engineering (creating new features based on the original features,
e.g. taking the sum, or mean, of two features) is crucial for model performance.

Classification algorithms are designed to be able to use a set of training data to
decide what class, or label, a new, unseen input belongs to. Even though neural
networks (described below) often outperform other classification models, the lat-
ter is often preferred in many settings because of the lower demand for training
data volume, lower demand for computational resources, and transparency in the
decision-making processes. In many situations, these properties are more impor-
tant than achieving slightly higher accuracy in a given task.

2.3.2 Deep learning

One subgroup of machine learning is deep learning, and the current ML hype is
the neural network. Neural networks are designed to mirror the way a human brain
works, with interconnecting neurons in (sequential) layers that process the infor-
mation from a data set [59](illustrated in Figure 2.1). This is the area of machine
learning that is commonly referred to as deep learning, because of the architecture
that allows for hundreds or thousands of neurons in each inter-connected layer.
The last layer of the network is called the output layer, where the actual prediction
is made. The layers between the input and the output layer are called the hidden
layers.

Neural networks can be used for both classification and regression, and are pow-
erful in many applications. The drawback of neural network-based models is a
high computational demand in training, combined with requiring large data sets
for learning the relationship between the input data and the target data.

The application of deep learning in highly valuable and diverse domains in our
society demonstrates the agility and power of deep learning methods. Research
and development of a wide variety of architectures and configurations of neural
networks, each designed for a specific domain or task, make it possible to cre-
ate deep learning models that achieve human-level accuracy in any field. Even
though there are drawbacks to neural networks, deep learning makes it possible to
improve efficiency, reliability, and resource demand in data analysis and decision-
making processes. This is achieved by automating systems that previously required
a human to perform them, or involving traditional numerical analysis or statistical
methods. The unique ability of neural networks to learn complex, multi-faceted
relationships and patterns, and successfully apply this to large amounts of data (in
real-time), has been used to develop new and better applications in for example
automated driving [60], electrical utility prediction [61], manufacturing [62], and
fraud detection [63]. Specifically within health care, deep learning is being used
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Figure 2.1: A simple neural network where the input neurons are the pixel values of a
grayscale image that makes up an image of a number. There is one hidden layer, and the
output layer consists of the numbers 0-9.
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for decision-making support through, for example, medical imaging [64], predic-
tion of health risk [65], and large-scale analysis of electronic health record data
[66].

Within human movement science, deep learning applications are being used and
developed in three major areas: 1) simplify and improve data capture methods,
herein making data capture available outside of the laboratory, e.g. [67, 68, 69],
2) predicting, or estimating, for example gait events [70], joint kinematics [71],
and joint loading [72], and 3) activity classification, e.g. [73], and movement
assessment [74, 75]. These examples show that the aforementioned issues with
existing exergame systems can be addressed by utilizing different aspects of deep
learning, as the algorithms can be tailored to pose estimation, movement quality
assessment, and weight-shifting estimation during exergaming.
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Chapter 3

Scientific Framework

This section details the technical frameworks that the thesis is based upon, as well
as extant work related to each of the three research questions. The section is orga-
nized to reflect the workflow in a balance exergame system. First, the pose estima-
tion needs to be performed, which in this thesis is done by employing a residual
neural network for 2D image analysis. Then, a complete movement is identified,
which then can be assessed for correctness of the movement pattern, using tradi-
tional classification methods here. Or, the weight-shifting data can be extracted by
using an LSTM recurrent neural network. This is illustrated in Figure 3.1

21
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Figure 3.1: Illustration of the exergames stage addressed and machine learning method
used in each of the three papers.

3.1 Paper I - Pose Estimation
As the inceptive task of an exergame system, pose estimation is essential for all
subsequent data analysis steps in the exergame system. The representation of the
bodily positions of the player must therefore be as accurate as possible. Deep con-
volutional neural networks have been shown to perform very well in image analysis
settings where pose estimation is the end goal, and several different methods have
been developed for various pose estimation problems. We therefore hypothesized
that deep convolutional neural networks with a residual component might perform
well in the current context of exergaming for balance training.

As indicated above, deep learning refers to architectures using multiple layers of
neurons between the input and the output layers, with each layer containing mul-
tiple neurons. A deep neural network could for example be constructed as seen
in Figure 2.1, but with more hidden layers. If all neurons in one layer are con-
nected to all neurons in the next, the layer is called a dense or fully connected
layer. The neurons in each layer compute the weighted sum of the input from all
the connected neurons in the previous layer, and this information is propagated to
all connected neurons in the next layer. This information that a neuron contains is
a number, called a weight. The weights of all the neurons are randomly initiated
with small values, which are then applied to the input values from the previous
layer.

To adjust the activity, or the relevance, of a weight, a bias is often applied to each
layer. In this context, bias is a value added to the weighted sum of the values in
the input, adjusting the information propagated to the next layer, resulting in the
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output function. In the output layer, the neuron that is activated (i.e., the prediction
that is made) depends on the weights that are received from the last hidden layer.
In supervised learning, the output is then compared to the actual value that the
specific input should have provided. If the output is wrong, the error is propagated
backward down the network again to adjust the weights and biases of the neurons.
This iterative process is how neural network models derive the optimal weights
and biases of each neuron and is called backpropagation [59].

Activation functions are a vital part of neural networks. There are three main types
of activation functions: the hyperbolic tangent (tanh), rectified linear unit (ReLU)
and logistic sigmoid [76], where the data is passed through a "squeezing" based on
the value of the data and the function applied, before being sent to the next layer.
In the sigmoid activation function, for example, the more negative values result
in weights closer to 0, while the more positive values result in weights closer to
1; in tanh, more negative values result in values closer to -1, while more positive
result in values closer to 1. These functions can be illustrated as squeezing the
data, as the input value of the data is assessed, and the output from the gate is
constrained between -1,0, and 1 based on the function applied. ReLU has been
the most popular variant in recent years, which is a function that sets all values <0
to 0, and a linear function to the input data >0. This has been shown to improve
network performance without sacrificing accuracy [77].

Analyzing images - and videos - has been a major focus area within the deep
learning research community. A visual representation of an object of interest can
contain highly valuable information that other types of technological tools cannot
represent in an equally compact and efficient manner. Identification of an object or
context, or detecting whether these are present in an image, is the most common
tasks for deep learning models. This is reflected in that the major AI challenges
and competitions are tasks where the goal is to reach the highest possible accuracy
on image recognition data sets such as MPII [78], ImageNet [79], and MS Coco
[80].

Pose estimation can be seen as a sub-field of object identification in images. The
task in pose estimation is to identify where in an image the different body parts
of a person are located. To achieve this, convolutional neural networks (CNNs)
have traditionally been the most popular alternative, because of their historically
excellent performance in a wide variety of image recognition areas. The core of
CNNs is the many iterations of convolutions over the data. A convolution operation
consists of three parts: the input (image pixel coordinates (X, Y) and pixel value
Z, where the Z-dimension can be more than 1 in cases where there are for example
three or more color channels), a kernel, which is the function applied to the data
at each iteration, and the output, often referred to as the feature map [59]. As
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shown in an example in Figure 3.2, an input can be a monochrome image of size
10×10×1. The kernel, in this example of size 3×3×1, is applied over an area of
the input of the same dimensions, and the sum of the kernel operation is extracted
to the resulting 8×8×1 feature map. The kernel can be of any size, and the stride
size (i.e., how many pixels the kernel moves in each iteration) can also be adjusted.
The next step is a pooling operation performed on the feature map. Here, the
size of the feature map is further reduced, for example by taking the average or
maximum value of a 2×2×1 window (Figure 3.3). This results in a higher-level
representation of the image, where for example the edges of the object in the image
are highlighted while more detailed information is suppressed, while also reducing
the computational demands of further processing of the image [76].

Figure 3.2: Illustration of the convolution operation.

A convolutional network consists of several of these elements in sequence, resem-
bling the sequential processing of information in deep neural found in deep neural
networks, with some well-known examples in AlexNet [81], GoogLeNet [82], and
ResNet [83]. These perform very well on large-scale public data sets for image
recognition tasks such as ImageNet [84]. The latter model, ResNet, is a version
of a CNN that includes a residual component. This means that the weights and
biases from one layer skip a connection and are therefore propagated deeper into
the network than to the subsequent layer, as depicted in Figure 3.4. This might
reduce the issue of vanishing/exploding gradients that typically occurs in deep
networks. Here, the gradient used to update the weights in the network exponen-
tially increases or decreases at each derivative, resulting in weight updates that are
extremely large or extremely small [85]. As a result, the network is unable to learn
properly. By skipping connections with one or more layers, the gradient does not
explode or vanish to the same degree as non-residual networks. The ResNet ar-
chitecture thus allows for deeper networks, which can achieve better performance
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Figure 3.3: Illustration of a max and average pooling layer.

than networks without the residual component [83].

The ResNet architecture is the basis for a pose estimation algorithm called Deeper-
Cut that produces state-of-the-art accuracy on body part detection tasks [86]. This
inspired the development of another algorithm, DeepLabCut [87](DLC), which
implements a ResNet architecture pre-trained on the MPII dataset [78] and applies
an additional layer of training in their framework, namely a specialization layer
that is trained using annotated images specific for the context in which the user
is employing it. By doing this, the size of the training data set required for ac-
curate identification of body parts in an image of a specific animal is very small,
around 200 images [87], by providing a network that is already trained to detect
body parts from the MPII data set. DeepLabCut is available as an open source
tool (github.com/DeepLabCut/DeepLabCut), which makes pose estimation avail-
able for a wide range of users.

Different adaptation methods have been developed to improve performance or re-
duce computational demand in neural networks. These are commonly referred to
as regularization and optimization and are regarded as the most important areas of
research in the machine learning community [59]. Optimization is the process of
minimizing the loss or cost function, which is the error the network makes in its
predictions [59]. This process is called gradient descent, which refers to making
adjustments to the model iteratively in the direction that reduces the cost function.
Regularization is any adjustment of a model aimed at improving the generaliza-
tion accuracy of the model, without necessarily improving training error. This is a
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Figure 3.4: A residual block showing how the information flow in a neural network uses
“shortcut connections” to skip layers in and propagate weights deeper into the network.
F(x): activation function. Adapted from He et al 2016.

crucial adjustment, as it increases the accuracy when making predictions based on
previously unseen data, and thus making the model more suited for generalizing to
a real-world situation where the trained model has to make predictions exclusively
on unseen data.

3.1.1 Previous Work related to Human Pose Estimation from Video

To develop human pose estimation algorithms, large-scale public data sets have
been created and curated for benchmarking purposes. These have different modal-
ities for motion capture, and different activities performed by the people being
filmed. For example, the MPII data set [78] contains videos downloaded from
YouTube, with a wide variety of activities and postures. Sixteen hand-labeled
body joint positions and several other annotations are provided in the around 30
000 images and videos. Commonly used data sets are created in similar manners,
such as the COCO data sets [80] and the J-HMDB database [88]. Popular data
sets that contain 3D data from gold-standard systems (3DMoCap) for validation
purposes are the HumanEva I & II [89], Human3.6M [90], and TotalCapture [91]
databases.

Even though the purpose of this thesis is not to validate a new method of pose es-
timation, previous works on comparing new pose estimation algorithms to 3DMo-
Cap systems are relevant to our work. Performance of pose estimation algorithms
is typically reported as mean per joint position error (MPJPE, in mm) or percent-
age of correct keypoints (PCK). Although not directly comparable to our metrics
of variability, these papers provide a good indication of the performance level that
can be achieved in adjacent work. Because the only methods that compare their
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estimation performance to 3DMoCap data are the ones attempting to estimate 3D
joint positions, we will focus on these, despite our focus being on 2D segment
length from a single camera.

Previous research has been conducted for the purpose of pose estimation using sin-
gle camera setups, with one of the most popular pose estimation algorithms being
the OpenPose network [92]. OpenPose popularized a technique where the joints
and body part positions are predicted using part affinity fields, using a customized
CNN model, which has been shown to be an efficient and high-performing frame-
work. More recent models, such as EfficientPose [93], build on this framework
to produce even more efficient and robust models. A survey on pose estimation
methods [67] showed that a large portion of the earlier proposed methods are using
some type of ResNet architecture. These typically achieve 45-90 MPJPE, similar
to other methods such as hourglass and CNN-based methods which achieve around
50-80 mean per-joint position error (MPJPE, in mm). The most similar approach
to DeepLabCut is the one proposed by Sun et.al. [94], in which a ResNet model is
jointly trained on MPII and the Human3.6M data set, and achieves an MPJPE of
48.3 mm. Two other studies also compared their respective models’ performance
to the ground-truth data in the Human3.6M dataset, Arnab et al. [95] and Mehta
et al. ([96], based on the OpenPose architecture), and achieved MPJPE of 54.3
mm and 63.6 mm, respectively. No data on variability is reported in any of these
studies. Previous research on segment length variability in monocular image data
is scarce, but Bonnechère et al. [97] found that the Kinect had higher variability in
the thigh, shank, upper and lower arm compared to that of a 3DMoCap system.

For use in a real-world setting, these models and frameworks need to be built and
trained on such large-scale data sets as the ones described above. This requires
computational power and expertise to carry out, which is not commonly available
in settings where exergames for weight-shifting exercises could be used. Further-
more, the models that are trained and tested on the 3DMoCap data sets, typically
contain a limited set of persons with a limited set of movements, which could
make the models less accurate in situations where the movement being performed
is different from those in the training data set. Also, some of the methods provide
low-resolution output, which can make them too inaccurate for situations like mon-
itoring exercise performance since the joint center locations will not be placed at
a specific enough location. In contrast, the DeepLabCut (DLC) framework allows
the user to add contextual information that can specialize the model to the desired
application, for example, providing training data about weight-shifting movements
during exergaming. Even though the model in the framework is pre-trained on a
different data set, this specialization layer allows the DLC model to learn context-
specific movement patterns with a relatively sparse data set (<200 images). This
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feature makes it feasible to adopt this framework in a setting where computational
power and knowledge of building complex deep learning models might be limited,
such as in the context of exergame development situations.

As can be seen in the previous work, research on pose estimation is focused on
each joint center separately, using an average error metric to evaluate the estima-
tion algorithm at hand. This provides an overall evaluation of the performance,
which might be sufficient in some contexts. The issue here is that in a real-world
gaming situation, the joint center estimation must be stable over time. Low tem-
poral variation, or variability, of the estimated joint positions is essential to be able
to reward movement pattern performance appropriately. When playing a game,
jittering of the joint positions makes the avatar, or other on-screen representations,
move incorrectly even though the person playing might be performing the correct
movement. This has been a drawback of for example the Kinect camera, where
especially the hands, knees, and feet have been prone to unstable motion tracking
and jittering [25]. Variability can be represented using metrics such as standard
deviation (SD), coefficient of variance (CoV), or other measures of the spread
around a central measure [98]. To our knowledge, the comparison of segment
length variability between a depth-based camera system, a 3DMoCap system, and
a single-camera DL-based pose estimation system has not been conducted prior to
the work in this thesis.

3.2 Paper II - Movement Classification
Activity classification, monitoring, or recognition can be seen as different perspec-
tives of assessing the movement pattern a person performs over a given period of
time. In this current context of exergaming for balance training, recognizing cor-
rectly performed movement patterns in a repetition of an exercise is a core task for
the system. Importantly, this task is subsequent to the previously described pose
estimation task, as pose estimation data is typically used for activity classification.
This assessment provides the basis for feedback to the player, and can therefore
directly impact both motivation and effectiveness of the exercise. This is a suitable
task for machine learning models, as the input data can be represented as statisti-
cal features such as range in movement pattern in a single limb, highest and lowest
acceleration, change in orientation of a limb, and so on, and the activity class (e.g.
correct or incorrect movement pattern) can be represented as a target value.

One such ML model is called decision trees. Single decision trees are what is
called weak learners, because of their poor ability to generalize to unseen data.
However, combining many decision trees into an ensemble of trees improves clas-
sification performance significantly. The random forests classifier (RFC) is an
example of such models. Here, input features are split into random subsets, and
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the different trees use the features to create splits that best represent the different
classes. This is illustrated in Figure 3.5, where the task is to classify inertial mea-
surement unit (IMU) data as being the activity "sitting" or "walking". There are
three trees, and each tree has a random set of features around which it constructs
the decision making process. At each split, the feature is evaluated on a specific
threshold, and the result of that evaluation moves the decision further down the
tree. The last node is the leaf node (red outlines), which is the classification that
the tree predicts the input most likely belongs to. The final class predicted by the
forest is decided using the majority vote from all trees [99]. Decision tree models
can also be used to estimate continuous data, such as time series data, in regression
tasks. In this case, the leaf nodes predict a continuous value, and the mean of these
values over all trees is used as the estimated output [100]. Decision trees try to
find the tree with the lowest number of splits necessary to model the output with
sufficient accuracy, thereby favoring shallow trees over deeper ones [55]. This
might impact prediction performance in data sets of limited size, as there might
not be enough information to model the relationship between the input data and
output targets. Several methods have been developed to improve the performance
of decision-tree based models. One of the most common ones is bagging, a short-
hand for bootstrap aggregation. Bagging is a technique developed to counteract
decision trees being very sensitive to changes in input data. The trees are shown
training data of the same dimension as the original data, but with some values re-
placed with random data drawn from the original data set. Here, about one third
of the real input data is used [100]. Another method often used is boosting, which
is a term describing a family of methods for combining features in order to form a
strong learner[99]. One technique called Adaptive Boosting (AdaBoost) is popu-
lar because of its powerful way of weighing inputs in a feature set [99]. Here, the
classifier finds the inputs that are wrongly classified and gives these more weight
in the next iteration. This adjusts the classifier as these inputs are now more im-
portant to classify correctly. The final classifier is then constructed based on the
weighted sum of the individual classifiers, according to their respective accuracy,
which then is a classifier that is trained to minimize the error in its predictions.

Other classification algorithms use a different approach to finding the class to
which new input belongs. Support Vector Machines (SVMs) are powerful in find-
ing the support vectors that separate the classes with the largest distance (or mar-
gin) between the nearest class points on either side and the vectors. In linear cases
(2D space) this is a line, in 3D a plane, and a hyperplane in higher dimensional
feature space. However, in cases where the segregation of classes is not possible
using linear functions, SVMs can use different kernels to transform the data into a
feature space into a higher dimension and thus find a possible solution for linearly
separating the classes. This is what makes SVMs so powerful, along with its regu-
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larization parameters C and gamma. The C parameter is used to adjust whether the
decision boundary should be smoother, i.e., simpler, or more focused on exactly
classifying all training samples correctly. The gamma parameter regulates how
much "reach" each training sample has, i.e. to what degree samples far from the
decision boundary impacts the location of the decision boundary. In the k-nearest
neighbors (kNN) algorithm, a new input is classified based on the class of the k
nearest samples. This method is computationally expensive and is sensitive to the
chosen k data points to use for classification. Another algorithm, the k-means,
attempts to cluster the samples in a training set with regard to a centroid point that
is iteratively moved until it finds the position with the least mean squared distance
to the samples around it. A new sample is then classified based on the class of the
centroid it is closest to. Here, k refers to the number of centroids that are present
in the data.

3.2.1 Previous Work Related to Classification of Physical Activity

Classification of movement patterns has been performed in a large variety of set-
tings and contexts. Within human movement science, activity monitoring and
recognition is the most prolific area of research using machine learning meth-
ods. This has grown out of the possibility to recognize the activity performed
in free-living settings using low-cost sensors (accelerometers or IMU’s) that are
attached to the body, or by using smartphones [101]. Different methods for ac-
tivity recognition using video data have also been developed [102]. Typically,
classification methods have been developed to distinguish between a wide variety
of activities, from physical activity types (running, walking, sitting, biking, see
e.g. [103, 104, 105]), to more fine-grained activities performed for example in the
kitchen (cutting food, baking, pan-frying, etc.[106]). There is also a large body
of research on monitoring the amount of activity a person is performing in the
course of a day or a week using pedometers or other accelerometer based systems
[107, 108]. In an industrial context, activity recognition is being used in for exam-
ple ergonomic risk assessment [109], and in surveillance settings behavior can be
recognized using video data [110].

Another area within physical activity classification is recognition of exercises, and
more specifically, classification of the performance of movement patterns within an
exercise (e.g. [111, 112]). This has been conducted in elite sports athletes looking
to fine-tune movement techniques [113], but also in rehabilitation of orthopedic
patients [114]. Here, activity classification is useful to inform the person about
their movement pattern, by providing feedback on how it can be improved to keep
exercise effectiveness high. In an exergame setting, assessing movement patterns
is an essential part of the game system. The assessment is used to evaluate whether
the user completed a task, and what feedback to provide - i.e., whether to reward
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the user with points or other in-game rewards. This assessment has typically been
done using coarse rules and thresholds, although in recent years more and more
machine learning methods have been used to assess performance compared to a
template movement. In Zhao et al. [115] and Gal et al. [116], movements dur-
ing exergaming are assessed using pre-determined rules that specify the intended
movement pattern. Others have developed comprehensive systems for eliciting,
modeling, and assessing human movement, such as Ofli et al. [117], Lam et al.
[118], and Tao et al. [119], where movement patterns are compared to template
movements as well. Even though these methods work to a satisfactory degree in
healthy adults, it is not known how well they perform in older adults or in patient
populations.

In contrast to this earlier work, we propose to train machine learning methods by
directly using joint center position movement patterns. In this manner, the algo-
rithms are trained on a data set containing weight-shifting movement repetitions
that have been classified into either being correctly or incorrectly performed, with
no further information about why the repetitions were classified like this. This
way, there are no hard constraints coded into the classification system, only ex-
ample movement patterns representing correctly and incorrectly performed weight
shifts. This allows for more flexibility in the system since the models are trained
on people of different ages, body sizes and -shapes.

3.3 Paper III - Force Estimation
Exercising balance during in-home exergaming is challenging because existing ex-
ergame systems do not measure the force you exert on each foot while exercising
and thus are in lieu of trustworthy data to provide feedback on. And, as we know,
feedback is essential for efficient exercise, as improving and maintaining correct
movement patterns depends on receiving information about your movement per-
formance. To make exergames for balance training feasible and available, it is vital
to enable access to force data without introducing new equipment. One manner of
doing that could be to use machine learning models such as recurrent neural net-
works that are created to estimate force from already available time series data,
such as joint center positions. Therefore, this is also a task that is subsequent to
pose estimation, although not necessarily to activity classification.

Sequentially ordered data inherently has a time-dependency. This can be for exam-
ple data from speech, data from weather sensors, stock trade data, or video image
data. This time-dependency entails that the information in previous data points
can be used to inform what the next data points can, or might, be. Furthermore,
not just the previous data point, but additional data points further back in the data
stream might be important for predicting the next data point. Neural networks,
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as described earlier, organize the input data so that one input node corresponds to
one data point in the data set. This manner of organizing data makes it extremely
difficult to capture dependencies between the current and past data points [59].
Researchers thus developed recurrent neural network (RNN) architectures, where
the data output from a node is passed back to the same node and used to inform the
next iteration of output from that layer in the network. This makes it possible to
learn long-term dependencies without needing exponentially more training data.
One of the core features is parameter sharing between the recurrent hidden nodes,
along with the feature of returning the output of a node to that same node for each
iteration of training [56].

