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Abstract—Recently, distribution system operators (DSO) are
facing increasing congestion management challenges in its grids
due to increasing electricity demand peaks. Batteries are widely
assumed to be a promising technology to deal with these
challenges. However, DSOs are in many countries not allowed
to buy or sell electricity, but must request flexibility through
a future local flexibility market (LFM). This paper proposes
a LFM architecture which allows the DSO to book flexibility
from aggregators who control batteries on behalf of the asset
owners, and activate flexibility when needed. This problem is
formulated as a two-stage stochastic optimization program where
the DSO books flexibility considering the expected cost of energy
not served and cost of battery degradation when activated. A
sensitivity analysis with respect to the projected battery prices
and different values of lost load (VoLL) are carried out. The
achieved results illustrate that the batteries are nowadays at
affordable prices for flexibility provision. However, the affordable
battery price where no curtailment occurs, is only achievable when
prices reach below 200 e /kWh, depending on VoLL.

Index Terms—Congestion management, battery degradation,
local flexibility market, load uncertainty

NOMENCLATURE

Indices and Sets
B/b Set/index of batteries
J/j Set/index of virtual battery segments
S/s Set/index of scenarios
T/t Set/index of time steps

Parameters
ρs Probability of scenario s [%]
Ach

b Battery charging efficiency [%]
Adis

b Battery discharging efficiency [%]
Cbook↑ Cost for booking capacity [ e

kWh ]
CV OLG Value of lost generation [ e

kWh ]
CV OLL Value of lost load [ e

kWh ]
CDA

t Forecasted day-ahead spot price [ e
kWh ]

Ecap
bj Energy capacity of segment j in battery b [kWh]

Ecap
b Energy capacity of battery b [kWh]

Lload
ts Substation load [kWh/h]

Qch
b Maximum battery charging power [kW]

Qdis
b Maximum battery discharging power [kW]

Ximp Substation import limit [kWh/h]

Variables
δbt Battery binary variable
δ̂bts Second stage battery binary variable

êbts Second stage battery state of charge [kWh/h]
q̂ch,segbtsj Second st. bat. segment j ch. power [kWh/h]
q̂dis,segbtsj Second st. bat. segment j disch. power [kWh/h]
q̂segbtsj Second st. bat. segment j SOC [kWh/h]
q̂chbts Second stage battery charging power [kWh/h]
q̂disbts Second stage battery discharging power [kWh/h]
a↑ts Activated upward flexibility [kWh/h]
ebt Battery state of charge [kWh/h]
qchbt Battery charging power [kWh/h]
qdisbt Battery discharging power [kWh/h]
r↑ Booked upward capacity [kWh]
xV oLG
ts Curtailed generation [kWh/h]
xV oLL
ts Curtailed load [kWh/h]

I. INTRODUCTION

Network reinforcements have traditionally been the main
approach when the distribution grid has faced congestion is-
sues. Recent developments have given local flexibility markets
(LFM) increasing importance as the shares of photovoltaics
(PV) and distributed energy resources (DER) such as electric
energy storage (EES) are rising. Grid congestions due to in-
creasing demand is occuring more and more in the distribution
system, for example in Norway where the regulator estimates
an alarming 13 billion e to be spent in the grid over the
next 10 years due to an ever-increasing electrification of the
energy demand [1]. A share of these costs can be mitigated by
using local flexibility to support the grid in terms of congestion
management, as flexible devices such as EES can be utilized
to shave peak loads. A joint statement from the DSOs on the
importance of EES can be found in [2].

The incorporation of flexibility options into distribution grid
reinforcement planning is becoming more interesting as the
availability, price and reliability of flexibility is improved [3].
For EES to deliver congestion management services, there
are two options. A) The DSO buys and controls batteries
centrally, or B) has to book and activate flexibility through
a local flexibility market (LFM) where asset owners are paid
to reserve battery capacity in order to deliver flexibility in the
scenarios where it is needed. The first option benefits from
the DSO having full control of the assets, ensuring reliable
supply of flexibility at a low price. However, according to the
European Commission: ”Distribution system operators shall
not be allowed to own, develop, manage or operate energy
storage facilities.” [4], which discourages research in this



direction. Many other entry barriers for energy storage are
described in [5]. Therefore, the second option has received
more attention in recent literature. A market solution for
DSO congestion management is described in [6], where the
aggregator is acting on behalf of asset owners and receives
information from the DSO on which flexibility is needed. [7]
formulated a multi-market bidding strategy for the aggregator
with a DER portfolio, but focused on frequency services rather
than congestion management.

