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Abstract—Wind energy is a fast-growing renewable energy
but faces the blade icing. Data-driven methods provide talented
solutions for blade icing detection but a considerable amount
of IoT data need to be collected to a central server, which
may lead to the leakage of sensitive business data. To ad-
dress this limitation, this work proposes BLADE, a Blockchain-
empowered imbalanced federated learning (FL) model for blade
icing detection. With the help of Blockchain, the conventional
FL is improved without worrying about the failure of the single
centralized server and boosts the privacy-preserving. A validation
mechanism is introduced into the Blockchain to enhance the
defense of poisoning attacks. In addition, a novel imbalanced
learning algorithm is integrated into BLADE to solve the class-
imbalance problem in the sensor data. The BLADE is evaluated
on the 10 wind turbines from two wind farms. The experimental
results verify the effectiveness, superiority, and feasibility of the
proposed BLADE.

Index Terms—IoT, Blockchain, Federated learning, Blade icing
detection, Imbalance learning

I. INTRODUCTION

Wind energy has become a promising and fast-growing
renewable energy because of the ample availability and tech-
nological maturity of wind turbines [1]. However, the perfor-
mance degradation caused by blade-icing represents a critical
shortcoming to wind turbines, with up to 30% loss in annual
power generation in severe cases [2].

Till now, lots of effort has been made to reduce the
loss caused by blade icing. The passive method for anti-
blade-icing usually uses the special coating [3], but coating
alone is insufficient to prevent icing. Active method is thus
proposed with the help of some heating equipment [4]. A
precondition for passive and active methods is timely and
accurate icing detection. Conventionally, icing detection can
be conducted according to the physical properties of ice [5] or
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machine behavior affected by the accretion of ice [6]. Besides,
mathematical method is also developed using mathematical
or numerical models for blade icing predicting. The above
methods can achieve good performance but are limited by the
cost or dependent on domain knowledge [7].

In recent years, data-driven methods, especially end-to-
end solutions based on deep neural networks, have attracted
extensive attention in academia and industry. While training
deep learning (DL) models commonly does not rely on prior
domain knowledge, it requires a considerable number of data
samples. However, a huge amount of data is available thanks to
the Internet of Things (IoT) technologies, which continuously
stream data from sensors, such as power, temperature, etc..
Combining wind turbines monitoring IoT data of multiple
plants for DL model training contributes to performance
improvement of the detection model because more spatio-
temporal correlation information in time series data can be
reflected, thus can encourage more wind farms to actively
engage in collaborative detecting services [8].

But there are two key issues for training deep learning
models using big data of IoT. Firstly, wind farm owners are
reluctant in sharing raw data for privacy and commercial con-
cerns. Some key parameters in monitoring data are valuable for
keeping wind turbines operating properly, which is beneficial
for wind farms to keep competitive in the market. This may
discourage multi-parties from sharing the data. Secondly, con-
ventional machine learning models are generally centralized,
so as the data. Collecting multi-parties’ data to a central place
not only threatens data privacy, but also causes models to
become more complex and hard to be trained as datasets
generated by machines equipped with IoT technologies grow
much larger. So the efficiency of machine learning methods
should be further enhanced. Fortunately, federated learning
(FL) provides a distributed solution to learn a collaborative
machine learning (ML) model without the need of sharing the
raw data and only the intermediate gradients of the learned
model are uploaded to a central server so as to preserve privacy
[9].

Despite these superiorities, employing FL for icing detection
still faces some critical challenges: First, the FL is heavily
dependent on the robustness of the single centralized server
and the single centralized server is assumed to be trustworthy.
The failure of the server would cause the entire FL network to
collapse. The server is responsible to make decision on the fair
participants selection and model aggregation. Nevertheless, a
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biased server would appear inevitable, thereby hurting the
performance of the learned model. Second, the FL is easily
influenced by malicious attacks. If malicious clients upload
toxic models to the server, the performance of the learned
model would decrease. More seriously, the server, which has
the access of all clients’ information, might be dishonest. In
this case, the private information leakage will be more severe.
Third, the wind turbine works in the normal status most of
the time and blade icing happens in certain periods, such
as low temperature. This results in a highly skewed class
distribution between icing samples and normal samples. The
size of the icing samples is much smaller than the size of
normal samples, which poses a great challenge for constructing
high-performance detection models. Skewed class distributions
can severely affect the performance of classifiers because
classifiers tend to be swamped by the majority of classes and
ignore the minority.

To address the above limitations of FL, Blockchain which
is a secure technology and can tolerate the failure of the single
centralized server, is introduced into the FL in this work.
To overcome the imbalance of sensor data, a cluster-based
imbalance learning method is presented. To summarize, the
contributions of this paper are:

1) We propose a BLockchain-empowered imbAlanced fed-
erateD lEarning model (BLADE) for wind turbine blade
icing detection and overcome the issues raised by cen-
tralized server in conventional FL network. A novel
cluster-based method for addressing the data imbalance
is integrated into the proposed model. Compared with
conventional FL, BLADE can enhance the data privacy
and model updates within a trust Blockchain network.
Moreover, BLADE can be easily applied to the sensor
data with imbalanced distribution.