Even though a typical task in time-series modelling is to forecast or predict the next
data point, e.g. the next word in a sentence or the next day’s stock value, it can also
be used in other tasks where the input data is a time series. In the context of this
thesis, Long Short-Term Memory (LSTMs)[76] recurrent neural networks were
favored in the estimation task of force during weight-shifting, because of the in-
herent time-dependency between the previous and current joint positions observed
and force level measured.

LSTM recurrent neural networks also introduce a new concept within each (recur-
rent) node. Here, there are gates inside the node that controls the flow of infor-
mation through activation functions that the predictions are passed through after
each gate has made a prediction based on previous experience. Figure 3.6 shows
the different gate types that are used in LSTMs: forget gates, selection gates, and
ignoring gates. After input is provided to an LSTM node, it is passed to each
gate simultaneously, along with the new input data. In Figure 3.6, the left-most
path is a prediction, which is a normal vote for the weight that the node should
provide to each output node, run through a sigmoid activation layer. The ignore
gate (middle-left path) is often called an attention mechanism. This picks up on
which information can be ignored in a signal and blocks that information from the
prediction. This information is then passed through an activation function, usu-
ally tanh, which squeezes the values from the prediction to lie between -1 and 1.
This information is then added to the next prediction by element-wise multipli-
cation, effectively blocking, attenuating, or letting signals in the next prediction
go through. The middle-right path is the forget gate. After the first output from
the node is made, the forget gate has stored information about the previous input.
This gate then stores what is most likely not a good prediction in the next itera-
tion. Some LSTM models leave this gate out, but we chose to keep it in since it
has been shown that removing information that is unnecessary from the prediction
improves performance [120]. The last path (right-most in the figure), the selection
gate, works in the opposite way of the forget gate. It has learned the predictions of
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what are most likely good predictions, and by using a tanh activation it enhances
or attenuates signals, also through element-wise multiplication of the prediction.

Some hyperparameters are important to be conscious of when training an LSTM
network. First of all, the number of layers, and nodes in each layer, will be decisive
in finding the right balance between an underfitting and an overfitting network
(described above). Too few layers and nodes can result in an underfitting model,
and too many can cause overfitting. In our context, the complexity of the data
set, and output data warranted more than one LSTM layer, and a relatively large
number of nodes [120]. We chose to use three LSTM layers with 512 nodes each.
To avoid overfitting, we added dropout (20 %) to the model. This layer reduces the
sensitivity of the model to specific nodes, as it makes the model skip a randomly
selected percentage of nodes. Furthermore, the learning rate of the model is one of
the most important hyperparameters, as it defines how large steps the model will
take to search for a smaller loss, or cost. Too large steps can result in a model that
misses the optimal loss area, and conversely, a too small learning rate can cause
a very slow learning rate. We set a learning rate of 0.0001 [120]. The number of
iterations, called epochs, that the model trains on the data set are also important.
To few epochs can create an underfitting model, as the model has not been trained
enough, and too many epochs can result in an overfitting model. We set an initial
200 epochs for training, but with an early stopping method where the training was
stopped if the loss was reduced by less than 0.0003 for three consecutive epochs.
To account for the complex training of recurrent neural networks, we used the
adaptive ADAM optimizer was employed [121]. The activation function used in
this study was the sigmoid, as it produces output that lies in the 0-1 interval which
is similar to the output data we are estimating. The output layer consists of six
nodes, as there are six dimensions we are estimating force data for (x,y, and z axis
for left and right foot).

3.3.1 Previous Work Related to Force Estimation

Force estimation from kinematic data has been investigated in other settings than
balance training. In gait and running analysis, kinetic data such as ground reac-
tion force (GRF) is important for assessing the causes of (sub-optimal) movements
and gaining insights into the mechanics involved in movement deficiencies and in-
juries. There are two distinct approaches to the estimation of GRF, namely using
biomechanical modeling such as inverse dynamics [122], and the use of machine
learning approaches, which has been rising in recent years. Estimating GRF or
center of mass (CoM) displacement over time using data from full-body IMU se-
tups for inverse dynamics methods, or other biomechanical models has been shown
to yield good results during gait [123, 124, 125, 126]. However, these models are
computationally expensive and might not be feasible to use in low-resource devices
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or in-home settings. GRF and moments during gait have also been estimated with
high accuracy using machine learning models with additional input from biome-
chanical models, calculated from full-body IMU data [127, 128]. Some also use
IMUs to successfully estimate joint loading [129], or ground reaction force during
activities of daily living [123].

The drawback of using full-body IMU systems is the practical requirements of use.
Not only is attaching all the sensors time consuming and requiring expert help to
do correctly, but also maintaining and managing such sensor systems adds to them
not being feasible to use in elderly care homes or rehabilitation hospital settings.
Kinematic data from simpler systems such as depth-based cameras or AI-based
pose estimation systems using standard digital video are much more feasible for
use in these settings. Previous research on using data from a biomechanical model
from a camera-based 3D motion capture system also shows promising results. For
example Mundt et al. [130] showed that both a recurrent LSTM neural network
and a feed forward (FF) neural network are able to estimate both tri-axial joint
moments in the lower body and ground reaction force with high accuracy. Oh et
al. [131] and Choi et al. [132] also used features from a biomechanical model
calculated from 3DMoCap data to estimate tri-axial GRF and moments during
gait, with high accuracy in their results.

Using recent developments regarding powerful machine learning models, we pro-
pose a solution that could circumvent the computationally and practically costly
approaches that require full-body marker placements and biomechanical models
to estimate GRF. The combination of ML models that capture time-dependency
and are able to model complex relationships between features and target values,
such as LSTM, and joint center positional data, could provide a method for esti-
mating GRF without needing the computational layer of biomechanical modeling.
If these joint center positions were extracted from an ML-based image-analysis
system such as DeepLabCut, GRF could be estimated by using a standard video
camera only. However, to our knowledge, the direct use of joint center positional
data to inform a machine learning model has not been investigated in terms of
performance and accuracy in estimation, which is what we aim to do in this thesis.

3.4 Model evaluation procedures
As mentioned above, the ability of the models to generalize to other data than the
specific data set it has been trained on is essential. This means that the model
should be able to represent the data-target relationship in such a way that it can
accurately predict, estimate, or classify input from the same context it has not seen
before. If the model is to be used in real-world applications, this aspect is vital.
Measuring a model’s performance in a standardized manner is therefore essential
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to assess how well a model performs in the given task. There are several evaluation
methods available, and here we detail the most important ones and the ones we
have used in the work this thesis is based on.

The terms overfitting and underfitting are used to describe a model’s ability to
generalize to new data, as depicted in Figure 3.7. Both underfitting and overfitting
models have low accuracy in the classification of a new data point and have a high
error in estimation situations. In underfitting, the model is not specific enough in
following the data points’ changes over time or in small variations in the features,
and in overfitting, the model is too specific and fails to generalize to new data,
despite following the training data accurately. The middle panel in Figure 3.7 is
the preferred performance of the model on the training data. Here, the model is not
too specialized on the training set but specialized enough to make generalizations
to new data inputs.

To test for overfitting or underfitting, it is common to use what is called a holdout
technique. Here, part of the data is not being shown to the model while it is trained,
and the model is then evaluated ("tested") for accuracy on this held-out data set.
This is then repeated until all the data has been used both as training and as test
data, and the performance of the model is represented as the average accuracy
over these iterations. This technique is called cross-validation (CV). There are
several different ways to construct this test/train split in the data, i.e., different
cross-validation methods. The most appropriate CV method to use depends on the
task at hand, the structure of the data-set, and the domain, amongst other factors.
For example, in the current setting of exergaming for balance training in older
adults, it was natural to keep out all data from one participant for each iteration.
This provided an average performance based on the models’ ability to generalize
to the movement pattern of a person it had not seen before. This method is called
leave-one-group-out CV, or LOGOCV. Other methods include k-fold CV, where
k sets of the data (e.g., data from three participants) is held out from training,
and holdout CV where a randomly selected subset of for example 20% of the
data, across participants, is held out. In time series data for forecasting, it is also
common to use a CV method where the data at the last time point is held out, while
the rest of the data is used for training. This is then performed iteratively until all
data points of the time series have been used as holdout data.

There are several different ways to represent how well a model performs in a given
classification task [133]. Accuracy, the ratio between correctly classified samples
over the total number of samples, is just one of many metrics. As accuracy is sen-
sitive to imbalanced data sets, where there is a major disproportion between the
number of samples in the different classes, other metrics such as F1-score have
been developed that provide a better picture of model performance. The ratio be-
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tween correctly and incorrectly classified samples can be represented in different
ways. These metrics might be more appropriate to use, depending on the important
factor to consider is when evaluating the model. In figure 3.8 the different metrics
are illustrated using what is called a confusion matrix. The confusion matrix is
a commonly used evaluation method in other domains as well where statistical
evaluation is important, such as in epidemiology. As figure 3.8 shows, recall is
the ratio between positive samples correctly classified as belonging to the positive
class. Precision, however, is the ratio between positive samples that were correctly
classified over the total number of positively predicted samples. These are impor-
tant metrics with important distinctions, as they inform about the ratio between the
number of samples that were predicted to be in the positive class and the samples
that actually belonged to the positive class. Specificity, on the other hand, repre-
sents the number of samples correctly classified as belonging to the negative class,
over the total number of negative samples. The two remaining quadrants, false pos-
itives and false negatives, represent what is more commonly known as Type I and
Type II errors, respectively. In some contexts, for example classification of animal
species from images, these errors might not be serious, but in medical domains, a
false negative (or Type II) error can have grave consequences for a person seeking
medical attention, as a condition that is present in the patient is not detected and
thus not treated appropriately. Thus, the choice of metric is an important step in the
evaluation of model performance, and domain knowledge must inform decisions
on what is more important to avoid or focus on in evaluation.

In estimation or forecasting tasks, model performance is commonly evaluated us-
ing a distance metric from the predicted value to the actual value in a data set.
There are several different metrics in this area as well, and the choice of method
again depends on the purpose and domain of the model in question. The common
component in these methods is that they represent the (average) error in the esti-
mations performed by the model. Mean square error (MSE) and root mean square
error (RMSE) are two related metrics, as the latter is the square root of the former.
RSME is considered more useful as the squared average (e.g, squared seconds) is
more complicated to comprehend than its square root (seconds), as it brings the
metric back to the original unit of measure of the data. These metrics are calcu-
lated as shown in Equations 3.1 and 3.2. Here, ŷ is the predicted value of y (i.e.,
the output from a model), and y is the mean value of y.

MSE =
1

N

N∑
i=1

(yi − ŷ)2 (3.1)
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RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷ)2 (3.2)

In time series prediction, it is also common to evaluate the performance in terms
of correlation, using the coefficient of determination (R2). This metric is used for
determining how much of the variability in the regression model can be explained
by the features in the data set [56], and is calculated using Equation 3.3.

R2 = 1−
∑

(yi − ŷ)2∑
(yi − y)2

(3.3)
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Figure 3.5: Example of three decision trees with randomly split subsets of features.
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Figure 3.6: A schematic of an LSTM with an input, a prediction, an ignore gate, a forget
gate, and a selection gate. X-symbols mark element-wise multiplication, and +-symbols
mark element-wise addition. Tanh activation functions are denoted with a half-circle, sig-
moid with a complete circle. The dotted line is the recurrent information that is passed
back to the gate from the output.

Figure 3.7: Underfitting model (blue), appropriate model (orange), and overfitting model
(green). Adapted from Goodfellow et al 2016.
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Figure 3.8: Description of precision and recall, accuracy and F1-score.



Chapter 4

Methods

4.1 Design and Ethical Considerations
The studies this thesis consists of are based on data collected at the Motion Cap-
ture and Visualization Laboratory at the University of Science and Technology in
Trondheim, Norway, in the spring of 2019. The thesis is within the medical tech-
nology field, an interdisciplinary field combining medicine and health sciences
with technology and computer science.

4.1.1 Design of data collection

With the research questions in mind, the data collection was designed to provide
the necessary data in the most efficient manner possible. Through careful planning,
we found the optimal way to acquire all the data needed for all three studies without
requiring the participants to spend more than 1.5 hours at the laboratory. Because
there is scarce research on using machine learning in exergaming, the movement
pattern was designed to be simple and not contaminated from noisy data, yet rel-
evant for balance training. This potentially provides us with more clear answers
than more complex movement patterns could have yielded as performance by the
algorithms is likely to be more difficult to interpret if the movement patterns are
very noisy or complex.

This choice of design is also reflected in the data protocol we decided to employ.
By having low-noise, high accuracy data from a 3DMoCap system, simultaneously
captured with in-home appropriate modalities such as video data and depth camera
data, we could also compare results using these different data types, which resulted
in interesting analyses as presented in Chapter 5.

41
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4.1.2 Ethical considerations

The project and data collection were assessed by the Regional Ethics Committee
prior to project start. In addition, the National Data Security committee approved
the project with regard to data security, handling of personal information, and plans
for anonymizing the data.

In accordance with the Declaration of Helsinki, before data collection started, par-
ticipants were given oral and written information about the project, the data col-
lection procedures, possible benefits and inconveniences, and had the opportunity
to ask questions whenever they might arise. All participants signed a written in-
formed consent form.

As the project aimed at improving technology meant for use by older adults, the
recruited participants were in this demographic. Having an elderly participant
group perform balance training movements could pose a safety risk, because of
the changes in the neuro-muscular system described in Chapter 1. To minimize
the risk of injury or adverse events during data collection, extra care was taken
to ensure the safety of the participants, both in the design of the exergame and in
planning the movements to be performed. The exergame was designed in close
collaboration with a computer engineering student, who developed the game pro-
totype (see [134]). The game was initially designed for stroke patients, so it lent
itself nicely to use for elderly users as the principles for designing games for these
two demographics are virtually the same (low-key music, low contrast colors, slow
game speed) (ref). The design made it possible to follow the game play for all par-
ticipants, as it was flexible enough to let participants find the movement speed
and strategy they felt safe and comfortable using. No sudden or rapid movements
were required, and the extent they needed to lean medio-laterally to get the in-
game reward was manageable for all participants. Furthermore, throughout the
data collection, there were two project representatives present, one of which was
responsible for the safety of the participant during playing.

4.2 Participants
The recruited participants were healthy elderly (age >65 years) with no history of
balance issues or loss of motor function that could render their participation po-
tentially hazardous. Participants were given information about the project from a
researcher in the project visiting their local exercise groups for seniors. Here, par-
ticipants were given an opportunity to ask questions and sign up for participation
at their preferred time and date. This recruitment process was used in both the
pilot study and in the main study.
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4.3 The exergame
For the purpose of eliciting movements from the participants, a custom exergame
was designed and developed. This game consisted of two versions, where each
version was designed to elicit a specific movement pattern from the participants.
Common for the two versions was the interface and the goal of the game, as pre-
sented to participants. A screenshot can be seen in Figure 4.1. In the top right
corner, the number of coins collected can be seen, and in the bottom left corner the
speed of the cart can be controlled. The coins can be seen on either side of the rail.
There were approximately 100 coins in total, and there were never more than two
coins successively on each side at a time. For each coin, the player could receive
between 1-3 points, depending on their movement pattern. Above the rail, in the
center of the screen, a white star is superimposed on a multi-colored bar. The star
shows the position of the virtual marker (shown in Figure 4.3(a) and 4.3(b)) in the
x-direction (sideways).

Its position on the colored bar as the cart hits a coin determines the number of
points the player receives for that coin. This is where the two game versions differ:
in the first game version, the bar was grey with a dividing line in the middle, as seen
in Figure 4.2(a). In the second game version, the bar is divided into three colors,
as seen in Figure 4.2(b). The two color bars provided points based on the position
of the star. In the first version, with the gray bar, the maximum score possible was
awarded if the player managed to have the star as far laterally as possible when a
coin was hit. By performing this movement pattern, the player completed a correct
weight shift. The upper body was leaned over the foot, making the majority of
their body weight loaded on the foot they were leaning towards, as shown in Figure
4.3(a). Conversely, the colored bar in the second version of the game gave three
points if the star was in the green area in the middle of the bar. To achieve this, the
player had to lean their lower body sideways to make the cart hit the coin, but keep
their upper body leaned in the opposite direction to keep the star within the green
area, shown in Figure 4.3(b).

4.4 Equipment
For 3D motion capture data, a setup with four different data modalities was used
to capture simultaneous data. Four OQUS cameras (MX 400, Qualisys AB, Göte-
borg, Sweden) was used. Cameras were capturing at 90Hz. 36 reflective mark-
ers were placed according to the Plug-in-Gait Full-Body marker placement guide
(PiG-FB, [135], head and hands excluded), by an experienced human movement
scientist and an experienced assistant. Two digital cameras (GoPro Hero 3+ Black,
1400 × 720 px, GoPro Inc.) were used, one positioned sagittally, at the right-hand
side of the participants, and one frontally, 200 cm behind the participants. These
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Figure 4.1: Interface of the game.

(a) Part 1. Two-split grey bar, shown at
the end of the track, with the star to the
right of the dividing line, rewarding 3
points.

(b) Part 2. Three-split color bar, shown
at the end of the track, with the star in
the middle 33%, rewarding 3 points.

Figure 4.2: The two versions of the exergame.

cameras were synchronized with a remote control. Two force plates (1000 Hz,
60×40×5 cm, Kistler Nordic AB) were positioned in the center of the playing
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(a) Typical body posture when being re-
warded 3 points in part 1 of the game.
Here, the player is leaning their upper
body over their weight-bearing foot, re-
sulting in the distance between the vir-
tual marker and the CoP of the weight-
bearing foot being <50 mm, and the
GRF Z-component being >74% of body
weight. BW = body weight. GRF =
Ground reaction force. CoP = Center
Pressure.

(b) Typical body posture when being re-
warded 3 points in part 2 of the game.
Here, the player is not leaning their up-
per body over their weight-bearing foot,
resulting in the distance between the vir-
tual marker and the CoP of the weight-
bearing foot being >50 mm, and the
GRF z-component being <74% of body
weight. GRF = Ground reaction force.
CoP = Center of Pressure.

Figure 4.3: Typical body postures when playing the two different exergame versions

area, one for each foot of the participants, with a 60×30×5 cm platform extending
on each lateral side of the force plates. As input to control the game, a Kinect (V2,
25 Hz, Microsoft Inc.) was placed according to recommendations in front of the
player. A schematic of the experimental setup can be seen in Figure 4.4.

4.5 Data collection

4.5.1 Pilot study protocol

Data for the pilot study was collected in November 2017. 11 participants were
recruited, six females and five males, with an average age of 69.3 years (1SD
4.0). Participants were recruited in the same manner as in the main study. The
pilot study aimed to investigate the accuracy ML models could classify incorrectly
and correctly performed movement patterns of weight-shifting. The movements
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performed in the pilot study were not elicited from a game but were instructed
movement patterns. Two movement patterns were performed: one without a clear
weight-shift, i.e., an incorrect movement, and one movement pattern with a clear
weight shift, i.e. a correctly performed movement. Three ML models that are
commonly used in activity classification were employed: kNN, RF, and SVM. The
results were promising, with an average accuracy of 0.989, 0.949, 0.958 for RF,
kNN, and SVM, respectively. The highest was RF on all joint centers and SVM on
shoulder joint centers (both 0.996). The lowest was k-NN on ankle joint centers
(0.879). Results showed that it is indeed feasible to classify movement patterns,
prompting us to continue with a data collection where movements were naturally
elicited from an exergame.

4.5.2 Main study protocol

Upon arrival at the laboratory, participants were given oral instructions and infor-
mation about the activity to be performed. After changing into comfortable shoes
and clothes as instructed, height and weight were recorded. The reflective markers
were attached and the data collection started. Participants performed three trials of
each version of the game, totaling six trials for each participant. Between all trials,
the player was offered a break where they could sit on a chair to relax if needed.

4.6 Data processing and analysis
3D joint centers from the 3DMoCap system were used in all three studies. Using
the standardized PiG-FB biomechanical model [135], joint centers were extracted
for each time frame of the data using Vicon Nexus (v. 2.10, Vicon Motion Systems
Ltd, UK). Joint center locations are represented as a three-dimensional point vector
in Euclidean space relative to the origin of the Qualisys lab coordinate system. A
schematic of the extracted joint centers can be seen in Figure 4.5, with details of
joint center definitions in [135].

2D joint centers from the DLC framework, based on GoPro video data, were used
in study I and study III. To obtain joint center positions from the digital video data,
an experienced human movement scientist manually labeled the joint center loca-
tions as seen in Figure 4.5 in three images from two videos of each participant,
totaling 194 images. This is in line with the recommendations for training data for
the DLC framework [87]. The joint center location data and the video images were
then used to train the DLC model, and predictions of joint center locations in un-
seen videos were produced. The train/test split was set to 95/5, and the model was
trained for 220000 iterations with loss plateauing at 0.0012. In four participants
(4,8,9, and 10) the frontal camera view of the ankles was obstructed, and thus not
labeled. Ankle joint position predictions from these participants were therefore
excluded from the analysis.
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For all further analyses, Python (v. 3.7-3.11) was used, with the machine learning
packages Sci-Kit Learn [136], Keras [137], DLC1 , and TSFresh2.

4.6.1 Paper I - Pose Estimation

This paper focused on comparing the variability of segment lengths from the 3DMo-
Cap system, the Kinect, and the DLC image analysis system.

Joint center positions from the Kinect camera were extracted using Kinect Studio
(ref) in conjunction with Kinect2Toolbox (ref). Segment lengths from all three
systems were extracted as the distance in Euclidean space between joint centers,
e.g., the lower arm segment was the distance between the wrist and the elbow
joint center, as seen in Figure 4.5. These lengths were then calculated for each
time frame for each of the three data types. Variability in segment lengths was
represented as mean standard deviation (SD) and mean coefficient of variability
(CoV). To evaluate the statistical significance of the difference in segment length
variability, a Shapiro–Wilks test for normality was first conducted. This gave a
p < 0.05 for all segment lengths. Therefore, the non-parametric Friedman test was
conducted to assess statistical differences in segment length variability between
the three systems. Lastly, a Wilcoxon’s Signed Rank test post hoc analysis was
conducted on the statistically significant differences from the Friedman test in or-
der to extract which between-system differences were statistically significant. A
Bonferroni correction was used, resulting in α = 0.017.

4.6.2 Paper II - Movement Classification

Paper II was an assessment of the performance of different ML algorithms in clas-
sifying correctly and incorrectly performed weight-shifting movements. Each rep-
etition of a movement was extracted from a whole trial sequence of movements.
One repetition was defined as the movement between the most lateral position in
the y-direction of the right shoulder marker and its most contralateral position. To
determine movement correctness, the midpoint between shoulder joints and the
GRF was used, as shown in Figures 4.3(a) and 4.3(b). A repetition resulting in
<74 % BW, as well as a midpoint horizontal position of >50 mm from the ankle
joint in the y-axis, was deemed as incorrectly performed (i.e. was not considered a
complete weight shift). Each repetition was then represented by a set of statistical
features calculated using the TSFresh package [138] for Python. The original fea-
tures were also run through a Principal Component Analysis (PCA) to reduce the
dimensionality of the feature space. Both the statistical features and the PCA fea-
tures were used as input data to the ML models separately. Each model was trained
on the entire dataset, using all joints, and also on just one set of joint positions at a

1https://github.com/DeepLabCut/DeepLabCut
2https://github.com/blue-yonder/tsfresh
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Figure 4.4: Experimental setup illustration. A = Qualisys cameras, B = 82" TV, C =
Kinect camera, D = Force plates, E = GoPro cameras. Not to scale.

