
Chapter 2

LEVERAGING THE USB POWER
DELIVERY IMPLEMENTATION FOR
DIGITAL FORENSIC ACQUISITION

Gunnar Alendal, Stefan Axelsson and Geir Olav Dyrkolbotn

Abstract Modern consumer devices present major challenges in digital forensic
investigations due to security mechanisms that protect user data. The
entire physical attack surface of a seized device such as a mobile phone
must be considered in an effort to acquire data of forensic value.

Several USB protocols have been introduced in recent years, includ-
ing Power Delivery, which enables negotiations of power delivery to or
from attached devices. A key feature is that the protocol is handled
by dedicated hardware that is beyond control of the device operating
systems. This self-contained design is a security liability with its own
attack surface and undocumented trust relationships with other periph-
erals and the main system-on-chips.

This chapter presents a methodology for vulnerability discovery in
a black box USB Power Delivery implementation for Apple devices.
The protocol and Apple-specific communications are reverse engineered,
along with the firmware of the dedicated USB Power Delivery hardware.
The investigation of the attack surface and potential security vulnera-
bilities can facilitate data acquisition in digital forensic investigations.

Keywords: Digital forensic acquisition, mobile device security, USB Power Delivery

1. Introduction
Law enforcement has special opportunities to leverage security vul-

nerabilities in digital forensic acquisition. Since law enforcement can
physically seize devices, any exposed physical interface on the devices is
a potential attack vector for data acquisition.

Exposed interfaces on mobile devices that can be leveraged without
physically opening the devices include SIM card slots, SD card slots,



28 ADVANCES IN DIGITAL FORENSICS XVI

audio jacks and USB connectors. Interfaces that are exposed by phys-
ically opening devices are UART, JTAG and essentially any on-board
peripherals that can be manipulated or replaced. The internal interfaces
are often less accessible because opening a device like a mobile phone
can be cumbersome and risky. A mobile phone is often glued shut and
attempting to open it could disrupt normal operations, especially if the
device must be powered on to exploit a specific vulnerability. This situa-
tion can occur if a phone is seized after the user has unlocked the device
at least once since the device was powered on (i.e., after-first-unlock
state), where user keys tied to user credentials are unlocked and more
user data is potentially available. Thus, security vulnerabilities exposed
via externally-accessible interfaces are preferred over internal interfaces.

The USB connector is one of the most common external interfaces in
modern personal computers and embedded devices. As a result, the se-
curity of USB protocols is important from a digital forensic perspective.
Wang et al. [31] have discussed USB attack strategies on the functional
and physical layers, and several vulnerable scenarios for USB connected
devices. However, they did not explore the security of the USB Power
Delivery protocol.

Tian et al. [26] have investigated USB security. They have examined
the security features provided by the USB Type-C connector, specif-
ically, authentication that is included in recent USB Power Delivery
revisions. They formally verified the authentication and identified USB
attack vectors, but do not discuss implementation details. Examining
actual implementations for verification of USB Power Delivery as an
attack vector is, therefore, interesting and timely.

USB Power Delivery is a feature in newer devices that is available
externally over standard USB physical interfaces such as a USB Type-C
connector [28]. It is available on many modern personal computers and
mobile phones in the after-first-unlock (AFU) and before-first-unlock
(BFU) states. USB Power Delivery enables connected devices to negoti-
ate the optimal power delivery (voltage and current), where one device
acts as the source and the other as the consumer (sink).

Because devices can choose to swap the source and sink roles, the
USB Power Delivery protocol supports the negotiation of the direc-
tion of power flow. Additionally, the protocol supports the negotia-
tions of multiple devices connected to a single power source as well as
re-negotiations at any time if more power is required. The protocol
specification allows direct current levels up to 5 A, corresponding to a
maximum of 100 W at 20 V. Thus, even the cables need to communi-
cate using the USB Power Delivery protocol to ensure that they support



Alendal, Axelsson & Dyrkolbotn 29

higher current levels. These cables are named “electronically marked
cables” (EMCA) [29].

USB Power Delivery employs messages for communications [29]. Re-
vision 2.0 of the protocol has control and data messages. Revision 3.0
specifies additional extended messages that support features such as
firmware updates, battery information, manufacturer information and
security messages. USB Power Delivery also supports a side-band chan-
nel for standard and non-standard vendor-specific communications.

Thus, the source, sink and cable can transmit and receive control, data
and extended messages, as well as additional vendor-specific messages.
The original and additional features of the protocol raise the question
whether the protocol can be considered to be secure from a vulnerabil-
ity perspective. The code implementing such a feature-rich protocol is
large and complex, increasing the likelihood of faults, which include se-
curity vulnerabilities. Estimating the ratio of security vulnerabilities per
line of code is difficult and cumbersome. Hatton [15] suggests a defect
(bug) density of less than ten per thousand lines of code. Ozment and
Schechter [19], who evaluated OpenBSD, suggest a vulnerability density
three orders of magnitude less. Although the figures are not directly
comparable, they indicate that more code increases the likelihood of
security vulnerabilities.

The complexity of the USB Power Delivery protocol and its code base
increase the likelihood that software security vulnerabilities could have
been introduced during design and implementation. The protocol is
also implemented in dedicated hardware, which raises questions about
the state and integrity of the chip as well as the trust relationships with
the rest of the system and the system-on-chip (SoC). This could expose
the implementation to “evil maid” attacks [25] that replace the firmware
in a USB Power Delivery chip or simply replace the entire chip.

The basis for any vulnerability research is the design and imple-
mentation details. Before applying any vulnerability discovery tech-
niques [5, 17], access to code in any form and testing tools are extremely
beneficial. Static vulnerability analysis benefits greatly from access to
design and code details whereas fuzzing [24] requires simulation testing
methods and tools.

Since most USB Power Delivery implementations are proprietary, the
availability of source code is limited. Therefore, evaluating and estimat-
ing the likelihood of faults and security vulnerabilities based on lines
of code is difficult. Additionally, since the protocol is implemented in
dedicated hardware with undocumented interfaces, the ability to ana-
lyze and evaluate security via testing is limited. Few tools are available
to perform black box testing or fuzzing of the protocol [1]. Extracting



30 ADVANCES IN DIGITAL FORENSICS XVI

firmware from a USB Power Delivery chip and analyzing the firmware
are also difficult tasks. But they are important because such proprietary,
non-scrutinized code may have many unknown security vulnerabilities.

It appears that USB Power Delivery has potential vulnerabilities in
the protocol [23, 33] and its implementations [5]. Other vulnerabilities
may arise from hidden features [8], implicit trust relationships [6] and
hardware exposures such as evil maid [25]. Clearly, the exploitation of
USB Power Delivery should be investigated as a means to enable the
forensic acquisition of data from devices that incorporate the hardware
and implement the protocol.

This chapter presents a new methodology for evaluating the potential
of USB Power Delivery as an attack vector. The focus on USB Power
Delivery implementations can provide insights into vulnerabilities. Bi-
nary diffing [10] of firmware versions can reveal security patches that
can be exploited. Indeed, this research is important to understanding
and leveraging USB Power Delivery as an entirely new attack surface for
forensic data acquisition.