EV aggregators are used in [8] to deal with congestion
management in a day-ahead flexibility market framework.
Similarly, an optimization problem for meeting DSO requests
in LFM with EES and other DER is described in [9], where
the aggregator minimizes the cost of scheduling flexible re-
sources in a deterministic fashion. However, the uncertainty
in flexibility requests remains unaddressed in these studies.

For the DSO, flexibility reliability is crucial as it has to be
there when needed. The day-ahead procurement (or booking)
of flexibility is therefore vital because the net load realization
is uncertain [10].

A drawback of many battery flexibility related studies is the
lack of consideration of battery degradation in the optimization
program. Some of the mentioned DER scheduling related
studies are delivering services using EES, where the cost of
delivering the service is higher than the value gained. This
issue was raised by [11], who considered a battery life-cycle
based degradation model in order to determine the real cost
of using the EES when determining optimal bids in day-ahead
and reserve markets. Similarly, [12] developed a rainflow-
based cycle degradation model which splits the EES into
virtual segments, adding a piece-wise linearized increasing
cost to use each of the segments. Calendar ageing in lithium-
ion batteries are also of significance but are of less importance
in short term market perspectives [13].

This paper is inspired by [14], where battery participation
in energy and spinning reserve markets is investigated under
a similar battery degradation approach. We perform a similar
analysis, but focus on the DSO and aggregator cooperation
to use batteries in distribution grids to deliver congestion
management services using local flexibility markets under
uncertainty in demand. The contributions are as follows:
• We describe a day-ahead LFM as a two-stage stochastic

program where the DSO can book flexibility and activate
it given the realization of the uncertainty,

• We combine a cycle-ageing based battery degradation
model from [12] and [11] and find the optimal flexibility
booking strategy of the DSO under different values of
projected battery prices and VOLL.

The rest of the paper is organized as follows. Section II
describes the role of the aggregator, the day-ahead LFM book-
ing problem framework and li-ion based battery degradation.
Further, the case study is described in Section IV followed
by the results in Section V. Finally, concluding remarks and
future work are stated in Section VI.

II. MARKET DESCRIPTION

The use of batteries for flexibility must be facilitated
through a LFM. However, to the authors knowledge, a general
LFM that facilitates local flexibility trade does not exist in
Europe with the exception of pilot projects. The novelty
of this paper is revolved around the importance of battery
degradation-aware models in LFM and not revolved around
market design, but we still provide a description of the
envisioned LFM to clarify the assumptions that are made in
this paper in the following section.

A. The role of the aggregator

In order for the DSO, to book flexibility, there must be some
flexibility service providers who have submitted offers to the
market. The flexibility service providers are asset owners or
acting on behalf of asset owners (in our case: aggregators),
who control the flexibility assets decisions. The aggregator
manages a portfolio of batteries on behalf of the battery
owners. The aggregator’s objective is to minimize the cost of
flexibility provision. The presented case study only considers
congestions where the load on the substation surpasses the
rated power (also known as upward active power congestions)
in this paper. Upward/downward active power flexibility can be
defined as a service where the provider increases/decreases its
active power injection to the grid. We use similar terminology
as in other balancing markets to avoid confusion.

B. The local flexibility market

Following the market design from [15], the aggregator acts
as a market player which operates assets on behalf of end-
users in order to deliver services to the DSO. We assume
that the LFM shares properties with the day-ahead market
as well as the balancing markets, meaning that the presented
formulation considers a 24 hour time horizon with hourly
activation. The market is cleared 12 hours before the first hour
of the time horizon, meaning that the uncertainty exists from
the very first hour of the horizon. The DSO can forecast a
need for flexibility based on some forecasted parameters (such
as temperature, irradiation etc), and uses historical data with
similar properties to create flexibility requirement scenarios for
the next day. To assure that the flexibility is available when
needed, the flexibility must be booked in the LFM. During
the real-time operation, DSO, upon need, asks the aggregator
to activate a share of the day-ahead booked flexibility. In this
approach, the aggregator only considers the day-ahead market
in a simplified manner by assuming deterministic day-ahead
prices (perfect foresight). In a realistic market, uncertainty in
prices should be considered to assure optimal coordination
between the LFM and the day-ahead market. However, this is
not the focus of this paper.