Figure 4.5: Schematic of the joint center positions (red) and segments (blue).
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time, for example shoulder joints only or hip joints only.

The models employed in this study were kNN, random forest, support vector ma-
chine, and a neural network classifier (multi-layer perceptron, MLP). A leave-one-
group-out cross-validation was performed, where a group consisted of one partic-
ipant’s data, resulting in 11-fold cross-validation. Recall and F1-score were the
metrics extracted for the evaluation of model performances.

4.6.3 Paper III - Force Estimation

In Paper III, we investigated the ability of an LSTM network in the estimation of
GRF using kinematic data. Here, we used DLC and 3DMoCap joint center posi-
tions scaled to the 0-1 range as training data in separate model training and testing
iterations. The x,y, and z force components from the force plates, normalized to
the participants’ body weight, were used as target variables. A stacked, 3-layer
LSTM network, an XGBoost model [139], and a standard multiple linear regres-
sion model (LinReg) were employed. A 11-fold cross-validation was performed
similarly to the procedure in Paper II. Evaluation metrics were mean and standard
deviation of R2 and Root Mean Square Error (RMSE) over the cross-validation
iterations.
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Chapter 5

Results

This chapter presents an overview of the results from the three studies that were
conducted, with a focus on the results’ contribution to answering each of the re-
search questions presented in Chapter 1. Details from the results can be found in
the respective papers in Part II. Figure 5.1 presents an overview of results from
Paper I, Figure 5.2 shows results from Paper II, and Figures 5.3 and 5.6 show the
results from Paper III.

5.1 Results overview
Overall, the findings from this thesis demonstrate that in all three aspects focused
on, ML can indeed improve usability and availability. The motion tracking tech-
nology can be simplified using deep learning and image analysis on standard digi-
tal video data while retaining the all-important tracking accuracy needed to provide
appropriate feedback. We can also use ML-based algorithms to analyze movement
patterns in a manner that identifies correctly performed weight-shifting movements
regardless of e.g. body size. Lastly, our findings show that it is possible to measure
weight-shifting in an accurate manner without needing specialized force sensing
equipment. This can enable feedback on weight-shifting performance just by using
a standard digital camera.

5.1.1 Research Question I

How does a state-of-the-art deep learning 2D image analysis system perform with
regard to segment length variability compared to a 3DMoCap system and Kinect sys-
tem?

The overall aim here was to compare the accuracy of a deep learning-based pose
estimation system (DeepLabCut, DLC) to a state-of-the-art marker-based system
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and a widely used marker-less system. To this end, we compared the intra-segment
variability of the three systems, as presented in Paper 1. Segment variability, i.e.,
the change in segment lengths over time, is in and of itself also an interesting mea-
sure of performance in any motion tracking system, as stability in motion tracking
is essential to ensure that the player’s movement pattern is consistently represented
in the game system. These results would directly affect how to conduct the anal-
ysis for answering RQ III, where DL-based joint center data could potentially be
utilized. As Figure 5.1 shows, the average DLC and Kinect system joint center lo-
cation variability were overall higher than that of the 3DMoCap system. However,
not all differences were statistically significant, indicating that in some segments
the variability of the DLC and Kinect was not systematically higher than in the
3DMoCap. The segments where variability was not statistically different between
3DMoCap and DLC were left upper arm, left torso, and left and right shanks.
Compared to Kinect segment variability, the only statistically significant differ-
ences were in the left lower arm and left thigh. Thus, in all segments, the DLC
system performed with comparable segment length variability to either the ToF
or the 3DMoCap system. In all three systems, the shoulder segment variability
was the lowest, and the lowest overall SD was in the shoulders (2.8 mm) using
3DMoCap.

These findings show that a ResNet-based deep learning image analysis system,
DeepLabCut, is a viable option for accurately extracting joint center locations for
use in in-home exergame settings that require low body segment length variability.

5.1.2 Research Question II

To what extent can machine learning classification models identify correctly per-
formed movement patterns during weight-shifting exergaming?

RQ II was the first to be explored, as the original aim of the thesis was to identify
correctly and incorrectly performed movements during exergaming. To answer
this inquiry, different movement patterns from the participants were elicited dur-
ing exergaming: incorrectly and correctly performed medio-lateral weight shifts.
The task for the machine learning models was first of all to identify the correctly
performed movements, as these are essential for rewarding the player appropri-
ately during gaming. The analysis also focused on classification accuracy using
only joint subsets versus using all joint center data combined, and on whether dif-
ferent cross validation methods and feature representations affected classification
performance.

Results for this analysis showed that the MLP and RFC models outperformed the
kNN and SVM models, as seen in Figure 5.2. The MLP achieved a mean recall
of 93.4% when trained on any joint subset, which was the highest performance
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Figure 5.1: Results from Paper 1 - Pose Estimation. Mean standard deviation (SD, in mm)
of each body segment length by the different motion capture systems.
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Figure 5.2: Results from Paper 2 - Movement Classification. Mean recall of classification
performance for all four models, using all data and using joint subsets. SHO = shoulders,
HIP = hips, KNE = knees, ANK = ankles. RFC = random forest classifier, SVM = support
vector machine, kNN = k-Nearest Neighbors, MLP = multi-layer perceptron.

of all models. The RFC model achieved a 7% lower mean recall when trained
on any joint subset, while the kNN and SVM models achieved 85.6 % and 68.7%
mean recall, respectively. The highest performance on a single joint subset was
by the MLP using hip joints (96.5% recall), but the most consistent joint subset
for all models was the shoulder joint, which had the highest mean recall of 86.3%.
Between the two CV methods, 10-fold (CV10) and leave-one-group out (LOGO),
there was no clear systematic difference in performance, which was also the case
using different feature representations (statistical features and PCA features). The
MLP model was also the highest performing model in classification of incorrect
repetitions; accuracy here was 70% compared to 59%, 58%, and 43% in the RFC,
kNN, and SVM models, respectively.

This shows that an MLP model can classify correctly performed medio-lateral
weight-shifts in >9 out of 10 repetitions, without using pre-determined rules or
thresholds.



5.1. Results overview 55

5.1.3 Research Question III

What accuracy can a recurrent neural network model achieve on estimation of force
data, using kinematic data from 2D and 3D motion capture systems?

To answer this research question, joint center data from 3DMoCap and DV cam-
eras were used as input to the estimation algorithms. The force (% bodyweight)
data from the force plates was used as target data. The 3DMoCap data provides
information in three dimensions (x, y, z), while the DV data only provides two (x
and y, the depth dimension is not present here). Therefore, estimation of GRF in
the depth dimension might be challenging when using DV data. Estimation was
performed by an LSTM and XGBoost model, with a multivariate linear regression
model as a baseline. Feature selection procedures revealed that when using 3DMo-
Cap data there were eight joints that contributed with >82 % of the information in
the GRF estimations, and these were kept in the analysis while the rest were dis-
carded. For DV data there were also eight joints that contributed with the majority
of the information, with >78%. Figures 5.3 and 5.4 detail the contributions of the
different joint centers when using 3DMoCap and DV data, respectively. Using the
selected joint centers, the three models were re-trained and estimations were again
performed.

When using 3DMoCap data, the LSTM model performed at an excellent level with
an average of >69%, 89%, and 98% explained variance (R2) for Fx, Fy, and Fz,
respectively, and RSME of <8%, 6% and 4% BW, respectively. The XGBoost
and LinReg models achieved a slightly lower R2, but also these achieved very
good results in the Fz component with >85% R2 and RMSE of <12% BW in both
models.

The performance of all models decreased slightly when using DV data, although
the LSTM results were still excellent. RMSE increased to 10%, 8%, and 8% in the
LSTM model for Fx, Fy, and Fz components, respectively. R2 decreased to 56%
in Fx, 77% in Fy, and 92% in Fz for the LSTM model. In the XGBoost and LinReg
models, R2 in Fz decreased to 56% and 61%, 20%, and 19% RMSE, respectively.

These results indicate that ground reaction force can be reliably estimated from
joint center kinematic data using a recurrent neural network (LSTM) during medio-
lateral weight shifts.
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Figure 5.3: Results from Paper 3 - Force Estimation. Feature importance, or contributions,
of different joint centers using MoCap data.

Figure 5.4: Results from Paper 3 - Force Estimation. Feature importance, or contributions,
of different joint centers using DV data.
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Figure 5.5: Results from Paper 3 - Force Estimation. Fz component estimation by the
three models using 3DMoCap data.

Figure 5.6: Results from Paper 3 - Force Estimation. Fz component estimation by the
three models using DV data.
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Chapter 6

Discussion

6.1 Overall discussion
The overall aim of this thesis was to investigate how existing solutions in exergame
systems for weight-shifting exercise can be improved using state-of-the-art ma-
chine learning approaches. In the context of this thesis, improvement is specifically
tied to the RQ of three core aspects of an exergaming system. For RQ1, improve-
ment entailed providing motion capture data in a more accessible, yet accurate,
manner using deep learning image analysis. For RQ2, improvement consisted of
assessing movement patterns based on a self-learning approach of what a correct
weight-shifting movement pattern is, rather than rules and templates. For RQ3,
we sought to improve the usability of in-home exergames for balance training by
enabling the generation of feedback on a data modality not previously available
without specialized equipment.

As can be discerned from the results summarized in Chapter 5, using machine
learning approaches suitable for these three endeavors can indeed improve ex-
ergame systems for balance exercise. Although similar research has been con-
ducted previously in other areas, this does not guarantee that the machine learning
models will perform equally well in the context of balance training exergames, as
the No Free Lunch Theorem suggests [55]. However, the results of the studies in
this thesis are encouraging, as we were able to demonstrate that our approaches
reach similar levels of accuracy as adjacent research in their respective studies.

Even though our results are promising, it is important to keep in mind that realizing
in-home use of exergames as a tool for physical exercise still has a long way to go.
As with implementing any technology in the health domain, adoption of exergames
is tedious work that requires attention and effort from both researchers, developers,
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the healthcare system, and the users themselves. One of the most essential aspects
is to demonstrate to users that exergames are, in fact, useful for serious business
and not suited for entertainment only. This is why improving technological tools
is important. Bad experiences such as difficulties in setting up a system to make it
work, or not working properly once it has been set up, can quickly lead to it being
put away and not being recommended for use. For those designing and creating
such systems, it is therefore imperative to be conscious of the choices being made
for the game [140, 141, 118] and the supporting technology.

The relationship between study II and study III shows that there are several ways to
use AI to provide feedback during exergaming. Performance of the entire weight-
shifting repetition can be evaluated for being correct or not, or the weight-shifting
performance can be provided as a real-time stream of information. This warrants
careful consideration of what the most useful and meaningful feedback is for a par-
ticular person when taking exergames into use, especially as older adults are a het-
erogeneous group where individual levels of physical and cognitive capacity will
influence what is most suitable. Furthermore, it might be useful to provide both
types of feedback in the same setting. Seeing your own weight-shifting pattern
in real-time, and then being rewarded rightfully based on that performance can be
very helpful for improving a person’s understanding of what a correct movement
is - and guiding them towards making it. This can make people more aware of
their own movement pattern as it can provide information during all phases of the
movement and then reinforce or correct that movement pattern using an appropri-
ate reward system after each repetition is performed.

Enabling and facilitating the use of exergames in in-home settings is a crucial focal
point in the work towards healthy and active aging. Other endeavors aiming at de-
veloping methods of providing information about movement patterns, and methods
of assessing movement patterns, during balance-training exergaming contribute as
well towards understanding the most useful and appropriate setup for exergames
for older adults. Because this setting is complex, all innovative approaches can
and should add valuable tools to a larger toolbox that needs to be diverse, flexible,
and adaptive to be able to accommodate the various needs, preferences, and body
types of different users.

6.2 Key Findings and Contributions
The findings from the three studies in this thesis represent promising pieces of the
puzzle being laid towards making exergames for balance exercise more accessible
and easy to use, both in and outside clinical settings. This is the core contribution
of this thesis, providing evidence that it is possible to use state-of-the-art analy-
sis methods for technological solutions that make exergames more available and



6.2. Key Findings and Contributions 61

useful for in-home use.

In detail, the key findings were as follows: 1) A ResNet-based deep learning im-
age analysis system, DeepLabCut, is a viable option for use in in-home exergame
settings that depend upon low body segment length variability. 2) An MLP and
an RFC model can classify correctly performed medio-lateral weight-shifts in >9
out of 10 repetitions, without comparing to pre-determined rules or templates.
3) Ground reaction force can be estimated reliably from joint center kinematic
data from both 3D and 2D video using a recurrent neural network (LSTM) during
medio-lateral weight shifts.

Furthermore, the three studies each contribute with their own insights into using
machine learning methods in different facets of exergaming. Study I contributes
to the critical first step of capturing player movements accurately with a single
digital video camera. Using a state-of-the-art, pre-trained image analysis tool and
a relatively small training data set (2̃00 images), player movement patterns can be
extracted automatically. Existing solutions necessitate specialized equipment for
motion capture to be available to the exergame. Even though cameras using depth-
sensing technology are specifically designed to capture movements of the player,
they are overall not more accurate than our proposed solution, as the results from
Study I show. This is a key step in making exergames accessible for users that are
not technologically advanced, as it enables the use of exergames without having to
obtain and use specialized equipment such as depth sensing cameras or IMU sen-
sors. It is generally difficult to compare our findings in Study I to that of previous
pose estimation research that was performed in other domains and contexts. Our
work is specifically oriented towards the application of a pose estimation frame-
work within active, healthy aging, and is thus concerned with the practical side of
the performance of a framework - i.e., the segment length variability. In contrast,
earlier work on pose estimation algorithms was largely concerned with the evalua-
tion of new or adjusted pose estimation algorithms per se, and therefore evaluated
performance from a more technical point of view. One example that illustrates
why our study is difficult to compare to the existing literature is the use of percent-
age correct key points (PCK) within a certain distance from the actual target key
point (i.e., joint center) location. Using a threshold of the predicted location being
within 50% or even 10% of a segment length can lead to estimated joint center lo-
cations many centimeters from the actual, real-world joint center. In contrast, our
approach is novel in that it investigates the segment length variability calculated
in each system, which is a more useful measure as it shows how well a motion
capture system performs over time.

Study II is an investigation into which classification models are most suited for
identifying correctly performed medio-lateral weight-shifting movements. Here,
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we document the superior ability of a neural network and random forest model
over other models in this task and concluded that the random forest model should
be preferred because of the faster prediction time and more transparent decision
making process. Our approach here differs from previous, template-based assess-
ment methods in that it does not use pre-determined goals for the movement pattern
that is more or less based on domain knowledge of the movement performed. Our
self-learning method transfers this task to the machine learning models instead, as
the training data consists of features from joint center locations during one rep-
etition of medio-lateral weight-shifting, and the corresponding label (correct or
incorrect). The random forest classifier and the MLP classifier then are able to
distinguish a correctly performed repetition from an incorrectly performed repe-
tition in as much as >9 out of 10 times. This study also contributes with crucial
information needed for exergame developers when choices are to be made when
implementing machine learning models for classification of movement pattern cor-
rectness.

In study III, a novel and highly valuable way of extracting real-time force data
while performing medio-lateral weight-shifts have been developed. In in-home
settings, this information was previously unavailable due to the lack of suitable
equipment for accurately measuring ground reaction force (i.e., how much weight
is being put on each foot). Our approach shows that it is possible to use both
3D and 2D data to obtain GRF information, enabling more informative and useful
feedback to the player about their weight-shifting performance. This study also
underscores that the quality of motion capture data is important. Data with more
noise makes it harder for ML methods to discern the true relationship between
the input data and the target data. Furthermore, our approach uses joint center
positions directly as input to the LSTM model, which avoids the computationally
expensive use of biomechanical models for feature engineering as used in previous
research on force estimation. Hence, all three studies can affect the choices made
in the further development of exergames. We have illustrated that by using state-
of-the-art machine learning models, it is possible to make movement analysis tasks
simpler by skipping computational layers where biomechanical models, rules, and
templates are involved. For independent, in-home exergaming, these are crucial
improvements as they can make exergame systems more accessible, less resource
demanding, and easier to use. These are features that enable older adults to take
agency over their own level of physical function and implement exercise regimes
from the comfort of their home, thereby contributing to preventing falls and other
detrimental effects of poor physical function.

In addition to the scientific findings from the papers, the work conducted during
these four years has produced know-how and methodological insights into imple-
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menting machine learning into human movement science. Furthermore, a compre-
hensive data set has been curated, which could be of use to other researchers in the
field. This will be published in an open-source repository.

6.3 Methodological Considerations
The results and main conclusions in this thesis should be viewed in light of some
considerations around the methodological approaches employed. Firstly, the use
of a high-end motion capture laboratory has both strengths and drawbacks. Using
gold-standard motion capture equipment (3DMoCap) provides high-quality data
about the movement patterns performed in the studies. This contributes to the
correct interpretation of results, as model performance was not significantly influ-
enced by poor data quality. Furthermore, using a laboratory setting allows us to
control the surroundings of the experiments, but this has low ecological similarity
to the setting where exergaming might be performed in a real-world setting.

The data collection provided information from twelve healthy older adults. This
is not a large data set, which could affect the generalizability of the data as the
participants only represent a small part of the heterogeneous demography of the
older adult population. Furthermore, all participants exercised regularly and were
in relatively good health, which might also have influenced the variability of the
movement patterns in the data-set. Investigation of the performance of the current
methods and models using data from persons with frailty or limited physical func-
tion is an interesting future avenue to pursue further, as their movement patterns
can be expected to be slower and more variable than those in the current data set.

One drawback that limits the generalizability of our results in this thesis is the
missing implementation and testing in a real-world setting. Even though the results
show encouraging results, this is still offline testing only. In a real-time implemen-
tation, there are other considerations in addition to the classification or estimation
performance, such as latency in predictions and thus delays in feedback, which is
an important side of machine learning implementation in general [142, 143].

In terms of these methods being transferable to a real-world setting, one major is-
sue can be curating a data set for training models before implementing them in an
exergame system. The data collection itself can be time and resource demanding,
and post-processing of motion capture data to prepare them for machine learning
models is also a time-consuming job. Nevertheless, this can be mediated by using
frameworks that allow for using pre-trained data sets in combination with a spe-
cialized training layer, with video data from the context-specific setting in which
the exergame is going to be implemented.
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6.4 Implications
This thesis shows that methods for improving exergame solutions are available, in
that there might not be a need for specialized equipment to be able to track, assess
and measure important data for balance training. This implies that there is a possi-
bility to realize the potential of balance exergames that research has documented,
as the possible barriers of use relating to technological solutions can be avoided.
Health care professionals should look beyond the solutions created for the casual
gaming consumer market for more appropriate and specialized exergames, as ex-
ergames can be used to automatically supervise exercise and provide feedback to
the player. The possibility to tailor the exergame tasks to the person playing is also
an important feature, making it possible to target specific functions to train.

Game developers should also look towards developing exergame systems that do
not require additional equipment to be purchased and maintained by the player
or institution. Developing exergames going forward should focus on ease of use
and availability of games from a technical perspective, by taking advantage of the
possibilities within machine learning.

6.5 Future Work
To continue on the path towards implementation of balance-training exergames,
and exergames in general, the next steps should involve including machine learn-
ing models when developing exergames. Only by testing these solutions in a real-
world setting will we be able to know how well the different pieces work. This is
both regarding the technical side of it, i.e., whether the machine learning models
are fast enough in real-time predictions and estimations, and regarding whether
the users actually find the systems usable and useful. It would also be interest-
ing to see whether it is possible to provide more fine-grained feedback on move-
ment pattern correctness using classification models like the ones used in study II.
The most challenging side of this is that it requires a large data set with different
movement pattern errors being naturally elicited, which would be challenging and
time-consuming to procure. Furthermore, the effectiveness of exergames using
different types of motion capture technologies and algorithms should be a focus of
research going forward, to build a stronger knowledge foundation that can enable
informed decisions when designing and implementing exergames. Especially in-
home, independent use should be explored, as this is where the major potential of
exergames lies.
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Conclusions

Considering the potential of exergames to be a facilitator of motivating and ef-
ficient in-home exercise for the aging population, this thesis aimed at assessing
new methods of capturing, assessing, and enabling use of information in the mo-
tion capture aspect of balance training exergames. This can enable the use of
more available and easy-to-use technologies, such as smartphone cameras or web-
cameras, in an in-home setting. To this end, state-of-the art machine learning
models were employed in image analysis, classification of movement patterns, and
estimation of force data from kinematic information. The results provide compre-
hensive documentation that different machine learning models perform at a high
level in these tasks, which is encouraging with regard to future development and
implementation of balance training exergames.

In conclusion, there are easy-to-use technological improvements available through
machine learning frameworks that should be considered for implementation when
an exergame system is created. These help to ensure that the quality of the systems
are at the level that users need and expect when using them in serious settings,
which in this setting means low levels of jittering and erroneous motion tracking,
appropriate reward systems that facilitate efficiency and motivation, and accurate
feedback on weight-shifting performance in real-time without specialized equip-
ment.

65



66 Conclusions



Bibliography

[1] Jennifer Taylor, Sarah Walsh, Wing Kwok, Marina B Pinheiro, Juliana
Souza De Oliveira, Leanne Hassett, Adrian Bauman, Fiona Bull, Anne
Tiedemann, and Catherine Sherrington. A scoping review of physical activ-
ity interventions for older adults. pages 1–15, 2021.

[2] Laurence Z. Rubenstein. Falls in older people: Epidemiology, risk factors
and strategies for prevention. Age and Ageing, 35(SUPPL.2):37–41, 2006.

[3] Nancye May Peel. Epidemiology of falls in older age. Canadian Journal
on Aging, 30(1):7–19, 3 2011.

[4] L D Gillespie, M C Robertson, W J Gillespie, C Sherrington, S Gates, L M
Clemson, and S E Lamb. Interventions for preventing falls in older people
living in the community. Cochrane Database Syst Rev, 9(9):Cd007146,
2012.

[5] Sebastian Deterding. Gamification: designing for motivation. Interactions,
19(4):14–17, 7 2012.

[6] Nina Skjæret, Ather Nawaz, Kristine Ystmark, Yngve Dahl, Jorunn L. Hel-
bostad, Dag Svanæs, and Beatrix Vereijken. Designing for movement qual-
ity in exergames: Lessons learned from observing senior citizens playing
stepping games. Gerontology, 61(2):186–194, 2015.

[7] Elizabeth J. Lyons. Cultivating Engagement and Enjoyment in Exergames
Using Feedback, Challenge, and Rewards. In Games for Health Journal,
volume 4, pages 12–18. Mary Ann Liebert Inc., 2 2015.

[8] Katie Jane Brickwood, Greig Watson, Jane O’brien, and Andrew D
Williams. Consumer-based wearable activity trackers increase physical ac-
tivity participation: Systematic review and meta-analysis, 4 2019.

67



68 BIBLIOGRAPHY

[9] Nina Skjæret, Ather Nawaz, Tobias Morat, Daniel Schoene, Jorunn
Lægdheim, and Beatrix Vereijken. Exercise and rehabilitation delivered
through exergames in older adults : An integrative review of technologies,
safety and efficacy. International Journal of Medical Informatics, 85(1):1–
16, 2016.

