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ABSTRACT
Jackets are massive steel towers supporting offshore installations
such as oil platforms and wind turbines. Due to the high costs
of material, construction, and installation, there is an interest in
optimizing such jacket designs. This is an example of the broader
problem of structural design optimization.

In this paper, we describe underlying concepts related to the
problem of jacket design as well as previous research on jacket
design optimization. Motivated by the complexity of the problem,
including the multiple objectives typically involved, we develop a
novel multi-objective genetic algorithm, NSGA-J, which is tailored
to jacket design optimization. NSGA-J is based on the prominent
Non-Dominated Sorting Genetic Algorithm (NSGA-II), but tailors
it to the problem of designing jackets. Experimentally, we study a
cloud-based implementation of NSGA-J and present our results and
experiences. The paper ends with a discussion of lessons learned
and sketches opportunities for future research. We hope to inspire
future work on complex applications of structural design optimiza-
tion including jacket design optimization.

CCS CONCEPTS
• Computing methodologies → Randomized search; Contin-
uous models; • Applied computing → Computer-aided de-
sign;
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1 INTRODUCTION
Context.Offshore structures are exposed to varying environmental
conditions, leading to different types of structures being developed
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[6, 20]. Tubular steel truss structures, often called jackets, support
drilling rigs and offshore wind turbines. Jacket heights vary from
tens to hundreds of meters and weigh thousands of tonnes, based
on the topside and sea depth. Jacket design is a subfield of struc-
tural design, which concerns itself with the strength, rigidity, and
stability of structures. Kicinger et al. [10] outline three domains of
structural optimization, which are topology, shaping, and sizing.
When simplifying a structure to a graph, topology optimization
[7] decides the number of nodes and connections between them,
corresponding to joints and beams of a jacket. Shaping decides the
angles between elements and their lengths, while sizing adjusts the
diameters and thicknesses of elements. The majority of a jacket’s
construction cost comes from the cost of steel. There is also signifi-
cant welding cost, determined by the angles at which the elements
are connected [3].

The amount of steel in a jacket can be algorithmically optimized
whilst still meeting the design requirements for an expected struc-
ture lifetime. To this end, the company Kvaerner has developed
a genetic algorithm (GA) to optimize jacket designs. This GA is
well-suited for geometrical optimization of jackets [11]. There are
two main types of structural design optimization methods, namely
traditional methods [9, 24, 26] and evolutionary algorithms (EAs)
[8, 11, 12, 19, 21, 25]. We focus on EAs in this work.

Challenges. Structural design is a complex task, and challenges
facing optimization of jackets include: (i) the complexity of the anal-
ysis required to evaluate each design; (ii) the accuracy of the input
data available at the early stages of design; (iii) the fact that a design
needs to be construction-friendly; and (iv) the many objectives and
constraints that a design needs to satisfy. Since the multi-objective
perspective is often important in jacket design optimization, we
focus mainly on problem (iv) in this paper.

Contributions.Wedevelop and test aMOEA, NSGA-J [2]. NSGA-
J is based on the Non-Dominated Sorting GA (NSGA-II) [4], which
is considered one of the most prominent MOEAs. We evaluate
NSGA-J in jacket design optimization experiments. NSGA-J uses
exactly the same software as engineers designing jackets. However,
while engineers bring substantial skills and intuition to the design
process, they may stop too early in a manual design optimization
process. The reason is the time it takes to re-evaluate jacket designs
with only manual or semi-automatic design optimization aids. In
contrast, our automated approach enables a more iterative design
process, where there is more flexibility in where you stop in the it-
erative process. Further, our software uses DNV GL’s OneCompute
cloud, and is thus quite scalable.

Overview. The structure of the rest of the paper is as follows.
Section 2 discusses related work with an emphasis on structural
optimization using EAs. Section 3 presents notation and theory be-
hind multi-objective GAs as well as NSGA. Section 4 describes how
NSGA-J implements a GA for jacket design optimization. Section 5
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presents experimental results for NSGA-J, while Section 6 provides
discussion and lessons learned with ideas for future work.