An important feature added to the market design is the
batteries need to reserve the total amount of energy booked
by the DSO for reliability reasons. This feature is considered
as batteries are of relatively low energy volume and therefore
have a chance of not having energy available when requested
by the DSO. This way, the DSO can be certain that the booked
energy is available for the time horizon. Reserving energy



instead of capacity is slightly different to frequency reserve
markets, but are added to ensure reliability for the DSO.

The DSO flexibility booking problem as well as the market
time horizon is shown in fig. 1.

Fig. 1. DSO flexibility booking problem. The first stage variables represent the
day-ahead decision of booking flexibility, whereas the second stage variables
are the activation strategy under uncertainty.

C. Battery cycle degradation

A promising battery technology for flexibility services
are lithium-ion batteries with nickel, manganese and cobalt.
Degradation of such batteries are dominated by the depth of
each cycle, which is nonlinear. To model the degradation cost
of the battery, this paper relies on the rainflow-based model
presented in [12]. This model splits the battery into virtual
battery segments, and allocates a cost to using each segment
based on cycle depth. In essence, a deep cycle is costlier than
a shallow cycle. The loss of cycle life as a function of cycle
depth is presented in fig. 2. The figure shows that whereas a
full cycle costs around to 0.05 % of the total available cycles
(the battery has 2000 full equivalent cycles in its lifetime). A
half cycle costs significantly less (0.013 %) of the total cycle
life, meaning that a lower cost should be allocated.

Fig. 2. Percentage of battery degradation costs as a function of cycle depth.

III. MODEL FORMULATION

The DSO aims to minimize its total costs, including ex-
pected costs of booking and activating flexibility as well as
the expected cost of curtailed load and generation. In addition,
batteries can react to the DA price. Battery degradation costs
are also considered. In essence, the DSO finds the optimal
procured flexibility and optimal state of charge and charging
decisions in order to deliver flexibility a↑ts.

The objective is given by (1). The first term expresses the
cost of booking flexibility. The second term is related to the
purchase and selling of electricity, whereas the second term
minimizes the cost of degradation. These two terms are the
costs related to the first-stage decisions, where commitments
to the day-ahead market (spot and LFM) are done. The second-
stage start with term 3 which expresses the degradation costs
which are allocated by the segment battery discharge variable
q̂disbtsj and the degradation cost Cdeg

bj which is drawn from
fig. 2. The fourth term represents the initial SOC of the
batteries, ensuring that the battery energy at the beginning
of the planning horizon is paid for, using the price of the
first hour of the planning horizon. This term is of a pragmatic
nature to assure that the batteries in the model start with 100
% SOC and end with 0 % SOC without paying for it. The
freedom to end with any SOC level is necessary to make sure
that the program is feasible in all scenarios. Furthermore, the
fifth term consists of the costs of deviating from the charging
plan in each scenario. Note that we assume that the costs for
energy are not intraday prices, but day-ahead prices as the need
for deviation is because of activation of flexibility. Finally, the
cost of curtailing load and generation are shown in the last
term.

min r↑ · Cbook↑ +
∑
b

∑
t

(qchbt − qdisbt )CDA
t

+
∑
b

∑
s

ρs
∑
t

∑
j

q̂disbtsjC
deg
bj +

∑
b

∑
s

CDA
0 · êinitb0s

+
∑
b

∑
t

∑
s

ρs
[
CDA

t (q̂chbts − q̂disbts )
]

+
∑
t

∑
s

[
ρs(C

V oLLxV oLL
ts + CV oLGxV oLG

ts )
]

(1)

The planning problem for flexibility booking is formulated
as a two-stage stochastic optimization program, where the first
stage decisions are the charging decisions of all batteries and
booking of flexibility. The first stage battery decisions are then
submitted to the market as a baseline. To deliver flexibility, the
deviation from the baseline

∑
b q̂

dis
bts in the second stage must

equal the difference in charging in scenario s and the first
stage (baseline) commitment

∑
b q

dis
bt , corresponding to a↑ts as

shown in eq. (2).

