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Abstract—This paper proposes an optimal control strategy for
the energy management system (EMS) of marine hybrid power
systems with the objective of reducing operational expenses
(OPEX) and environmental emissions. Here, the OPEX includes
main parameters such as the fuel consumption, degradation, and
maintenance of diesel engines. The engines as the maintenance-
intense devices in the power systems are expensive to operate
not only due to the fuel cost, but also the cost of maintenance
and overhaul. Hence, better engine management will improve
the overall system efficiency and reliability. In the proposed
method, the engine operation is further improved in terms of
running hours and transient loading. The optimization algorithm
is designed based on mixed-integer linear programming (MILP)
considering the physical constraints of the engine-generators and
battery-related limits. The developed EMS is then tested with
a real ship profile by the different cases of with and without
battery and with various battery capacities. The results show the
effectiveness of the proposed EMS to improve the operation of
the hybrid power system for a stable, efficient, and reliable ship
operation.

Index Terms—Marine power system, energy management,
energy storage system, optimization, mixed-integer linear pro-
gramming (MILP)

I. INTRODUCTION

To meet the increasingly strict emission and efficiency re-
quirements set by International Maritime Organization (IMO),
the maritime industry must undergo a transition to low- and
zero-carbon technologies. In this light, the extensive elec-
trification and hybridization of ships have become a major
technology trend, thus increasing the efficiency, performance,
and flexibility of ship power systems (SPS) [1], [2]. Energy
storage systems (ESS) such as batteries provide benefits to
the power system in terms of increased system stability and
efficiency as well as reduced operational costs [3], [4].

In the hybrid power systems, the engines compensate for the
energy deficit of the ESS, while the ESS facilitates optimal
loading of the engines. Fig. 1 shows typical topologies of
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Fig. 1: Battery integration strategies for shipboard AC and DC
power systems

hybrid power systems including the placement of the ESS. In
AC-based power systems, the ESS is usually connected to the
main AC bus by a DC/AC converter in Fig. 1(a) or integrated
into the DC-link of the propulsion motor drives by a DC/DC
converter in Fig. 1(b). In DC hybrid power systems, the ESS
is connected to the main DC bus by a DC/DC converter in
Fig. 1(c). The DC/DC converters can be omitted if the voltage
of the ESS and the DC bus are within a similar range. This
approach reduces installation costs but prohibits the direct
control of the ESS.

Hybrid electric ships show increased energy efficiency,
reliability, and power system redundancy as well as reduced
fuel consumption and emissions [5]. However, to utilize this
great potential, advanced control strategies are crucial. While
the power management system (PMS) ensures the availability
of sufficient power and coordinates/limits heavy consumers
at every time instant, the energy management system (EMS)
is a higher-level control optimizing the energy efficiency,



system reliability, and lifetime of ESSs [1]. Rule-based EMS
represents a straightforward high-level control with sufficiently
good results, but with the increasing complexity of hybrid
power systems and uncertain system conditions, the formu-
lation of rules becomes difficult, and the results tend to be
sub-optimal [6]. Examples of rule-based EMS can be found
in [2], [7], [8].

Alternative approaches are optimization-based control
schemes using global planning and real-time optimization
methods. Generally, the optimization problem is formulated
as the minimization of a constrained cost function considering
technical and economic concerns [6], such as diesel engine’s
optimal operating point based on specific fuel consumption
curve [9], total fuel cost, maintenance cost represented as
running time of the plant, system efficiency and battery ageing.
Global optimization approaches include classical optimization
methods such as linear/nonlinear programming (LP/NLP) [10],
mixed-integer linear/nonlinear programming (MILP/MINLP)
[11], [12] and dynamic programming (DP) [13] as well as
heuristic methods such as particle swarm optimization [6] and
genetic algorithms [14]. Commonly used real-time methods
include model predictive control (MPC) [15] and equivalent
consumption minimization strategy (ECMS) [2]. Further ex-
amples of optimization-based EMS can be found in [16].