2 BACKGROUND AND RELATED RESEARCH
Here we discuss related work on jacket design optimization, as
well as on similar applications of EAs in structural optimization
including truss optimization. In particular, jacket optimization can
be considered a special case of truss optimization, namely opti-
mization of massive (weight of 100s or 1000s of tonnes) trusses for
offshore deployment. Many types of multi-objective metaheuristics,
including EAs, have been applied to structural optimization and
truss optimization [28].

There are several studies on jacket optimization for offshorewind
turbines (OWT). Some work has been done using evolutionary
methods, but much of the literature employs gradient methods.
There is no universal consensus on which methodology is preferred;
our focus in this paper is on EAs, in particular GAs.

Single-objective. Pasamontes et al. [21] use a binary single-
objective GA (SOGA) to optimize the mass of the OC4 jacket by
sizing the beams and adjusting the elevation heights, thus obtaining
a 30% reduction in mass. Extending the work of Pasamontes et al.,
Schafhirt et al. [22] focus on the thickness and diameter parameters.
The number of iterations until convergence is reduced to one third.
Martens et al. [16] use a GA to optimize both the topology and sizing
of an OWT jacket. Jacket topology is created by picking beams
from a predefined set; GA operators are implemented similarly
to in Pasamontes’ system. Häfele et al. [8] performed extensive
modelling of the jacket design search space and employed a particle
swarm optimization (PSO) algorithm, the Augmented Lagrangian
PSO (ALPSO). ALPSO’s focus is on representing the problem in a
way that does not restrict the formation of solutions. A test was
run for the OC4 reference jacket, taking 47 days.

Multi-objective. Kunakote and Bureerat [12] evaluate different
MOEAs with regards to topology optimization: (i) Pareto archive
evolution strategy (PAES); (ii) population-based incremental learn-
ing (PBIL); (iii) NSGA-II; (iv) strength Pareto evolutionary algo-
rithm (SPEA2); and (v) multi-objective particle swarm optimization
(MPSO). Four environments were modelled based on a grid with spe-
cific criteria, and thus the search space admitted arbitrary structures.
PBIL scored highest in computational experiments, with PAES in
second place. The use of EA methods was said to be advantageous
due to their robustness. However, compared to realistic jacket de-
sign problems the problems studied are small, bordering on toy
problems. Noilublao and Bureerat [19] compared the performance
of PBIL, SPEA2, and archived multi-objective simulated annealing
(AMOSA) when optimizing the topology, shape, and sizing of a truss
tower. The experimental evaluation was split into four bi-objective
problems, with mass being present in every problem. PBIL turned
out to be the most effective for the compliance problem. For the
three other problems, PBIL produced more extended fronts, whilst
the fronts of SPEA2 advanced more. The computation time was be-
tween 30 and 360 minutes, depending on the problem, with AMOSA
having the shortest computation time.

Discussion. While there is related work to ours, much of it
uses traditional (and not evolutionary) optimization methods or
are single-objective (and not multi-objective). We now compare

and contrast our NSGA-J to the most similar works [4, 8, 11, 12].
Compared to NSGA-II [4], NSGA-J (i) uses multiple and more com-
plex mutation and crossover operators; (ii) contains mechanisms to
avoid duplicates in the population; (iii) creates the initial population
from an existing jacket design; and (iv) is tailored to jacket design
optimization (see Section 4.4 for details). Kunakote and Bureerat
[12] study five MOEAs for topology optimization, including NSGA-
II. They study 2D-grids that are simple compared to a full-blown
jacket, and employ a 2D-grid method, where they start with a grid,
and fill in. Compared to Kunakote and Bureerat [12], we work
directly on a realistic 3D representation of jackets, using cloud com-
puting, as do engineers designing jackets. Häfele et al. [8] consider
many design variables (material, production, coating, transition
piece, transport, and installation), but combine them into a single-
objective particle swarm optimization algorithm. In comparison,
we use a MOEA approach. Kling et al. [11] also use a 3D represen-
tation of jackets, and the way jackets are evaluated and processed
(crossover, mutation) is very similar to ours. However, they focus on
single-objective optimization and not multi-objective optimization.