[10] Joep Janssen, Olaf Verschuren, Willem Jan Renger, Jose Ermers, Marjolijn
Ketelaar, and Raymond Van Ee. Gamification in physical therapy: More
than using games. Pediatric Physical Therapy, 29(1):95–99, 2017.

[11] Jan David Smeddinck, Marc Herrlich, and Rainer Malaka. Exergames for
Physiotherapy and Rehabilitation: A Medium-term Situated Study of Moti-
vational Aspects and Impact on Functional Reach. Proceedings of the ACM
CHI’15 Conference on Human Factors in Computing Systems, 1:4143–
4146, 2015.

[12] Ather Nawaz, Nina Skjaeret, Jorunn Laegdheim Helbostad, Beatrix Verei-
jken, Elisabeth Boulton, and Dag Svanaes. Usability and acceptability of
balance exergames in older adults: A scoping review. Health informatics
journal, 22(4):911–931, 12 2016.

[13] Damla Kiziltas and Ufuk Celikcan. Knee Up:an Exercise Game for Stand-
ing Knee Raises by Motion Capture with RGB-D Sensor. In Smart Tools
and Applications in Graphics, 2018.

[14] Halim Tannous, Dan Istrate, Aziz Benlarbi-Delai, Julien Sarrazin, Didier
Gamet, Marie Christine Ho Ba Tho, and Tien Tuan Dao. A new multi-
sensor fusion scheme to improve the accuracy of knee flexion kinematics for
functional rehabilitation movements. Sensors (Switzerland), 16(11), 2016.

[15] KE Laver, B Lange, S George, JE Deutsch, G Saposnik, and M Crotty.
Virtual reality for stroke rehabilitation. Cochrane Database of Systematic
Reviews, (11):CD008349, 2017.

[16] Lufang Zheng, Guichen Li, Xinxin Wang, Huiru Yin, Yong Jia, Minmin
Leng, Hongyan Li, and Li Chen. Effect of exergames on physical outcomes
in frail elderly: a systematic review. Aging Clinical and Experimental Re-
search 2019 32:11, 32(11):2187–2200, 9 2019.

[17] Maziah Mat Rosly, Hadi Mat Rosly, Glen M. Davis OAM, Ruby Husain,
and Nazirah Hasnan. Exergaming for individuals with neurological disabil-
ity: a systematic review. https://doi.org/10.3109/09638288.2016.1161086,
39(8):727–735, 4 2016.



BIBLIOGRAPHY 69

[18] Mike van Diest, Claudine CJC Lamoth, Jan Stegenga, Gijsbertus J Verk-
erke, and Klaas Postema. Exergaming for balance training of elderly: state
of the art and future developments. Journal of NeuroEngineering and Re-
habilitation, 10(1):101, 2013.

[19] Seline Wüest, Nunzio Alberto Borghese, Michele Pirovano, Renato
Mainetti, Rolf van de Langenberg, and Eling D. de Bruin. Usability and Ef-
fects of an Exergame-Based Balance Training Program. Games for Health
Journal, 3(2):106–114, 2014.

[20] Emma K. Stanmore, Alexandra Mavroeidi, Lex D. De Jong, Dawn A. Skel-
ton, Chris J. Sutton, Valerio Benedetto, Luke A. Munford, Wytske Meekes,
Vicky Bell, and Chris Todd. The effectiveness and cost-effectiveness of
strength and balance Exergames to reduce falls risk for people aged 55 years
and older in UK assisted living facilities: A multi-centre, cluster randomised
controlled trial. BMC Medicine, 17(1):1–14, 2 2019.

[21] RPS Van Peppen, G Kwakkel, S Wood-Dauphinee, HJM Hendriks, PhJ
Var der Wees, and J Dekker. The impact of physical therapy on functional
outcomes after stroke : what ’ s the evidence ? Clinical Rehabilitation,
18:833–862, 2004.

[22] Catherine E. Lang, Jillian R. MacDonald, Darcy S. Reisman, Lara Boyd,
Teresa Jacobson Kimberley, Sheila M. Schindler-Ivens, T. George Hornby,
Sandy A. Ross, and Patricia L. Scheets. Observation of Amounts of Move-
ment Practice Provided During Stroke Rehabilitation. Archives of Physical
Medicine and Rehabilitation, 90(10):1692–1698, 2009.

[23] Christine C. Chen and Rita K. Bode. Factors influencing therapists’
decision-making in the acceptance of new technology devices in stroke re-
habilitation. American Journal of Physical Medicine and Rehabilitation,
90(5):415–425, 2011.

[24] Ai Vi Nguyen, Yau Lok Austin Ong, Cindy Xin Luo, Thiviya Thuraisingam,
Michael Rubino, Mindy F. Levin, Franceen Kaizer, and Philippe S. Archam-
bault. Virtual reality exergaming as adjunctive therapy in a sub-acute stroke
rehabilitation setting: facilitators and barriers. Disability and Rehabilita-
tion: Assistive Technology, 14(4):317–324, 2019.

[25] Stepan Obdrzalek, Gregorij Kurillo, Ferda Ofli, Ruzena Bajcsy, Edmund
Seto, Holly Jimison, and Michael Pavel. Accuracy and robustness of Kinect
pose estimation in the context of coaching of elderly population. In Pro-
ceedings of the Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, EMBS, pages 1188–1193, 2012.



70 BIBLIOGRAPHY

[26] Catherine Sherrington, Nicola J. Fairhall, Geraldine K. Wallbank, Anne
Tiedemann, Zoe A. Michaleff, Kirsten Howard, Lindy Clemson, Sally
Hopewell, and Sarah E. Lamb. Exercise for preventing falls in older peo-
ple living in the community. Cochrane Database of Systematic Reviews,
2019(1), 2019.

[27] John R. Beard, A. T. Jotheeswaran, Matteo Cesari, and Islene Araujo
De Carvalho. The structure and predictive value of intrinsic capacity in
a longitudinal study of ageing. BMJ Open, 9(11), 11 2019.

[28] Mark W. Rogers, Marjorie E. Johnson, Kathy M. Martinez, Marie Laure
Mille, and Lois D. Hedman. Step training improves the speed of volun-
tary step initiation in aging. Journals of Gerontology - Series A Biological
Sciences and Medical Sciences, 58(1):46–51, 2003.

[29] Michelle M. Lusardi, Geraldine L. Pellecchia, and Marjorie Schulman.
Functional Performance in Community Living Older Adults. Journal of
Geriatric Physical Therapy, 26(3):14–22, 2003.

[30] Marjorie Woollacott and Anne Shumway-Cook. Attention and the control
of posture and gait: A review of an emerging area of research. Gait and
Posture, 16(1):1–14, 2002.

[31] Chih Hsuan Chou, Chueh Lung Hwang, and Ying Tai Wu. Effect of exer-
cise on physical function, daily living activities, and quality of life in the
frail older adults: A meta-analysis. Archives of Physical Medicine and Re-
habilitation, 93(2):237–244, 2012.

[32] Michael D. Denkinger, Albert Lukas, Thorsten Nikolaus, and Klaus Hauer.
Factors associated with fear of falling and associated activity restriction in
community-dwelling older adults: A systematic review. American Journal
of Geriatric Psychiatry, 23(1):72–86, 2015.

[33] United Nations Department of Economic and Social Affairs Pop-
ulation Division. World Population Prospects 2019: Highlights
(ST/ESA/SER.A/423). Technical report, United Nations Department of
Economic and Social Affairs Population Division, New York, 2019.

[34] Qun Fang, Parisa Ghanouni, Sarah E. Anderson, Hilary Touchett, Rebekah
Shirley, Fang Fang, and Chao Fang. Effects of Exergaming on Balance of
Healthy Older Adults: A Systematic Review and Meta-analysis of Random-
ized Controlled Trials. Games for Health Journal, 9(1):11–23, 2020.



BIBLIOGRAPHY 71

[35] Martin G. Jorgensen, Uffe Laessoe, Carsten Hendriksen, Ole Bruno Fau-
rholt Nielsen, and Per Aagaard. Efficacy of nintendo wii training on me-
chanical leg muscle function and postural balance in community-dwelling
older adults: A randomized controlled trial. Journals of Gerontology - Se-
ries A Biological Sciences and Medical Sciences, 68(7):845–852, 2013.

[36] Yoshiro Okubo, Daniel Schoene, and Stephen R Lord. Step training im-
proves reaction time, gait and balance and reduces falls in older people: a
systematic review and meta-analysis. British Journal of Sports Medicine,
2016.

[37] Jeffrey M. Hausdorff, Dean A. Rios, and Helen K. Edelberg. Gait variability
and fall risk in community-living older adults: A 1-year prospective study.
Archives of Physical Medicine and Rehabilitation, 82(8):1050–1056, 2001.

[38] John R Beard and David E Bloom. Towards a comprehensive public health
response to population ageing. The Lancet, 385(9968):658–661, 2 2015.

[39] Jorunn L. Helbostad, Beatrix Vereijken, Clemens Becker, Christop Todd,
Kristin Taraldsen, Mirjam Pijnappels, Kamiar Aminian, and Sabato Mel-
lone. Mobile health applications to promote active and healthy ageing. Sen-
sors (Switzerland), 17(3):1–13, 2017.

[40] Marie Chan, Daniel Estève, Jean Yves Fourniols, Christophe Escriba, and
Eric Campo. Smart wearable systems: Current status and future challenges.
Artificial Intelligence in Medicine, 56(3):137–156, 2012.

[41] S. Singhal and S. Carlton. The era of exponential improvement in health-
care? McKinsey & Company Review, May, 2019.

[42] Dereli E.E. and Yaliman A. Comparison of the effects of a physiotherapist-
supervised exercise programme and a self-supervised exercise programme
on quality of life in patients with Parkinson’s disease. Clinical rehabilita-
tion, 24(4):352–362, 2010.

[43] C. M. Woodard and M. J. Berry. Enhancing adherence to prescribed ex-
ercise: Structured behavioral interventions in clinical exercise programs.
Journal of Cardiopulmonary Rehabilitation, 21(4):201–209, 2001.

[44] Agnes Zijlstra, Martina Mancini, Lorenzo Chiari, and Wiebren Zijlstra.
Biofeedback for training balance and mobility tasks in older populations:
A systematic review. Journal of NeuroEngineering and Rehabilitation,
7(1):1–15, 2010.



72 BIBLIOGRAPHY

[45] Aseel Berglund, Erik Berglund, Fabio Siliberto, and Erik Prytz. Effects
of reactive and strategic game mechanics in motion-based games. 2017
IEEE 5th International Conference on Serious Games and Applications for
Health, SeGAH 2017, 2017.

[46] Sruti Subramanian, Yngve Dahl, Nina Skjaret Maroni, Beatrix Vereijken,
and Dag Svanas. Twelve Ways to Reach for a Star: Player Movement Strate-
gies in a Whole-Body Exergame. 2019 IEEE 7th International Conference
on Serious Games and Applications for Health, SeGAH 2019, (August),
2019.

[47] Qicheng Ding, Ian H. Stevenson, Ninghua Wang, Wei Li, Yao Sun, Qining
Wang, Konrad Kording, and Kunlin Wei. Motion games improve balance
control in stroke survivors: A preliminary study based on the principle of
constraint-induced movement therapy. Displays, 34(2):125–131, 4 2013.

[48] R. A. Geiger, J. B. Allen, J. O’Keefe, and R. R. Hicks. Balance and mobility
following stroke: Effects of physical therapy interventions with and without
biofeedback/forceplate training. Physical Therapy, 81(4):995–1005, 2001.

[49] Vassilia Hatzitaki, Ioannis G. Amiridis, Thomas Nikodelis, and Styliani
Spiliopoulou. Direction-Induced Effects of Visually Guided Weight-
Shifting Training on Standing Balance in the Elderly. Gerontology,
55(2):145–152, 3 2009.

[50] Deepesh Kumar, Nirvik Sinha, Anirban Dutta, and Uttama Lahiri. Virtual
reality-based balance training system augmented with operant conditioning
paradigm. BioMedical Engineering OnLine 2019 18:1, 18(1):1–23, 8 2019.

[51] Julia M. Leach, Martina Mancini, Robert J. Peterka, Tamara L. Hayes,
and Fay B. Horak. Validating and calibrating the Nintendo Wii balance
board to derive reliable center of pressure measures. Sensors (Switzerland),
14(10):18244–18267, 9 2014.

[52] Ross A. Clark, Adam L. Bryant, Yonghao Pua, Paul McCrory, Kim Bennell,
and Michael Hunt. Validity and reliability of the Nintendo Wii Balance
Board for assessment of standing balance. Gait and Posture, 31(3):307–
310, 3 2010.

[53] Harrison L. Bartlett, Lena H. Ting, and Jeffrey T. Bingham. Accuracy of
force and center of pressure measures of the Wii Balance Board. Gait and
Posture, 39(1):224–228, 1 2014.



BIBLIOGRAPHY 73

[54] Kelly J. Bower, Ross A. Clark, Jennifer L. McGinley, Clarissa L. Martin,
and Kimberly J. Miller. Clinical feasibility of the Nintendo Wii™ for bal-
ance training post-stroke: A phase II randomized controlled trial in an inpa-
tient setting. Clinical Rehabilitation, 28(9):912–923, 2014.

[55] Tom M. Mitchell. Machine Learning. McGraw Hill, 1997.

[56] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An
Introduction to Statistical Learning, volume 103 of Springer Texts in Statis-
tics. Springer New York, New York, NY, 2013.

[57] Xindong Wu, Xingquan Zhu, Gong Qing Wu, and Wei Ding. Data mining
with big data. IEEE Transactions on Knowledge and Data Engineering,
26(1):97–107, 1 2014.

[58] Stephen Marshland. Machine Learning - An Algorithmic Perspective. Tay-
lor {\&} Francis Group, 2nd edition, 2015.

[59] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016.

[60] Jackie Ayoub, Feng Zhou, Shan Bao, and X. Jessie Yang. From Manual
Driving to Automated Driving. In AutomotiveUI’19, pages 70–90, 2019.

[61] Manohar Mishra, Janmenjoy Nayak, Bighnaraj Naik, and Ajith Abraham.
Deep learning in electrical utility industry: A comprehensive review of
a decade of research. Engineering Applications of Artificial Intelligence,
96(August):104000, 2020.

[62] Sayyeda Saadia Razvi, Shaw Feng, Anantha Narayanan, Yung Tsun Tina
Lee, and Paul Witherell. A review of machine learning applications in ad-
ditive manufacturing. Proceedings of the ASME Design Engineering Tech-
nical Conference, 1:1–10, 2019.

[63] Tahereh Pourhabibi, Kok Leong Ong, Booi H. Kam, and Yee Ling Boo.
Fraud detection: A systematic literature review of graph-based anomaly
detection approaches. Decision Support Systems, 133(April):113303, 2020.

[64] Jian Wang, Hengde Zhu, Shui Hua Wang, and Yu Dong Zhang. A Review
of Deep Learning on Medical Image Analysis. Mobile Networks and Appli-
cations, 26(1):351–380, 2021.

[65] Nathan LaPierre, Chelsea J.T. Ju, Guangyu Zhou, and Wei Wang.
MetaPheno: A critical evaluation of deep learning and machine learning
in metagenome-based disease prediction. Methods, 166(February):74–82,
2019.



74 BIBLIOGRAPHY

[66] Cao Xiao, Edward Choi, and Jimeng Sun. Opportunities and challenges
in developing deep learning models using electronic health records data: A
systematic review. Journal of the American Medical Informatics Associa-
tion, 25(10):1419–1428, 2018.

[67] Yucheng Chen, Yingli Tian, and Mingyi He. Monocular human pose esti-
mation: A survey of deep learning-based methods. Computer Vision and
Image Understanding, 192(January):102897, 2020.

[68] Rafael Caldas, Tariq Fadel, Fernando Buarque, and Bernd Markert. Adap-
tive predictive systems applied to gait analysis: A systematic review. Gait
and Posture, 77(January):75–82, 2020.

[69] Delaram Jarchi, James Pope, Tracey K.M. Lee, Larisa Tamjidi, Amirho-
sein Mirzaei, and Saeid Sanei. A Review on Accelerometry-Based Gait
Analysis and Emerging Clinical Applications. IEEE Reviews in Biomedical
Engineering, 11:177–194, 2018.
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Abstract: Using standard digital cameras in combination with deep learning (DL) for pose estimation
is promising for the in-home and independent use of exercise games (exergames). We need to
investigate to what extent such DL-based systems can provide satisfying accuracy on exergame
relevant measures. Our study assesses temporal variation (i.e., variability) in body segment lengths,
while using a Deep Learning image processing tool (DeepLabCut, DLC) on two-dimensional (2D)
video. This variability is then compared with a gold-standard, marker-based three-dimensional
Motion Capturing system (3DMoCap, Qualisys AB), and a 3D RGB-depth camera system (Kinect
V2, Microsoft Inc). Simultaneous data were collected from all three systems, while participants
(N = 12) played a custom balance training exergame. The pose estimation DLC-model is pre-trained
on a large-scale dataset (ImageNet) and optimized with context-specific pose annotated images.
Wilcoxon’s signed-rank test was performed in order to assess the statistical significance of the
differences in variability between systems. The results showed that the DLC method performs
comparably to the Kinect and, in some segments, even to the 3DMoCap gold standard system with
regard to variability. These results are promising for making exergames more accessible and easier to
use, thereby increasing their availability for in-home exercise.

Keywords: motion capture; image analysis; markerless motion capture; exergaming; segment lengths;
kinect; deep learning; human movement

1. Introduction

The proportion of older adults that are in need of guided physical exercise is expected to increase
due to the coming demographic change. There is a need to develop technological tools that can aid and
relieve clinicians in this effort [1,2]. In recent years, exercise gaming (exergaming) has emerged as a
viable alternative, or addition, to traditional exercise. Exergames are designed to make the player move
in a specific manner to train a specific function, such as stepping, sideways leaning, or moving their
arms over their head. Typically, the person playing controls the game by moving their body: the game
system captures their movements and uses this as input to control the game [3]. Exergames have also
been shown to be more motivating and fun than traditional exercise [4,5], and they could potentially
be used to provide quality, high-volume exercise guidance without having a physical therapist present
to supervise [6,7].
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Finding a motion capture tool that is suitable for this context is one of the areas in exergaming that
is most challenging. If an older adult is going to use an exergame system, it needs to be user friendly,
i.e., easy to understand and use efficiently, while providing input to the game that reliably represents
the persons’ movements. The latter is a prerequisite for the exergame system being useful in a serious
setting: accurate and reliable capture of a person’s movement is needed in order to ensure that the game
is rewarding the player for correctly performed exercise movements and suggesting improvements to
less-correctly performed movement patterns. This can facilitate good quality in performed movement
patterns and increased motivation for exercise by providing appropriate rewards [8].

In this study, we investigate performance of a DL-based motion capture system by assessing
the systems’ temporal variation (i.e., variability) in estimating body segment lengths as compared to
the gold standard 3DMoCap system. In the remaining of this section, we describe the three relevant
systems and the rationale of segment length variation as an exergame relevant measure.

In kinematic analysis in settings, such as in exergaming, the movement patterns of body segments
are used as input to the game. Therefore, segment lengths are important to keep relatively constant to
avoid erroneous representation of the player in the game. Segment lengths are also vital in scaling
biomechanical models to the person being measured [9], and segment definitions affect the kinematic
analysis of movement [10,11]. The most accurate tools, i.e., the gold standard for measuring human
movement, are marker-based 3D motion capture systems (3DMoCap). These systems are expensive, in
terms of cost, time, and knowledge required to use them, and they are, as such, infeasible to use in a
person’s home.

One of the most popular tools for motion capture in exergaming is the Kinect (Microsoft Inc,
Redmond WA, USA), a multiple-camera device while using RGB and depth (RGB-D) information in
combination with machine learning-based (ML) analysis to detect human body parts and estimate
three-dimensional (3D) joint positions of people, detected within the camera field of view [12]. In some
contexts, Kinect cameras are useful, as they provide joint center position data directly with no need for
additional processing of the depth or image data, as seen in, e.g., [13]. Kinect-based games vary in the
gestures and movements that they elicit from the player. However, as there are many games that are
designed for older adults, movements that challenge balance and posture control are common, as seen
in [3]. Even though the joint center positions are not as accurately defined as in a 3DMoCap system [14],
Kinect cameras have been shown to provide data that are sufficiently valid and reliable for some
exergaming purposes [15,16]. However, we must be conscious of temporal variability in distal joints,
such as wrists, elbows, knees, and ankles [17–19] when using Kinect-based systems for exergaming
purposes. Additionally, even though Kinect cameras are more accessible than 3DMoCap systems,
this still is an extra device that needs to be acquired and correctly set up before having access to
exergames. This could be a potential barrier of use and it could be circumvented by utilizing standard
digital cameras available in most homes today, such as smartphones, web cameras, and tablets.

Using standard digital video in motion capture has received increased attention in recent years,
due to advances in DL-based image processing techniques. Frameworks, such as OpenPose [20],
DeeperCut [21], and EfficientPose [22], provide kinematic information by extracting joint positions
from video. DeepLabCut (DLC, [23]) is another interesting DL-based system that could potentially be
used for pose estimation in humans. This has previously been used to reliably track points of interest
on animals and insects in standard video and it could potentially be used to acquire human motion
data during exergaming. One interesting feature of this framework is that it was shown to require a
relatively low number of training samples in order to accurately predict joint center locations in unseen
videos [23]. This is achieved by using transfer learning, which specializes the network to the specific
context at hand. As noted in [24], using context-specific training data can optimize the pose estimation
model, which might improve performance. This can potentially provide exergame users with a tool
that performs with high accuracy in specialized settings, where the reliability of the exergame is
vital in ensuring proper feedback and guidance. The framework is available through an open source,
easy to use toolbox (github.com/deeplabcut/deeplabcut). Athough the above mentioned DL methods
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for pose estimation and joint tracking are evaluated for accuracy by comparing the estimated joint
locations to the human pre-labelled training data, the tracking accuracy is rarely compared to a gold
standard 3DMoCap system. This might be sufficient for their respective contexts, but, if we are to use
such systems in settings such as exergaming in rehabilitation, where accuracy and stability in motion
tracking are vital, we need to know how these systems perform when compared to the gold standard.
Despite the potential of using standard digital video for motion tracking for exergaming, comparisons
of a DL system, such as DLC to gold standard motion capture systems, has not yet been extensively
investigated with regard to exergame relevant measures, such as variability of for example segment
lengths. To our knowledge, the current study is the first to compare DLC to a 3DMoCap system and a
Kinect camera system in terms of variability in segment lengths.

It is crucial for the further development and implementation of exergames to develop markerless
motion capture systems that are easy to use and reliable to ensure proper feedback and guidance
to the users during exergaming. In order to contribute to this goal, this study aims at comparing
a transfer learning-based pose estimation model (DLC) to the Kinect system and a gold-standard
3DMoCap system.

The remainder of this paper is structured as follows: the methods and materials are found in
Section 2. Section 3 details our results, and the discussion is found in Section 4.