Due to the nonlinearity and complexity of SPS, LP has
been rarely used although it is a simple and fast optimization
method [16] mainly because of the fuel consumption calcula-
tion. When the EMS is formulated with nonlinear functions,
the application of online optimization becomes difficult due
to the calculation burden. Then, this optimization-based EMS
can be only used as an offline optimization that plans a ship
operation with a predicted load profile before the ship starts to
sail. As a result, offline optimization cannot produce accurate
performance due to many uncertainties, while online optimiza-
tion can use the actual power system state measurements.

The main burden towards the use of online optimization is
to formulate the fuel consumption for marine engines. The
fuel consumption can be calculated based on a specific fuel
consumption (SFC) curve which is usually given by the engine
manufacturer. But, the SFC curve is a nonlinear function with
a large variation from no-load to full-load operation. This
requires the inclusion of nonlinear functions in the optimiza-
tion problem so that the algorithm should calculate gradients
to find the next directions and repeat this process until the
optimal solution has been found. If the objective problem can
be formulated as LP, the solver can check the corner points to
find the optimal point with comparatively less calculation time
and effort. Furthermore, the LP solvers are more welcomed
in practical applications. Hence, converting the SFC into a
piecewise linear function can help the optimization-based EMS
to be applied in the real application.

Considering an EMS, some control quantities such as the
number of running gensets, the number of genset starts/stops,
and switching states can be represented by integers and
binaries. MILP and MINLP consider both restricted and
unrestricted quantities which makes these approaches more

appropriate for EMS optimization problems than LP. A MILP
algorithm-based EMS for three different diesel-electric power
system configurations (fixed-speed, variable-speed, and ESS
integration) is used in [11] showing reduced fuel consumption
and genset operating hours compared to a rule-based algo-
rithm. In [12], the optimal sizing of an ESS for a ship hybrid
power system is calculated based on the optimization results
of an EMS using MILP. A numerical optimization based on
the efficiency model of a hybrid power system is presented in
[5]. The algorithm calculates the optimal loading conditions
and decides whether the generators are operated continuously
or periodically charge/discharge the battery. Also, an online
optimization strategy is implemented comparing the efficiency
of different operational modes. However, for such a hybrid
power system, the optimization problem should include a
range of variables from fuel consumption to the degradation
and maintenance of the engines.

In this paper, an optimal energy management system (EMS)
algorithm is proposed for shipboard hybrid power systems with
engines and marine batteries. The proposed EMS includes
an online optimization algorithm to reduce the OPEX of
the ship operation such as the fuel consumption and other
costs related to maintenance of engines. The optimization
algorithm utilizes a SFC curve as a piecewise linear function
to calculate the fuel consumption in the objective function so
that the optimization problem can remain in the form of an LP
with mixed integers (MILP). Besides that, to convert absolute
functions for penalizing terms in the objective function, the
goal programming approach is used to keep the linear form as
well. The proposed method also considers the constraints such
as ramp-rate limits of the diesel engines at specified load levels
and practical battery SOC limits. In addition, the algorithm
is designed to reduce the transient power on the engines
and consequently, the mechanical wear can be minimized by
assigning the transient loads to the batteries.

II. CASE STUDY VESSEL AND LOAD PROFILE

The target vessel for the EMS study is determined as off-
shore support vessels (OSVs), especially for platform supply
vessels (PSV) and specialized offshore vessels (SOV). OSVs
are operated to transport personnel and supplies/equipment
and perform service operations, sailing between offshore plat-
forms/wind turbines and shore facilities. Therefore, these ves-
sels show different types of operation scenarios from harboring
mode near/at the port to dynamic positioning (DP) mode
near/at the platform. In harboring mode, the power system
runs at a very low load since only the hotel loads from
the accommodation block are online. However, in DP mode,
high load fluctuations can be expected in the power system
depending on the environmental conditions such as wind,
waves, and currents.