2) The proposed BLADE is evaluated comprehensively on
10 wind turbines from two wind farms. The experimental
performance comparisons of global models, imbalance
learning capability, defense the poisoning attacks, indicate
that BLADE exhibits superiority over others in blade ic-
ing detection. In addition, sensitivity and ablation studies
show the effectiveness of each component of the proposed
model.

The rest of the paper is structured as follows. Section II
gives an overview of the literature on wind turbine blade
icing detection and federated learning. Section III describes
the proposed model BLADE for detecting blade icing of wind
turbines. Section IV evaluates the proposed model through
comprehensive experiments. Section V concludes the paper
and presents future work.

II. RELATED WORK

A. Blade icing detection

Blade icing detection of wind turbines can be mainly
divided into direct and indirect methods. The direct approaches
are usually conventional methods, which monitor the ice
accumulation through additional devices. Shajiee et al. de-
veloped an optical sensing method for direct icing detection
on wind turbine blades, combining with distributed resistive

heating for ice mitigation [10]. Wang et al. leveraged ultrasonic
guided waves for ice monitoring as the propagation features
of the elastic waves can be altered by ice acceleration [5].
By contrast, indirect methods detect icing events through
operational data of wind turbines instead of employing extra
devices, which are more cost-effective and easily be main-
tained [11]. Indirect approaches include model- and data-
driven methods. Model-driven methods establish mathematical
or numerical models based on certain assumptions. In [12], a
model-based method was proposed for blade icing diagnosis
by detecting the change of the rotor angular speed. However,
these methods are dependent heavily on human or domain
knowledge. Instead, data-driven approaches, especially deep
learning models, can bypass this problem and map the cor-
relations between operational signals to obtain competitive
performances of detecting icing events. Tian et al. integrated
the discrete wavelet decomposition into a special-designed
multilevel convolutional recurrent neural network for blade
icing detection [13]. Cheng et al. combined CNN with a
temporal attention module to automatically determine the
important sensors and extract discriminative information from
Supervisory Control and Data Acquisition (SCADA) data
[14]. They also proposed an enhanced version for blade icing
detection by using the learning strategy of semi-supervised
learning [7]. In recent years, extensive data of multiple wind
farms are available due to the rapid development of IoT.
However, these centralized models are insufficient to take the
advantage of these big data due to commercial and privacy
reasons, as well as the limitation of the models themselves.
In this paper, we propose a decentralized privacy-preserving
model by employing the FL framework which can be trained
at different physical sites to fully utilize the data of multiple
plants.

B. Federated learning

Privacy issue of data used for analysis is increasingly
concerned with the development of IoT [15]. More efficient
and intelligent methods need to be investigated for data
privacy-protecting. In recent studies, FL has been proved to
be an effective method [16]–[18]. Saputra et al. proposed
a federated energy demand predicting method for electric
vehicle networks, in which heavy data privacy issues and
communication overhead can be mitigated [19]. Zhang et
al. introduced a probabilistic prediction method for solar
irradiation, leveraging FL for data privacy and security issues
[20]. These studies show the importance and validity of FL for
data privacy protection. However, an equally important issue,
the security of models in the distributed framework, is not
considered. Some studies leveraged Blockchain technology to
protect models from attacks. Lu et al. presented a federated
privacy-preserved data sharing scheme in industrial IoT that in-
tegrates blockchain technology to achieve model security and
reliability [21]. In addition, a hybrid blockchain architecture
was developed to enhance the security of the federated model
for data sharing on the Internet of Vehicles [22]. Zhang et
al. presented a Blockchain-driven federated learning model
for the failure detection based on IoT data [23]. Chen et
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Fig. 1: Architecture of blockchain-based federated learning systems for blade icing detection of wind turbine using IoT.

al. introduced a Blockchain-based federated learning method
by integrating a novel validation mechanism and proof-of-
stake inspired consensus [24]. However, to the author’s best
knowledge, there are few works by applying federated learning
to blade icing detection. Furthermore, there is still room for
the improvement of the security issues in applying FL to blade
icing detection.

III. BLOCKCHAIN-EMPOWERED CLUSTER-BASED
FEDERATED LEARNING

A. System overview

Blockchain can be considered as a growing list of blocks,
and different blocks are linked using cryptographic techniques
[25], [26]. Blockchain can enhance the FL from the following
technical aspects: 1) Blockchain offers a completely decentral-
ized place for round delineation, client selection and model
aggregation. By using the distributed consensus mechanism,
the Blockchain can enhance the trust of FL. 2) Blockchain
provides a peer-to-peer network which can improve the fault
tolerance of the single server in FL. And this could enhance
the computing flexibility and integrity of FL. 3) Blockchain
can incentivize the enthusiasm of participants by providing
rewards to share the model with customized smart contracts.