2. USB Power Delivery Protocol
The USB Power Delivery protocol specifications were released in 2012

as Revision 1.0 (version 1.0). The most recent specifications are pro-
vided in Revision 2.0 (version 1.3) and Revision 3.0 (version 2.0) [29].
USB Power Delivery offers a uniform method for devices to negotiate
power supply configurations across vendors. The protocol is often used
by devices with USB Type-C connectors. A USB Type-C connector has
dedicated lines, CC1 and CC2, that enable USB Power Delivery com-
munications between devices. However, a USB Type-C connector is not
required to support USB Power Delivery; for example, Apple’s propri-
etary Lightning Connector [12] supports USB Power Delivery. In fact, a
cable with Apple Lightning and USB Type-C connectors could be used
between an Apple device and any other USB Power Delivery enabled
device to facilitate communications. The Apple Lightning and USB
Type-C connectors are reversible, so the orientations of the connectors
are not important.

The message-based USB Power Delivery protocol employs three types
of messages: control, data and extended messages. Control messages are
short messages that typically require no data exchange. Data messages
contain data objects that are exchanged between devices. Extended
messages, introduced in Revision 3.0, are data messages with larger pay-
loads.



Alendal, Axelsson & Dyrkolbotn 31

Preamble SOP
Start of packet

Message Header
16 bit

Data Objects (0-7)
32 bit

CRC EOP
End of packet

Figure 1. USB Power Delivery data message packet.

Figure 1 shows the format of a USB Power Delivery data message
packet. The packet has a transport portion comprising the preamble,
start of packet (SOP), cyclic redundancy check (CRC) and end of packet
(EOP) fields, which encapsulates the message header and optional (up
to seven) data objects. A data object has a fixed size of 32 bits, allowing
for a maximum of 7×32 bits of data per message.

Table 1. Power Delivery protocol messages.

Control Messages Data Messages Extended Messages
Revs. 2.0 and 3.0 Revs. 2.0 and 3.0 Rev. 3.0 only

GoodCRC Source Capabilities Source Capabilities Extended
GotoMin Request Status
Accept BIST Get Battery Cap
Reject Sink Capabilities Get Battery Status
Ping Vendor Defined Battery Capabilities
PS RDY Get Manufacturer Info
Get Source Cap Rev. 3.0 only Manufacturer Info
Get Sink Cap Enter USB Security Request
DR Swap Battery Status Security Response
PR Swap Alert Firmware Update Request
VCONN Swap Get Country Info Firmware Update Response
Wait PPS Status
Soft Reset Country Info

Sink Capabilities Extended
Rev. 3.0 only Country Codes
Data Reset Complete
Not Supported
Get Source Cap Extended
Get Status
FR Swap
Get PPS Status
Get Country Codes
Get Sink Cap Extended
Data Reset

USB Power Delivery supports a wide range of standard messages to
facilitate negotiations of power source configurations between devices.
Table 1 lists the messages supported by Revision 2.0 (Version 1.3) and/or
Revision 3.0 (Version 2.0). The backward compatibility means that pro-



32 ADVANCES IN DIGITAL FORENSICS XVI

Table 2. Structured Vendor Defined message commands.

Structured VDM Commands

Discover Identity
Discover SVIDs
Discover Modes
Enter Mode
Exit Mode
Attention
SVID-Specific Commands

tocol complexity increases in new revisions as new messages are added
but existing messages are not eliminated.

Some of the standard messages in Table 1 have sub-types. For ex-
ample, a Vendor Defined message (VDM) can be structured or unstruc-
tured. Structured VDMs have commands defined in the standard (Ta-
ble 2). Unstructured VDM commands are defined by vendors and are
undocumented. Vendors are free to implement proprietary communica-
tions using unstructured VDMs as demonstrated in [1]. Enabling ven-
dors to add messages over and above the standard messages results in
increased complexity and firmware code size.

To avoid conflicts when implementing proprietary vendor messages,
VDMs require a standard vendor ID (SVID) defined in the specification
or a vendor ID (VID) to be part of the VDM header. A VID is a unique
16-bit identifier assigned by the USB Implementers Forum [30]. A vendor
with a valid VID is free to implement any VDMs needed to operate its
USB Power Delivery enabled devices. Apple devices commonly use the
VID 0x05ac [13].

Connected devices negotiate power delivery via an explicit contract.
Typically, this is initiated by the source device that sends a Source -
Capabilities data message to which the sink replies with a GoodCRC
message followed by a Request message (Figure 2). These responses in-
form the source that the sink is USB Power Delivery enabled and the
highest protocol revision it supports. Specification revision information
is included in the message header of the Request message. The highest
specification revision supported by the sink corresponds to the high-
est specification revision supported by the source, which is indicated in
the Source Capabilities message. Thus, the connected devices know the
revision and the message sets that are mutually supported.



Alendal, Axelsson & Dyrkolbotn 33

Source Sink

1: Source_Capabilities

2: GoodCRC

3: Request

4: GoodCRC

5: Accept

6: GoodCRC

8: GoodCRC

2: PS_RDY

Figure 2. Generic, source-initiated explicit contract negotiation.

3. Research Methodology
The methodology for researching USB Power Delivery firmware in-

volves information gathering, monitoring black box testing and simu-
lation, and reverse engineering actual implementations (using binary
code, documentation, source code, etc.). The individual methods often
aid and overlap each other. For example, static reverse engineering of a
binary is often assisted by monitoring and simulation. Even more power-
ful methods are instrumentation and debugging, which advance reverse
engineering and vulnerability discovery.

Access to the source code of USB Power Delivery implementations
(firmware) is difficult. This is because the source code is developed by
the chip vendor and/or device vendor and are considered to be pro-
prietary, business-confidential information. The documentation is also
considered confidential and is kept in-house. As a result, the only option



34 ADVANCES IN DIGITAL FORENSICS XVI

for researchers intending to study USB Power Delivery implementations
is to extract and reverse engineer firmware.

Reverse engineering firmware involves the extraction of machine code
(binary) for a specific chip and applying static and dynamic methods
to produce human-readable assembly code [14, 18], following which de-
compilation is performed to obtain pseudo high-level source code [7].
Static reverse engineering analyzes machine code without executing or
interacting with the code [14]. Dynamic reverse engineering analyzes
machine code by interacting with and debugging executing code (e.g.,
using black box testing) [14].

Static and dynamic methods and tools are available for analyzing well-
known machine code structures such as PE [21] and ELF [16] binaries,
but they are difficult to come by for hardware-specific and specialized
firmware used by USB Power Delivery chips. Obtaining USB Power
Delivery chip firmware is challenging. Vendors may include firmware in
regular device updates as in the case of Apple iOS updates. However,
USB Power Delivery chips may not receive any updates from vendors,
requiring researchers to extract the firmware directly from the chips
soldered on the targeted devices.

USB Power Delivery firmware can be retrieved from general iOS up-
dates for Apple devices. In fact, the firmware for several USB Power
Delivery chips can be obtained by unpacking and investigating the iOS
updates that are often distributed in .ipsw archives.

Analyzing the firmware of USB Power Delivery chips is complex be-
cause the code is often based on specific, often unknown, hardware. In
particular, little to nothing may be known about the architecture, mem-
ory layout and interfaces. Since the firmware does not directly interact
with users, helpful, human-readable, informational/error messages are
rarely embedded in the code. This renders static reverse engineering
very difficult, making dynamic reverse engineering the only feasible op-
tion.