In Fig. 2, a typical load profile of an OSV is presented, and
this load profile is used as the basis for further optimization.
The selected total duration of the power measurement is
approximately 35 hours and each data sampling interval is
5 seconds.
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Fig. 2: Typical load profile of offshore support vessels

Fig. 3: Original Scheduling of the power plant in the OSV

The operation scenario is symmetrical because the OSV has
a round trip between the platform and shore. The vessel starts
to operate in harboring mode with a very low load before the
sailing starts. Then, the diesel generators must be operating at
a very low load with lower fuel efficiency. This operation point
can be a good candidate to reduce the fuel consumption by
the ESS. Then, the OSV sails to the open sea by maneuvering
and ramp-up operation where the load increases with some
fluctuations that can be later minimized by the ESS. On the
open sea, the OSV can finally sail to the platform at high-
speed. When the OSV arrives at/near the platform, it must keep
its position to secure the cargo handling operation with deck
machinery such as cranes. DP operation and cargo handling
operation cause the highest fluctuations in the power system
as seen in Fig. 2, so the ESS should be utilized in a way to
minimize the fluctuations. Afterward, the OSV sails back to

the shore.
From the load profile analysis, it can be observed how

the ESS can contribute to better fuel efficiency and power
system stability. For example, the ESS enables to run one
large and one small generator or two small generators in DP
mode instead of two large generators. Without the ESS, the
operation of a small generator might be risky to take the high
transient load. Furthermore, scheduling of the power sources
can minimize the running hours of each generator for reduced
maintenance costs. Hereafter, a battery system is considered
for ESS. Battery systems are the most viable solution because
they have been widely adopted in marine applications, showing
continuously improved safety and reduced installation cost.

As a benchmark, the target OSV has four diesel generator
sets (genset), two big gensets of 2250 kW (G1 and G2) and
two small gensets of 940 kW (G3 and G4). Based on the load
profile given in Fig. 2, the original scheduling of the power
plant is presented in Fig. 3.

The big gensets are used during high-speed sailing and DP
conditions while the small gensets are used in low-load and
maneuvering operations. However, during DP mode, the small
gensets should be connected to the grid in idle mode to support
the power system in case of very high transient conditions
such as at 21 hour. As expected earlier, the high transient
loads are absorbed by the diesel engines. This can cause a
highly fluctuating shaft speed which results in AC frequency
instability and poor combustion/fuel efficiency with increased
emissions due to the turbo-lag in the engine auxiliary systems.

The proposed EMS aims to carry out an improved power
plant scheduling with the battery operation. The EMS cal-
culates a slow-varying power reference for the gensets and
separates the transient load. Then, the transient load is assigned
to the battery, so the gensets are not necessary to absorb high
transient loads, thus achieving increased energy efficiency. At
the same time, the algorithm allocates the load level of the
genset to a more efficient level so that the fuel consumption
of the power plant can be further decreased.

III. DEVELOPMENT OF ENERGY MANAGEMENT SYSTEM

In this section, the development of the proposed EMS is
presented including the objective function and the constraints
of the optimization algorithm.

A. MILP formulation of the Specific Fuel Consumption

Due to the limitation of SFC data for the small engines as
shown in Fig. 4(a), and for big engines as shown in Fig. 4(b),
a quadratic function is used to estimate additional SFC data
points at every five load percent. Therefore, it is assumed that a
total of 21 measured SFC points are available for each engine
type. Then, the obtained SFC data is formulated with MILP
form to calculate fuel consumption as presented in Fig. 4(c)
for small engines and in Fig. 4(d) for big engines. Among
the piecewise linearization method, the convex combination
(CC) method is chosen to be more accurate in the selection
of the load percent. Then, the MILP algorithm chooses a load
percent by selecting one region with zi,j as a binary variable
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(a) Small Engine of 940kW (Wartsila 6L20 @ 900rpm)
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(b) Large Engine of 2250kW (Wartsila 8L26 @ 900rpm)
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(c) Piecewise Linearization with Convex Combination (Small Engine)
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(d) Piecewise Linearization with Convex Combination (Large Engine)
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Fig. 4: Curve fitting and piecewise linearization with convex combination for specific fuel consumption (SFCi,j) of diesel
engines (Courtesy of Wärtsilä)

and calculates internally dividing points between the adjoining
λi,j and λi,j+1 as continuous variables with a range between
0 and 1, where i represents the i-th engine and j represents
the j-th region of the SFC. For example, if zi,6 = 1 and
λi,6 = λi,7 = 0.5, the selected load percent becomes 27.5 %.