2. Materials and Methods

2.1. Participants

We recruited healthy older adults from a local exercise group for seniors in Trondheim Norway.
The inclusion criteria were age >65 years and the absence of physical or cognitive impairments or
conditions that affected balance or gait ability. There were 12 participants in total (10F); the average
age was 70.4 years (SD 11.4, range 54–92). The average height and weight were 172.3 (±11.4) cm and
70.4 (±12.1) kg, respectively. The exclusion criteria were physical or cognitive injuries/impairments
that affected their balance or gait ability, and age <50 or age >80 years. The participants were given
oral and written information regarding the study and gave their written consent, and the Norwegian
Center for Research Data approved the study (reference number 736906). The participants attended
one session each, and all completed the data collection without incident. The participants wore t-shorts
and shorts of different types, colors, and fabrics, and some wore shorts and/or a sports bra.

2.2. Protocol

2.2.1. The Exergame

As medio-lateral weight-shifting movements are paramount in prevention of loss of balance
function in older adults [25], and they are often used in Kinect-based games [26], a custom
weight-shifting exergame was developed for the purpose of this study. The exergame was designed in
order to elicit medio-lateral weight shifts from the participants: On the screen, an avatar in a rail cart
was controlled by the participant, as seen in Figure 1A. If the participant leaned to one side the rail cart
also tilted to the same side, allowing it to hit coins along the rail track as the cart moved down the
track (Figure 1B).
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(A) Start of game (B) Cart lateral movement
Figure 1. Screenshots from the game. (A) shows the start of the game, and (B) shows the cart leaning
sideways with the movements of the player to hit coins along the track.

2.2.2. Equipment

As input to control the game, a Kinect (v2, 30 Hz, Microsoft Inc., Redmond, WA, USA) camera
system was used in order to track player movements. Participants’ movements were simultaneously
measured while using 36 reflective markers placed according to the Plug-in-Gait Full-Body marker
placement guide (PiG-FB, [27]) and a 3DMoCap system (90 Hz, Qualisys AB, Gothenburg, Sweden)
consisting of four MX400 cameras, and a normal digital camera (30 Hz, 1400 × 720 px, GoPro Hero
Black 3+, GoPro Inc., San Mateo, CA, USA) positioned 200 cm behind the center of the starting position
of the participants. The participants’ height, weight, and age was also recorded. Figure 2 depicts
a schematic of the experimental setup. The participants were standing on a 160 × 60 × 5 cm game
platform while playing, where they had one force plate (Kistler Group, Winterthur, Switzerland) under
each foot. Measurements from this equipment were not used in the current study.

Figure 2. Experimental setup.

2.3. Processing and Analysis

Processing was conducted while using Python (v 3.7), and statistical analyses were performed
while using SPSS Statistics (v. 26, IBM Corp, Armonk, New York, NY, USA).
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2.3.1. Dataset

The current dataset consists of data from participants leaning from side to side to control the
exergame. Each participant played six trials of the game, with each trial lasting for around five minutes.
There is 3DMoCap data from 11 participants, DLC data from 12 participants, and Kinect data from
12 participants. In some participants (4, 8, 9, 10), the field of view of the GoPro camera resulted in
ankles not being visible in the video. The ankle joints from these participants were excluded from
analysis by the DLC system. 3DMoCap data from one participant (2) was corrupted and it was not
included in the analysis.

2.3.2. Preprocesssing of Kinect and 3DMoCap Data

The standard PiG-FB biomechanical model was used in order to extract joint center locations
from 3DMoCap data. Joint center positions (distance to lab-coordinate system origin, mm) from
shoulders, elbows, wrists, hips, knees, and ankles were extracted (Figure 3B). Normally, segment
lengths (i.e., distance between joint center locations) are calibrated by the PiG-FB biomechanical model
at the beginning of a trial and kept constant throughout the data capture. In this study, however,
variability of segment lengths during the trial are of particular interest and will be used instead of the
constant segment length calculated from the PiG-FB biomechanical model. For Kinect camera data,
joint positions of shoulder, elbow, wrist, hip, knee, and ankle joints in the X and Y-axis (relative to
the coordinate system origin within the camera itself) of the camera were extracted from the Kinect
skeletal model (Figure 3C) using Kinect Studio (v. 2.0.14, Microsoft Inc) and the Kinect2Toolbox [28].
Because the data from Kinect were originally reported in meters, they was converted to millimeters to
be comparable to DLC and 3DMoCap data.

Figure 3. Joint centers as defined by the three motion capture systems (not to scale). (A) = DeepLabCut,
(B) = 3DMoCap, (C) = Kinect.

2.3.3. Preprocessing of DeepLabCut Data

The DLC framework is based on a feature detector method from one of the state-of-the-art human
pose estimation frameworks, DeeperCut [21]. This employs a variant of ResNet that was pre-trained
on the ImageNet [29] database. Semantic segmentation of images containing body parts is performed
on all frames of the video data, and deconvolutional layers are used in order to up-sample the images
after convolution and, thus, ensure sufficient spatial resolution for body part detection. Instead of
the classification output layer of the CNN, score maps for the predictions of a body part in an image
is produced. These spatial probability densities are then fine-tuned for each body part while using
labelled images.
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Digital video data were analyzed while using the DLC implementation software DeepLabCut
(DLC, github.com/DeepLabCut/DeepLabCut). Joint center locations of shoulders, elbows, wrists,
hips, knees, and ankles (Figure 3A) were manually applied to three images from two videos from each
participant by an experienced human movement scientist, totaling 194 labelled images. This is in line
with recommendations in [23]. These joint center locations in images were then used as training data
for the neural network (ResNet101). The train/test split was set to 95/5. The DLC was trained for
220,000 iterations, with loss plateauing at 0.0012 at a p-cutoff of 0.01. After training, all of the videos
were analyzed by the DLC, and the predicted joint center pixel locations were extracted. The DLC was
then evaluated on the 5 % left out data to assess whether overfitting had occurred. To convert video
pixel data to mm, the distance between shoulder joint centers were extracted from 3DMoCap data and
then used as a reference to calculate pixel size. One pixel was found to be approx. 3.5 mm: the DLC
pixel data was converted to mm by multiplying the pixel information with 3.5.

2.3.4. Calculation of Segment Lengths and Variability

Segment lengths of shoulders, left and right upper arms, left and right lower arms, left and
right torso sides, pelvis, left and right thighs, and left and right shanks were found by calculating
the Euclidean distance between the joint centers for each joint set for each participant (Figure 4).
Data points that were outside of mean ±3 standard deviations (SD) were considered to be outliers and
removed from the dataset.

Figure 4. Joint locations, axes directions, and segment length definitions extracted from all three motion
capture systems.

2.3.5. Statistical Analysis

The 3DMoCap, Kinect, and DLC segment length variability were assessed by analyzing the
Euclidean distance between joints in each time frame for each of the camera systems. To represent
variability in these distances, standard deviation and coefficient of variation (coeffVar; dispersion
of data around the mean) was employed. The Shapiro–Wilks test for normality gave a p < 0.05
for all segment lengths, which revealed that the data were not normally distributed. Therefore,
the non-parametric Friedman test was conducted to assess statistical differences in segment length
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variability between the three systems. Subsequently, a post hoc analysis was conducted on the
statistically significant differences from the Friedman test in order to extract which between-system
differences were statistically significant. The post hoc analysis was conducted by using Wilcoxon’s
signed-rank test with a Bonferroni correction, resulting in α = 0.017.

3. Results

Table 1 shows the results from the mean segment lengths from each motion capture system.
Table 2 shows the mean SD of segment lengths from each motion capture system. The results from
the Friedman analyses of statistically significant difference can be found in Table 3. In Figure 5,
a comparison of the variability of the segment length over 1000 frames of the shoulder and shank
segments can be found. Figure 6 shows the results from the post hoc-test, as well as the median and
IQR values as box plots.

Table 1. Mean segment lengths (mm (1SD)). L = left, R = Right. N = data from number of participants.
3DMoCap = 3D motion capture system, DLC = DeepLabCut

Segment Side 3DMoCap DLC Kinect

N N N

Shoulders 11 328.8 (23.5) 12 308.8 (25.5) 12 330.9 (20.2)

Upper arm L 11 269.5 (19.1) 12 351.0 (20.5) 12 269.8 (15.9)
R 11 279.5 (22.6) 12 357.8 (23.2) 12 267.1 (13.2)

Lower arm L 11 228.5 (20.4) 12 228.7 (16.6) 12 235.8 (13.3)
R 11 225.1 (12.8) 12 231.9 (16.1) 12 235.3 (14.8)

Torso L 11 444.7 (27.8) 12 568.5 (33.7) 12 503.8 (27.4)
R 11 439.9 (25.9) 12 566.1 (38.3) 12 497.9 (27.6)

Pelvis 11 148.6 (5.6) 12 280.6 (28.5) 12 154.8 (9.5)

Thigh L 11 409.0 (33.2) 12 405.9 (21.9) 12 373.8 (26.1)
R 11 410.6 (33.0) 12 411.9 (27.1) 12 372.5 (29.4)

Shank L 11 404.9 (23.4) 8 415.2 (34.0) 12 378.8 (29.0)
R 11 402.8 (22.4) 8 414.4 (33.5) 12 374.3 (27.3)

Table 2. Mean standard deviation (mm, (coefficient of variation)) of segment lengths. L = left, R = Right.
N = data from number of participants. 3DMoCap = 3D motion capture system, DLC = DeepLabCut.
Light green = lowest mean SD within system; light red = highest SD within system. Bright
green = overall lowest mean SD; bright red = overall highest mean SD.

Segment Side 3DMoCap DLC Kinect

N N N

Shoulders 11 9.1 (0.02) 12 16.6 (0.04) 12 17.3 (0.05)

Upper arm L 11 7.4 (0.03) 12 11.7 (0.04) 12 15.1 (0.05)

R 11 7.3 (0.02) 12 13.0 (0.04) 12 15.2 (0.06)

Lower arm L 11 9.6 (0.04) 12 14.4 (0.08) 12 13.7 (0.06)

R 11 10.2 (0.04) 12 20.4 (0.08) 12 13.3 (0.05)

Torso L 11 15.9 (0.03) 12 22.5 (0.04) 12 12.8 (0.02)

R 11 15.7 (0.09) 12 22.5 (0.03) 12 13.1 (0.02)

Pelvis 11 2.8 (0.01) 12 7.3 (0.04) 12 6.1 (0.03)

Thigh L 11 8.3 (0.02) 12 16.4 (0.03) 12 25.5 (0.06)

R 11 8.7 (0.02) 12 20.5 (0.04) 12 23.1 (0.06)

Shank L 11 8.6 (0.02) 8 14.5 (0.02) 12 21.1 (0.05)

R 11 8.6 (0.02) 8 13.6 (0.02) 12 20.5 (0.05)
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Table 3. Chi-square (X2), p-value, and mean ranks from the Friedman test of statistical difference
between mean segment length standard deviation. Df = degrees of freedom. L = left, R = Right.
3DMoCap = 3D motion capture system, DLC = DeepLabCut.

Segment Side Mean Rank

X2(df) p 3DMoCap DLC Kinect

Upper arm L 3.8 (2) 0.148 1.55 2.09 2.36
R 8.7 (2) 0.023 1.27 2.36 2.36

Lower arm L 11.6 (2) 0.003 1.27 2.73 2.0
R 7.81 (2) 0.020 1.45 2.64 1.91

Shoulders 11.1 (2) 0.004 1.18 2.45 2.36

Torso L 5.6 (2) 0.060 1.91 2.55 1.55
R 5.5 (2) 0.103 2.00 2.45 1.55

Pelvis 20.2 (2) 0.000 1.09 3.00 1.91

Thigh L 16.5 (2) 0.000 1.18 1.91 2.91
R 16.9 (2) 0.000 1.0 2.36 2.64

Shank L 4.6 (2) 0.102 1.43 2.00 2.57
R 8.9 (2) 0.012 1.14 2.14 2.71

3.1. Mean Lengths

Representative examples shown in Figure 5 depict temporal segment length variabilities in the
three different motion capture systems. These are examples of the variability seen in segment lengths
of the shoulder (Panel 5a) and right shank (Panel 5b) during 1000 frames, which corresponds to 33.3 s.
The mean length of the shoulder segment that is seen in Figure 5A is approx. 344 mm, as measured by
the 3DMoCap system with a range of approx. 15 mm. The DLC has a shorter segment (304 mm) with
slightly higher variability (range 35 mm) when compared to the 3DMoCap system. The Kinect system
starts with about the same segment length as the 3DMoCap system (333 mm), but shows increasing
variability throughout the trial with a range of 88 mm. Differences in the average segment lengths
are most likely due to different definitions of where the joint centers are located, as seen in Figure 3.
The right shank segment (Figure 5B) shows similar results: the 3DMoCap system and the DLC measure
similarly in mean shank length, at 393 mm and 398 mm, respectively, but the DLC has a larger range
of 33 mm as compared to 15 in the 3DMoCap system. The Kinect system has a lower shank length,
averaging at about 345 mm, and the variability is higher throughout the trial, with a range of 86 mm.

(A) Shoulders (B) Right shank
Figure 5. Comparison of variations in temporal segment lengths of the shoulder (A) and right shank (B).
Image recording frequency 30 Hz.

The mean segment lengths calculated from all data for all participants vary between the three motion
capture systems, as shown in Table 1. This reflects the different biomechanical models mentioned earlier,
although some segments are defined similarly and have similar lengths. Furthermore, the pelvis
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lengths show that, even though the Kinect system typically defines the hip joints more superior,
or towards the head, as compared to the 3DMoCap system [14], the size of the segment is similar
between the two systems. An example of this is the shoulder segment, where the difference between
the Kinect and the 3DMoCap system is <2.5 mm, and approximately 20 mm between the DLC and the
3DMoCap. The Kinect system also seems to underestimate lower body segment lengths compared to
3DMoCap, while the DLC shows similar segment lengths here.

3.2. Segment Length Variability

Table 2 shows the variability of all systems for all segment lengths. This shows that the overall
highest mean SD was 25.5 mm (Kinect, left thigh) and the overall lowest mean SD was 2.8 mm
(3DMoCap, pelvis). The average of all mean SDs was 9.4 mm (SD 3.6) in the 3DMoCap system,
16.1 (SD 4.5) in the DLC system, and 16.4 mm (SD 5.1) in the Kinect system. The table also shows that
the coeffVar was generally low, further indicating low variability in all three systems.

3.2.1. Upper and Lower Arm

Figure 6A, B, shows arm segment variability, where panel A shows the upper arm and panel B
shows the lower arm.

(A) Upper Arms (B) Lower Arms

(C) Torso (D) Shoulders and pelvis

(E) Thighs (F) Shanks

Figure 6. Box plots of variation of standard deviations of upper arms (A), lower arms (B), torso (C),
shoulders and pelvis (D), thighs (E), and shanks (F) for the left and right side of the body. 3DMoCap =
3D motion capture system, DLC = DeepLabCut. Dotted lines signify p > 0.017, solid lines p < 0.017
from Wilcoxons Signed Rank test.
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In the left upper arm (Panel A), the difference in SD between DLC (median 10.6 mm, IQR 8.2 to
14.0), and Kinect (median 14.8 mm, 7.5 to 19.2) is not statistically significant. The Kinect and the DLC
system both had a higher SD than the 3DMoCap system (median 6.7 mm, IQR 5.9 to 8.2), but this was
not statistically significant. In the right upper arm, the only difference in mean SD that is not statistically
significant is between DLC (median 13.0 mm, IQR 10.3 to 14.8) and Kinect (median 15.0 mm, IQR 7.5 to
21.8), and both show statistically significant higher SD as compared to the 3DMoCap (median 6.7 mm,
IQR 4.9 to 8.5).

In the left lower arm (Panel B), Kinect (median 12.7 mm, IQR 8.5 to 18.2) variability was not
statistically different from the 3DMoCap (median 9.3 mm, IQR 4.8 to 11.9). However, the DLC (median
16.8 mm, IQR 12.0 to 21.7) showed statistically significant higher variability than the 3DMoCap and the
Kinect. In the right lower arm, the DLC (median 21.5 mm, IQR 11.1 to 24.0) had statistically significant
higher variability than 3DMoCap (median 10.0 mm, IQR 8.0 to 12.3), but not to the Kinect (median
12.2 mm, IQR 8.3 to 16.3).

3.2.2. Torso and Shoulders

Panel C shows the median SD difference between the systems in the torso (left and right side).
Here, the difference in mean SD was non-significant between any of the systems on neither the left
(3DMoCap median 16.0 mm (IQR 11.4 to 18.3), Kinect median 12.4 mm (IQR 7.6 to 17.1) DLC median
18.0 mm (IQR 13.4 to 28.2)) nor the right side (3DMoCap median 16.3 mm (IQR 9.6 to 20.4), Kinect
median 13.0 mm (7.2 to 18.6) DLC median 21.5 mm (IQR 16.4 to 26.6)). In the shoulder segment (Panel
D) the difference between DLC (median 17.5 mm, IQR 8.8 to 23.0) and Kinect (median mm 18.7, IQR
13.2 to 18.9) is also non-significant. The median SD for the 3DMoCap shoulder segment was 8.7 mm
(IQR 3.8 to 14.6).

3.2.3. Pelvis

The pelvis segment SD (Panel D) difference was not statistically significant between the DLC
(median 11.1 mm (IQR 9.4 to 21.0)) and Kinect (median 6.0 mm (IQR 4.2 to 8.0). The difference between
the Kinect and 3DMoCap (median 2.1 mm, IQR 1.1 to 3.8) was not statistically significant.

3.2.4. Thigh and Shanks

In panel E, the results for mean SD difference between the systems in the thigh segments are
presented. These show that differences between systems are statistically significant on both the left
and right thighs, except for DLC as compared to Kinect on the right side. The median SD of the thigh
segment in 3DMoCap was 8.1 mm (IQR 7.6 to 9.9) and 9.1 mm (IQR 6.4 to 9.9) on the left and right
side, respectively, while the median SD of DLC was 13.7 mm (IQR 10.5 to 23.1) and 17.0 mm (IQR 12.5
to 28.4), for the left and right side, respectively. The thigh median SD was the highest in the Kinect,
with 25.9 mm (IQR 23.7 to 27.1) and 22.3 mm (IQR 18.9 to 15.8) on the left and right side, respectively.

On the left side, there are non-significant differences between 3DMoCap (median 7.0 mm, IQR 6.0
to 9.7) and DLC (median 9.5 mm, IQR 7.0 to 25.4), between DLC and Kinect (median 18.1 mm, IQR
15.1 to 21.9) and between 3DMoCap and Kinect, as seen in the results of shank segment variability
(Panel F). On the right side, the difference between DLC (median 14.2 mm, IQR 9.5 to 19.1) and Kinect
(median 19.1 mm, IQR 14.3 to 21.3) is not statistically significant, but the Kinect has a significantly
higher mean SD than 3DMoCap (median 6.6 mm, IQR 5.0 to 8.9). The difference between DLC and
3DMoCap is not statistically significant.

4. Discussion

In this paper, we compared the DLC image analysis system to a Kinect system and a gold standard
3D motion capture system by studying the variability in segment lengths. Overall, the DLC method
and Kinect system showed slightly higher variability than the 3DMoCap system, but this was not
statistically significant for all of the comparisons. The highest mean SD found (25.5 in left thigh from
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Kinect, Table 2) shows that the systems generally perform with acceptable variability, even in the worst
performing segment.

Our analyses show that the DLC variability difference is not statistically significant from the gold
standard 3DMoCap system in several segments, namely left upper arm, left and right torso, and left
and right shank. The Kinect variability is not statistically significantly different from the gold standard
3DMoCap system in the left upper arm, left and right lower arm, left and right torso, pelvis, and left
shank. The difference in variability between the DLC and the Kinect is not statistically significant in
the left and right upper arms, the left lower arm, left and right torso, shoulders, pelvis, right thigh,
and left and right shanks.

4.1. Implications

The low variability of the DLC in predicting shank joint centers is promising for applying it in
balance training settings while using weight-shifting movements, where stability in foot tracking
is essential. This also applies to stepping exercises, which also constitute an important part of
recommended exercises for older adults [30].

In the upper arms, the DLC and the Kinect systems both show slightly higher variability than
the 3DMoCap system in the right arm. The Kinect showed highest variability, but this difference was
not statistically significant when compared to the 3DMoCap. Reaching and leaning are often used in
exercise for postural control and balance in older adults [31], and these results show that it might be
feasible to use DLC in exergames that aim at eliciting such movements from players. The results from
the shoulder segment also support this; even though the variability was highest in the DLC system,
it was comparable to the Kinect.

Even though the hip joint centers often are difficult to track for marker-less models [32], our results
show that the pelvis is tracked with a stability that is comparable to the 3DMoCap by both the Kinect
and the DLC systems. This is also the case in the torso segments. They are able to reliably track the
pelvis and torso segments is important in many exergames, as these often provide the base segments
for assessing balance movements [33].

The thigh segment variability differences were statistically significant between all systems in
both the left and right segment, except for the DLC as compared to Kinect in the right thigh. Here,
the Kinect showed the highest median variability of all segments, while the DLC showed high IQR.
The use of DLC in balance training for older adults is still feasible, as the variability is only slightly
higher than in the 3DMoCap system. However, this needs to be taken into consideration by developers
and clinicians who aim at introducing DL-based motion tracking into exergames for balance training,
as there is some uncertainty of stability in the lengths of these segments.

4.2. Related Work

Our results are in line with previous studies on the validity of the Kinect system [14,15,17,18,34,35].
The Kinect generally performs with some difference to the gold standard 3DMoCap system, but within
acceptable ranges in the contexts studied. We can compare our results to these studies, as pose
estimation from (monocular) image data using other DL-based methods is an adjacent field of
research. There are several methods utilizing ResNets in order to predict joint positions, as shown in
Chen et al. [36]. These typically achieve Mean Per Joint Position Error (MPJPE, mm) of 48–108, which
is comparable to our results of mean SD. Other DL methods achieve varying MPJPE [36], which ranges
from 130 to 40, where the latter was achieved by Sun et al. [37] while using a volumetric representation
of 3D pose by heat maps and joint regression. Furthermore, Arnab et al. [38] and Mehta et al. [39]
developed models that were able to reach MPJPE of 54.3 mm and 63.6 mm, respectively, when testing
on the Human3.6M dataset [40]. Despite the importance of knowing the temporal variability that a
human pose estimation system has, there is limited research on the variability of segment lengths. It is
reported in e.g., [18], where thigh, shank, upper, and lower arm variability was found to be higher in
the Kinect when compared to the 3DMoCap system. Moreover, a similar study to ours was conducted
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by Nakano et al [41], where the results of using a variant of the OpenPose model showed a mean
absolute error (MAE) of joint positions ranging from <5 mm to >40 mm when compared to 3DMoCap.
Note that this study used five synchronized cameras for 3D OpenPose joint tracking and did not
directly report variability. To our knowledge, this study is the first to evaluate the DLC system on
variability in human pose estimation as compared to Kinect and 3DMoCap.