Although there are lots of advantages of applying
Blockchain to FL, there are still some challenges for using
Blockchain-based FL to blade icing detection: First, how
to overcome the sensor data imbalance. It is because wind
turbines operate in a normal state most of the time, i.e.,
the blades are ice-free, and only a few times the blades are
iced. Therefore, the data collected from the SCADA system
itself are imbalanced in distribution, and models trained using
imbalanced data will result in biased detection. Second, wind
turbine is a very important asset both for wind farms and
society, especially in the future low-carbon society. There-
fore, how to further improve the safety and reliability of
Blockchain-based FL for blade icing detection is significant. It

is necessary to promote FL within only legitimate participants
while excluding malicious participants [24]. Moreover, it is
also necessary to provide a flexible strategy of consensus
mechanisms so that users can choose according to their needs.
Third, the distribution and the size of training data might
be different, which results in heterogeneity between different
clients. For example, the wind turbine works under different
weather conditions and operate by different users. This will
pose a great challenge to aggregating the obtained local models
to obtain a global model for the blade icing detection.

The model BLADE is proposed with the aim of addressing
the above challenges, as shown in Fig. 1. Different from
other Blockchain systems, the Blockchain used in this work
proposes the concept of a validation mechanism to enhance the
security. There are three kinds of roles: workerW , validator V ,
and miner M rather than only two kinds of roles: worker W
and minerM in conventional Blockchain [24]. In BLADE, we
assume that there are N wind turbines with equal computing
capability. The details of BLADE can be summarized as
follows: 1) Role assignment: Each wind turbine may have
three different roles: worker wi ∈ W , validator vi ∈ V , and
miner mi ∈M, whereW + V +M = N . The role assignment
in BLADE could be random or by users. 2) Local imbalanced
learning: each worker wi performs the imbalanced learning
from the local dataset by using the proposed cluster-based
method, as illustrated in the upper left of Fig. 1. 3) Validation:
Once the local learning is implemented, each worker wi
broadcasts the local model to the associated validator vi.
Validators will share their obtained model with other validators
and examine the legitimacy of local model updates. 4) Mining:
The verified local model is then sent to miners, where the
legitimacy block would be appended to its own Blockchain.
And each miner requests its associated worker and validator to
download the legitimacy block to their own Blockchain. Once
the newly generated block is verified, the verified model in the
block is immutable. Without any central server intervention,
each client performs global aggregation to update its local
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model by using all shared models in the verification block.

B. Cluster-based federated learning

1) Neural network: Extracting informative features from
the sensor data is a key task to the construction of blade
icing detection model. Designing the model should not only
consider the model size because there is a need to exchange the
model gradient and larger size occupying more bandwidth, but
also the learning capability of relevant features. In this work,
the model of the feature extractor is implemented through
the convolutional neural network (CNN). The structure of the
local model is shown in Fig. 2, and there are three stacked
CNN blocks. Each CNN block consists of a convolution layer
(Conv1D), an attention layer (Attention), a batch normalized
layer (BN), and the activation layer (RELU).

For the input of Xraw ∈ Rm×T , m and T are the input
dimension and the window size of the samples, respectively,
the output of each CNN block component can be represented
by:

Xc = Conv1D(Xraw)

Xattn = Attention(Xc)

Xout = RELU (BN (Xattn))

(1)

where Xc, Xattn and Xout are the output of Conv1D layer,
Attention layer, BN layer, and RELU layer, respectively. The
values of these variables have the shape of RF×T , where F
is the number of filters in Conv1D layer.

The attention layer used in this paper is depicted in Fig.
3. As illustrated in Eq. (1), the input of the attention layer is
the output of Conv1D layer, which has the shape of RF×T ,
F stands for the number of filters, also called channels. In
Conv1D layer, all channels have the same importance, and this
leads to the loss of important information [27], [28]. Therefore,
the attention mechanism is designed for the selection of
important channels.

Let the output of Conv1D layer be Xc = [x1, x2, ..., xF ],
where xi ∈ RT×1 denotes the i-th channel. For the identifi-
cation of informative channels, we apply global average and
max pooling to obtain the distinctive features, Xap and Xmp,
respectively (see Fig. 3). Both features after average and max
pooling are then forwarded to a Conv1D layer (not shown
in Fig. 3) to obtain the channel attention. Finally, the channel
attention can be utilized for the calibration of channel features.
The whole process for the attention layer can be illustrated
mathematically as follows:

Xmp = Conv1D(MaxPool(Xraw))

Xap = Conv1D(AvgPool(Xraw))

α = σ(Xmp +Xap)

X̃ = Xraw + α⊗Xraw

(2)

where Xraw is the input of the attention layer, Xmp and Xap

are the re-weighted features of the output for average and max
pooling layer, α is the calculated attention weights, σ is the
sigmoid activation function, ⊗ is the element-wise multiple,
X̃ is the weighted features.
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2) Cluster-based imbalanced learning: The imbalance in
training data can worsen the performance of the trained models
and especially affect the classification capability for minor-
ity classes. The common approaches address the imbalance
problem at two levels: data level and algorithm level [16].
The data-level approaches generally need to process the raw
data through the methods such as data resampling and data
enhancement. These approaches can help to obtain balanced
data by increasing or decreasing the samples of a certain
class [29]. However, employing data-level approaches are
inappropriate for the FL framework as extra information in the
training phase of the model is needed, such as data distribution,
which may lead to data leakage and violate data privacy [16].
In contrast, the algorithm level methods alleviate the data
imbalance by modifying the algorithm, e.g. such as the neural
network structure [30], [31], or adjusting the model parameters
in the training stage. As there is no or little need to process
the raw data, the algorithm-level methods are more suitable
for the FL framework to protect data privacy.