Dynamic reverse engineering involves the execution and observation
of the behavior of firmware. A simulation tool can be used to evaluate
code execution by communicating with the USB Power Delivery interface
and, consequently, the firmware code. This can be accomplished using
a proprietary USB Power Delivery simulation device as in [1]. USB
Power Delivery messages are sent to the device to assist with static
reverse engineering. Specifically, responses to the messages are matched
in a trial and error manner to identity the corresponding firmware code.
However, reversing the firmware and resulting assembly code are still
very tedious. Also, the reverse engineering results may not fully match
the full feature set of the original source code. Nevertheless, the results



Alendal, Axelsson & Dyrkolbotn 35

USB PD
Simulator

USB PD
Passive
Monitor

Analysis
Computer

USB PD
Power
Source

USB PD
Hardware

iPhone
1 3 2

3

4

1

Figure 3. Experimental setup.

would help understand unknown parts of the protocol such as VDMs.
The (re)produced pseudo code from the (re)produced assembly code
could be used to estimate of the lines of code in the original source code
and, thus, the complexity of the implementation.

The production of pseudo code from firmware binaries from different
vendors is challenging and difficult to generalize. Therefore, this research
opted to pursue a full reverse engineering effort for targeted devices such
as Apple iPhones to help generalize the results to a wider selection of
devices in the future.

Figure 2 shows the experimental setup. It incorporates an analysis
computer, target iPhone, USB Power Delivery monitor, USB Power De-
livery simulator and stock USB Power Delivery power sources.

The general workflow is to first conduct information gathering from
open sources. A generic USB PD passive monitoring tool (1 in Figure 2)
is employed to observe device functionality (especially beyond the spec-
ified behavior) when the device is connected to other Apple devices and
devices from other vendors. This provides early indications of propri-
etary vendor code and supports subsequent reverse engineering.

Passive monitoring of USB Power Delivery communications only cov-
ers the use of a subset of the protocol and optional vendor-specific mes-
sages. Therefore, the USB Power Delivery chip firmware must be ex-
tracted from the selected Apple device (2 in Figure 2) and static reverse
engineering techniques employed to disassemble the firmware and repro-
duce the pseudo code via decompilation.



36 ADVANCES IN DIGITAL FORENSICS XVI

Next, dynamic reverse engineering techniques and trial-and-error prob-
ing of the running device with actual messages are performed (3 in Fig-
ure 2). These augment the static reverse engineering efforts to provide
a better understanding of the firmware. After important components of
the firmware, especially undocumented vendor-specific functionality, are
understood, attempts are made to implement and simulate the compo-
nents to verify that the Apple device behaves and responds according to
the reverse engineering results. A jailbreaking solution, checkra1n [20],
is employed to facilitate on-device experiments. This provides root ac-
cess to the test devices. Communications are performed over the normal
USB interface (4 in Figure 2). Dynamic reverse engineering efforts and
simulation of USB Power Delivery communications are also useful when
conducting injection tests to identify vulnerabilities.

4. Results
This section presents the results of applying the research methodol-

ogy discussed above to USB Power Delivery implementations in Apple
iPhone models.

4.1 Information Gathering
The USB Power Delivery hardware in iPhone X, iPhone 8 and iPhone

8 Plus models appears to employ a Cypress CYPD2104 embedded mi-
crocontroller [32]. General datasheets and hardware design guides are
available at the vendor site [9]. While the documentation provides use-
ful insights, it was not possible to obtain complete documentation for
the hardware, which would have provided useful information about the
memory mapping of peripherals.

A Cypress CYPD2104 embedded microcontroller has a 48 MHz ARM
Cortex-M0 CPU with 32 KB of flash storage for firmware, 4 KB SROM
for booting and configuration, and 4KB of SRAM. The I/O subsys-
tem includes two serial communications blocks supporting I2C, SPI and
UART, as well as several GPIOs. The interfaces are used to communi-
cate with other peripherals such as the Apple system-on-chip. Another
feature very relevant to reverse engineering and vulnerability discovery
is Serial Wire Debug (SWD) access. The access could be over a JTAG
interface that would enable on-device debugging capabilities, very use-
ful for reverse engineering and vulnerability discovery. However, no at-
tempts were made to access the interface in this research.



Alendal, Axelsson & Dyrkolbotn 37

4.2 Passive Monitoring
USB Power Delivery is not enabled on all Apple devices. Tests on

Apple iPhones suggest that it is supported by Apple iPhone 8 and later
models. Using a commercial USB Power Delivery analyzer [27] on a USB
Power Delivery enabled power supply connected to an iPhone reveals if
the device supports USB Power Delivery. A supported device also reveals
its specification revision (and thus the supported messages). An attempt
by a source to negotiate an explicit contract with an unsupported device
fails to elicit a response.

Table 3 shows a summary of the messages exchanged during an ex-
plicit contract between a source non-Apple power supply (Revision 3.0)
and sink iPhone 10,6 (iOS 13.2.2; iPhone10,3,iPhone10,6 13.2.2
17B102 Restore.ipswwith SHA1 9c50018b2ac7c2e3d667aa065aeda3a7ff80a4ef.
Table 4 shows a summary of the messages exchanged during an explicit
contract between a source Apple power supply (Revision 2.0) and sink
iPhone 10,6. Note that the GoodCRC messages are removed.

The non-Apple power supply supports Revision 3.0 (Index 115 in Ta-
ble 3 and the test iPhone responds with Revision 2.0 (Index 127 in
Table 3). This identifies the latest revision supported by the test device.

Connecting an Apple power supply reveals additional, vendor-specific
communications (Table 4). Note that the communications are summa-
rized and the GoodCRC messages are removed. The undocumented Ap-
ple device communications start with the first unstructured VDM with
Index 299. This is accordance with the USB Power Delivery specifica-
tions, which state that proprietary communications should use unstruc-
tured VDMs. The communications are initiated when the Apple power
supply asks the iPhone for its device ID. The iPhone device responds
with an Apple VID 0x05ac, following which the Apple power source
initializes and starts the Apple-device-specific protocol. This protocol is
dissected in Section 4.5.

4.3 Firmware Files
The USB Power Delivery firmware files were located in iOS updates [2].

These files are regularly released by Apple to update the iOS operating
system and support on-board peripherals. The firmware files reside in an
unpacked .ipsw file (directories: 048-90011-109/YukonB17B102.arm64CustomerRamDisk/usr/sta
or 048-90336-109/YukonB17B102.arm64CustomerRamDisk/usr/standalone/firmware/)
and are named USB-C HPM,x.bin, where x varies based on the number
of included firmware files.

The firmware files come in various versions for installation on device
hardware (Section 4.1). Many of the files are equal in size and have



38 ADVANCES IN DIGITAL FORENSICS XVI

T
able

3.
E

x
p
licit

co
n
tra

ct
b
etw

een
so

u
rce

n
o
n
-A

p
p
le

p
ow

er
su

p
p
ly

(R
ev

.
3
.0

)
a
n
d

sin
k

iP
h
o
n
e

X
(iO

S
1
3
.2

.2
).