3 MULTI-OBJECTIVE OPTIMIZATION AND
EVOLUTIONARY ALGORITHMS

Structural design optimization, including jacket design optimiza-
tion, are among the complex optimization problems where multiple
objectives (or fitness functions) often come into play. Fortunately,
the evolutionary computation family includes various algorithms
that take multiple objectives into consideration.

3.1 Notation and Representation
LetW be the whole numbers, N the natural numbers, and R the
real numbers. Let 𝑛 ∈ N. A genotype (or individual) x is an 𝑛-tuple
(𝑥1, . . . , 𝑥 𝑗 , . . . , 𝑥𝑛), with 𝑗 ∈ N and gene 𝑥 𝑗 ∈ R for 1 ≤ 𝑗 ≤ 𝑛.
Each real-valued gene is lower- and upper-bounded, and has an
accuracy. These things can be represented using x’s “twin” 𝑛-tuple r
= (𝑟1, . . . , 𝑟 𝑗 , . . . , 𝑟𝑛) = ((ℓ1, 𝑢1, 𝑎1), . . . , (ℓ𝑗 , 𝑢 𝑗 , 𝑎 𝑗 ), . . . , (ℓ𝑛, 𝑢𝑛, 𝑎𝑛)),
where ℓ𝑗 , 𝑢 𝑗 , 𝑎 𝑗 ∈ R and ℓ𝑗 ≤ 𝑥 𝑗 ≤ 𝑢 𝑗 . Note that 𝑥 𝑗 = ℓ𝑗 + 𝑘 × 𝑎 𝑗 ,
where 𝑘 ∈ W.

In words, a gene 𝑥 𝑗 in an individual x is lower- and upper-
bounded by ℓ𝑗 and 𝑢 𝑗 respectively, and discretized according to
𝑎 𝑗 . The tuple 𝑟 𝑗 = (ℓ𝑗 , 𝑢 𝑗 , 𝑎 𝑗 ) corresponding to a gene 𝑥 𝑗 is denoted
that gene’s profile. For simplicity, we assume that individuals have
a fixed number 𝑛 of genes.1

Genes correspond to the diameters and thicknesses of individual
beams in a jacket. Further, genes also represent the main parameters
of a jacket, namely base dimensions and elevation heights.

A population X is a tuple (such that repetition is, in general,
allowed) of𝑚 individuals (x1, . . . , x𝑚), with𝑚 ∈ N and𝑚 ≥ 2. GAs
sometimes use multiple populations, for example two populations
X1 and X2.

3.2 Multi-Objective Optimization (MOO)
Definitions below are taken from Zavala et al. [28]. In the definition,
x∗ denotes an encoding of a solution, and f (x) the objectives. It is

1In the GA system, individuals can in fact have different number of genes, reflecting
adding and removing of beams during GA jacket optimization.
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assumed, without loss of generality, that all the objective functions
are to be minimized.

Definition 3.1. (Multi-Objective Problem) Find a vector x∗ = (𝑥∗1 ,
𝑥∗2 , . . . , 𝑥

∗
𝑛) which satisfies the 𝑚 inequality constraints 𝑔𝑖 (x) ≥

0, 𝑖 = 1, 2, . . . , 𝑚, the 𝑝 equality constraintsℎ𝑖 (x) = 0, 𝑖 = 1, 2, . . . ,
𝑝 , andminimizes the vector function f (x) = (𝑓1 (x), 𝑓2 (x), . . . , 𝑓𝑘 (x))𝑇 ,
where x = (𝑥1, 𝑥2, . . . , 𝑥𝑛)𝑇 is the vector of decision variables.

Definition 3.1 is tailored to NSGA-J and jacket design optimiza-
tion in Definition 4.1.

We use the concept of Pareto optimality, see Definition 3.2. The
feasible region Ω includes all solutions that satisfy the constraints
mentioned in Definition 3.1.