In BLADE, we propose the cluster-based approach for
imbalanced learning which follows the concept of algorithm-
level methods, as shown in the training processing of Client
1 in Fig. 1. The imbalanced raw data leads to imbalanced
features extracted by the neural network, so we first obtain
a cluster for each class, which is then employed for the
establishment of the classifier.

Given the learned features H = {Xi}Ci=1 where C is the
number of classes, Xi ∈ RNi×F×L is a sample collection of
class i, Ni is the sample number of class i. The class centroid
ci is simply calculated as:

ci = mean(Hi) =
1

Ni

Ni∑
Hi, ci ∈ RF×L (3)

Once the calculation of the centroids for each class is
implemented, the probability of a given time series sample
to one class can be computed. Suppose the learned feature of
a time series is represented as Hs ∈ RF×L, the probability
belongs to class i is calculated according to the Euclidean
distance:
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p(y = i |Hs) =
exp(−Eucli dist(Hs, ci)))∑
k exp(−Eucli dist(Hs, ci)))

(4)

where Eucli dist is the distance function for Hs and ci.
And then each client model is trained with the guide by the

categorical cross-entropy function.

L = −
∑

(xk,yk)

log(p(y = yk|xk, c)) (5)

where (xk , yk ) stands for one sample and c represents the
centroid for this sample. In this work, the local model pa-
rameters can be derived by minimizing the average loss using
the gradient descent fashion based on the back-propagation
algorithm. The Adam algorithm [32] is utilized to optimize
the loss function, and the learning rate and weight decay in
the local training are fixed to 1e-4, respectively.

3) Federated aggregation: Within the FL framework, each
client trains model locally using its dataset without the need
of sending the local dataset to a central server. The k-th
local model gradient in the c-th communication round can be
calculated as follows:

∇ϕk,c =
∂Lk(ϕk,c)

∂ϕk,c
(6)

where ϕk,c is the gradient of the k-th local model in the c-
th communication round. Lk is the categorical cross-entropy
function used to guide the local model training, which is
defined as shown in Eq.(5).

All clients send their model gradients to the central server
for generating the global model.

∇ϕc =

N∑
i=1

αk∇ϕk,c (7)

where N is the number of client models, αk denotes the weight
of the k-th local gradient.

The weight in this work is proportional to the data size in
each client αk = Sk/

∑N
i Si, by considering that the data size

might be different for different clients in this work.

C. Security-enhanced Blockchain

In BLADE, we focus on the collaborative learning of
blade icing detection, in which K wind farms located in
different locations work together to achieve the task of blade
icing detection. All participants (wind farms) are considered
dishonest, so we believe that there are multiple threats. The
first is the quality of the model updates provided. Dishonest
participants may provide biased or inaccurate model updates to
other participants, thereby reducing the usability of aggregated
models. The second is data privacy. All participants may try to
infer others’ private data from model updates, which may lead
to potential leakage of sensitive data. A worse situation might
be a group of participants trying to extrapolate data from other
participants. The third is data authority management. Once
the local model is shared, the owner will lose its control, and
the model may be shared by dishonest participants to other

unauthorized entities. All attacks mentioned above almost
are from the local side. This motivates us to employ the
Blockchain to avoid the attacks of malicious clients.

1) Validation mechanism: The conventional Blockchain is
equipped with weak capability for the identification of ma-
licious nodes. Therefore, a validation mechanism proposed
by Chen et al. is utilized in this work [24]. The validation
mechanism in the Blockchain is designed to employ the
majority vote for excluding those distorted models which
may be sent from malicious or compromised workers in the
process of global model construction. The idea behind the
validation mechanism is very simple: the validator can receive
local updates from its associated workers, if the local updates
drop very severely in the current communication round than
last round, it means that this local update is contaminated,
otherwise, the new local updates should be better than the
one in last round or the decline is small. In this work, the
threshold T for determining the accuracy-drop measurement
is a hyperparameter that is set subjectively.

2) Consensus mechanism: The consensus mechanism is
dedicated to protecting local model updates for legal learning
and ensuring that these updates are recorded on the Blockchain
and used to update the global model. For this purpose, it is
very necessary to avoid the malicious participants becoming
a miner since the miner is responsible for aggregating the
voting results and recording them in a block. There are two
consensus mechanisms utilized in BLADE, i.e., proof-of-work
(PoW) and proof-of-stake (PoS).