B. Goal Programming: Linearization of Absolute Value Func-
tions

If an absolute value function is used in the objective
function for the penalization of certain deviations, this will
violate the LP-formulation. Without the absolute function,
the algorithm chooses the infinite negative deviation, so the
resulting solutions are not correct. Therefore, to solve this
problem, the goal programming approach is used to replace
the absolute value functions.

When the distance between a reference value xref and a
variable x should be calculated as |xref − x|, this can be re-
written as:

|xref − x| = minimize (w+d+ + w−d−) (1)
s.t. xref − x = d+ − d− (2)

where d+, d− ≥ 0 (3)

where d+, d− are the distance variables and w+ and w− are
the weighting factors (chosen as 1 hereafter). Since d+ + d−

should be minimized by including this term in the objective
function, either d+ or d− becomes eventually zero depending
on the negative or positive distance in each case. For example,
if |xref − x| = |0 − 1| = 1, d+ = 0 and d− = 1 so that
xref − x = d+ − d− = −1 and d+ + d− = 1.

Before describing the optimization function, the decision
variables are explained in Table. I and the indexes and param-
eters are listed in Table II.

C. Objective Function

In this section, the objective function is defined with the
formulation techniques explained above as:

minimize C(Pg,i)[k]︸ ︷︷ ︸
Equivalent fuel cost function of the gensets

(4)

+ ωg,num ·
4∑

i=1

λg,i[k]︸ ︷︷ ︸
minimization of operating number of gensets

(5)

+ ωg,rp ·
4∑

i=1

(d+gr + d−gr)︸ ︷︷ ︸
Penalizing for steep load change of the gensets

(6)

+ ωb,soc · (d+gb + d−gb)︸ ︷︷ ︸
Penalizing for low battery SOC

(7)

+ ωrp,slack · γi︸ ︷︷ ︸
Penalizing for relaxing ramp limit

(8)

In Eq. (4), based on the selected load percentage with j
for each genset i, the total fuel consumption multiplied by
weighting factors will be calculated during the time interval ∆t
in [ton] unit. The detailed calculation for the fuel consumption
is formulated as an equality constraint in Eq. (9) and Eq. (10).
The terms from the second to the last term of the objective
function are penalizing functions.

To penalize the battery SOC, rule-based reference values
of SOCref are defined. Depending on the operation mode,
SOCref can be adjusted to reflect the higher possibility of
the intended charge or discharge strategy of the battery. For
example, in low-load conditions, SOCref is set to 0.8 to
charge the battery as much as possible and SOCref is set
to 0.2 during the high transient conditions to adsorb varying
loads. Also, SOCref is set to 0.2 at the end of the sailing trip
in order to fully utilize the battery before the shore-charging.



TABLE I: Nomenclature - Decision Variables

Variables
λg,i Start/stop of the gensets, λg,i ∈ {0, 1}
λi,j Gensets load selector for piecewise linearization
zi,j Gensets load selector for piecewise linearization with convex

combination, zi,j ∈ {0, 1}
Pg,i Power of the gensets at each load percent
Pbat Power of the battery
SOC State of charge of the battery (dependent on Pbat)
d+gr, d

−
gr Distance variables for Pg,i[k]− Pg,i[k − 1]

d+gb, d
−
gb Distance variables for SOC[k]− SOCref [k]

γi Slack variable to relax the ramp limit, γi ∈ {0, 1}

TABLE II: Nomenclature - Indexes and Parameters

Indexes
k Time instance
i Identification number of the gensets (i = 1, 2, 3, 4)
j Discretized load percent of the gensets
Parameters
Ng,min The minimum number of operating gensets
Ng,max The maximum number of operating gensets
NLp Total number of discretized load percent
Pg,rated,i Rated power of the gensets (2250 kW and 940 kW)
Prp Ramp limit as defined in Fig. 5
Pg,rp,h,i Limit of the load increase (Load ≥ 50 %)
Pg,rp,l,i Limit of the load increase (Load < 50 %)
Pg,rp,rlx,i Allowable increase of ramp rate for each genset in case of