Definition 3.2. (Pareto Optimality) Given a feasible region Ω,
a point x∗ ∈ Ω is Pareto Optimal if for every x ∈ Ω and 𝐼 =

{1, 2, . . . , 𝑘} either ∀𝑖∈𝐼 (𝑓𝑖 (x) = 𝑓𝑖 (x∗)) or there is at least one
𝑖 ∈ 𝐼 such that 𝑓𝑖 (x) > 𝑓𝑖 (x∗).

An operator ≼ is used to check for dominance between two
solutions. A dominating solution has at least one objective value
that is better, and the remaining values are better or equal. This is
formalized in Definition 3.3.

Definition 3.3. (Pareto Dominance) A vector u = (𝑢1, . . . , 𝑢𝑘 ) is
said to dominate v = (𝑣1, . . . , 𝑣𝑘 ) (denoted by u ≼ v) if and only
if u is partially less than v, i.e., ∀𝑖 ∈ {1, . . . , 𝑘}: 𝑢𝑖 ≤ 𝑣𝑖 ∧ ∃𝑖 ∈
{1, . . . , 𝑘} : 𝑢𝑖 < 𝑣𝑖 .

A key concept is the Pareto optimal set, which is defined as the
set including all non-dominated feasible solutions. Furthermore,
the objective values of Pareto optimal solutions make up the Pareto
front. Both of these concepts are formalized in Definition 3.4.

Definition 3.4. (Pareto Optimal Set; Pareto Front) For a given
MOP f (x), the Pareto optimal set is defined as P∗ = {x ∈ Ω |¬∃x′ ∈
Ω, f (x′) ≼ f (x)}. For a given MOP f (x) and its Pareto optimal set
P∗, the Pareto front is defined as PF ∗ = {f (x) |x ∈ P∗}.

3.3 Non-Dominated Sorting Genetic
Algorithms (NSGA)

One of the most popular multi-objective approaches from the EA
family is the non-dominated sorting GA (NSGA) family introduced
by Srinivas and Deb in 1995 [23]. NSGA concerns itself mostly with
the reinsertion step, while also the selection and evaluation steps
need to be adjusted to take multiple objectives into consideration.
In this section, NSGA-II, an improved version of the approach, will
be presented [4]. NSGA-II introduces constraint handling by aug-
menting domination (operator ≼ in Definition 3.3) with constrained-
domination:

Definition 3.5. (Constrained-domination) A solution x𝑖 is said
to constrained-dominate a solution x𝑗 , if any of the following is
true: (i) x𝑖 is feasible and x𝑗 is not; (ii) x𝑖 and x𝑗 are both infeasible,
but x𝑖 has smaller overall constraint violation; or (iii) x𝑖 and x𝑗 are
both feasible but x𝑖 ≼ x𝑗 .

NSGA-II reinsertion combines the parent and offspring popu-
lations into one set. That set is then ranked into fronts of non-
dominated individuals, using Definition 3.5. The rank function 𝜌

Figure 1: A data flow diagram of the software system dis-
cussed here, consisting of two types of modules: (i) GA loop
modules inside the dashed line and (ii) external modules.
One instantiation of (i) is studied in this paper, namely
NSGA-J (see Section 4.3).

maps from the space of individuals, R𝑛 , to N (lower rank is better).
Then, the next population is filled up rank-wise, starting with rank
𝑘 = 1. If the rank 𝑘 ∈ N individuals do not fully fit, they are sorted
using the crowded comparison operator ≺𝑛 :

Definition 3.6. (Crowded comparison) Given individuals x𝑖 and
x𝑗 , x𝑖 ≺𝑛 x𝑗 if (𝜌 (x𝑖 ) < 𝜌 (x𝑗 )) ∨ ((𝜌 (x𝑖 ) = 𝜌 (x𝑗 ) ∧ (𝛿 (x𝑖 ) >

𝛿 (x𝑗 ))).

Intuitively, this operator compares two individuals based both
on their (i) ranks 𝜌 and (ii) crowding distances 𝛿 . The crowding
distance 𝛿 , which expresses how far apart individuals are from each
other in objective space, seeks an even spread of individuals across
the last front with regards to every objective.

In both NSGA-II and NSGA-J, classic tournament selection is
used along with the partial order operator from Definition 3.6.