∀ts Ximp + a↑ts + xV oLL
ts ≥ Lts (2)

Further, the energy balance at the substation level is shown
in eq. (3a). This equation shows that if the load Lts is higher
than the import limit Ximp, load must either be curtailed or
flexibility must be activated.

∀ts Ximp + xV oLL
ts ≥ Lts +

∑
b

(q̂chbts − q̂disbts ) (3a)

∀s r↑ ≥
∑
b

∑
t

(q̂disbts − qdisbt ) (3b)

∀s r↑ ≥
∑
t

a↑ts (3c)



∑
b

eb0 ≥ r↑ (3d)

∀bs
∑
b

êb0s ≥ r↑ (3e)

The deviation from the first stage plan cannot exceed the
procured flexibility (3b). Similarly, the activation variable a↑ts
cannot exceed the booked amount in each scenario as shown in
(3c). To guarantee that the booked flexibility is available in the
battery for the entire planning horizon, the booked energy must
be available in all scenarios at the beginning of the planning
horizon as suggested in (3d) and (3e).

First stage battery constraints are shown below. SOC evo-
lution is shown in (4a), where the charging and discharging
efficiency is given by Ach

b , A
dis
b , respectively. Further, the

maximum charging and discharging constraints are given by
(4b) and (4c), respectively. The state of charge limits are
restricted in (4d).

∀bt ebt − eb(t−1) = ∆T (qchbt A
ch
b −

qdisbt

Adis
b

) (4a)

∀bt qchbt ≤ Qch
b · δbt (4b)

∀bt qdisbt ≤ Qdis
b · (1− δbt) (4c)

∀bt 0 ≤ ebt ≤ Ecap
b (4d)

Battery constraints for second stage flexibility delivery still
apply as shown in the following equations. eq. (5) gives the
2nd stage state of charge evolution. A second stage SOC
equation is needed due to assure correct operation of the
batteries in the second stage, which is the actual operation of
batteries in each scenario s. Also, this equation has segmented
variables which are essential for including the piecewise
linearized battery degradation cost.

∀btsj êbtsj − êb(t−1)sj = ∆T (q̂chbtsjA
ch
b −

q̂dis,segbtsj

Adis
b

) (5)

Link between segmented battery variables and non-
segmented battery variables are given below in (6a)-(6f), as
well as the second stage charging and state of charge limits.

∀bts
∑
j

êbtsj = êbts (6a)

∀bts
∑
j

q̂ch,segbtsj = q̂chbts (6b)

∀bts
∑
j

q̂disbtsj = q̂disbts (6c)

∀bts 0 ≤
∑
j

êsegbtsj ≤ E
cap
b (6d)

∀bts q̂chbts ≤ Qch
b · δ̂bts (6e)

∀bts q̂disbts ≤ Qdis
b · (1− δ̂bts) (6f)

IV. CASE STUDY

The model formulation is tested on a stylized 3-bus system
with a HV/MV transformer with two MV/LV transformers.
Each substation has 47 end-users and we only consider load
balance and congestions on substation level (no power-flow
equation are considered). Real load data from end-users in
Norway are used to simulate the load in the LV grid. The
case study is visualized in fig. 3.

Fig. 3. Case study overview

To see the impact of battery degradation in the flexibility
booking strategy, we run two case studies.

1) Market setting where DSO must book flexibility in the
LFM. DSO pays a price for booking flexibility, and activations
costs based on degradation cost. This is based on the model
described in section III.

2) Same approach as in 1) but without degradation costs
in the objective function. This translates to having no battery
degradation costs.

We analyze the impact of two factors; battery cost spanning
from 100 - 450 e /kWh1 and value of lost load (from 0 - 5
e /kWh). The present and projected battery prices from [16],
[17] and [18] as well as the VoLL from [19] were used.
Because VoLL depends on customer type, we use 1-6 e /kWh.

By performing a sensitivity analysis with respect to these
two parameters, we analyze how the DSO’s optimal flexibility
booking problem changes depending on the investment cost
of batteries and what VoLL has to be paid.
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Fig. 4. Load in all scenarios for flexibility requests for site A.