constraint relaxation
SFCi,j SFC of each genset at a given load percent
fuelg,i Fuel consumption of each genset during a given interval
Pload Total load of the consumers
Pload,ft Filtered total load of the consumers
SOC0 Initial state of charge at each iteration (SOC0 = 0.9)
SOCl SOC lower bound
SOCu SOC upper bound
SOCref Designated SOC level of the battery
Qbat Capacity of the battery
Pbat,ch Charging power limit of the battery
Pbat,disc Discharging power limit of the battery
∆t Time interval that each optimization holds
Parameters: Weighting factors
ωg,fc,i Penalizing each genset's fuel consumption
ωg,num Penalizing the number of operating gensets
ωg,rp Penalizing the steep load change of gensets
ωb,soc Penalizing the SOC deviation from its reference
ωrp,slack Penalizing the slack variable for ramp limit relaxation

A slack variable term in Eq. (8) will relax the constraint of
the ramp-up limit of the genset up to the maximum ramp-up
capacity by assigning γi = 1 only if the optimization problem
becomes infeasible, especially when the load changes too fast
above the ramp-up limit and the battery SOC is already too
low. As a result, the ramp-up constraint in Eq. (13) will be
updated. However, the relaxation of the ramp-up limit should
be avoided as much as possible, so the weighting value of
ωrp,slack should be chosen high enough.

D. Equality and Inequality Constraints

In this section, the equality and inequality constraints of the
optimization problem are explained. First, the constraints for
the gensets are formulated as follows:

C(Pg,i)[k] =

4∑
i=1

(ωg,fc,i · fuelg,i(Pg,i)) (9)

fuelg,i =
∆t

3600

NLp∑
j=1

(λi,j · Pg,rated,i ·
j

100
· SFCi,j

1000
) (10)

0 ≤ Pg,i ≤ λg,iPg,rated,i (11)

Ng,min ≤
4∑

i=1

λg,i ≤ Ng,max (12)

Pg,i[k]− Pg,i[k − 1] ≤ Prp + Pg,rp,rlx,i · γi (13)

Prp = (1 + sign(Pg,i[k]− Pg,rated,i

2
)) · Pg,rp,h,i

2
(14)

+(1 + sign(
Pg,rated,i

2
− Pg,i[k])) · Pg,rp,l,i

2

As explained earlier, the fuel consumption calculation is
carried out in Eq. (9) and Eq. (10). For choosing a good
weighting factor ωg,fc,i, one of the gensets between the same
power rating should have a slightly higher weighting factor
than the other to avoid switching operations between the
same type of gensets. Eq. (11) sets the limitation of the
lowest and highest output power from each genset, Eq. (12)
defines the limit of the operating number of genset together
with the penalizing term in the objective function. Ng,max

is also defined in a rule-based manner such that a lower
number of running gensets is preferred at low-load conditions.
Eq. (13) is the ramp-up limit that is calculated based on
Eq. (14) depending on the load level of each genset as shown
in Fig. 5. The ramp-up limit calculation is based on the
operational recommendations of the engine manufacturer and
the limitations of the governor.
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Fig. 5: Ramp limit of the gensets (courtesy of Wärtsilä)

In normal operation, the ramp-up limit follows the blue-line
in Fig. 5. If a constraint relaxation is needed, the emergency
ramp-up limit as defined by the red line will be used by
Pg,ramp,rlx,i in Eq. (13). In this case, the slack variable γi
is selected as 1. In Eq. (15), an equality constraint for the
load balance between the power source and the consumer is
established. This condition can be also relaxed (optionally) by
changing it to an inequality constraint, but, in that case, the
main bus voltage should be sacrificed with voltage rise or sag.

4∑
i=1

Pg,i + Pbat = Pload (15)



The equations (16) to (21) represent the piecewise lin-
earization with the convex combination method in MILP
formulation.