R
e
v
isio

n
In

d
e
x

T
im

e
R

o
le

M
e
ssa

g
e

D
a
ta

3
.0

1
1
5

0
:3

5
.2

9
4
.9

9
7

S
o
u
rce:D

F
P

[0
]S

o
u
rce

C
a
p

A
1
6
1

2
C

9
1
0
1

0
A

2
C
D
1

0
2

0
0
F
4

2
1

0
3

0
0

F
4
C
1

0
3

0
0
B
1

B
1

0
4
0
0

4
5

4
1
0
6

0
0

8
3

B
5

F
1
B
C

1
2
4

0
:3

5
.2

9
6
.4

2
6

S
in

k
:U

F
P

[0
]G

o
o
d
C

R
C

4
1
0
0

B
B

6
C
B
B

A
8

2
.0

1
2
7

0
:3

5
.2

9
7
.7

0
7

S
in

k
:U

F
P

[0
]R

eq
u
est

4
2
1
0

2
C

B
1
0
4

1
3

3
D
9
D

1
8

5
D

1
3
1

0
:3

5
.2

9
8
.4

1
9

S
o
u
rce:D

F
P

[0
]G

o
o
d
C

R
C

6
1
0
1

8
F

7
8
3
8

4
A

2
.0

1
3
4

0
:3

5
.3

0
1
.5

2
2

S
o
u
rce:D

F
P

[1
]A

ccep
t

6
3
0
3

2
1

7
B
0
0

9
6

1
3
7

0
:3

5
.3

0
2
.3

2
9

S
in

k
:U

F
P

[1
]G

o
o
d
C

R
C

4
1
0
2

9
7

0
D
B
5

4
6

2
.0

1
4
0

0
:3

5
.4

1
2
.6

8
7

S
o
u
rce:D

F
P

[2
]P

S
R

D
Y

6
6
0
5

5
1

2
A
1
4

0
2

1
4
3

0
:3

5
.4

1
3
.2

3
2

S
in

k
:U

F
P

[2
]G

o
o
d
C

R
C

4
1
0
4

A
2

A
8
D
6

A
F



Alendal, Axelsson & Dyrkolbotn 39

T
ab

le
4.

E
x
p
li
ci

t
co

n
tr

a
ct

b
et

w
ee

n
so

u
rc

e
A

p
p
le

p
ow

er
su

p
p
ly

(R
ev

.
2
.0

)
a
n
d

si
n
k

iP
h
o
n
e

1
0
,6

(i
O

S
1
3
.2

.2
).

R
e
v
is

io
n

In
d
e
x

T
im

e
R

o
le

M
e
ss

a
g
e

D
a
ta

2
.0

1
8
2

0
:2

1
.8

0
1
.7

8
7

S
o
u
rc

e:
D

F
P

[3
]S

o
u
rc

e
C

a
p

6
1
1
7

F
0

9
0
0
1

0
8

E
A
2
1

1
F

C
C

2
.0

1
8
9

0
:2

1
.8

0
3
.8

1
7

S
in

k
:U

F
P

[0
]R

eq
u
es

t
4
2
1
0

F
0

C
0
0
3

1
3

B
C
0
F

E
8

2
B

2
.0

1
9
7

0
:2

1
.8

0
5
.4

5
1

S
o
u
rc

e:
D

F
P

[4
]A

cc
ep

t
6
3
0
9

3
F

9
2
D
5

7
6

2
.0

2
0
3

0
:2

1
.8

3
4
.3

4
5

S
o
u
rc

e:
D

F
P

[5
]P

S
R

D
Y

6
6
0
B

5
6

0
7
A
C

E
5

2
.0

2
3
8

0
:2

4
.8

2
5
.5

5
5

S
o
u
rc

e:
D

F
P

[1
]V

D
M

:D
is
cI

d
en

ti
ty

6
F
1
3

0
1

8
0
0
0

F
F

1
6
6
2

A
B

1
B

2
.0

2
4
5

0
:2

4
.8

2
7
.5

1
1

S
in

k
:U

F
P

[2
]V

D
M

:D
is
cI

d
en

ti
ty

4
F
4
4

4
1

8
0
0
0

F
F

A
C
0
5

0
0

5
4
0
0

0
0

0
0

0
0

0
0
2
1

7
D

1
6
9
4

9
9

0
7
8
2

2
.0

2
5
5

0
:2

4
.8

3
1
.3

7
2

S
o
u
rc

e:
D

F
P

[2
]V

D
M

:D
is
cS

V
ID

6
F
1
5

0
2

8
0
0
0

F
F

5
8
3
8

5
E

8
6

2
.0

2
6
2

0
:2

4
.8

3
3
.3

2
0

S
in

k
:U

F
P

[3
]V

D
M

:D
is
cS

V
ID

4
F
2
6

4
2

8
0
0
0

F
F

0
0
0
0

A
C

0
5
F
6

2
0

C
2

2
6

2
.0

2
7
0

0
:2

4
.8

3
7
.3

2
2

S
o
u
rc

e:
D

F
P

[3
]V

D
M

:D
is
cM

o
d
e

6
F
1
7

0
3

8
0
A
C

0
5

B
A
E
4

F
8

1
B

2
.0

2
7
7

0
:2

4
.8

3
9
.1

5
4

S
in

k
:U

F
P

[4
]V

D
M

:D
is
cM

o
d
e

4
F
2
8

4
3

8
0
A
C

0
5

0
2
0
0

0
0

0
0
7
2

A
D

2
1

9
6

2
.0

2
8
5

0
:2

4
.8

4
4
.3

6
5

S
o
u
rc

e:
D

F
P

[4
]V

D
M

:E
n
te

rM
o
d
e

6
F
1
9

0
4

8
1
A
C

0
5

5
5
0
8

D
D

3
8

2
.0

2
9
2

0
:2

4
.8

4
6
.4

7
7

S
in

k
:U

F
P

[5
]V

D
M

:E
n
te

rM
o
d
e

4
F
1
A

4
4

8
1
A
C

0
5

8
E
2
F

C
5

E
3

2
.0

2
9
9

0
:2

4
.8

5
0
.2

6
0

S
o
u
rc

e:
D

F
P

[5
]V

D
M

:U
n
st

ru
ct

u
re

d
6
F
1
B

0
5

0
0
A
C

0
5

E
7
4
D

5
6

1
A

2
.0

3
0
7

0
:2

4
.8

5
1
.9

1
9

S
in

k
:U

F
P

[6
]V

D
M

:U
n
st

ru
ct

u
re

d
4
F
1
C

1
5

0
0
A
C

0
5

5
E
C
3

C
3

F
F

2
.0

3
1
5

0
:2

4
.8

5
3
.3

5
7

S
in

k
:U

F
P

[7
]V

D
M

:A
tt

en
ti

o
n

4
F
3
E

0
6

8
1
A
C

0
5

0
2
0
1

A
C

0
5
0
0

0
0

0
0

0
0

D
C
6
9

C
4

D
9

2
.0

3
2
4

0
:2

4
.8

5
6
.9

2
7

S
o
u
rc

e:
D

F
P

[6
]V

D
M

:U
n
st

ru
ct

u
re

d
6
F
3
D

0
2

0
1
A
C

0
5

0
0
0
0

0
0

0
0
0
6

0
0

0
0

2
0

1
2
5
E

E
4

8
1

2
.0

3
3
3

0
:2

4
.8

5
8
.7

7
4

S
in

k
:U

F
P

[0
]V

D
M

:U
n
st

ru
ct

u
re

d
4
F
1
0

1
2

0
0
A
C

0
5

E
6
1
6

E
4

A
7

2
.0

3
4
0

0
:2

4
.8

6
0
.2

0
9

S
in

k
:U

F
P

[1
]V

D
M

:A
tt

en
ti

o
n

4
F
3
2

0
6

8
1
A
C

0
5

0
2
0
1

A
C

0
5
0
4

0
0

0
0

0
0

7
0
4
7

1
C

C
C

2
.0

3
4
9

0
:2

4
.8

6
3
.7

4
8

S
o
u
rc

e:
D

F
P

[7
]V

D
M

:U
n
st

ru
ct

u
re

d
6
F
3
F

0
2

0
1
A
C

0
5

0
4
0
0

0
0

0
0
0
0

0
2

0
8

0
0

D
1
C
4

A
A

B
0

2
.0

3
5
8

0
:2

4
.8

6
5
.6

2
8

S
in

k
:U

F
P

[2
]V

D
M

:U
n
st

ru
ct

u
re

d
4
F
1
4

1
2

0
0
A
C

0
5

2
6
B
0

6
4

5
2



40 ADVANCES IN DIGITAL FORENSICS XVI

minor differences in their binaries. An important difference is that each
has a different product ID (PID) that is reported by the corresponding
firmware in response to a structured Discover Identity VDM (Table 2).