4 GENETIC ALGORITHM FOR JACKET
DESIGN OPTIMIZATION

In this section, we discuss how the problem of jacket design opti-
mization (see Section 2) can be solved using GAs. This approach
produced the experimental results discussed in Section 5.

Our overall NSGA-J system is shown in Figure 1. The system’s
modules are detailed in this section. We first present, in Section 4.1,
modules that are external to the core GA. The emphasis is on their
interface to the GA. Second, the multi-objective problem formu-
lation for NSGA-J is presented in Section 4.2 while NSGA-J is dis-
cussed in Section 4.3. Third, we discuss key differences between
NSGA-J and NSGA-II in Section 4.4.

4.1 External Modules
DNV GL’s Sesam software is used by both engineers and opti-
mization software, including GAs, to evaluate designs. Thus, the
files describing jacket designs are in the format used by the Sesam
software.2 Once GA individuals have been created, they are trans-
formed to phenotype forms to be input to Sesam evaluation. As
output from Sesam, analysis produces a utilization report for each
GA individual. The report includes the inherent physical proper-
ties of each element, their utilizations, and angles between the
elements. Since the genotype includes parameters influencing mul-
tiple elements at the same time, the information obtained from the
evaluation is not readily available in the genotype.

2DNV GL Sesam for fixed structures https://www.dnvgl.com/services/
offshore-and-marine-structural-engineering-sesam-for-fixed-structures-1096
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Notation 𝑔𝑖 Result Function Textual Description
𝑔1 ( ·) Total Weight Sum weight of each individual element. It is multiplied by a cost approximating steel’s cost.
𝑔2 ( ·) Total Utilization Factor Sum of each element’s utilization.
𝑔3 ( ·) Pile Violations Number of piles that experience forces outside of a required range.
𝑔4 ( ·) Weld Weight The complexity and cost of welding elements together. It is computed based on the area between connected

elements, multiplied by an estimated cost.
𝑔5 ( ·) Wajac Penalty If Wajac failed, 𝑔5 = 1. Wajac consists of hydrostatic, hydrodynamic, and wave fatigue analyses.
𝑔6 ( ·) Angle Violations Number of angles between elements that are not within required ranges.
𝑔7 ( ·) Utilization Violations Number of elements with utilization above 1.

Table 1: The result functions {𝑔1 (·), . . . , 𝑔7 (·)}, computed from Sesam analysis reports, used for fitness and other
computations in GAs. Their use depends on the GA in question; see Section 4.2 about NSGA-J fitness and con-
straint functions. The Wajac penalty 𝑔5 (·) uses Sesam’s Wajac analysis, see https://www.dnvgl.com/services/
hydrostatic-and-hydrodynamic-analysis-wajac-2244.

An initial design, see Figure 2(a) for an example, is input to
the system. An initial design, typically created by experts or de-
rived from an expert design, consists of Sesam files describing the
geometry of the jacket and the environmental conditions of the de-
ployment site.3 The system parses the geometry of the initial design
to create a list of elements and a graph describing its connections.

Each gene has an ID (the index) that shows whether two genes
from two different individuals relate to the same structural element,
which is needed for the computation of diversity and recombination.
Further, all genes have values within predefined ranges, and are
discretized with a given accuracy, as described in the profile r =
(𝑟1, . . . , 𝑟𝑛) = ((ℓ1, 𝑢1, 𝑎1), . . . , (ℓ𝑛, 𝑢𝑛, 𝑎𝑛)).

Population initialization amounts to cloning the individual
created from the initial design and adjusting every gene by a normal
distribution.4 New individuals are created in this way until the pop-
ulation is filled to a given maximum size𝑚. As shown in Figure 1,
the initial population goes straight to the evaluation. Thus, individ-
uals have fitness values before going to selection. (The reinsertion
used on the initial population does not affect it, as at that point the
number of individuals is equal to the maximum population size.)

The theoretical benefits of initialization, in terms of improved
runtime, are not fully understood for EAs, although there are initial
results [1]. However, initialization using expert designs or problem-
specific heuristics are well-known methods to empirically reduce
runtime both in EAs [5] and stochastic local search (SLS) [18].