NLp∑
j=1

λi,j = 1 (16)

NLp−1∑
j=1

zi,j = 1 (17)

λi,j ≥ 0 (18)
λi,1 ≤ zi,1 (19)

λi,NLp
≤ zi,NLp−1 (20)

λi,j ≤ zi,j + zi,j+1, where j=2,3,...,NLp-1 (21)

The battery system constraints including the charging and
discharging limits (C-rate limitations) in Eq. (22) and the state
of charge (SOC) limitation in Eq. (23) based on the SOC
calculation in Eq. (24) are given as:

−Pbat,ch ≤ Pbat ≤ Pbat,disc (22)
SOCl ≤ SOC ≤ SOCu (23)

SOC[k] = SOC[k − 1]− ∆t

3600 ·Qbat
· Pbat (24)

Lastly, the constraints for the linearization of absolute value
functions are formulated in equations (25) to (28). It should
be noted that the penalizing term for load changes in Eq. (6)
and Eq. (27) requires a memory of the previous genset load
at the (k − 1) time instance.

d+gr, d
−
gr ≥ 0 (25)

d+gb, d
−
gb ≥ 0 (26)

Pg,i[k]− Pg,i[k − 1] = d+gr − d−gr (27)

SOC[k]− SOCref [k] = d+gb − d
−
gb (28)

IV. RESULTS AND DISCUSSIONS

The optimization algorithm is implemented in Python using
the PuLP framework [17] that works as an interface to IBM
CPLEX as a solver. By adopting MILP formulation with
Python, it is observed that the calculation time of each iteration
is always faster than real-time meaning that from 1.5 to 6
calculations can be done at every second. This ensures that
the proposed EMS is able to solve the optimization problem
within any sampling time interval higher than 1 s. In this
study, the sampling time of the measurements is chosen as
5 s considering the communication delay.

The simulation cases are divided into three different sce-
narios (Case A, Case B, and Case C). Battery operation is
considered in Case B and Case C, but not in Case A. With
battery operation, Case B minimizes the fuel consumption with
relatively less penalization of transient load to the gensets,
while Case C strictly penalizes transient operation and a higher
number of operating gensets. The specifications of the power
plant in the OSV are described in Table III, and the weighting
factors used in each case are listed in Table IV. Comparing

TABLE III: The specifications of the power plant

Parameter Value

Diesel Generator 1 (G1) 2250 kW
Diesel Generator 2 (G2) 2250 kW
Diesel Generator 3 (G3) 940 kW
Diesel Generator 4 (G4) 940 kW
Battery System 300/600/1000 kWh
Battery C-Rate 3C / 2C (discharging/charging)

TABLE IV: The weighting factors for each simulation case
(FC: fuel consumption, MAINT: maintenance)

Weighting
Factor

Case A
(w/o Battery)

Case B
(w/ Battery)
(min. FC)

Case C
(w/ Battery)

(min. MAINT)
ωg,fc,1 20 20 20
ωg,fc,2 20.02 20.02 20.02
ωg,fc,3 20 20 20
ωg,fc,4 20.01 20.01 20.01
ωg,num 0 0 5
ωg,rp 0 0.011 0.1
ωb,soc 0 150 150
ωrp,slack 5 5 5

the results, the best weighting factors are found by try and
error method.

The results with a battery capacity of 1000 kWh are pre-
sented in Fig. 6. The results show that the total fuel consump-
tion is reduced for all cases compared to the original operation
scenario. For the Case A, B, and C, a reduction of 5.437 %,
7.187 %, and 1.176 % has been achieved respectively. The
results show that a reduction of fuel consumption is possible
even without battery operation, but in this case, the gensets
must encounter all the load fluctuations as seen in Fig. 6(a).
Therefore, by using the battery, both total fuel consumption
and the fluctuation can be minimized as seen in Fig. 6(b) and
(c). Based on the battery power and SOC for Case B, it is
noted that the battery works as a low pass filter for the gensets
load. The benefit of using an optimization filter is to obtain
guaranteed fuel reduction as well as fluctuation minimization.
However, the total running hours of the gensets are slightly
increased by 7.1 % compared to the original operation.

In order to minimize the total running hours of the gensets,
the weighting factor, ωg,rp is increased by approximately 10
times. The result in Fig. 6(c) shows that G1 (the bigger genset)
and the battery can handle the load by decreasing the total
running hours by 23.0 % compared to the original operation.
Therefore, G1 is mainly online except that G3 (the smaller
genset) should be operated from 2 h to 5 h where the battery
has reached its lowest SOC limit (20 %). Besides, in this case,
the fuel consumption reduction has to be sacrificed compared
to Case B but it is still better than the original operation.