Table 5 lists the firmware files with their PIDs. The PID enables
any connected device to identify the iPhone model via the USB Power
Delivery protocol. An important observation is that the firmware files
have approximately identical code across all the PIDs (and thus iPhone
models) for a given iOS version. This means that any security issues dis-
covered in firmware for a specific iPhone model would likely be present
in multiple models, increasing the applicability of a forensic data acqui-
sition method. Reverse engineering results for one device model could
be reused across models, saving time and resources.

Research revealed that the different iOS 13.2.2 updates for iPhone 8,
iPhone 8 Plus and iPhone X models included identical USB-C HPM,x.bin
files as shown in Table 5.

The common firmware codebase also supports binary diffing. Secu-
rity patches discovered in two versions of a USB-C HPM,x.bin file can
be assumed to be present in the firmware of different iPhone models.
This greatly reduces the resources needed to discover potential security
patches across device models.

For a given USB-C HPM,x.bin file corresponding to an iPhone 8 Plus
model (USB-C HPM,4.bin), different iOS updates can be downloaded and
analyzed to detect changes to the USB Power Delivery firmware. Com-
paring the sha1sum values for differences is adequate to indicate a patch
because there does not appear to be any iOS-specific rebuilding or ver-
sioning changes embedded in the firmware, leaving it untouched between
updates unless the actual USB Power Delivery firmware is updated.

Table 6 shows several iOS updates for the iPhone 8 Plus model and
the corresponding sha1sum(USB-C HPM,4.bin) values. The trend is that
the USB Power Delivery firmware is updated rarely. In fact, one patch
was retained in iOS versions 13.3.1 to 13.4.

4.4 Firmware Reverse Engineering
Since most of the firmware files corresponding to different PIDs have

few differences, reverse engineering can focus on just one of the USB-C -
HPM,x.bin files in Table 5. The machine architecture is ARM little
endian and the code is in the ARM Thumb mode [4], which is a sub-
set of the ARM instruction set that uses variable-length instructions,
often for improved code density. The code is also what is often re-
ferred to as “bare metal” code, meaning it can execute without any
other abstraction layer (e.g., underlying operating system). The code



Alendal, Axelsson & Dyrkolbotn 41

T
ab

le
5.

F
ir

m
w

a
re

fi
le

s
w

it
h

th
ei

r
P

ID
s

a
n
d

te
st

iP
h
o
n
e

m
o
d
el

s.

F
il
e

N
a
m

e
sh

a
1
su

m
P

ID
iP

h
o
n
e

M
o
d
e
l

U
S
B
-
C
H
P
M
,
1
.
b
i
n

8
3
D
9
F
3
0
0
3
D
F
9
C
C
1
9
1
5
5
0
7
B
D
0
9
0
6
0
8
A
E
0
A
A
9
6
C
F
5
D

0
x
1
6
5
4

U
S
B
-
C
H
P
M
,
2
.
b
i
n

8
7
B
F
3
E
E
D
A
8
C
9
8
0
8
1
6
5
7
F
1
3
B
5
B
5
4
7
9
2
4
8
9
3
E
F
0
E
D
3

0
x
1
6
5
d

U
S
B
-
C
H
P
M
,
3
.
b
i
n

0
3
1
4
1
4
4
6
8
1
9
9
2
F
7
A
4
F
E
8
B
0
F
6
9
A
7
A
B
4
2
C
A
1
5
9
E
7
6
D

0
x
1
6
6
c

iP
h
o
n
e

8
U
S
B
-
C
H
P
M
,
4
.
b
i
n

2
7
3
A
8
0
3
7
5
F
E
8
F
E
C
0
9
D
4
9
8
2
2
1
B
E
4
7
2
9
5
8
B
8
1
8
5
8
2
F

0
x
1
6
7
c

iP
h
o
n
e

8
P

lu
s

U
S
B
-
C
H
P
M
,
5
.
b
i
n

A
C
C
3
D
B
E
6
9
E
3
1
0
E
1
F
E
3
0
6
3
7
2
5
F
5
B
4
3
6
E
8
0
7
C
8
3
D
9
4

0
x
1
6
7
d

iP
h
o
n
e

X
U
S
B
-
C
H
P
M
,
6
.
b
i
n

B
7
C
E
9
2
2
C
D
8
B
3
D
0
0
1
8
E
4
8
6
1
0
0
6
A
0
6
5
C
7
C
5
F
B
D
9
D
5
B

0
x
1
6
8
6

U
S
B
-
C
H
P
M
,
7
.
b
i
n

9
1
6
D
0
9
6
C
8
9
3
9
F
4
E
1
0
8
A
2
6
9
A
8
5
4
1
9
8
B
9
5
B
D
5
A
7
B
E
E

0
x
1
6
8
7

U
S
B
-
C
H
P
M
,
8
.
b
i
n

4
F
C
3
E
B
5
B
1
B
0
2
4
4
C
0
4
F
7
D
6
B
B
6
A
9
1
7
A
C
A
A
E
9
F
7
D
5
6
F

0
x
1
6
8
8

T
ab

le
6.

U
S
B
-
C
H
P
M
,
4
.
b
i
n

fi
le

s
in

va
ri

o
u
s

iO
S

v
er

si
o
n
s.

iO
S

V
e
rs

io
n

F
il
e

N
a
m

e
sh

a
1
su

m
(U
S
B
-
C
H
P
M
,
4
.
b
i
n
)