Termination takes place after a fixed number of generations,
𝑛𝐺 . NSGA-J is run for 𝑛𝐺 generations and the individuals in the
last generation are considered the final computational results.5

4.2 NSGA-J: Fitness and Constraint Functions
Sesam outputs are available for NSGA-J evaluation, see Table 1.
From these results, two objectives 𝑓1 and 𝑓2 are formulated to be
minimized by NSGA-J, along with one equality constraint. Specifi-
cally, Definition 3.1 is instantiated to the following:

3The geometry of a design is described by a few key numerical parameters like elevation
heights, and foot and head dimensions that decide the overall shape of a jacket. After
objects representing legs are created, horizontal braces are added at the elevation
heights. Subsequently a bracing pattern is formed by adding members in positions
relative to the elements already created. The design files include a list of possible pipe
sizes to choose from, and every member is given a specific pipe size.
4Early tests of NSGA-J, using a random initial population, suggested that the constraint
handling method struggles to make progress from a population of random, infeasible
individuals.
5Alternatively, the final non-dominated front could be computed by considering indi-
viduals from all 𝑛𝐺 generations [14].

Definition 4.1. (Multi-Objective Problem in NSGA-J) Find a vec-
tor x∗ = (𝑥∗1 , 𝑥

∗
2 , . . . , 𝑥

∗
𝑛) which satisfies one equality constraint

ℎ1 (x) = 0 andminimizes the vector function f (x) = (𝑓1 (x), 𝑓2 (x))𝑇 ,
where x = (𝑥1, 𝑥2, . . . , 𝑥𝑛)𝑇 is the vector of decision variables.

In Definition 4.1, 𝑓1 (x) = 𝑔1 (x) +𝑔4 (x) is the sum of total weight
and weld weight (see descriptions of 𝑔1 and 𝑔4 in Table 1), which
were grouped together due to being closely correlated. The second
objective, 𝑓2, is the total utilization factor, 𝑓2 (x) = 𝑔2 (x) (see 𝑔2
in Table 1). The two objectives 𝑓1 and 𝑓2 are competing, as lower
utilization is obtained by using more steel, thus giving a larger
safety margin. This in turn increases the total weight of the design.

Angle, utilization, and pile violations, as well as theWajac penalty,
form an equality constraint ℎ1 (x). Specifically, the sum ℎ1 (x) =
𝑔3 (x) + 𝑔5 (x) + 𝑔6 (x) + 𝑔7 (x) is an equality constraint per Defi-
nition 3.1 and Definition 4.1. If ℎ1 (x) = 0, individual x is feasible,
else if ℎ1 (x) ≠ 0 x is infeasible (see Definition 3.5). Descriptions of
Sesam result functions 𝑔3, 𝑔5, 𝑔6, and 𝑔7 are in Table 1.

4.3 NSGA-J: Optimization Loop
Once the population is initialized, NSGA-J enters a loop that is
run until termination. The loop proceeds in the same way as for a
classic GA.

NSGA-J evaluation, see Figure 1, is multi-objective fitness eval-
uation following Definition 4.1. NSGA-J’s two fitness functions 𝑓1
and 𝑓2 as well as the equality constraint ℎ1 are computed from
Sesam’s analysis results as discussed in Section 4.2.

NSGA-J reinsertion closely follows the NSGA-II reinsertion
scheme, which uses constrained domination (see Definition 3.5).
Early tests of ours suggested that some duplicate solutions end up
in the population. NSGA-J reinsertion was therefore adjusted to
remove individuals with combinations of objective values equal to
those of other individuals. Thus after every reinsertion, a population
is obtained where every individual has a unique combination of
objective values. Such duplicate removal is in fact not part of NSGA-
II [4], however the idea of non-revisiting GAs and EAs to avoid
re-computing fitness values is known [15, 27].