Pow is a classical consensus mechanism in the Blockchain.
Its core idea is that the members (miners) in Blockchain
compete for the hash operation (usually SHA-256) using their
computing resources. The winner who first finds that the
calculated hash value is lower than the published target has
the right to append a new block to the Blockchain and obtain
a certain number of rewards. An important concept in PoW
is ”difficulty”, which is a measure used to determine the
difficulty of mining new blocks. The more difficult the network
is, the more computing power the miners need on average
to find the next block hash. PoS was proposed to overcome
the limitation of PoW. PoS uses the concept of coinage, that
is, unused assets are multiplied by the duration from the last
winning time to the current time, so as to avoid high resource
consumption in the competition process [33].

The reward mechanisms for worker, validator, and miner are
as follows [24]. 1) For each worker, the reward is proportional
to the number of training samples and the number of local
training epochs. Nevertheless, if the local model update does
not pass the validation mechanism, there is no reward for
the worker. 2) For each validator, the reward is related to
the verification of the signatures of the received local model
update from the worker and the generation of signature-
verified update. 3) For each miner, the reward is calculated by
verifying the received signatures from the validators. The re-
ward mechanisms are applying for both consensus algorithms,
i.e., PoW and PoS.
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D. Privacy analysis

With the BLADE framework, privacy can be protected as
follows. First, each participant connects each other through
multi-party data retrieval. The Permission Blockchain is used
to replace the trusted server, and thus, the high-risk data leak-
age in the centralized server can be avoided. Second, BLADE
protects against invalid data/models provided by dishonest
participants. The validation mechanism used can validate the
learned data-driven model and keep only qualified models.
Third, only learned models are uploaded and transferred via
a Permission Blockchain, with local data stored locally. Data
owners can control permissions on their own data. In addition,
the use of cryptographic algorithms can also enhance the
security of data. Fourth, the imbalanced learning module can
also protect against data leakage because it uses cluster centers
to build classifiers instead of features. Therefore, the ability to
defend against attacks is improved.

IV. EXPERIMENTS

All models in this work are implemented by the Pytorch
(V1.7.1, cuda 11.0). All experiments are conducted on a server
which is equipped with Tesla V100 with 32 GB video memory.

A. Experimental settings and evaluation metrics

1) Data: The data used for this paper are from two wind
farms which are located in Shanxi and Henan provinces of
China. Both wind farms face the blade icing of wind turbine
in winter, and there are approximately 700 km apart for these
two wind farms. We choose five wind turbines from each
wind farm for the evaluation of the proposed model. There are
hundreds of sensors installed in the wind turbine and the data
are sampled with a frequency of five seconds. The experienced
expert helped us to identify 16 parameters highly associated
with blade icing, which is illustrated in TABLE I. The icing
detection in this work is considered as a binary classification
problem and all of the sensor data are labeled by the expert.

The time length of collected data for these two wind farms
is 360 and 384 hours, respectively. To better illustrate the
model performance, we just use 60% of the data for training
and the remaining 40% for testing. It is worth noting that the
performance is evaluated on all testing data from each wind
turbine.

2) Metrics: In order to quantify the model performance,
we use the following metrics: Fβ , Precision, Recall, and
Matthews correlation coefficient (MCC).

Precision =
TP

TP + FP
Recall =

TP

TP + FN
(8)

Fβ =
(1 + β2 )× Precision × Recall

β2Precision + Recall
(9)

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(10)

where TP , FP , FN , and TN represent true positive, false
positive, false negative and true negative, respectively. The

TABLE I: Specification of the used input parameters

No. Variable name Description

1 wind speed Wind speed
2 wind direction Wind direction
3 generator speed Generator speed
4 power Active power
5 yaw position Yaw position
6 pitch1 angle Angle of pitch 1
7 pitch2 angle Angle of pitch 2
8 pitch3 angle Angle of pitch 3
9 pitch1 speed Speed of pitch 1
10 pitch2 speed Speed of pitch 2
11 pitch3 speed Speed of pitch 3
12 environment temp Environment temperature
13 internal temp Internal temperature of nacelle
14 pitch1 moto tmp Temperature of pitch motor 1
15 pitch2 moto tmp Temperature of pitch motor 2
16 pitch3 moto tmp Temperature of pitch motor 3

value of β in Fβ is set to 2. The reason for selecting these four
metrics is that they are widely used for performance compar-
ison of blade icing detection algorithms in the literature [14].
More importantly, the Fβ and MCC are good at evaluating
the performance of imbalance classification. To validate the
robustness of the proposed model, the average values of the
four metrics for all participants in all communication rounds
are used for performance comparison.

3) Settings: The learning rate for the local model training
is set to 1e-4. Both the communication rounds and the training
epochs for the local client are set to 20. The used Blockchain
is adopted from the work [24]. To evaluate the model per-
formance in different imbalance ratios, three imbalance ratios
are used in this work: 20, 50, and 100. The imbalance ratio
is defined as: ρ = Sn

Si
, where the Sn and Si are the number

of samples in normal and icing status, respectively. It is worth
noting that all test sets are with the imbalance ratio of 10:1.
All the experiments are repeated three times.