4.3. Further Considerations and Future Directions

Being aware of the potential positive and negative sides of different motion capture systems is
vital when assessing whether a system is suitable for use in a given situation. Different measurement
techniques can inherently influence data quality. Even though 3DMoCap is considered to be the
gold standard for accuracy, it is prone to marker placement errors, soft issue artifacts, and marker
occlusion [42,43]. Kinect based systems, or specifically the Kinect joint location algorithm, can have
poor joint tracking in situations where a body part is not visible to the camera, unusual poses,
or interaction with objects [18]. Previous research has extensively documented these weaknesses
in both 3DMoCap and Kinect systems. However, because the DL-based systems in motion capture
settings are still in their infancy, they have not yet undergone the scrutiny that widespread use gives.
Therefore, the possible limitations and sources of error in DL methods, such as DLC, can be found in the
technical details of how the method works. For instance, some CNN-based methods, such as DLC, are
pre-trained on an enormous dataset (ImageNet, [29]) and then trained on data from specific contexts
(such as in the current study) in the last stage of training. This means that the DLC might already
be biased before it is trained on our context-specific image data, which could impact our results in
unknown ways. Generally, DL models require such large datasets as ImageNet (>14.2 million images)
in order to have sufficient training data for a given classification/estimation problem. However,
the DLC system avoids this issue and it only requires around 200 images to predict joint centers in
context-specific situations. This is possible due to pre-training, i.e., transfer learning, and the use of
spatial probability densities for locating body parts in images (see [21,23] for details). This requirement
of around 200 images is much more feasible to achieve for context-specific motion tracking, and it
can make DL-based analysis within reach for users who do not have access to the normally required
large-scale datasets for their applications.

Because DL models are restricted to learning from the training data that they see, the training
data will significantly influence the outcome of the predictions that they make. In practice, this implies
that, for a DLC system to be usable for any type of person, we need a dataset that represents all types
of person in order to avoid errors that result from a non-representative dataset. This can be both a
practical and an ethical issue in these systems, while being avoided in systems that (semi-)directly
measure the points of interest, such as Kinect and 3DMoCap systems, or by using pre-trained networks.
It is vital to build the knowledge required to introduce new technology into settings where users are
particularly vulnerable, such as patient settings, where efficient time usage is critical for progress in
regaining physical function. Errors or unintended bias in such systems can have consequences that
are detrimental to a persons’ health or quality of life, which is why it is essential to highlight and
discuss these issues in the context of motion capture for the rehabilitation or prevention of loss of
physical function. Even though these issues are important to keep in mind when using DL systems,
there is great potential in using such methods for motion capture in settings that require ease of use
and where other motion capture systems are not feasible to use. An interesting future direction would
be benchmarking DLC on large, variable datasets, and research is underway in order to investigate the
performance of DLC in 3D settings with a larger variety in movement directions and types.

4.4. Limitations

There are some limitations to this study that are important to be aware of. There were only
12 participants, which might limit the generalizability of these results to the elderly population.
Furthermore, the movements performed while playing the balancing exergame were mostly limited to
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the frontal plane of the participants. Other more complex movements might make the prediction of
segment lengths more challenging. This is an important area for future research. The Kinect camera
and the digital video camera were set up in their optimal configuration for capturing motion data from
participants: the Kinect camera was in the anterior view of the frontal plane of participants and the
GoPro in the posterior view of the frontal plane. However, the 3DMoCap system only consisted of four
cameras, which led to missing information in some of the marker trajectories because of the occlusion
of markers in one or more cameras, possibly contributing to the 3DMoCap system not achieving the
performance possible in such systems.

4.5. Conclusions

Overall, these results are encouraging. The aim of introducing novel technological solutions
in exergaming is to improve the cost efficiency and ease of use, thereby making exergaming more
accessible for older adults or patients in the home or at a rehabilitation clinic. This is dependent on
technological solutions that provide sufficient information regarding the person’s movement while
exergaming. Using readily available digital cameras to track movement during exergaming could
provide such a solution, thereby making it possible to use exergames without needing technical
assistance. The results of the current study are the first to show that a DL-based motion capture system
using transfer learning can achieve measurement stability in segment lengths that were comparable
to a popular motion capture camera in exergaming for balance training, and, in some segments,
even comparable to the gold-standard in motion capture.

Although 3DMoCap provides the best possible accuracy, in the trade-off between ease of use
and accessibility versus accuracy, the former is given priority because of the requirements of the
home/older adult context. In other situations, the difference between a DLC and a 3DMoCap might
be considered too large, e.g., in a clinical gait analysis setting. The segment length variability that was
found in this study would impact joint angle measurements, which results in the clinical assessment
of the gait function of the patient potentially being altered. Such contexts will continue to require
high accuracy in order to limit the risk of incorrect data, and marker-based 3DMoCap systems are
therefore still the best option here—for the time being. Continuing research for improving marker-less
systems is an important direction to take because of the potential benefits in resource use, usability,
and flexibility. The results of the current study warrant further investigation into using DLC or similar
systems in more complex movement patterns and other camera positions, and also implementing it in
real-time in exergame settings.
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Assessment of Machine Learning Models for
Classification of Movement Patterns During a

Weight-Shifting Exergame
Elise Klæbo Vonstad , Beatrix Vereijken , Kerstin Bach , Xiaomeng Su , and Jan Harald Nilsen

Abstract—In exercise gaming (exergaming), reward systems are
typically based on rules/templates from joint movement patterns.
These rules or templates need broad ranges in definitions of correct
movement patterns to accommodate varying body shapes and sizes.
This can lead to inaccurate rewards and, thus, inefficient exercise,
which can be detrimental to progress. If exergames are to be
used in serious settings like rehabilitation, accurate rewards for
correctly performed movements are crucial. This article aims to
investigate the level of accuracy machine learning/deep learning
models can achieve in classification of correct repetitions naturally
elicited from a weight-shifting exergame. Twelve healthy elderly
(10F, age 70.4 SD 11.4) are recruited. Movements are captured
using a marker-based 3-D motion-capture system. Random forest
(RF), support vector machine, k-nearest neighbors, and multilayer
perceptron (MLP) are the employed models, trained and tested
on whole body movement patterns and on subsets of joints. MLP
and RF reached the highest recall and F1-score, respectively, when
using combined data from joint subsets. MLP recall range are
91% to 94%, and RF F1-score range 79% to 80%. MLP and RF
also reached the highest recall and F1-score in each joint subset,
respectively. Here, MLP ranged from 93% to 97% recall, while
RF ranged from 73% to 80% F1-score. Recall results, show that
>9 out of 10 repetitions are classified correctly, indicating that
MLP/RF can be used to identify correctly performed repetitions
of a weight-shifting exercise when using full-body data and when
using joint subset data.

Index Terms—Classification, exergaming, machine learning,
movement patterns, movement quality, reward systems, weight-
shifting.

I. INTRODUCTION

W ITH the overall rise in gamification in recent years,
serious games have been employed in a wide variety

of fields, including education [1], professional training [2], [3],
cognitive training [4], and physical exercise (e.g., [5]). Gam-
ification refers to the introduction of elements from gaming,
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such as goals, reward systems, and challenges, into ordinary
tasks to make them more fun and thereby increase motivation
and adherence [6]. An essential element when designing serious
games is how to determine whether the player’s answer or action
is correct and thus should be rewarded in the games. Typically,
serious games predefine correct answers or actions, and track
the performance of players directly using controllers, keyboards,
or smartphones, allowing for relatively straight-forward checks
of correctness. In serious games for exercise (“exergaming”),
the player is interacting with the game using bodily movements
that are captured by cameras or other devices [5]. Movements
are subsequently assessed against predefined decision rules or
thresholds, as seen in e.g., [7], [8], and rewards are given if these
body parts performed as predefined, regardless of the correctness
of the movements of other parts of the body.

As commercial exergames aim at being entertaining and
easy to use, broad ranges and definitions of what is considered
“correct” by the game are necessary to accommodate different
body shapes and sizes. Because of these broad definitions,
players often figure out quickly what the minimum required
behavior is for receiving rewards [9]. When the game rewards
the player even when performing the movements in this manner,
players can easily cheat, or worse, not even know whether they
were performing the movements correctly or incorrectly. For
entertainment purposes, this may well be irrelevant. However,
in the context of regaining or maintaining physical function,
performing the correct movements is essential for effectiveness
and progress [10]. Effective exercise depends on performing the
necessary movements correctly, thus supervised exercise pro-
grams typically report better results than nonsupervised exercise
programs [11].

For older adults, exergaming is regarded as a promising tool
to deliver guided exercise without the presence of therapists or
clinicians. Furthermore, exercise delivered through exergames
has been shown to be more fun and motivating than traditional
exercise [5], [12]. This could help increase adherence and mo-
tivation for exercising in older adults, which is a prerequisite
for mediating the strain the ongoing demographic change will
place on our health care systems [13]. Older adults often have
different requirements for movements during exercise compared
to healthy people, as they might have physical constraints due
to ageing [14]. ColorRules and settings in exergames therefore
need to be adapted to individual constraints and goals, but still
allow for proper form and tempo to progress in training [15]. If

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/
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exergames are to be effective in serious exercise settings such
as rehabilitation, we need game systems that accurately identify
and reward correctly performed movements to ensure efficiency
and progress [16], [17].

One alternative to using broadly defined rules and thresholds
to determine the correctness of a movement is to study the
occurrences of movement patterns with good or poor quality
and build models that embody the features of each of these.
These models can then be used to assess movement quality,
potentially with high accuracy, as the model is trained to recog-
nize features of a correctly performed movement pattern without
being fed predefined rules or thresholds. Recent developments
in machine learning (ML)/deep learning (DL) have made it
possible to efficiently analyze large amounts of data, which is
promising for using high-volume data from whole-body move-
ment patterns. Such models have been used successfully to
recognize different everyday activities like walking, sitting, and
lying down [18], [19], and movement patterns during traditional
exercise (e.g., [20]). However, to the best of our knowledge, it
has yet to be applied to assessment of movement pattern quality
during exergaming.

A. Pilot Study

To study the suitability and potential of applying ML for
our objective, we conducted a pilot study first to investigate
whether ML models can distinguish between similar full-body
movement patterns where some are performed correctly and
others incorrectly [21]. In this pilot study, participants (N =
11, 6 F, mean age 69.3 years, SD 4.0) performed repetitions of
weight-shifting movements where half of the movements were
performed with clear incomplete weight shifts (i.e., incorrectly
performed repetitions), and the other half with clear complete
weight-shifts (i.e., correctly performed repetitions). Participants
were instructed on how to perform the movements to ensure that
the right movement patterns for incorrect and correct repetitions
were recorded. A marker-based 3-D motion capture system
(3DMoCap) was used to track participants’ movements, and
statistical features were calculated for each repetition. Three
different ML models [Random forest (RF), support vector ma-
chine (SVM), and K-nearest neighbor (K-NN)] were trained and
evaluated for classification performance using leave-one-group-
out (LOGO) cross-validation. All three models achieved good
performance (>90% accuracy, [18]). These results encouraged
us to investigate whether ML models can accurately classify
movements that are naturally elicited (i.e., not instructed) from
a balancing exergame. As naturally elicited movements are more
varied, both within and across participants, classification can be
more challenging.

B. Aim of This Article

The present aticle investigates what level of F1-score and
recall four different ML/DL models can achieve in classifying
correctly performed whole-body and joint-subset movement
patterns naturally performed during a balance exergame.

C. Article Organization

This article is organized as follows. Related work is outlined
in Section II. The experimental set-up and data analysis proce-
dures are described in Section III. Section IV presents results
comparing four different ML models in the classification of
movement correctness. Discussion of the results and limitations
of the study are presented in Section V. Conclusion and future
work are presented in Section VI.

II. RELATED WORK

In general, exergaming for older adults is considered a promis-
ing tool for facilitating unsupervised exercise at home or in an
elderly care center (e.g., [4], [22], [23]). Research has shown
that exergames are effective in delivering exercise for several
physical and mental functions, such as balance and postural
control [24], gait [25], upper body movements [12], cognitive
function [26], problem solving [27], and memory [28]. Ex-
ergames are also found to be more motivating and fun than
traditional exercise [9], [29], which is an essential feature that
could facilitate adherence and motivation for exercise [12]. In
addition, the technologies that exergames are based on make it
possible to tailor games to individual needs and goals [30], which
is a major advantage that could make exergaming even more
effective than traditional exercise. Furthermore, to ensure that
exergames are appropriate for older adults, extensive research
has been conducted into the design and usability requirements
for this population, resulting in guidelines and design principles
that apply to exergames for older adults [16], [31].

In recent years, there has been a proliferation of work im-
plementing the (semi)automatic classification and recognition
of actions and activities based on multimodal data recorded
from human movement [18]. Although research on movement
classification, as shown in [18], is an adjacent field of research,
these models only focus on identifying what movement has been
performed, not the quality of the movement (e.g. how well the
movement was performed). We are particularly interested in
assessing the quality of movement and will therefore focus pri-
marily on related work that sheds light on evaluating movement
quality.

High-quality research has been conducted with the aim of
identifying errors in movement patterns compared to predefined
movement templates [32]–[35], and rules/thresholds [7], [8],
[36]. Movement performance compared to the predefined goal is
used to provide feedback on how to improve movement patterns.
Comparison of movements to thresholds and/or rules is also done
in comprehensive work on modelling and evaluation of human
movement, as seen in [15], [14], and [37].

Using template movements and decision rules can be appro-
priate for players that do not have physical constraints or do
not need individual adaptation of movement patterns during
exercise and are aiming to perform the exercises similarly to
a healthy person. As mentioned, participants need to have goals
that are adjusted to their needs and constraints, so comparing
their movements to a healthy person or a template movement
can be detrimental to motivation or might push them to perform
the exercise outside their safe limits.
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One earlier study also aimed to classify movement quality
in a more naturally elicited, less instructed, fashion [38]. Here,
exercise repetitions near exhaustion were used as examples of
incorrectly performed movements and classified as correct or
incorrect using ML models. This study was conducted on healthy
children, using a smartphone (i.e, an inertial measurement unit)
to capture movements.

In conclusion, we find that there is a wide variety of settings
and contexts where automatic identification of movement er-
rors during exercise is receiving attention, including technique
analysis in general fitness and elite sports, as well as exercis-
ing for elderly at home or in rehabilitation centers. However,
research into classification of movement quality specifically
during exergaming is scarce, especially regarding identification
of correctly and incorrectly performed movements.

Further, a large body of the related work demonstrated that
errors in movement patterns can be identified during exercise by
comparing performed movements to rules and template move-
ments or expert scoring. Conversely, our study aims to build
ML/DL models that can classify correctly performed move-
ments that are naturally elicited, without comparing to a template
movement or a set of rules or thresholds. Then, we assess the ac-
curacy with which these models can identify correctly performed
movements in unseen samples of the movement patterns.

III. EXPERIMENTAL SETUP AND ANALYSIS: ASSESSING

MOVEMENT PATTERNS USING ML

1) Participants: Participants were healthy older adults re-
cruited from local exercise groups in the municipality. All
participants gave their written, informed consent. There were
12 participants in total (10F); average age was 70.4 (SD 11.4)
years (range 54–92). Average height and weight were 172.3 (SD
11.4) cm and 70.4 (SD 12.1) kg, respectively. Exclusion criteria
were physical or cognitive injuries/impairments that affected
their balance and gait ability, and age <50 or age >80 years.
The project was approved by the Norwegian Regional Ethics
Committee and the Norwegian Centre for Research Data (REK
case number: 2017/2078-1).

2) Experimental Protocol: The experiment was conducted at
the Motion Capture and Visualization Laboratory (“Vislab”) at
NTNU Trondheim in June 2019. A marker-based 3-D motion
capture (3-DMoCap) system was used to measure participants’
movements for use in analysis and classification. Four cameras
(MX400, 90 Hz, Qualisys AB) were used. Thirty-six reflective
markers were placed following the Plugin-Gait (PiG) marker
placement protocol [39], excluding head and fingers.Two digital
video cameras (Hero 3+ Black, 25 Hz, 1080p, GoPro Inc)
captured movements in the sagittal and frontal planes of the
player. Two 3-axial force plates (1000 Hz, 600x400x35 mm,
Kistler Nordic AB) were located under the participants’ feet
to measure the ground reaction forces while playing. A plat-
form matching the force plates’ height was placed laterally
of each force plate. The experimental setup can be seen in
Fig. 1.

3) Game System: The game was built in Unity (v. 5, Unity
Technologies, Denmark). As time-of-flight camera technology
is commonly used in exergaming [5], [40], we used the Kinect

Fig. 1. Experimental setup.

Fig. 2. Game interface.

v2 (30 Hz, Microsoft Inc), set up in front of the participants,
to enable gameplay. The participants played three rounds of the
two parts of the game, totaling six trials for each participant.
If the movement tracking from the Kinect was not satisfactory,
for example when the avatar did not follow the participants’
movements, avatar movements were jittery, or if the sensor failed
to identify the player at all, the trial was stopped and started again
until smooth, continuous movement tracking from the Kinect
was achieved.

The two parts of the game were designed to elicit different
movement patterns from the players: the first aimed at having
the player perform a complete, and thus correct, weight shift
by moving their upper body over their weight-bearing foot. The
second part was designed to make the player perform movements
without moving their upper body over the weight-bearing foot,
i.e., incompletely performed weight shifts. The game interface
consisted of a rail cart with an avatar in it, representing the player,
as shown in Fig. 2. On each side of the rail were coins which
the player would try to hit with the cart as they moved along the
rail. The cart tilted from side to side, following the medio-lateral
leaning movements of the player. There were never more than
two coins successively, and the coins appeared in random places
for each participant. There were a total of approximately 100
coins in each game part, with approximately 50% of the coins
on each side of the rail. The player was rewarded with points
if they hit a coin with the cart, and the position of their upper
body decided the amount of points rewarded in each of the game
parts. There was a bar above the avatar. In part 1 the bar was grey,
in part 2 the bar was multicolored as seen in Fig. 3. The grey
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Fig. 3. (a) and (b) Two versions of the exergame. (c) and (d) Typical body
postures when playing the two different exergame versions. (a) Part 1: Two-split
grey bar, shown at the end of the track, with the star to the right of the dividing
line, rewarding 3 points. (b) Part 2: Three-split color bar, shown at the end
of the track, with the star in the middle 33%, rewarding 3 points. (c) Typical
body posture when being rewarded 3 points in part 1 of the game. Here, the
player is leaning their upper body over their weight-bearing foot, resulting in
the distance between the virtual marker and the CoP of the weight-bearing foot
being <50 mm, and the GRF Z-component being >74% of body weight. BW =
body weight. GRF = ground reaction force. CoP = center pressure. (d) Typical
body posture when being rewarded 3 points in part 2 of the game. Here, the
player is not leaning their upper body over their weight-bearing foot, resulting
in the distance between the virtual marker and the CoP of the weight-bearing
foot being >50 mm, and the GRF z-component being <74% of body weight.
GRF = ground reaction force. CoP = center of pressure.

bar was divided in the middle: if the star was on the line when a
coin was hit, the player was rewarded 1 point. Three points (max
score) were awarded if the star was as far away from the dividing
line as possible, i.e., at any of the lateral parts of the grey bar as
seen in Fig. 3(a). The multicolored bar was divided into three
equally sized color fields: green in the middle 33%, yellow in
the next 33% on each side, and red at the 33% most lateral fields.
The red field rewarded 1 point, the yellow two points and the
green three points, as seen in Fig. 3(b). Fig. 3(c) shows a typical
posture form playing version 1, and Fig. 3(d) shows a typical
posture from playing version 2 of the game.

4) Preprocessing: Joint center locations of shoulders (SHO),
hips (HIP), knees (KNE) and ankles (ANK), as well as cen-
ter of pressure (CoP), were extracted from the standard PiG
biomechanical model from each of the six game trials for all
participants. Game trials were then segmented into single medio-
lateral movement repetitions using the peak-finding algorithm
peakutils (v 1.3.3 for Python) on the y-axis of the right SHO joint
in the Qualisys coordinate system. One repetition was defined
as a continuous movement starting at the most lateral point of a
medio-lateral movement, ending at the most lateral point on the

Fig. 4. Data analysis pipeline. The process, from “Feature extraction,” was
repeated for all joint data combined, and for each joint subset separately. PCA
= Principal component analysis, RF = random forest, SVM = support vector
machine, kNN = k-nearest neighbor, MLP = multilayer perceptron, LOGO =
leave-one-group-out, CV10 = tenfold cross-validation.

opposite side. Python for Windows (v. 3.8.2) was used for all
analyzes. An overview of the data analysis pipeline can be seen
in Fig. 4.

5) Labeling: The repetitions were subsequently assessed for
the weight shift being correctly (i.e., a complete weight shift)
or incorrectly (i.e., an incomplete weight-shift) performed. A
physical therapist experienced in rehabilitation was consulted to
determine the features of a correctly performed weight shift. The
following criteria had to be met for a repetition to be deemed a
correct weight shift. 1) The majority of the persons’ body weight
(over 74%, as 50% on each foot means that the person is standing
with equal amount of weight on their feet) must be shifted to the
weight-bearing foot. 2) The upper body must be moved over
the weight-bearing foot as the weight is shifted. To evaluate
whether condition 2 was met, a virtual marker was calculated
as the 3-D midpoint between the left and right SHO, and the
distance between the y-position of this virtual marker and the
y-position of the CoP was calculated. Mean distance of<50 mm
was required for the repetition to be deemed correctly performed.
Sample videos form all participants were consulted to ensure that
these criteria captured actual incorrectly and correctly performed
movement patterns. All repetitions were assessed according to
these criteria and assigned a target variable for incorrect (0) or
for correct performance (1). This resulted in 2821 repetitions,
where 1803 were labeled 1 (correct) and 1018 0 (incorrect).

6) Feature Extraction: After the target labels were assigned,
statistical features were extracted from each repetition using
the TSfresh library [41] (v. 12.0) for Python. See Appendix
1 for an exhaustive list of features. Furthermore, the feature
dimensions were reduced using principal component analysis
(PCA). Principal components that combined explained 95% of
variance in the data were retained for further analysis.

7) Classification Models and Hyperparameter Tuning: Four
models were employed in this study: RF, SVM, kNN, and an
artificial neural network [multilayer perceptron (MLP)]. SciKit-
Learn (version 22.1) for Python was used for analysis. RF is an
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TABLE I
HYPERPARAMETER VALUES FOUND TO ACHIEVE THE BEST ACCURACY FROM

GRIDSEARCHCV. RF = RANDOM FOREST, SVM = SUPPORT VECTOR

MACHINE, KNN = K-NEAREST NEIGHBOR, MLP = MULTILAYER

PERCEPTRON, LOGO = LEAVE-ONE-GROUP-OUT, CV10 = TENFOLD

CROSS-VALIDATION

ensemble classifier that employs a set of decision trees to predict
class labels, where each tree sees a random subset of features, and
uses the majority class predicted by each tree’s leaf nodes to clas-
sify a sample. Ensemble classifiers have been used successfully
in similar work on movement quality (e.g, [42]) and in adjacent
fields such as action classification [18], [19]. SVM is a linear
model that finds the optimal line (or hyperplane) to separate
classes, using the line/hyperplane that yields the largest support
vectors (i.e., decision boundaries) between classes. SVM is often
used in action recognition, as it is a powerful classifier [18],
[19]. The kNN model evaluates the (k) nearest data points’
class for each feature and classifies the sample based on the
majority of these neighbors’ class. kNN is a fast and simple,
yet powerful classifier that has been used in adjacent work [15],
[43]. MLP is a layered network of nodes that classifies samples
based on activation of nodes in the “hidden” layers between
the input and the output layer, using backpropagation to adjust
weights and biases in the hidden layer nodes for each iteration of
training. MLP requires more training data and processing power
than ML methods, but often outperforms ML methods in action
classification when provided with sufficient training data [18].