1
3
.4

i
P
h
o
n
e
5
.
5
P
3
1
3
.
4
1
7
E
2
5
5
R
e
s
t
o
r
e
.
i
p
s
w

9
7
6
7
A
8
6
F
6
2
A
B
D
C
8
C
1
0
4
6
F
4
D
8
0
7
C
C
3
0
D
A
B
9
9
A
4
6
9
3

1
3
.3

.1
i
P
h
o
n
e
5
.
5
P
3
1
3
.
3
.
1
1
7
D
5
0
R
e
s
t
o
r
e
.
i
p
s
w

2
7
3
A
8
0
3
7
5
F
E
8
F
E
C
0
9
D
4
9
8
2
2
1
B
E
4
7
2
9
5
8
B
8
1
8
5
8
2
F

1
3
.3

i
P
h
o
n
e
5
.
5
P
3
1
3
.
3
1
7
C
5
4
R
e
s
t
o
r
e
.
i
p
s
w

2
7
3
A
8
0
3
7
5
F
E
8
F
E
C
0
9
D
4
9
8
2
2
1
B
E
4
7
2
9
5
8
B
8
1
8
5
8
2
F

1
3
.2

.3
i
P
h
o
n
e
5
.
5
P
3
1
3
.
2
.
3
1
7
B
1
1
1
R
e
s
t
o
r
e
.
i
p
s
w

2
7
3
A
8
0
3
7
5
F
E
8
F
E
C
0
9
D
4
9
8
2
2
1
B
E
4
7
2
9
5
8
B
8
1
8
5
8
2
F

1
3
.2

.2
i
P
h
o
n
e
5
.
5
P
3
1
3
.
2
.
2
1
7
B
1
0
2
R
e
s
t
o
r
e
.
i
p
s
w

2
7
3
A
8
0
3
7
5
F
E
8
F
E
C
0
9
D
4
9
8
2
2
1
B
E
4
7
2
9
5
8
B
8
1
8
5
8
2
F

1
3
.1

.3
i
P
h
o
n
e
5
.
5
P
3
1
3
.
1
.
3
1
7
A
8
7
8
R
e
s
t
o
r
e

2
7
3
A
8
0
3
7
5
F
E
8
F
E
C
0
9
D
4
9
8
2
2
1
B
E
4
7
2
9
5
8
B
8
1
8
5
8
2
F

1
2
.4

.1
i
P
h
o
n
e
5
.
5
P
3
1
2
.
4
.
1
1
6
G
1
0
2
R
e
s
t
o
r
e

7
9
C
B
8
2
2
0
D
2
C
6
F
5
9
1
7
C
1
C
1
1
E
D
7
B
4
B
F
7
3
3
E
3
C
9
B
1
C
8

1
2
.3

i
P
h
o
n
e
5
.
5
P
3
1
2
.
3
1
6
F
1
5
6
R
e
s
t
o
r
e
.
i
p
s
w

7
9
C
B
8
2
2
0
D
2
C
6
F
5
9
1
7
C
1
C
1
1
E
D
7
B
4
B
F
7
3
3
E
3
C
9
B
1
C
8

1
2
.2

i
P
h
o
n
e
5
.
5
P
3
1
2
.
2
1
6
E
2
2
7
R
e
s
t
o
r
e
.
i
p
s
w

7
9
C
B
8
2
2
0
D
2
C
6
F
5
9
1
7
C
1
C
1
1
E
D
7
B
4
B
F
7
3
3
E
3
C
9
B
1
C
8

1
2
.0

i
P
h
o
n
e
5
.
5
P
3
1
2
.
0
1
6
A
3
6
6
R
e
s
t
o
r
e
.
i
p
s
w

B
3
7
4
0
7
2
0
4
4
A
9
7
6
6
9
A
6
8
8
A
4
9
E
1
7
2
3
C
5
5
E
9
9
7
3
A
8
5
1

1
1
.
4
.
1

i
P
h
o
n
e
5
.
5
P
3
1
1
.
0
1
1
.
4
.
1
1
5
G
7
7
R
e
s
t
o
r
e
.
i
p
s
w

1
E
2
0
D
8
B
4
D
5
4
D
6
C
0
9
2
D
A
9
B
6
6
8
A
5
3
A
A
A
E
8
1
A
B
F
A
3
E
E

1
1
.
0

i
P
h
o
n
e
1
0
,
5
1
1
.
0
1
5
A
3
7
2
R
e
s
t
o
r
e
.
i
p
s
w

1
E
2
0
D
8
B
4
D
5
4
D
6
C
0
9
2
D
A
9
B
6
6
8
A
5
3
A
A
A
E
8
1
A
B
F
A
3
E
E



42 ADVANCES IN DIGITAL FORENSICS XVI

Table 7. USB-C HPM,4.bin details for various iOS versions (see Table 6).

iOS Revision Functions Code OP Pseudo C
Version Bytes Codes Code Lines

13.4 2.0 248 18,310 8,419 6,247
13.2.2 2.0 249 18,598 8,552 6,206

directly interacts with the Apple system-on-chip and other peripherals
through an I/O subsystem, mapped at specific memory addresses. With-
out documentation about the underlying USB Power Delivery hardware,
the addresses are hardware-specific and often unknown. Therefore, from
a reverse engineering perspective, it is necessary to make assumptions
when code uses such unknown, hard-coded (non-position independent)
addresses.

Table 7 shows the results of disassembling and decompiling the most
recent versions of the firmware file USB-C HPM,4.bin listed in Table 6.
The total numbers of lines of pseudo C code for the two files are slightly
more than 6,200. The USB Power Delivery Revision 2.0 was previously
confirmed via passive monitoring. Therefore, the code supports all the
messages listed for Revision 2.0 (Table 1). Code that implements ad-
ditional unstructured VDMs is also included. It is expected that the
number of lines of code would grow significantly to support a later revi-
sion (e.g., Revision 3.0). This is because Revision 3.0 supports a large
number of additional messages (Table 1.

As described in Section 4.2, all the Apple-specific messages were iden-
tified and reverse engineered. Therefore, all the unstructured VDMs
supported by the firmware could be identified in the disassembled code
and pseudo C code. In fact, all the Apple-specific unstructured VDMs
are handled by the same handler function. This function processes user
input and is, therefore, an attractive target for vulnerability analysis.
Erroneous handling of data in any USB Power Delivery message is a po-
tential attack vector that could lead to a compromise of the USB Power
Delivery functionality.

The number of lines of pseudo C code lines is relatively small com-
pared with larger source code trees [19]. Since the firmware is “bare
metal” code, the code is less generic and more difficult to compare with
other sources. Therefore, the likelihood of security vulnerabilities in
the firmware is difficult to compare with other estimates. Nevertheless,
the code is in a state that is amenable to the application of established
security vulnerability discovery techniques [5, 17, 24].



Alendal, Axelsson & Dyrkolbotn 43

Vendor ID (VID)
Bit 31...16

Vendor use
Bit 14...0

VDM Type
Bit 15

Figure 4. Unstructured VDM header.

4.5 Apple Vendor-Defined Protocol
The undocumented VDMs in Table 4 indicate that a special proto-

col is used by Apple devices to exchange device-specific information.
Two connected Apple devices engage in an explicit contract negotiation
as seen in the messages with Index 182 through 203 in Table 4. Af-
ter this, the Apple-enabled power source requests the identity of the
Apple iPhone X sink via a Discover Identity VDM with Index 238.
Since the sink responds with a known Apple VID (0x05ac) and PID
(0x167d), the two devices can engage in additional communications us-
ing messages with Index 255 through 292. The next message (Index 299)
from the source to the sink is the first unstructured VDM and the first
fully vendor-specific message. Upon dissecting the raw data in this mes-
sage, bytes [0:2] were determined to correspond to the USB Power
Delivery message header (Figure 1), bytes [2:6] to the VDM header
and bytes [6:10] to the message CRC. Further dissection of the VDM
header bytes [6:10] (little endian) revealed a VID of 0x05ac, VDM
Type of 0 (unstructured message) and Vendor Use of 0x5 (Figure 4).
The unstructured VDM was determined to contain the expected Apple
VID of 0x05ac and an undocumented command 0x5. For each undocu-
mented command, a handler function can be identified in the associated
firmware file USB-C HPM,4.bin and disassembled.

Further dissection of the communications in Table 4 focused on the
Attention VDM with Index 315 sent by the sink to the source (i.e., the
iPhone asks the Apple power source for information). The response from
the source has Index 324. This is interesting, because the iPhone only
requests this type of information when it is connected to an Apple device.
In fact, it turns out that the iPhone requests a range of data from the
Apple power source (serial number, device name, manufacturer, etc.).

Root access to the iPhone was achieved using checkra1n [20]. This
enabled the recovery of the data exchanged using the Apple-specific pro-
tocol. Next, the command ioreg -f -i -l -w0 > /tmp/ioreg.txt
was used to obtain the content of the iPhone I/O Registry [3], which
made it possible to interpret the exchanged data.