NSGA-J selection inputs are tournament size𝑛𝑇 and population
X; output is parent population P. The rivals (or competitors) P
are compared against each other using the crowded comparison
operator (see Definition 3.6). The best among rivals R is added to the
set of parents. With a tie among rivals, an individual w𝑖 is picked
at random. Given that the recombination operator that comes after
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Math Operator Prob. Object
𝑝𝐶
𝑆

Crossover gene switch 0.5 Element

𝑝𝐶
𝐼

Crossover gene
interpolation 0.1 Element

𝑝𝑀
𝐷

Mutation beam disposal 0.025 Individual
𝑝𝑀
𝐶

Mutation beam creation 0.0025 Individual

Table 2: Probabilities for the operators, except for uniform
adaptive mutation (see Table 3).

selection picks parents in pairs from the set, pairs of duplicates
are avoided by temporarily removing the last tournament winner
from the set of candidates for the next iteration. This was to avoid
parents with equal genotypes, as this would cause recombination
to not produce new genomes.

Picking of parents is done with replacement. The procedure is
a mixture of classic tournament selection with the partial order
operator from NSGA-II, together with an NSGA-J-specifc addition
of no consecutive duplicates. The value of the tournament size
is a trade-off between exploration and exploitation. With lower
values, it is more likely for worse solutions to reproduce. With
higher values, the better solutions are prioritized, but the number
of possible unique pairings is lower.

NSGA-J recombination takes parents u = (𝑢1, . . . , 𝑢𝑛) and v =
(𝑣1, . . . , 𝑣𝑛) in order in pairs from the parent list to crossover their
genes and produce two offspring.

There are two types of crossover: gene switch crossover and
gene interpolation crossover. Notation and probabilities used in ex-
periments are summarized in Table 2. For each pair of genes across
two individuals relating to the same structural element, the scheme
can perform two operations with given probabilities. Gene switch
crossover exchanges the gene values. Gene interpolation crossover
interpolates the values by assigning new values to the genes of both
individuals taken from a uniform distribution with the two original
values as endpoints. Offspring u′ and v′ are automatically brought
to the precision determined by the gene profile r = (𝑟1, . . . , 𝑟𝑛).

Math Parameter 𝑝𝑀
𝐴1 𝑝𝑀

𝐴2
𝑝𝑖
𝐸

Element mut. prob. 0.005 0.005
𝑝𝑖
𝑆

Step percentage 0.1 0.6
𝑝𝑖
𝑈

Upper prob. (ceiling) 0.5 0.5
𝑝𝑖
𝐿

Lower prob. (floor) 0.005 0.0005
Δ𝑝𝑖

𝐼
Prob. increase rate 0.1 0.05

Δ𝑝𝑖
𝐷

Prob. decrease rate 0.2 0.1

Table 3: Parameter for the two uniform adaptive mutations
𝑝𝑀
𝐴1 and 𝑝𝑀

𝐴2, defined by tuples 𝑝𝑀
𝐴𝑖

= (𝑝𝑖
𝐸
, 𝑝𝑖

𝑆
, 𝑝𝑖

𝑈
, 𝑝𝑖

𝐿
, Δ𝑝𝑖

𝐼
, Δ𝑝𝑖

𝐷
),

where 𝑖 ∈ {1, 2}. For other operators, see Table 2.
NSGA-J mutation comes in several types: beam disposal muta-

tion, beam creation mutation, joint creation mutation, and adaptive
mutation. Details including probabilities used in experiments are
summarized in Table 2 and Table 3.

The mutations used in experiments were create beam, dispose
beam, and uniform adaptive mutation. The create beam mutation
adds new elements to the structure by either utilizing existing joints
or creating new joints for the beam to connect to. The genes of the
new beam are randomized. Conversely, the dispose beam mutation
removes an existing element at random. These two operations carry
out topology optimization. Uniform adaptive mutation adjusts gene

(a) Input (b) Output

Figure 2: Jacket input and output for NSGA-J.

values by a given step percentage and with a given probability. The
step percentage gives a step value based on the gene profile for the
type of the element being adjusted. Additionally, the probability of
performing that mutation is adjusted in every iteration of the NSGA-
J loop. If no improvement in the best individual has been observed
in the previous generation, the probability of mutation is increased
by a given increase rate. If improvement has been observed, the
probability is lowered. Maximum and minimum probability values
are given to limit the range of adjustment. Given that this mutator
adjusts the genes relating to the diameters and thicknesses of ele-
ments, as well as the main parameters, it constitutes shaping and
sizing optimization.