The optimal combination of hyperparameter tunings for each
model [44], with regard to classification accuracy, was found
using grid search (threefold CV) from the SciKit-Learn-pckage.
Table I shows the hyperparameter tunings (that are not default for
the models in the current SciKit-Learn version) that achieved the
highest accuracy for each model. These hyperparameter tunings
were used in subsequent analyzes.

8) Cross-Validation and Classification Procedures: The
models were trained and tested using cross-validation (CV) by
LOGO, and tenfold CV (CV10). LOGO entails training the
model on all the data except one participant and using this
participants’ data as the testing set. CV10 creates ten random
subsets of the data from all participants and holds one subset
out for testing in each iteration. To simulate a situation where
only subsets of joints are reliably tracked, each model was also
trained and tested in the same manner by using only subsets of
joint data, i.e., only ankle data, knee data, hip data, or shoulder
data. Thus, all models were trained and tested on 20 different
versions of the data set as seen in the last step of Fig. 4.

9) Evaluation: Model performance was evaluated using the
F1-score and the recall. F1-score is an accuracy measure (the
harmonic mean between precision and recall), which gives
more useful insight into model performance in an imbalanced
dataset than standard accuracy [45]. Recall, or sensitivity, is the

TABLE II
PERCENT F1-SCORE ACHIEVED ON JOINT SUBSETS [SHOULDER (SHO), HIP

(HIP), KNEE (KNE), AND ANKLE (ANK) JOINTS]. MODELS ARE RANDOM

FOREST (RF), SUPPORT VECTOR MACHINE (SVM), K-NEAREST NEIGHBOR

(KNN), AND ARTIFICIAL NEURAL NETWORK (MLP). THE FEATURE

REPRESENTATIONS (FEATS) ARE STATISTICAL (STAT) AND PCA (PRINCIPAL

COMPONENTS). CV = CROSS-VALIDATION: LOGO =
LEAVE-ONE-GROUP-OUT, CV10 = TENFOLD. SD = STANDARD DEVIATION. M

= MEAN. THE HIGHEST AVERAGE RECALL ACHIEVED BETWEEN JOINT

SUBSETS (COLUMNS), AND HIGHEST AVERAGE BETWEEN THE MODELS (ROWS)
ARE HIGHLIGHTED IN BOLD FONT. THE HIGHEST RECALL ACHIEVED WITHIN

JOINT SUBSETS IS HIGHLIGHTED IN GREEN

TABLE III
PERCENT RECALL ACHIEVED ON JOINT SUBSETS [SHOULDER (SHO), HIP

(HIP), KNEE (KNE), AND ANKLE (ANK) JOINTS]. MODELS ARE RANDOM

FOREST (RF), SUPPORT VECTOR MACHINE (SVM), K-NEAREST NEIGHBOR

(KNN) AND ARTIFICIAL NEURAL NETWORK (MLP). THE FEATURE

REPRESENTATIONS (FEATS) ARE STATISTICAL (STAT) AND PCA (PRINCIPAL

COMPONENTS). CV = CROSS-VALIDATION: LOGO =
LEAVE-ONE-GROUP-OUT, CV10 = 10-FOLD. SD = STANDARD DEVIATION. M

= MEAN. THE HIGHEST AVERAGE RECALL ACHIEVED BETWEEN JOINT

SUBSETS (COLUMNS), AND HIGHEST AVERAGE BETWEEN THE MODELS (ROWS)
ARE HIGHLIGHTED IN BOLD FONT. THE HIGHEST RECALL ACHIEVED WITHIN

JOINT SUBSETS IS HIGHLIGHTED IN GREEN

true positive rate and describes the ratio of correctly identified
positive samples out of all sampled classified as positive by the
model. This is a useful measure as it says how many of the
correctly performed repetitions were actually labeled as correct,
i.e., how many of the correct repetitions a model identified as a
correct repetition.

IV. RESULTS

Results for each joint subset are presented with F1-score in
Table II and recall in Table III. Results for joint subsets combined
are shown with F1-score in Fig. 5 and recall in Fig. 6.
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Fig. 5. F1-score achieved using different feature representations and CV meth-
ods on all joint subsets combined. RF = random forest, SVM = support vector
machine, kNN = k-nearest neighbor, MLP = multilayer perceptron, LOGO
= leave-one-group-out, CV10 = tenfold cross-validation. PCA = principal
components.

Fig. 6. Recall achieved using different feature representations and CV methods
on all joint subsets combined. RF = random forest, SVM = support vector
machine, kNN = k-nearest neighbor, MLP = multilayer perceptron, LOGO
= leave-one-group-out, CV10 = tenfold cross-validation. PCA = principal
components.

A. F1-Score

The four models reached different levels of F1-score on differ-
ent joint subsets of the data. Table II shows the F1-scores for each
subset of joints in classifying correct repetitions, as well as the
average performance of each joint subset. All models achieved
similarly good results, with a mean of 75.3% (SD 11.3) for the
F1-score. RF slightly outperformed other models on hip and
knee joint subsets, while MLP performed best on shoulder and
ankle joint subsets. Overall, the performance variation in using
different feature representations or cross-validation methods
was small. Somewhat surprisingly, the SVM achieved the overall
lowest performance in terms of F1-score. All joint subsets also
had high average F1-scores, with over 70%, but the SHO subset
achieved the highest average with 78.4% (SD 1.3).

Fig. 5 shows the F1-score achieved by using all joint subsets
combined, using different feature representations and cross-
validation methods. These are results from all joint data only
F1-score on joint subsets can be seen Appendix 2. Results
show good performance from all models, with 78.5% (1.3
SD) F1-score on average. Different feature representations and
cross-validation models are not affecting performance to any
noteworthy degree.

B. Recall

Table III shows the recall achieved by the models on joint
subsets of the data using different feature representations and
CV methods. On average, the models achieved 83.3% (SD 17.6)

Fig. 7. Confusion Matrices for all models, with ratios of (clockwise from top
left) true positive, false positive, true negative, and false negative predictions.
Darker blue = higher ratio of samples predicted to belong in quadrant. Going
clockwise from top left, the panels are for random forest (RF), support vector
machine (SVM), multilayer perceptron (MLP), and k-nearest neighbor (kNN).

recall (see Table III). The MLP outperformed the SVM and kNN
models by 10%–25%, and was around 10% better than the RF
model. Lowest recall was by SVM on the knee joint subset with
statistical features and LOGO CV, with only 29.2%. On average,
the SHO joint subset achieved the highest recall with 86.3%
(SD 8.7) but other joint subsets also achieved high recall with
>80%.

Fig. 6 shows the recall achieved by different feature repre-
sentations and cross-validation methods. These are results from
all joint subsets combined joint subset recall results can be seen
Appendix 2. The MLP slightly outperformed the other models,
with an excellent average of 92.6% (SD 1.1) recall. RF and KNN
achieved comparable results, with an average of 86.5% (SD 0.8)
recall and 86.9% (SD 0.7) recall, respectively. SVM was the
overall lowest performing model in recall of correct repetitions,
with an average of 78.4% (SD 0.3). Feature representation and
CV methods showed only small differences, but PCA with
LOGO was the marginally best configuration in three out of
four models.

C. Classification of Incorrect Repetitions

Even though classification of correctly performed weight-
shift repetitions may be sufficient for many applications, being
able to accurately identify incorrect repetitions is important in
a feedback perspective. An exergame system often needs to be
able to identify e.g. an incomplete weight shift, and provide
feedback to the player on how the movement pattern can be
adjusted to achieve a complete weight shift. We analyzed the
current models’ ability to identify samples labeled as incorrect.
This is not captured in metrics such as F1-score and recall, as
they attenuate the influence of true negative samples. As seen
in Fig. 7, incorrect samples were not classified with as high
accuracy as correct samples, although the MLP achieved 70%
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TABLE IV
PERFORMANCE OF EACH MODEL AND CROSS-VALIDATION METHOD IN MEAN

TIME CONSUMPTION FOR TRAINING AND PREDICTION. RF = RANDOM

FOREST, SVM = SUPPORT VECTOR MACHINE, KNN = K-NEAREST

NEIGHBOR, MLP = MULTILAYER PERCEPTRON, LOGO =
LEAVE-ONE-GROUP-OUT, CV10 = TENFOLD CROSS-VALIDATION

accuracy. Overall, models were able to classify about half of the
incomplete weight shifts correctly.

V. DISCUSSION AND LIMITATIONS

In this article, we investigated the level of recall and F1-score
the employed ML/DL models achieved in classification of cor-
rectly performed weight-shifting exercise repetitions, naturally
elicited while playing a balancing exergame.

A. Correct Weight Shifts

Classification of correctly performed whole-body movement
patterns is found to be feasible for all models used in this
study, arriving at results ranging between 70%–80% F1-score
(Table II) and 75%–95% recall (Table III). The best performing
models in our study achieve over 90% recall and around 80%
F1-score, which demonstrates that these models could be used
in real-world applications for medio-lateral balance exercises.
Although there are few directly comparable studies, our results
show that using MLP or RF for classification of correct repe-
titions is in line with the state-of-the-art activity classification
systems as reported in [18], [19], and [46]. Even though some of
the models did not perform at a satisfactory level, we showed that
the best performing models are promising in settings where it
is useful to be able to receive feedback on movement pattern
quality without having a clinician present, such as in home
exercise.

The recall achieved by all models show that 90%–95% (see
Fig. 6) of the correctly performed repetitions were, in fact,
identified as such, which in an exergame situation would im-
ply rewarding the player for close to all correctly performed
repetitions. In other words, only a rather low number of correct
repetitions were missed by the models. This is an indication that
the models accurately captured and represented the movement
features of a correct weight shift, without using manually de-
signed rules or thresholds. This work echoes the results in [20]
and [46].

The different classification models performed with slightly
different results, as seen in Figs. 5 and 6. When it comes
to computational performance, the models performing best on
average, RF and MLP, were also the most efficient in training
and prediction in terms of time usage (see Table IV). kNN was

very fast in training, but slowest in prediction with >1.5 s used
for each LOGO iteration, which is likely due to kNN having
to build the model for each datapoint. As expected, SVM was
the slowest in terms of training time, as well as being slow in
prediction time. The distance-based models (kNN and SVM)
often perform worse in terms of classification accuracy when
the number of features is large compared to the number of
samples [47], as a complex feature space makes it difficult
to define decision boundaries that separate classes. The high
MLP performance is likely due to the manner MLP models
adjust the weights and biases in an iterative manner for a given
classification problem by using gradient descent [48]. As such,
MLP models also intuitively assess importance of different
features during training. This is similar to what RF models
do: features with high importance for the given classification
task are used in early splits. Furthermore, features are used in a
random fashion in the different decision trees, which contributes
to high performance despite a complex feature space. This is also
possibly the situation with the current dataset. The overall high
recall can be attributed to the high quality of the data; low levels
of noise have been shown to improve model performance [18],
[49]. These results suggest that RF is likely the model that
should be considered in similar applications for the following
reasons: 1) RF achieves high recall; 2) RF is considered a
“white box”, e.g., it is possible to extract the decision making
process in situations where transparency in the decision process
is required; 3) the computational cost of prediction in RF is low,
especially compared to MLP. These three features are likely
of importance for a ML/DL system to be usable in e.g., a
clinical or rehabilitation exercise setting. However, as the No
Free Lunch theorem suggest, and as is shown in these results,
there is no one model that is universally “best” for all problems
(e.g., joint subsets). The model that performs best on average
might not always be the best performing model in all problem
subsets [50]. This indicates that it is necessary to evaluate the
specific problem at hand, and how different models perform with
the given data types, available computational power and noise
level.

Results from the two cross-validation experiments are promis-
ing with respect to classification of previously unseen movement
patterns. The models’ performance did not worsen when classi-
fying movement patterns from a participant that the models were
not trained on. This is evident as the LOGO method performs
similarly to the CV10 method, which holds out random subsets
of all participants’ data. Such similarity might be explained
in two ways. 1) Participants performed the correct movement
patterns similarly. 2) The models were indeed not overfitting,
but truly and accurately captured and represented the features for
correctly performed movement patterns to a good enough degree
to identify unseen data with high accuracy. The practical impli-
cation of such models is that people who have not been playing a
game using these assessment models before, will receive rewards
when performing weight-shifting movements correctly. This is
in line with the findings in [18]. Authors of [35] similarly found
that using different neural network configurations with LOGO
cross-validation produced good results. This further supports our
findings that a person can use such a game system even though
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the employed model for assessing movement pattern quality has
not seen his/her movement patterns before.

When looking at results from separate joint subsets, shoulder
movement patterns produced the best results in both F1-score
and recall. This suggests that the shoulder movement pattern is
the most relevant in assessment of weight shifting, and should be
included to ensure high classification accuracy. Overall, using
joint subsets, our models also achieved a level of performance
(about 75% F1-score and 83% recall) comparable to other clas-
sification models using joint subsets [18]. One might argue that
using any of these joint subsets could provide accurate rewards in
weight-shifting exergames. Whole-body movement patterns still
achieve slightly better results than joint subsets, both in terms
of F1-score and recall, indicating that whole body movement
patterns might still be a preferred setup if the primary goal is
to achieve the best quality assessment possible. However, if
the available tracking method only allows for accurate track-
ing of subsets of joints, using subsets is nonetheless a worthy
alternative (even a preferred one if and when any cost benefit
consideration renders the whole body tracking setup unsuitable)
as it still achieves a very good classification accuracy of correct
movement patterns using those subsets.

Regarding feature representation, there is no clear indica-
tion of any of the methods producing superior classification
results. This suggests that statistical features are representing
the exercise repetitions well, and that the principal components
explaining 95% of the variance in the feature data sufficiently
represent the latent information in the statistical features. PCA
might be preferable over statistical features in future use, as
they are lower dimensional and thus more computationally
efficient.

B. Incorrect Weight Shifts

Being able to identify and provide feedback on erroneous
movement patterns is useful in serious exergaming situations like
rehabilitation, as exergames could be used to guide rehabilitation
exercises without the presence of a clinician. The player would
then need feedback on how to improve their movement pattern
(such as having a larger range of motion, or moving faster) in
order to perform the exercise in a efficient manner. In earlier
work, where samples were labeled by error class, error types
were classified with 85%–95% accuracy [42], [51]. The results
from classification of incorrect repetitions in the current study
support this notion that classification models needs to be trained
on erroneous movement patterns that are labeled by error type,
in order to construct representations of the error types in the
features. Hence, actively classifying incorrect samples should
be the goal of classification systems aiming for use in feed-
back during exergaming in rehabilitation settings. The current
dataset does not contain enough samples of different error types,
and is therefore not suited for such analyzes. Furthermore, the
movement patterns in the erroneous repetitions probably vary
significantly between participants, making it challenging to find
robust representations of incorrect repetitions in the features.
This also indicates that the features in the current study might
not capture the information required for the models to represent

an incorrect repetition, as some incorrect repetitions might have
very similar movement patterns to correct repetitions. Still, the
MLP is able to classify incorrect samples with 70% accuracy,
as seen in Fig. 7, indicating that DL models might be usable for
such tasks in future work.

C. Limitations

There are some limitations to this study that are necessary to
keep in mind. Because this study included 12 participants only
moving in a single plane, it is important to keep limitations of
applicability of our results in mind. The movement performed
is restricted to a medio-lateral weight shifting exercise, which
is (ideally) confined to movement in the frontal plane of the
body, so movements in other planes or in combinations of planes
might be more difficult to classify correctly. Even though our
results are promising, further research should be conducted to
investigate the performance of these ML/DL models in more
complex and challenging settings. Furthermore, data from other
motion capture tools that are commonly available should be
evaluated as this might impact classification performance.

VI. CONCLUSION

In conclusion, this study shows that RF and MLP are able
to identify correctly performed weight-shifting repetitions with
high recall and F1-score. In the development of exergame sys-
tems we should consider using the best models presented here for
evaluating movement patterns, especially when aiming to reward
players for correctly performing exercise repetitions in weight-
shifting exercises. We showed that training ML/DL models using
labeled training data is a feasible option for identifying correctly
performed movement patterns, which can subsequently be used
to reward players in an accurate manner during exergaming. This
is an important improvement of many existing exergame systems
that are based on comparisons to templates, or assessments
using coarse rules and thresholds. Moreover, implementing a
self-learning approach based on our work can allow a system
to learn new movements without requiring a priori explicit
identification of their templates. Trusting that the game system
is actually rewarding the correct movements is a prerequisite for
using exergames in serious settings like physical rehabilitation
or independent exercise for older adults. If the game system is
trusted, the threshold for using exergame systems might be lower
for both users and clinicians, making it possible to benefit from
higher motivation and adherence in the rehabilitation process.
In future work, the implementation of the present classifica-
tion models into game systems would be an interesting next
step, possibly testing differences in rewards and/or feedback
compared to rule-based or template-based systems. Exploring
features is also a natural next step. The results of this study also
warrant further investigation into how well these models perform
in patient populations with more variable movement patterns,
and in classification of error types. Furthermore, other move-
ment patterns are also interesting to examine for classification
accuracy, especially more complex movements that combine
movements in various anatomical planes.
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APPENDIX A
FEATURES

TABLE V
FEATURES CALCULATED FROM TSFRESH

APPENDIX B
JOINT SUBSET CLASSIFICATION RESULTS

Fig. 8. F1-score achieved using different feature representations with CV10
on joint subsets RA = random forest, SVM = support vector machine, kNN =
k-nearest neighbor, MLP = multilayer perceptron.

Fig. 9. F1-score achieved using different feature representations with LOGO
on joint subsets RA = random forest, SVM = support vector machine, kNN =
k-nearest neighbor, MLP = multilayer perceptron.

Fig. 10. Recall achieved using different feature representations with LOGO
on joint subsets RA = random forest, SVM = support vector machine, kNN =
k-nearest neighbor, MLP = multilayer perceptron.

Fig. 11. Recall achieved using different feature representations with CV10 on
joint subsets RA = random forest, SVM = support vector machine, kNN =
k-nearest neighbor, MLP = multilayer perceptron.
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based intelligent e-rehabilitation system in physical therapy,” Studies
Health Technol. Inform., vol. 210, pp. 489–493, 2015.

[8] W. Zhao, A. M. Reinthal, D. D. Espy, and X. Luo, “Rule-based
human motion tracking for rehabilitation exercises: Realtime assess-
ment, feedback, and guidance,” IEEE Access, vol. 5, pp. 21382–21394,
2017.

[9] M. Pasch, N. Bianchi-Berthouze, B. van Dijk, and A. Nijholt,
“Movement-based sports video games: Investigating motivation and
gaming experience,” Entertainment Comput., vol. 1, no. 2, pp. 49–61,
2009.

[10] L. H. Skjaerven, K. Kristoffersen, and G. Gard, “An eye for movement
quality: A phenomenological study of movement quality reflecting a group
of physiotherapists’ understanding of the phenomenon,” Physiotherapy
Theory Pract., vol. 24, no. 1, pp. 13–27, 2008.

[11] A. Lacroix, T. Hortobágyi, R. Beurskens, and U. Granacher, “Effects of
supervised vs. unsupervised training programs on balance and muscle
strength in older adults: A systematic review and meta-analysis,” Sports
Med., vol. 47, no. 11, pp. 2341–2361, 2017.

[12] J. D. Smeddinck, M. Herrlich, and R. Malaka, “Exergames for physio-
therapy and rehabilitation: A medium-term situated study of motivational
aspects and impact on functional reach,” in Proc. ACM CHI’15 Conf.
Human Factors Comput. Syst., 2015, vol. 1, pp. 4143–4146. [Online].
Available: https://dx.doi.org/10.1145/2702123.2702598

[13] J. R. Beard and D. E. Bloom, “Towards a comprehensive public health
response to population ageing,” Lancet, vol. 385, no. 9968, pp. 658–661,
2015.

[14] F. Ofli, G. Kurillo, Š. Obdržálek, R. Bajcsy, H. B. Jimison, and M. Pavel,
“Design and evaluation of an interactive exercise coaching system for older
adults: Lessons learned,” IEEE J. Biomed. Health Inform., vol. 20, no. 1,
pp. 201–212, Jan. 2016.

[15] A. W. Lam, D. Varona-Marin, Y. Li, M. Fergenbaum, and D. Kulić, “Au-
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Abstract

Background: Balance training exercise games (exergames) are a promising tool
for reducing fall risk in elderly. Exergames can be used for in-home guided
exercise, which greatly increases availability and facilitates independence.
Providing biofeedback on weight-shifting during in-home balance exercise
improves exercise efficiency, but suitable equipment for measuring weight-shifting
is lacking. Exergames use kinematic data as input for game control: using this
data to estimate weight-shifting would be a great advantage, which might be
feasible using machine learning (ML) models. Therefore, the aim of this study
was to investigate the performance of ML models in estimation of weight-shifting
during exergaming using kinematic data.

Methods: Twelve healthy older adults (mean age 72(±4.2), 10 F) played a
custom exergame that required repeated weight-shifts. Full-body 3D motion
capture (3DMoCap) data and standard 2D digital video (2D-DV) was recorded.
Weight shifting was directly measured by 3D ground reaction forces (GRF) from
force plates, and estimated using a linear regression model, a long-short term
memory (LSTM) model and a decision tree model (XGBoost). Performance was
evaluated using coefficient of determination (R2) and root mean square error
(RMSE).

Results: Results from estimation of GRF components using 3DMoCap data
shows a mean (±1SD) RMSE (% total body weight, BW) of the vertical GRF
component (Fz) of 4.3 (2.5), 11.1 (.4.5), and 11.0 (4.7) for LSTM, XGBoost
and LinReg, respectively. Using 2D-DV data, LSTM and XGBoost achieve mean
RMSE (±1SD) in Fz estimation of 10.7 (9.0) %BW and 19.8 (6.4) %BW,
respectively. R2 was >.97 for the LSTM in the Fz component using 3DMoCap
data, and >.77 using 2D-DV data. For XGBoost, Fz R

2 was >.86 using
3DMoCap data, and >.56 using 2D-DV data.

Conclusion: This study demonstrates that an LSTM model can estimate
3-dimensional GRF components using 2D kinematic data extracted from standard
2D digital video cameras. The Fz component is estimated more accurately than
Fy and Fx components, especially when using 2D-DV data. Weight-shifting
performance during exergaming can thus be extracted using kinematic data only,
which can enable effective independent in-home balance exergaming.

Keywords: Weight Shifting; Balance Training; Exergaming; Ground Reaction
Force; Deep Learning; Long Short-Term Memory Networks; XGBoost
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Background
Being able to maintain or regain balance is a corner stone for sustained indepen-

dence in daily life of older adults. Balance, or postural control, is a complex motor

skill that depends on coordination and function of multiple bodily systems [1]. As we

age, our postural control deteriorates gradually, increasing the risk of falls and de-

creasing community mobility and quality of life. These are major factors of increased

risk of disability and mortality in elderly [2]. Targeted balance exercise improves

postural control, and exercises typically included in exercise programs for balance

training are for example leaning, reaching and weight shifting [3]. These types of

exercises have been shown to reduce fall risk [4, 5] by improving dynamic stability

during gait [6] as well as anticipatory and reactive balance ability[3]. Research has

shown that technological tools that provide visual biofeedback and guidance can im-

prove the potential effect of such exercises [7, 8]. By using exercise games (so-called

exergames), biofeedback can be provided in a motivational and fun manner [9, 10].