B. Convergence analysis

This section focuses on the convergence analysis of the
learned model in the three imbalance ratios, which is depicted
in Fig. 4. In this section, there is no malicious client and the
number of workers, validators, miners are selected randomly in
each global communication round. The validation threshold is
set to 1. From Fig. 4, we can see that the proposed model can
achieve acceptable results with the increase of communication
rounds, even there are more fluctuations for ρ = 50 : 1 and
ρ = 100 : 1 during the training. We can also see that when
the communication round reaches a certain number (≥ 15), the
performance of the model does not improve significantly. This
is why we set the communication round to 20. In reality, since
wind farms are located in remote regions, communication costs
are still a factor that needs to be considered.

From Fig. 4, we can also know that there is a strong
relationship between the accuracy and imbalance ratios. With
the increase of imbalance ratio, the accuracy of the global
model obtained decreases. Obviously, the greater of imbalance
ratio, the lesser icing information can be used for the learning
by the model, which makes the model performance is limited.
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Fig. 4: Convergence analysis in different imbalance ratios
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Fig. 5: Performance comparison of different malicious devices in the three imbalance ratios

Another interesting thing we can find is that the performance
of the global model is close when the imbalance ratio is 50
and 100.

C. Effectiveness of Blockchain for federated learning

To illustrate the effectiveness of Blockchain for federated
learning. This section focuses on the model performance under
attacks, the performance comparison for the two strategies:
PoW and PoS, and the effectiveness of the validation mecha-
nism used in this work.

1) Performance comparison of defense against poisoning
attacks: Three models are utilized for the performance com-
parison with the proposed model BLADE. 1) FedAvg: FedAvg
is the most classical federated learning model, which uses the
gradients of all clients to generate a global model. In this
comparison, the client model is the same with the proposed
BLADE [9]. 2) BLADE IM: we remove the proposed im-
balance module from the BLADE model. 3) FedAvg IM: we
remove the imbalance module from the FedAvg model. The
number of malicious devices is set to {20%, 40%, 60%, 80%}
and the other settings are the same with the previous section.
The attack is set to add Gaussian noise with a variance of 2 to
the client model and the performance of the final aggregated
model is selected for comparison.

The results are depicted in Fig. 5. Surprisingly, our proposed
BLADE only slightly outperforms FedAvg rather than the
expected significant improvement. Comparing the two models,

BLADE IM and FedAvg IM, after removing the imbalanced
learning module, the BLADE IM is also just slightly better
than FedAvg IM in the three cases. We believe this slightly
better performance is due to the Blockchain. On the con-
trary, comparing BLADE and BLADE IM, FedAvg and Fe-
dAvg IM, we find that the performance decreases significantly,
and we can conclude that our proposed imbalanced learning
module has the ability to deal with attacks as well as im-
balance data. Our cluster-based imbalanced learning approach
essentially utilizes the cluster centers of the features learned
for classification. The simulated attack aims to affect the client
model gradient, but does not impact much in the cluster centers
used for constructing the classifier. While the attack affects
the gradient of the model, the final response does not change
much in the cluster centers used for classification. From Fig.
5, we can know that the model performance decreases with
the number increase of malicious clients. It is worth noting
that there are only 10 clients used in this work. Therefore, the
influence of malicious clients needs to be further investigated.

2) Performance comparison of PoW and PoS: As men-
tioned above, there are two mechanisms used in BLADE: PoW
and PoS. This section, therefore, compares their performance.
The difficulty of PoW is set to 2 and the number of malicious
clients is set to 50%, following the settings of [24]. The num-
ber of workers, validators, and miners is determined randomly
in each communication round. The validation threshold is set
to 1. The results are shown as TABLE II. From the results,
we can easily know that the PoS has better performance in the
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TABLE II: Performance comparison of PoW and PoS

Metrics 20:1 50:1 100:1
PoW PoS PoW PoS PoW PoS

Fβ 66.8 64.5 60.6 62.4 59.4 60.6
Precision 34.4 29.2 26.4 27.5 24.7 26.1

Recall 87.4 92.4 90.1 92.3 92.2 90.7
MCC 48.3 44.5 40.3 42.2 38.7 40.2

TABLE III: Performance comparison in different validation
threshold (’T’ means validation threshold)

Metrics 20:1 50:1 100:1
T=1 T=10 T=1 T=10 T=1 T=10

Fβ 62.8 60.6 61.4 59.9 60.9 59.3
Precision 27.5 26.5 27.3 25.6 26.0 24.9

Recall 88.1 90.0 90.8 90.2 92.1 91.2
MCC 42.9 40.3 41.4 39.5 40.5 38.7

case of 50:1 and 100:1.
3) Effectiveness of the validation mechanism: As men-

tioned above, there is a novel validation mechanism used in
the Blockchain. To illustrate its effectiveness, we compare the
performance in two different validation thresholds, i.e., T=1
and T=10. We set the number of workers, validators, and
miners to {6, 2, 2}, respectively. The number of malicious
devices is set to 50%. The other settings are the same with
the previous sections. It is worth noting that the smaller T
can result in better performance of identifying the malicious
devices. As shown in TABLE. III, the higher performance
happens when the T is smaller, as expected, in the three cases.