The scenarios for the substation level load are generated
using real-life load data from 94 end-users in Norway [20],
following the presented steps:

1We consider a P/E factor of 1.
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Fig. 5. Load in all scenarios for flexibility requests for site B.

1) Choose a temperature range2 (-7 to -12 celsius was
used). This resulted in this case in 16 scenarios.

2) We select the days which had an average temperature
between these two limits. For simplicity we do not
include weekends.

3) Extract load data from each consumer from the relevant
days, and aggregate them to simulate the load behind
the two MV/LV transformer.

4) We allocate the aggregated loads of each substation in
our problem.

By following this approach, the DSO can generate scenarios
based on the forecasted temperature. The load forecasts for
site A and B are shown in fig. 4 and fig. 5, respectively. The
complete data of the case study is found in table I.

TABLE I
DATA OF THE CASE STUDY.

Site Site
limit

Peak
load

Worst scen.
overloading

Battery cap. /
rated power

One-way
efficiency

A 185 kW 207 kW 94 kWh

50 kW(h) 97 %
30 kW(h) 96 %
20 kW(h) 95 %
10 kW(h) 94 %
10 kW(h) 93 %

B 123 kW 141 kW 125 kWh

50 kW(h) 97 %
50 kW(h) 96 %
20 kW(h) 95 %
10 kW(h) 94 %
10 kW(h) 93 %

Finally, price data for day-ahead prices CDA
t were taken

from NordPool website. Flexibility booking prices Cbook↑

do not exist and were therefore assumed to be 150 % of
the average DA price to compensate for lack of arbitrage
possibilities.

V. RESULTS AND DISCUSSION

A. DSO flexibility booking under battery degradation

As shown in fig. 6, the total cost of the DSO increases
with increasing VoLL. In the case where the DSO is not
economically responsible for load curtailment, the costs are
0 e as no flexibility must be procured. When VoLL and
battery prices increase, the total costs for the DSO naturally
increases. It is noteworthy that the relative cost increase is

2Load is residential areas is heavily dominated by temperature due to a
high share of electric heating.

significantly higher at increasing values of VoLL, whereas the
cost expectation is more compact for lower values of VoLL.

Fig. 6. Costs for different VoLL and projected battery prices.

One of the important metrics for the DSO is the expected
energy not served (EENS). From fig. 7, it is shown how the
EENS changes with projected battery prices under different
levels of VoLL. Note that zero EENS is only expected if VoLL
levels are 3 e /kWh or higher, even for battery prices as low
as 100 e /kWh. Altohugh an EENS of 5-15 kWh might seem
very low, this is due to many of the scenarios not resulting in
any overloading as seen in fig. 4 and fig. 5.

Fig. 7. EENS under different projected battery prices and VoLL.

B. DSO flexibility booking without battery degradation

Not considering battery degradation costs virtually means
that batteries are used similarly in all cases of battery prices,
as the objective in each iteration with different battery prices
are equal. The objective of each instance is the same as
shown by the green color in fig. 8. The objective is negative,
meaning that there is revenue from arbitrage which surpasses
the cost of booking flexibility. The battery degradation costs
are added post-optimization and are shown as the red bars.
Since the degradation cost is related to the projected battery
price, the costs increase with increased battery prices. After
degradation costs are added (post-optimization), the total DSO
costs are much higher than when degradation costs are part
of the optimization as shown in fig. 6. When considered,
battery degradation costs increase the costs from 70 e - 310
e when considered. These results highlight the need to model
the degradation cost correctly in the decision making process.
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Fig. 8. Costs for different projected battery prices. Post-processed degradation
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revenues) has a different scale than the right axis (degradation costs).

C. Discussion

The results show that the strategy of the DSO in the
future LFM is sensitive to the cost of the available flexibility
resources, as well as the VoLL, which is relevant in a real
future market for distribution grid flexibility. As battery prices
decrease, avoiding curtailment of load is more and more likely
as flexibility services turn cheaper. Still, it is important to
acknowledge the realistic degradation cost of using batteries
for flexibility, and they should only be used if the degradation
cost is lower than the avoided curtailment cost.