In weight-shifting exercises, biofeedback is provided typically by using force-sensing

equipment placed under the person’s feet or inside the shoes. One of the most ac-

curate types of force measurement equipment are piezoelectric force plates. These

return three-dimensional ground reaction force (GRF) vectors, which are precise

representations of the magnitude and directions of the force exerted on the plates

by the person’s feet.

Even though force plates are effective to provide biofeedback in balance exercising,

they are rarely used outside laboratory settings as they are costly and resource

demanding to use. More user friendly substitutes, such as the Wii Balance Board

(Nintendo Co Ltd, Japan) have been developed and are used in exergames for

balance training, but they are less accurate and register limited information only

[11, 12]. More recent exergames for balance training started using kinematic data

from depth-sensing cameras such as the Kinect (Microsoft Inc). However, using

kinematic data as a proxy for kinetic information is problematic due to insufficient

accuracy in the kinematic data provided [13]. Accurate and useful information about

exercise performance is vital if independent exercise in older adults is to be effective.

At the same time the equipment necessary to provide this information has to be

easy to use and resource friendly, without sacrificing accuracy.

We know from previous research that GRF can be successfully estimated in other

movements such as gait using machine learning (ML) methods. In [14] a Long-Short

Term Memory (LSTM) model was employed, achieving estimates of GRF compo-

nents within 12 % RSME, and in [15, 16] feed-forward artificial neural networks

(ANN) gave a RMSE of GRF forces of <10 % in all three components. These stud-

ies all use features that are based on computation of a biomechanical model from a

3DMoCap system, which is not feasible to use in an in-home setting for elderly. It

also requires physical measurements of the body of the person playing, as well as

an additional computational layer for the calculation of the biomechanical model.

Others use data from inertial measurement units (IMU’s) as input to neural net-

works, as seen in [17], or to an inverse dynamics model as seen in [18]. Although

successful in estimation, with an error rate of <15% [18] and <10%[17], IMU-based

approaches require procedures (e.g., full-body device placement) that are not feasi-

ble to implement in daily-life settings. These studies also employ a biomechanical

model as input to their estimation procedures.
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LSTM is a form of neural network where sequential data is processed recurrently

and important features are ”remembered” for future predictions/estimations [19].

LSTMs are also relatively quick in estimation, allowing for real-time estimates which

is a requirement when giving feedback during exergaming. Another approach, widely

used because of its powerful method of representing the relationships in the data,

is decision tree-based methods. Recently, a version of decision trees, called ”ex-

tremely boosted gradient trees” (XGBoost, [20]), has been shown to outperform

other regression methods [21], including in estimation of forces in a biomechanical

setting [22]. In addition, decision trees are inherently transparent in their decision

making process, which is a highly valuable feature. This can provide information

about which joints are important in estimating GRF, which might inform decisions

on relevant motion tracking tools in this context.

Furthermore, it has recently been shown that standard digital 2D video can be

used to extract 2D kinematic data of joint positions (e.g. [23, 24, 25]). This makes

it possible to use devices such as smartphones, tablets or web-cameras to cap-

ture movements. These pose estimation systems could provide accessible, easy to

use tools for motion capture in exergaming, and our recent research showed that

such models are comparable in accuracy to the gold-standard motion capture sys-

tems [26]. However, a remaining challenge for using 2D data to estimate 3D GRF

components is that in this case, the 2D-DV camera is placed directly behind the

participant, meaning that the movements in the anterio-posterior (X) dimension is

missing from the data set, affecting the estimation of the Fx-component of the GRF

data.

In sum, the technology to capture movements accurately while playing weight-

shifting exergames is available, but the tools to provide GRF information during

weight-shifting exergaming, without needing force-sensing equipment, have not been

tested and validated yet.

We propose utilizing positional data of joint centers in combination with machine

learning models to estimate 3D GRF components during balance training. This

would remove the need for any physical measurements of the person playing, and

achieving this using a standard digital video camera only would make the system

very easy to use and suitable for in-home guided exercise. Therefore, the aim of

this paper is two-fold: 1) to investigate the performance of an LSTM model and

an XGBoost model for estimation of ground reaction forces using kinematic data

during balance exergaming; and 2) to compare performance between using 3D and

2D kinematic data.

Methods
Participants and protocol

Twelve healthy older adults were recruited from local exercise groups. Mean age

was 72 ± 4.2 years, 10 were female. Exclusion criteria were physical or cognitive

injuries/impairments that affected their balance and gait ability, and age <50 or

age >80 years. Data was collected at the Movement Capture and Visualization

Laboratory at the Norwegian University of Science and Technology in Trondheim,

Norway in June 2019.
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The Exergame

A custom exergame for balance training was used in this study, using Kinect (v2,

Microsoft Inc) to track participants’ movements for input to the game. The ex-

ergame was designed to elicit medio-lateral weight shifts from the user: An avatar

representing the user was shown in a rail cart on a train rail, as seen in Figure 1.

Along each side of the rail there were coins that the user should try to hit by tilting

the cart sideways, which was achieved by shifting their body weight over to the

foot that on the side of the coin (Figure 2). There were never more than two coins

consecutively on one side. There were approximately 100 coins in total, with 50 %

appearing on each side.

Figure 1 Game interface

Equipment

A four-camera (MX400, 90Hz, Qualisys Inc, Sweden) setup was used for capturing

3D motion data (3DMoCap) from participants. The Plug-in-Gait Full Body (PiG-

FB, [27]) marker setup, excluding head and hands, was used. Two digital cameras

(GoPro Hero Black 3+, 25 Hz, GoPro Inc) placed 200cm behind and to the side of

the player were used to capture player movements simultaneously with the 3DMo-

Cap system. To capture force data, two force plates (60x5x40 cm, 1000Hz, Kistler

AB) were used, one under each foot of the player. The experimental setup can be

seen in Figure 3.

Preprocessing

To extract joint center positions from 2D-DV data, the DeepLabCut(DLC, [24])

framework was used. The 3DMoCap data was gap-filled and the joint center po-

sitions were extracted using the standardized PiG-FB biomechanical model imple-

mented in Nexus (v. 2.9, Vicon Motion Systems Ltd). The joint center positions

extracted from both data sources were ankles, knees, hips, shoulders, elbows and

wrists. From the 3DMoCap system the anterio-posterior (X), medio-lateral (Y) and

vertical (Z) positions relative to the Qualisys global coordinate system origin were

extracted, and in the 2D-DV data the vertical (Y) and medio-lateral (X) positions
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Figure 2 Cart tilting sideways to hit coin.

Figure 3 Experimental setup.
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relative to the 2D-DV camera origin were extracted. This resulted in 36 input fea-

tures from the 3DMoCap system, and 24 features from the 2D-DV system. The

data was then normalized to the [0,1] range. Data was synchronized by resampling

joint center data from digital video using the 3DMoCap data frequency as reference.

Force components Fx (anterio-posterior), Fy (medio-lateral) and Fz (vertical) were

extracted from the force plate data. GRF components were scaled to body weight

(BW) for each time frame. The video data of ankles was occluded in participants 4,

8, 9, and 10, resulting in missing ankle data for these participants. 3DMoCap data

from participants 1 and 2 was corrupted, and not used in further analyses.

Machine Learning Models

Python v. 3.7.10 was used for all analyses and evaluation. Sci-Kit Learn [28] was used

for multivariate linear regression (LinReg), GridSearchCV and feature importance,

and for evaluation of model performances; the Keras framework [29] was used to

build the LSTM model; and XGBoost was implemented using the XGBoost package

for Python (https://github.com/dmlc/xgboost).

Multivariate linear regression (LinReg) is a method for modeling a linear rela-

tionship between independent feature variables x1, x2, x3...xn and target variables

β1, β2, β3...βn [30]. LinReg uses a least squares optimization method of finding the

optimal line that represents the relationship between the features and the target

variable, and has been used in countless estimation and prediction situations. In

a multivariate LinReg, there are several (n) target variables; the model then fits

a hyperplane in n dimensions to represent the relationship between all the feature

variables and the target variables [30]. This model was used as a baseline model for

reference purposes, as it is considered a go-to model that performs very well in a

wide variety of applications in data analysis [30].

In contrast to linear models, decision trees are able to represent non-linear rela-

tionships between features and target variables. Decision trees find attribute values

that separate the data well at descending nodes in the tree, with a new split of

a different attribute in the next node, ending in a leaf node that is essentially an

output node. In regression trees each leaf node has a continuous score, and the final

estimation from each tree is the mean of these scores [30]. Decision trees are very

powerful, and XGBoost is an improved version of decision tree models that com-

bines random forest technique of feature bagging, and a gradient decent method

to reduce boosting error - hence the name ”gradient boosting”. This improves per-

formance of the model, and XGBoost has been shown to perform very well on a

wide range of non-linear estimation tasks [20]. We therefore hypothesize that it can

perform well in the current task.

Long short-term memory model (LSTM) is a version of a recurrent neural net-

work. The network consists of units that data is passed through recurrently. Using

different types of gates (input, forget and output gates [31]), it is able identify infor-

mation that is important to ”remember” from the previous input data [32], thereby

enabling it to learn long-range dependencies in the data [19]. In the current problem

setting, remembering past relationships between the kinematic data and the GRF

component data might be fruitful as the limb orientation and posture of the person

at each time step directly affects the GRF component magnitude. LSTM has drawn
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much attention in several fields where time series forecasting and recognition is im-

portant [33]. Stacked LSTM is a version of LSTM models that utilizes several layers

of LSTM nodes, which has been shown to improve performance over single layer

LSTMs [34]. A schematic of the stacked LSTM model we implemented in this study

can be seen in Figure 4. Here, there is one dense input layer, three hidden layers

of 512 nodes each, a dropout layer (0.2), and a dense output layer of 6 nodes with

sigmoid activation: one for each dimension in the force data for each force plate.

Parameters and Optimization

Hyperparameters for the XGBoost model were tuned using GridSearchCV with

five cross-validation iterations, and the most optimal hyperparameter settings were

found. The hyperparameter grid searched can be found in Table 1. The hyperpa-

rameter values in bold font were the ones found to yield the highest performance,

and were used in training the final XGBoost model.

Optimization of the LSTM network was conducted using Adam optimizer [35]

with an initial learning rate of 0.0001, decay steps 10000, and decay rate 0.96. The

model was trained for 200 epochs, with a minimum rate of improvement of loss

(mean squared error, MSE) of 0.0003 for three consecutive epochs.

Figure 4 Schematic of the stacked long-short term memory (LSTM) model we implemented. For
clarity, not all connections are shown; all layers re fully connected, and all LSTM units have the
recurrent connection depicted in the first LSTM layer. The input layer consists of 36 nodes for
3DMoCap data and 24 nodes for 2D-DV data before feature selection.

A leave-one-group-out cross validation was performed on all models, where one

group was the data from one participant, which served as the test set in each

iteration. This was performed on the joint data from 3DMoCap and 2D-DV systems.

For evaluation, mean of left and right foot (1SD) root mean square error (RMSE),

and mean (1SD) coefficient of determination (R2) for the different cross-validation

splits was computed.
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Results
The results showing feature selection and subsequent estimation performance of

LSTM, XGBoost and LinReg using 3DMoCap and 2D-DV data, are presented as

RMSE in Table 2 and R2 in Figure 7. Figure 8 shows illustrative example graphs of

estimation performance of the three models using 3D and 2D data, over a randomly

selected sequence (1000 frames) from one person during one trial of play.

Furthermore, the contribution of each joint center to estimation performance was

computed using a permutation procedure. Here, the data in each feature is shuffled

in a random manner, which breaks the real-world relationship between the feature

and the target. The resulting difference in estimation performance between using

the shuffled and un-shuffled feature is indicative of how much the model depends

on this feature [36]. This is then repeated for all features, and inform about which

features, i.e. joint centers, are most important to the estimation performance. Re-

sults from the feature importance analysis, using 3DMoCap data, showed that eight

joint centers contributed with 82.9% of the information needed to estimate GRF

components. These joint centers were right and left wrist, right elbow, left knee,

and torso joint centers (left and right shoulders, and left and right hip joints). The

models were subsequently retrained using these joints.

Using 2D-DV data, there were also eight joint centers that had a total contribution

of 78%: Left wrist, shoulder, hip, knee and ankle, and right shoulder, knee, and

ankle. The relative contributions of all joint centers can be seen in Figures 5 and 6.

Figure 5 Overview of the joint centers’ total impact (fraction of R2) on estimation performance
when using 3DMoCap data.

Estimation error

Prediction performance is presented in Table 2, with the mean (±1SD) RMSE (%

BW) for the three models using 3DMoCap and 2D-DV data for the three force

components. The LSTM model outperforms both XGBoost and LinReg when using
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Table 1 Hyperparameter space searched in GridSearchCV for the XGBoost model after feature
selection. Values in bold were used in further analyses.

Hyperparameter Values searched

Learning rate .001, .005, .01, .05, .10, .15

Max depth 5, 7, 9, 12, 15

No. Estimators 50, 100, 200, 500, 700

Min. child weight 1, 3, 5, 7

Gamma 0.0, 0.1, 0.2

Figure 6 Overview of the joint centers’ total impact (fraction of R2) on estimation performance
when using 2D-DV data.



Klæbo Vonstad et al. Page 10 of 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

both 3DMoCap and 2D-DV data. The XGBoost model achieves at the same level as

LinReg using both 3DMoCap and 2D-DV data. Lowest mean RMSE (4.3% BW) was

achieved by the LSTM model on the Fz component using 3DMoCap data; highest

(23.5% BW) was the LinReg model in the Fy component using 2D-DV data. RMSE

was generally higher using 2D-DV data than when using 3DMoCap data.

Table 2 Mean (±1SD) RMSE (% BW) achieved by the three models from estimation of all three
components of GRF.

3DMoCap 2D-DV

LSTM XGBoost LinReg LSTM XGBoost LinReg

Fx 10.3 (6.2) 17.3 (3.6) 17.6 (3.8) 12.7 (7.6) 18.6 (3.8) 18.2 (3.8)

Fy 7.1 (4.6) 13.4 (3.9) 19.0 (2.7) 10.4 (6.0) 20.2 (4.0) 23.5 (8.5)

Fz 4.3 (2.5) 11.1 (4.5) 11.0 (4.7) 10.7 (9.0) 19.8 (6.4) 18.6 (6.4)

Model fit

As shown in Figure 7, the LSTM R2 is consistently higher than in the XGBoost

and LinReg model using both MoCap and 2D-DV data. Using the MoCap data,

the mean (±1SD) LSTM R2 was .589 (.34), .796 (.31), and .971 (.05) in the Fx, Fy,

and Fz components, respectively, and XGBoost R2 was -.246 (.27), .114 (.36), and

.863 (.16), respectively. The LinReg model achieved a mean R2 of -.168 (.28), -.054

(.21), and .856 (.17), respectively. Using 2D-DV data, all models achieved slightly

lower R2. LSTM achieved mean (± 1SD) R2 of .379 (.55) in Fx, .579 (.58) in Fy and

.770 (.45) in Fz. XGBoost mean (± 1SD) R2 in Fx was -.313 (.26), -.234 (.53) in

Fy, and .564 .(.31) in Fz. Here, the LinReg results were mean (± 1SD) R2 of -.266

(.39), -.950 (2.23), and .617 (.28) for the Fx, Fy, and Fz components, respectively.

Estimation plots

In Figure 8, example plots from the left foot are presented that show the estimated

component values by the XGBoost, LSTM, and LinReg models over a random set

of 1000 frames, along with the ground truth component values. The LSTM model

estimates all three components very well, both using MoCap and 2D-DV data. The

Fx component seems to be the least accurate, although the LSTM model estimates

the major changes in BW here as well. The XGBoost model also estimates Fz very

well, but this is not seen to the same degree in Fy and Fx. In Fx and Fy the XGBoost

model is able to follow the major trends in the data, although from these plots it

seems like rapid changes in force are not estimated well. The LinReg model is able

to estimate Fz fairly well, but not with the level of detail seen in the LSTM or

XGBoost model. Fx and Fy components, however, are not estimated as well by the

LinReg model.

Test/train error

The XGBoost RMSE from using test and train data is presented in Figure 9 and

10. The test error is consistently about 3× higher than the train error, using both

3DMoCap and 2D-DV data. For XGBoost, the mean (±) train/test RMSE was 8.8

(0.5)/19.8 (3.7) %BW, respectively, using 2D-DV data and 5.2 (0.1)/15.9 (3.0) %

BW, respectively, using 3DMoCap data. For LSTM, the mean (±) train/test RMSE

using 2D-DV data was 9.8 (0.6)/ 11.5 (7.6) %BW, respectively, and 11.85 (0.2)/

13.6 (2.9) % BW, respectively, using 3DMoCap data.
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Figure 7 Box plots showing median R2 from LSTM, XGBoost, and LinReg models in all three
GRF components. Plot (a) shows results using 2D-DV data, and plot (b) MoCap data.
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Figure 8 Example of estimation performance on the left side from XGBoost (green), LSTM
(blue), and LinReg (orange) models in each GRF component over 1000 frames, along with the
ground truth GRF (black). Plots (a),(c), and (e) show results from one 2D-DV dataset, and plots
(b), (d) and (f) show one MoCap dataset.

Figure 9 XGBoost model test/train RMSE (%BW) from each cross-validation iteration using
2D-DV (A) and 3DMoCap data (B).
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Figure 10 LSTM model test/train RMSE (%BW) from each cross-validation iteration using
2D-DV (A) and 3DMoCap data (B).

Discussion
This study investigated two facets of estimation of GRF components in balance

training. First, we assessed the overall estimation performance of an LSTM and an

XGBoost model on GRF components, comparing it to a baseline LinReg model’s

performance. Second, the performance of the LSTM and XGBoost models in esti-

mating 3D GRF data using 2D joint data was examined. Overall, the LSTM model

performance was very good, considering that joint position data was the only input

data used for estimation. The LSTM RMSE was <11% BW for all GRF components

when using 3DMoCap data, and R2 was moderate to high (>.58 and >.79) for Fx

and Fy, and excellent (>.97) for Fz. This shows that the LSTM model was able to

accurately estimate the Fz component, while achieving only slightly less accurate

results in the Fx and Fy components. The boxplots in Figure 7 also show that the

Fz estimation was very stable around the median. This was the case in all three

models.

The most promising facet of our results is that our method does not require in-

formation about the person playing or any calculations using the input data to rep-

resent the person - i.e., no biomechanical model is needed. This makes our method

less computationally expensive, and easier to implement in an in-home setting. Still,

our findings on estimation of GRF from kinematic data are in line with related lit-

erature in gait analysis, such as Mundt et al (2020) [14], S. Ooh et al (2018)[15], and

Choi et al (2013)[16]. The movement pattern is different, so a direct comparison of

results is not feasible. These studies used 3DMoCap data to calculate biomechanical

features such as joint angles [15, 37], body segment velocities [16], and foot contact

events [18], which are not obtainable using only joint position data. This demon-

strates the strength in our results: our method use the joint center positions directly,

skipping both practical and computational steps that complicate the process. This

makes our method more accessible and easy to use, while being as accurate as more

complicated methods.

Regarding performance using 2D-DV data, our findings support using this modal-

ity for estimation of Fz during balance exergaming. This is a step in the right di-

rection regarding in-home use of exergaming, as a standard digital camera that

most people already possess can provide accurate information about weight shifting

performance during exergaming. However, our findings also show that when the

context requires 3D GRF data, the use of 3D kinematic data is preferred to ensure
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estimation accuracy in all three GRF components. This is also true when the con-

text requires model performance that has a <10% BW error requirement in other

components than Fz.

LinReg also performs surprisingly well in Fz, with comparable RMSE and R2 to

LSTM and XGBoost, although both the LSTM and XGBoost models are better at

estimating the small changes in force that occurs between lateral weight-shifts (i.e.,

when the person is standing with the majority of their BW on one foot).

The Fz component is arguably the most informative of the three directions in

balance training, as it represents the vertical force - i.e., the weight that is be-

ing pushed straight downwards onto the surface. In practice, this informs about

how much body weight the person places on each leg, which is an indication of

how well the person is performing a weight shift during exercise. However, Fx and

Fy information may also be relevant to measure accurately as the force exerted

in these directions contribute to postural control. For example, force magnitude,

directional accuracy, and variability in Fy and Fx in relation to a (externally or

internally induced) disturbance in posture can be informative about balance ability

[38, 39]. In medio-lateral weight-shifting the Fx component might not be as criti-

cal to measure as the Fz component measures the same movement in this context.

In contrast, control over anterior-posterior movement (and thus Fy) is important

to maintaining a steady and stable sideways movement pattern, to prevent large

anterior-posterior movements during weight-shifting exercises and potentially cre-

ate destabilizing conditions. This means that even though Fz provides the main

information about sideways weight-shifting performance, Fy can inform about the

variability and stability in a weight-shifting movement.

The feature importance information from the XGBoost model showed different

joints to be important based on the type of data used. When using 3D data, more

joints from the right side contributed to estimation performance, while more joint

on the left side were important when using 2D data. From these results we were

not able to elucidate any systematic or clear pattern in joint importance, which

might be caused by the limited set of movements performed in this study. This

might be an interesting avenue to explore further using a data set richer in terms

of movements.

The high R2 achieved could be a sign of overfitting by the LSTM model [40].

However, the 10-fold CV process showed a stable fit using test data, which can

be seen in the low spread of the LSTM model in Figure 7 as well. Results from

test/train errors also support this, as the difference between test/train errors is

low, as seen in Figure 10. Even more reassuring is the fact that the CV process was

not a holdout of random pieces of data, but a holdout of all the data from each

person. Thus, estimation of GRF was performed on previously unseen data from a

person with an unknown movement pattern.

The XGBoost model, however, does indeed seem to suffer from overfitting, which

presents itself as higher RMSE when estimating based on unseen data compared to

training data [41](Figure 9). This is likely caused by either too much noise in the

data (especially in the 2D-DV data), where the limited tree depth (max depth =

12) does not allow for the tree to fully model the real relationship in the data, or

that the current data set is too sparse. Even though XGBoost inherently possesses
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features that are known to prevent overfitting, our findings indicate that this was

not successful here.

Limitations There are some limitations to be aware of in the current study. The

movement pattern performed by participants was limited to to sideways leaning, and

there were a low number of participants. The data was collected in a laboratory

setting, and the models used require training data to be usable in a real-world

setting.

Conclusion
In conclusion, the LSTM model performed very well, especially in Fz. 3DMoCap

data produced the best results, but Fz estimation using 2D-DV data was also very

good. These findings show that it is feasible to develop exergames that provides

weight-shifting biofeedback by only using 2D joint position data from a standard

digital video camera. With the support of a standard camera, an exergame in bal-

ance training can incorporate the LSTM model to provide real-time biofeedback

on weight-shifting performance. This warrants further investigation into how such

systems can be integrated into exergames for in-home or in balance exercise, as

it opens up broad opportunities for providing accurate feedback in a simple, yet

accurate manner. The LSTM model and 2D-DV input data combination has the

potential to facilitate more effective and motivating in-home balance training by

incorporating accurate feedback on weight-shifting performance in exergames.
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