D. Comparison with state-of-the-art class-imbalance methods

One of the concerns in this work is the imbalance of learning
due to the data nature of the blade icing. Therefore, it is very
necessary to compare our proposed BLADE with the state-of-
the-art class-imbalance methods. These methods are illustrated
as follows:

1) Focalloss: is a famous algorithm-level loss function
for class-imbalance learning [30]. The hyper-parameters for
the focal loss are set: the α is 1, and γ is 2. 2) Class-
balance: is an improved version of focal loss by introducing
the concept of effective number of samples. In this work,
the data overlap is taken into account, and according to the
calculated effective number of samples in each class, the final
balanced loss of each class can be obtained [31]. 3) LDAM
(label-distribution-aware margin): is a recently proposed class-
balance algorithm for deep learning models by minimizing a
margin-based generalization bound. In this method, the CE
loss can be enhanced with the prior strategies, and a simple but
effective training schedule is applied [34]. 4) WeightedCE:
is an easily improved variant of CE loss by considering the
number of samples in each class is different. According to the
different number of samples, different weights are assigned to
standard CE loss for the imbalance learning.

All the above methods are used for the model in which the
proposed module of imbalance learning is removed while the
other components are remained. The details of the training
settings are the same with the previous sections, such as
the same learning rate, training epochs, etc. All clients are

assumed to be honest and the validation threshold is set to 1.
The communication rounds and the local epochs are set to 20.
The results are shown in TABLE IV. It is easy to see that our
proposed BLADE achieves the highest accuracy in terms of
MCC, except in the case of 100:1 where our model is slightly
lower than WeightedCE. Regarding Fβ , BLADE has the best
performance in the three cases. WeightedCE ranks second,
which means that even the simple method can achieve good
performance. Another reason that the WeightedCE can have a
better performance than others is that all of the clients have
the same imbalance ratio, it is convenient for WeightedCE
to assign the weights for each class. If the imbalance ratio
is different for different clients, the result might change.
These designed algorithm-level imbalance learning methods
(i.e., Focalloss, Class-balance, and LDAM) do not have the
expected results. The explanation might be that they are
designed for central learning not for distributed learning. In
the new scenario, performance degradation exists.

E. Impacts of different settings in the neural network

1) Impacts of the structure for the neural network: The
learning capability is also an important factor for the proposed
BLADE. Therefore, the following five widely used baseline
models are utilized for the illustration of the impacts of the
local model. 1) MLP (multilayer perceptron): there are three
fully connected (FC) layers and one dropout layer inserted
between FC layers. The hidden number for each FC is set to
500. 2) LSTM (Long Short-Term Memory): a simple one-
layer LSTM model with the hidden number 8 is used. 3)
CNN: one-layer CNN with filter size 128 is employed. 4)
DenseNet: is another state-of-the-art model for time series
classification problem [27]. We just use the model structure
with the attention modules excluded. 5) MLSTM-FCN: we
adopt the same settings with the original paper [35]. These
models are used to replace our proposed neural network and
the other settings are the same with Section IV-B.

The results are illustrated in TABLE V and indicate that
our proposed BLADE performs the best in terms of Fβ
except ρ = 100 : 1, where the score is second only
to Densenet. Regarding MCC, our proposed BLADE also
achieves competitive performance except ρ = 100 : 1, where
our method is in the third place, ranking behind the DenseNet
and LSTM. It is interesting that the MLP and LSTM are almost
identical for the three cases. More importantly, we find that the
performance has not improved significantly with the increased
complexity of the model structure. For example, the DenseNet
and MLSTM FCN have the most complicated model structure
in this comparison, but their performance is not always the
best. These results indicate that designing a suitable model is
even more significant than using a complex model.

2) Comparison with other attention mechanisms: To
demonstrate the effectiveness of the proposed attention mod-
ule, we compare it with the other four attention modules, as
shown in TABLE VI. In this comparison, we just replace our
proposed attention module with these attention modules. The
other settings are the same with Section IV-B. The details of
these four attention modules are as follows: SE: is the first and



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 9

TABLE IV: Performance comparison of imbalance learning algorithms in different number of imbalance ratios

Method ρ = 20 : 1 ρ = 50 : 1 ρ = 100 : 1
Fβ Precision Recall MCC Fβ Precision Recall MCC Fβ Precision Recall MCC

Focalloss 37.8 66.6 34.4 43.9 27.1 75.3 23.6 38.6 17.0 70.0 14.6 27.7
Class-balance 42.5 13.4 99.6 16.7 48.6 16.4 99.1 26.3 44.7 14.3 99.3 21.2

LDAM 48.3 67.2 45.6 51.4 28.8 62.9 26.0 35.8 21.1 64.4 18.6 29.6
WeightedCE 53.0 54.3 53.2 48.8 51.9 58.0 51.3 49.7 47.4 56.8 46.0 46.4