Table 8 shows example data exchanged between the Apple power sup-
ply source and iPhone sink. Note that the communications are sum-
marized and the GoodCRC messages are removed. The ASCII data
C04650505D5GW85A8 at Index 401 was located in the Apple I/O Reg-



44 ADVANCES IN DIGITAL FORENSICS XVI

istry [3] as the Apple power device serial number. The data can be lo-
cated using the command ioreg -f -i -l -w0 | grep C04650, which
yields "SerialNumber"="C04650505D5GW85A8""SerialString"="C04650505D5GW85A8".

By leveraging the handler functions in the firmware, it is possible
to identify all the implemented vendor protocol messages and, thus, all
the supported unstructured VDMs and the messages required by the
USB Power Delivery protocol. Control over all the supported messages
coupled with the ability to communicate with the iPhone hardware fa-
cilitates the discovery and exploitation of security vulnerabilities. These
include direct code execution on the iPhone hardware and poor input
validation by peripherals/system-on-chip/kernel using the USB Power
Delivery data (user input).

Table 8 shows an example of an the Apple power supply sending its
serial number. Because all the messages supported by the firmware (in-
cluding undocumented VDMs) can be replicated, all the data exchanged
by the undocumented protocol can be modified at will.

4.6 Firmware Modification and Rollback
Analysis reveals that the USB-C HPM,x.bin firmware files are unsigned

and are, therefore, neither verified at installation time nor at runtime.
This is verified by modifying the PID in a USB-C HPM,5.bin file (see Ta-
ble 5) and flashing it to the corresponding iPhone test device. With
the aid of the checkra1n [20] jailbreaking solution, the Apple USB
Power Delivery firmware flash executable usbcfwflasher included in
the iOS firmware update file could be used to flash the modified USB-C -
HPM,5.bin file. This can be performed on all checkra1n-supported Ap-
ple devices without requiring any user credentials.

The firmware modification is verified by monitoring a normal explicit
contract with the additional Apple-specific VDM protocol between an
Apple power supply and iPhone with the modified firmware. A successful
firmware modification results in a different PID being returned from the
iPhone in response to a structured Discover Identity VDM from the
power supply.

Table 9 shows that the returned PID in the message with Index 83
is 0x1337 instead of the expected PID 0x167d in the message with In-
dex 245 in Table 4. Note that the communications are summarized and
the GoodCRC messages are removed. The PIDs are the 16-bit little-
endian values at bytes [16:18] in both messages.

The result is that it is possible to fully modify the USB Power Delivery
firmware. This includes the ability to perform a firmware rollback and
install an older, potentially-vulnerable, firmware version on a patched



Alendal, Axelsson & Dyrkolbotn 45

T
ab

le
8.

D
a
ta

ex
ch

a
n
g
ed

b
et

w
ee

n
so

u
rc

e
A

p
p
le

p
ow

er
su

p
p
ly

(R
ev

.
2
.0

)
a
n
d

si
n
k

iP
h
o
n
e

1
0
,6

(i
O

S
1
3
.2

.2
).

R
e
v
is

io
n

In
d
e
x

T
im

e
R

o
le

M
e
ss

a
g
e

D
a
ta

A
S
C

II

2
.0

3
9
2

0
:2

4
.8

7
4
.1

3
5

S
in

k
:U

F
P

[5
]V

D
M

:A
tt

en
ti

o
n

4
F
3
A

0
6

8
1
A
C

0
5

0
2
0
5

O
:
.
.
.
.
.
.

A
C
0
5

3
0

0
0
0
0

0
0

F
8
D
F

.
.
0
.
.
.
.
.

1
9
1
D

.
.

2
.0

4
0
1

0
:2

4
.8

7
7
.9

4
9

S
o
u
rc

e:
D

F
P

[1
]V

D
M

:U
n
st

ru
ct

u
re

d
6
F
7
3

0
2

0
5
A
C

0
5

3
0
0
0

o
s
.
.
.
.
0
.

0
0
0
0

4
3

3
0
3
4

3
6

3
5
3
0

.
.
C
0
4
6
5
0

3
5
3
0

3
5

4
4
3
5

4
7

5
7
3
8

5
0
5
D
5
G
W
8

3
5
4
1

3
8

0
0
0
0

0
0

5
5
8
A

5
A
8
.
.
.
U
.

4
8
B
E

H
.

T
ab

le
9.

D
is
co

v
er

Id
en

ti
ty

V
D

M
s

b
et

w
ee

n
so

u
rc

e
A

p
p
le

p
ow

er
su

p
p
ly

(R
ev

.
2
.0

)
a
n
d

si
n
k

iP
h
o
n
e

1
0
,6

(i
O

S
1
3
.2

.2
).

R
e
v
is

io
n

In
d
e
x

T
im

e
R

o
le

M
e
ss

a
g
e

D
a
ta

2
.0

7
6

0
:4

4
.2

0
4
.5

7
5

S
o
u
rc

e:
D

F
P

[7
]V

D
M

:D
is
cI

d
en

ti
ty

6
F

1
F

0
1
8
0

0
0

F
F
1
7

8
F

5
B

D
E

2
.0

8
3

0
:4

4
.2

0
6
.2

9
8

S
in

k
:U

F
P

[2
]V

D
M

:D
is
cI

d
en

ti
ty

4
F

4
4

4
1
8
0

0
0

F
F
A
C

0
5

0
0

5
4
0
0

0
0

0
0

0
0
0
0

2
1

3
7
1
3

9
4

C
A

F
B
F
8



46 ADVANCES IN DIGITAL FORENSICS XVI

device. Because this is a security vulnerability in itself, it is very useful
for further vulnerability discover because researchers can implement any
test code to expose, for example, further propagation in an iPhone or
side-channel attack scenarios.

5. Conclusions
The methodology for analyzing USB Power Delivery implementations

facilitates the discovery of security vulnerabilities for exploiting USB
Power Delivery hardware to acquire data in digital forensic investiga-
tions. The ultimate goal is to further leverage privileges within the
system, potentially through a new set of security vulnerabilities that are
identified using the hardware as a springboard. Examples of the new
vulnerabilities include implicit trust relationships, other components in
the USB Power Delivery hardware and system processes that parse data
provided as inputs by Apple VDM commands. The step-by-step method-
ology, which is demonstrated to expose the implementation details of a
USB Power Delivery device, is applicable to a wide range of USB Power
Delivery implementations by diverse vendors.

The results of using the methodology on Apple iPhones can be summa-
rized as follows. Gathering information about the underlying USB Power
Delivery hardware assists firmware reverse engineering, side-channel anal-
ysis and attack development. The ability to monitor USB Power Delivery
messages facilitates the analysis of messages supported by a given device
and helps discern if a proprietary vendor protocol is employed. Sending
and receiving arbitrary messages using a simulation tool advances black
box testing, reverse engineering and exploitation.

Additionally, the reverse engineering of firmware to yield disassem-
bled code and pseudo C code is very useful for manual and automated
vulnerability analyses. Diffing tests can help reveal patches that can
be checked for potential security vulnerabilities. Rollbacks of vulnera-
ble firmware can be accomplished on jailbroken devices without requir-
ing user credentials because firmware signatures and rollback protection
mechanisms are not implemented. The lack of signatures also facilitates
arbitrary modifications of firmware that expose USB Power Delivery to
evil maid attacks.