In general, the results show that VoLL has the largest impact
rather than projected battery price in terms of DSO flexibility
booking strategy. The results imply that if the LFM can exist,
it will provide value from day one as the services that can
be provided are already valuable even with relatively high
projected battery prices.
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Fig. 9. Affordable battery prices with different levels of VoLL with 0 EENS.

At the point where EENS is zero, the affordable battery
price at different levels of VoLL can be found. This is
portrayed in fig. 9. The results show that only when VoLL
is at 2 e /kWh or higher, there will be no curtailment in the
DSO strategy. In addition, any VoLL value above 4 e /kWh
will result in no curtailment as it is too expensive. In the span
between 2-4 e /kWh, the battery price is decisive for reaching
zero EENS.

Using this approach, any DSO can analyse if its grid
could benefit from batteries in order to avoid curtailment of
load, depending on the relevant VoLL in the system and the
projected battery price available. For example, battery costs

are expected to reach roughly 200 e /kWh in 2030, which
would result in no curtailment in this particular case study if
VoLL is 6 e /kWh or higher.

VI. CONCLUSION

This paper analyzed the impact of projected battery prices
and value of lost load on the DSO flexibility booking strategy
under uncertainty in demand using a LFM approach. By
combining advanced cycle-degradation based battery models
and day-ahead flexibility booking problem for congestion
management using a two-stage stochastic approach, the results
showed that the use of LFM and DSO flexibility booking is
valuable also for relatively costly batteries. Affordable battery
prices where EENS is zero is projected to be 100-200 e /kWh
depending on VoLL in the relevant grid. In general, using
batteries to avoid curtailment is profitable already at present
day battery investment costs, but strictly depends on the VoLL.

Furthermore, solving the same problem with and without
considering degradation costs showed how important it is to
account for the realistic cost of using the battery.

Further work should investigate LFM with different time
horizons, preferably also with real-time operation where the
uncertainty is not necessarily covering the possible realizations
like we have assumed in this paper. In addition, the paper
could be extended to also include an AC-PF formulation to
investigate other services such as voltage control and losses.

VII. ACKNOWLEDGEMENTS

This paper was prepared as a part of the Digital Economy
(DigEco) project funded by the NTNU Digital Transformation
Initiative (p. nr. 2495996).

REFERENCES

[1] Lovinda Ødegården and Sajan Bhantana, “Status og prognoser for
kraftsystemet 2018,” https://bit.ly/3fI2lMl, 2018, online; accessed 10
November 2020.

[2] eDSO, “Joint statement on battery-based storage,” https://bit.ly/3j3Gjoj,
2016, online; accessed 09 September 2020.

[3] S. Klyapovskiy, S. You, A. Michiorri, G. Kariniotakis, and H. W. Bind-
ner, “Incorporating flexibility options into distribution grid reinforcement
planning: A techno-economic framework approach,” Applied Energy,
vol. 254, p. 113662, nov 2019.

[4] European Comission, “Directive of the european parliament and of
the council on common rules for the internal market in electricity,”
https://bit.ly/2G3W1Be, 2017, online; accessed 24 September 2020.

[5] L. Dusonchet, S. Favuzza, F. Massaro, E. Telaretti, and G. Zizzo,
“Technological and legislative status point of stationary energy storages
in the EU,” Renewable and Sustainable Energy Reviews, vol. 101, pp.
158–167, mar 2019.

[6] C. Zhang, Y. Ding, N. C. Nordentoft, P. Pinson, and J. Østergaard,
“FLECH: A Danish market solution for DSO congestion management
through DER flexibility services,” Journal of Modern Power Systems
and Clean Energy, vol. 2, no. 2, pp. 126–133, jan 2014.

[7] S. Ø. Ottesen, A. Tomasgard, and S. E. Fleten, “Multi market bidding
strategies for demand side flexibility aggregators in electricity markets,”
Energy, vol. 149, pp. 120–134, 2018.

[8] A. Asrari, M. Ansari, J. Khazaei, and P. Fajri, “A Market Framework
for Decentralized Congestion Management in Smart Distribution Grids
Considering Collaboration among Electric Vehicle Aggregators,” IEEE
Transactions on Smart Grid, vol. 11, no. 2, pp. 1147–1158, mar 2020.

[9] P. Olivella-Rosell, E. Bullich-Massagué, M. Aragüés-Peñalba,
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