Ours 68.6 49.0 79.1 56.2 65.3 42.6 79.6 50.8 61.7 34.2 79.7 44.2

TABLE V: Performance comparison of local model

Method ρ = 20 : 1 ρ = 50 : 1 ρ = 100 : 1
Fβ Precision Recall MCC Fβ Precision Recall MCC Fβ Precision Recall MCC

MLP 61.2 42.1 70.9 48 58.8 39.2 68.9 45.0 57.1 37.6 68.1 42.9
LSTM 61.5 48.8 68.0 51.5 58.5 45.4 66.1 47.8 59.2 40.4 71.0 45.9
CNN 43.9 17.1 72.5 21.9 45.8 17.6 76.9 23.8 44.1 16.4 76.7 21.9

DenseNet 66.1 34.7 88.0 47.9 64.2 32.6 88.6 45.7 66.9 35.0 90.0 48.8
MLSTM FCN 64.1 45.0 76.1 51.1 63.3 34.6 83.7 45.6 59.2 34.8 78.0 42.9

Ours 68.6 49.0 79.1 56.2 65.3 42.6 79.6 50.8 61.7 34.2 79.7 44.2

TABLE VI: Performance comparison of attention modules

Method ρ = 20 : 1 ρ = 50 : 1 ρ = 100 : 1
Fβ Precision Recall MCC Fβ Precision Recall MCC Fβ Precision Recall MCC

SE 67.1 50.5 76.5 55.8 65.7 38.5 83.2 49.1 60 31.9 80.9 42.1
GC 64.7 42.5 78.3 50.2 62.8 38 79.3 46.8 64.1 38.7 81.3 48.3
TR 53.5 51.0 55.8 47.4 57.5 36.2 70.8 42.5 49.3 38.4 58.6 38.5

CBAM 57.1 36.0 75.5 41.5 55 33.4 75.4 38.4 55.4 30.8 77.2 37.8
Ours 68.6 49.0 79.1 56.2 65.3 42.6 79.6 50.8 61.7 34.2 79.7 44.2
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Fig. 6: Ablation analysis
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Fig. 7: Sensitivity analysis

famous attention module [36]. GC: calibrates the raw learned
features by CNN using the concept of global context [37].
TR: is a recently proposed attention module for time series
classification problem [38]. CBAM: is a step-wise attention
module which uses the channel and spatial attention module
sequentially [39].

To implement the comparison, we simply replace the used
attention module by these four attention modules, and the other
settings are the same with Section IV-B. TABLE VI clearly
shows that the proposed BLADE performs the best in the case
of ρ = 20 : 1. In the cases of ρ = 50 : 1 and ρ = 100 : 1,
our proposed BLADE is not the best except for the MCC in

the case of ρ = 50 : 1. In the case of ρ = 100 : 1, GC shows
the best performance, and our proposed BLADE ranks in the
second place.

F. Ablation and sensitivity analysis
To further illustrate the importance of each component, the

ablation analysis is conducted. In this work, there are two
variants are created. 1) No IM: the imbalance learning module
is removed in this variant. 2) No Attn: the proposed channel
attention module is not used. In this section, the experiment
setting is the same with Section IV-B. The results are illus-
trated in Fig. 6. From the results, we can know that there is
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the highest performance decrease when the imbalance learning
module is removed in the three cases. When the attention
module is not used, there is just a slight performance decrease
in the three cases. Compared with No IM and No Attn, we
can conclude that our proposed imbalance learning module
has better performance than the attention module.

The sensitivity analysis is performed to identify the influ-
ence of window size on detection accuracy. The results are
shown in Fig. 7. From the results, we can easily know that
the highest performance happens when the window size is
256 in the three cases. The reason behind might be that the
larger window contains more information and results in higher
accuracy.

V. CONCLUSION

Wind energy offers a promising solution for human’s future
sustainable development. Blade icing is the main factor that
limits the performance of wind turbines, especially in winter.
This work investigates the Blockchained imbalanced federated
learning model BLADE for blade icing detection of wind
turbine. BLADE is proposed to address the limitation of
centralized servers in conventional federated learning. This
paper also introduces a novel cluster-based imbalance learning
module by considering that there is a heavy data imbalance
in the collected data. To enhance the capability of defending
the poisoning attacks, a validation mechanism is introduced in
Blockchain. This paper comprehensively evaluated the perfor-
mance of BLADE by comparing the performance of the aggre-
gated model and four state-of-the-art class-imbalanced learn-
ing methods. The performance comparison between different
neural networks and attention mechanisms are explored. The
effectiveness of Blockchain and each component in BLADE
is also investigated.

However, the heterogeneity of each participant is not con-
sidered, and the existed heterogeneity might reduce the perfor-
mance of the model proposed in this paper. A heterogeneous
Blockchain-based federated learning model will be designed.
In the future, we would like to identify the severity of icing
on wind turbine blades. Potential solutions might include in-
terpreting the output probability or labeling the icing severity,
based on domain knowledge.
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