Future research will attempt to discover additional vulnerabilities.
It will also attempt to simulate and instrument/debug the extracted
firmware, with the goal of advancing fuzzing techniques for vulnerability
discovery. Other avenues of future research include debugging test de-
vices and chips via JTAG and conducting simulation via emulation and
symbolic execution [11, 22, 24].



Alendal, Axelsson & Dyrkolbotn 47

Acknowledgements
This research was supported by the IKTPLUSS Program of the Nor-

wegian Research Council under R&D Project Ars Forensica Grant Agree-
ment 248094/O70. Apple was notified about this research in advance of
publication.

References

[1] G. Alendal, S. Axelsson and G. Dyrkolbotn, Exploiting vendor-
defined messages in the USB Power Delivery protocol, in Advances
in Digital Forensics XV, G. Peterson and S. Shenoi (Eds.), Springer,
Cham, Switzerland, pp. 101–118, 2019.

[2] Apple, About iOS 13 Updates, Cupertino, California (support.
apple.com/en-us/HT210393), 2021.

[3] Apple, The I/O Registry, Cupertino, California (developer.ap
ple.com/library/archive/documentation/DeviceDrivers/Con
ceptual/IOKitFundamentals/TheRegistry/TheRegistry.html),
2021.

[4] ARM, The Thumb Instruction Set, ARM7TDMI Technical
Reference Manual, Revision r4p1, Cambridge, United Kingdom
(infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.d
di0210c/CACBCAAE.html), 2004.

[5] A. Austin and L. Williams, One technique is not enough: A compar-
ison of vulnerability discovery techniques, Proceedings of the Inter-
national Symposium on Empirical Software Engineering and Mea-
surement, pp. 97–106, 2011.

[6] G. Beniamini, Over The Air: Exploiting Broadcom’s Wi-
Fi Stack (Part 2), Project Zero Team, Google, Mountain
View, California (googleprojectzero.blogspot.com/2017/04/
over-air-exploiting-broadcoms-wi-fi_11.html), 2017.

[7] G. Chen, Z. Qi, S. Huang, K. Ni, Y. Zheng, W. Binder and H.
Guan, A refined decompiler to generate C code with high readabil-
ity, Software: Practice and Experience, vol. 43(11), pp. 1337–1358,
2013.

[8] W. Chen and J. Bhadra, Striking a balance between SoC security
and debug requirements, Proceedings of the Twenty-Ninth IEEE
International System-on-Chip Conference, pp. 368–373, 2016.

[9] Cypress Semiconductor, CYPD2104-20FNXIT, San Jose, California
(www.cypress.com/part/cypd2104-20fnxit), 2018.



48 ADVANCES IN DIGITAL FORENSICS XVI

[10] Y. Duan, X. Li, J. Wang and H. Yin, DeepBinDiff: Learning
program-wide code representations for binary diffing, Proceedings
of the Twenty-Seventh Annual Network and Distributed System Se-
curity Symposium, 2020.

[11] D. Engler and D. Dunbar, Under-constrained execution: Making
automatic code destruction easy and scalable, Proceedings of the
ACM/SIGSOFT International Symposium on Software Testing and
Analysis, pp. 1–4, 2007.

[12] A. Golko, E. Jol, M. Schmidt and J. Terlizzi, Dual Orientation Con-
nector with External Contacts and Conductive Frame, U.S. Patent
No. 0115821 A1, May 9, 2013.

[13] S. Gowdy, The USB ID Repository (www.linux-usb.org/usb-ids.
html) 2021.

[14] A. Harper, D. Regolado, R. Linn, S. Sims, B. Spasojevik, L. Mar-
tinez, M. Baucom, C. Eagle and S. Harris, Gray Hat Hacking: The
Ethical Hacker’s Handbook, McGraw-Hill Education, New York,
2018.

[15] L. Hatton, Re-examining the fault density component size connec-
tion, IEEE Software, vol. 14(2), pp. 89–97, 1997.

[16] Y. Li and J. Yan, ELF-based computer virus prevention technolo-
gies, Proceedings of the Second International Conference on Infor-
mation Computing and Applications, pp. 621–628, 2011.

[17] B. Liu, L. Shi, Z. Cai and M. Li, Software vulnerability discovery
techniques: A survey, Proceedings of the Fourth International Con-
ference on Multimedia Information Networking and Security, pp.
152–156, 2012.

[18] A. Maurushat, Disclosure of Security Vulnerabilities: Legal and Eth-
ical Issues, Springer, London, United Kingdom, 2013.

[19] A. Ozment and S. Schechter, Milk or wine: Does software security
improve with age? Proceedings of the Fifteenth USENIX Security
Symposium, 2006.

[20] A. Panhuyzen, checkra1n (checkra.in), 2021.

[21] M. Pietrek, Peering Inside the PE: A Tour of the Win32 Portable
Executable File Format (bytepointer.com/resources/pietrek_
peering_inside_pe.htm), 1994.

[22] E. Schwartz, T. Avgerinos and D. Brumley, All you ever wanted
to know about dynamic taint analysis and forward symbolic execu-
tion (but might have been afraid to ask), Proceedings of the IEEE
Symposium on Security and Privacy, pp. 317–331, 2010.



Alendal, Axelsson & Dyrkolbotn 49

[23] A. Sosnovich, O. Grumberg and G. Nakibly, Finding security vul-
nerabilities in a network protocol using parameterized systems, Pro-
ceedings of the Twenty-Fifth International Conference on Computer
Aided Verification, pp. 724–739, 2013.

[24] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Cor-
betta, Y. Shoshitaishvili, C. Kruegel and G. Vigna, Driller: Aug-
menting fuzzing through selective symbolic execution, Proceedings
of the Twenty-Third Annual Network and Distributed System Secu-
rity Symposium, 2016.

[25] A. Tereshkin, Evil maid goes after PGP whole disk encryption,
keynote lecture presented at the Third International Conference on
Security of Information and Networks, 2010.

[26] J. Tian, N. Scaife, D. Kumar, M. Bailey, A. Bates and K. Butler,
SoK: “Plug & pray” today – Understanding USB insecurity in ver-
sions 1 through C, Proceedings of the IEEE Symposium on Security
and Privacy, pp. 1032–1047, 2018.

[27] Total Phase, USB Power Delivery Analyzer, Sunnyvale, Califor-
nia (www.totalphase.com/products/usb-power-delivery-ana
lyzer), 2021.

[28] USB Implementers Forum, Universal Serial Bus Type-C Cable
and Connector Specification, Release 2.0, Beaverton, Oregon
(www.usb.org/sites/default/files/USBType-CSpecR2.0-Augu
st2019.pdf), 2019.

[29] USB Implementers Forum, USB Power Delivery, Beaverton, Oregon
(www.usb.org/document-library/usb-power-delivery), 2019.

[30] USB Implementers Forum, Getting a Vendor ID, Beaverton, Oregon
(www.usb.org/getting-vendor-id), 2020.

[31] Z. Wang and A. Stavrou, Exploiting smart-phone USB connectivity
for fun and profit, Proceedings of the Twenty-Sixth Annual Com-
puter Security Applications Conference, pp. 357–366, 2010.

[32] D. Yang, S. Wegner and J. Morrison, Apple iPhone X Tear-
down, TechInsights, Ottawa, Canada (www.techinsights.com/
blog/apple-iphone-x-teardown), 2017.

[33] F. Yang and S. Manoharan, A security analysis of the OAuth pro-
tocol, Proceedings of the IEEE Pacific Rim Conference on Commu-
nications, Computers and Signal Processing, pp. 271–276, 2013.