The optimization problem has also been performed for a bat-
tery with smaller capacities as all other parameters remained
unchanged. The optimization results for the different battery
sizes are summarized in Table V and the improvements are
indicated in percent compared to the original operation. It is
worth mentioning that the original total fuel consumption and
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(c) Case C

Fig. 6: Optimization results for different objectives: (a) Case A: without battery and fuel minimization, (b) Case B: with battery
and fuel minimization, and (c) Case C: with battery and maintenance minimization.

the total sum of running hours of each genset are 7.622 tonnes
and 46.418 hours respectively.

Observing Case B, the results show that increasing the
battery size does not necessarily lead to lower fuel consump-
tion as the fuel reduction fluctuates in the battery capacities
of 300-600 kWh. In order to achieve significant fuel reduc-
tion, the battery capacity should also increase significantly to
1000 kWh. This comparison study can be used for battery
dimensioning. For example, if 5 % of the fuel reduction is
satisfactory, the battery capacity of 300 kWh becomes the base
case. Then, a designer can add more capacity up to 600 kWh
to consider battery aging and energy buffer.

Meanwhile, the running hours in Case B are increased
compared to the original operation to achieve higher fuel
reduction. By compromising the fuel-saving, the running hour
can be reduced significantly as seen in Case C. However, the
case of 600 kWh shows the least improvement in the running
hour since it has higher fuel reduction compared to the other
cases. Alternatively, this can be further improved by the tuning
of the weighting factors.

In Fig. 7, the results of each case are re-calculated as
an averaged specific fuel consumption that can indicate the

TABLE V: The summary of the optimization results

Fuel Reduction Running Hour Reduction

Battery CaseA CaseB CaseC CaseA CaseB CaseC
Capacity

- 5.4% - - -17.9% - -
300kWh - 5.1% 1.1% - -27.6% 26.8%
600kWh - 5.3% 2.3% - -14.3% 9.8%

1000kWh - 7.2% 1.2% - -7.1% 23.0%

efficiency of fuel usage with the averaged load percent for
each type of engine over the whole period of simulation
time. This comparison shows that, based on the given load
profile and compared to the original operation profile, higher
energy efficiency can be achieved in some cases (lower SFCs
than the original SFC) by using the small engines. However,
Case B cannot avoid sacrificing the efficiency of the large
engines, but the operation time of the large engines is very
short. On the contrary to this result, Case C results achieve
higher engine efficiency for the large engines because the
optimization commands to use one large engine constantly
instead of the small engines in order to minimize the running
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Fig. 7: The comparison of the averaged SFCs based on the
different case studies. (a) SFC for large engine type (b) SFC
for small engine type

hours of the power plant. To sum up, it is noted that the
operation with higher battery capacity has a higher potential
to reduce fuel consumption and the running hours in general.
However, it should be also noted that the battery cost and
payback time should be carefully considered.

V. CONCLUSION

This paper has proposed an optimal energy management
system for hybrid shipboard power systems with engine-
generators and batteries. The optimization algorithm for the
EMS is based on a MILP formulation considering the physical
and technical constraints of the power system. The nonlinear
SFC function of the engines is re-formulated with piecewise
linearization. The piecewise linearization also makes it easier
to update the SFC curve in the algorithm over the life-cycle
of the ship. To test and tune the algorithm, the case studies
have been performed based on real OSV operation data with
different battery sizes: Case A - fuel optimization without
battery and only gensets, Case B - fuel optimization with
battery, and Case C - optimization of fuel and running hours
with battery. While a reduction of fuel consumption has been
achieved for all cases, a reduction of running hours of the
gensets has been observed for Case C only. It can be assumed
that for achieving better fuel efficiency, the running hours
are usually compromised in the conventional methods. In this
study, the results show that both fuel and running hours’
reduction can be achieved by balancing between the two
objectives with a proper choice of the battery SOC reference
and the tuning parameters. In addition, the algorithm assigns

the transient loads to the battery system, so the engine-gensets
can be operated with less power transient. This can reduce the
frequency fluctuations and mechanical wear of the engines,
which can influence the engine-related OPEX.
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