Two versions of uniform adaptive mutation, defined by tuples
𝑝𝑀
𝐴1 and 𝑝𝑀

𝐴2, were used concurrently during each test run. Their
parameter values are summarized in Table 3. The most significant
difference here is that one of the mutations adjusts the gene values
by a step percentage of 𝑝1

𝑆
= 0.1, the other one by 𝑝2

𝑆
= 0.6.

4.4 From NSGA-II to NSGA-J
NSGA-J is partly an application of NSGA-II and partly has differ-
ences from NSGA-II, motivated by the jacket design optimization
problem. We now summarize key areas where the algorithms differ.

First, NSGA-II uses single-point crossover and bitwise mutation
for binary-coded GAs and simulated binary crossover operator
and polynomial mutation for real-valued GAs. NSGA-J, in contrast,
uses multiple and more complex mutation and crossover operators
(see Table 2 and Table 3) with a real-valued chromosome. Second,
NSGA-II’s initial population is created via randomization. In NSGA-
J, initialization of the population is done from an existing jacket
design (see Section 4.1). Third, NSGA-J makes an effort to avoid
duplicates in the population, while in NSGA-II there are no such
mechanisms. Fourth, NSGA-II when introduced was tested experi-
mentally on synthetic test problems, while NSGA-J’s experiments
are performed on a practical engineering problem, namely jacket
design optimization.

The three last points above reflect the fact that Sesam’s analysis
of a jacket design is a complex and time-consuming computation.
Sesam produces extensive results (not just one or a few fitness
values) from which NSGA-J fitness and constraint functions are
computed.
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(a) NSGA-J-1 (b) NSGA-J-2

(c) Color Scheme

Figure 3: Objective space plots, with 𝑓1 on the 𝑥-axis and with 𝑓2 on the 𝑦-axis, for evolutions of experiments with NSGA-J.
Individuals from the experiment, except outliers, are included. The color scheme for individuals, presented in (c), is as follows:
early generations are in red, middle generations in green, and late generations in blue.

5 EXPERIMENTAL RESULTS
5.1 Experimental Protocol
Experimental Data. The experimental input was a design of the
Valhall Flank West jacket, see Figure 2. The process was as follows.
A variant of an existing GA [11] was run once, until generation
of at least one feasible design, which was then used to seed the
initial population. Thus, NSGA-J starts out with at least one feasible
design (see left-most module in Figure 1).
Computational Infrastructure. NSGA-J was implemented us-
ing the C# programming language. A key software library used is
Sesam. Sesam running in the OneCompute cloud solution is used
to compute analysis results underlying evaluation of objective and
constraint functions. Once the Jacket design files are prepared, they
are uploaded to virtual machines running Sesam in Azure6 cloud.
Evaluation is the most computationally demanding part of the sys-
tem, and employing virtual machines enables running multiple
Sesam evaluations in parallel.
GA Parameter Settings. Several experimental runs for NSGA-J
were performed; for space reasons we focus on two random ones.
Each run was using𝑚 = 50 individuals and 𝑛𝐺 = 150 generations.
Results for these experimental runs are presented below, using the
notation NSGA-J-𝑖 , where 𝑖 ∈ {1, 2}. In NSGA-J, the tournament
size was set to 𝑛𝑇 = 3. Probabilities and other values used for
hyperparameters for NSGA-J are shown in Table 2 and Table 3.

6Azure cloud https://azure.microsoft.com/en-us/overview/what-is-azure/

5.2 Experimental Results I: Overview
Goal. What are typical results, computation times, best fitness
values, and lessons learned from test runs?
Method and Data. Early on, an Azure cloud solution was used for
Sesam. The Azure cloud solution was then replaced with OneCom-
pute,7 developed by DNV GL. Close integration of the evaluation
software with the OneCompute cloud solution allowed for more
reliable execution. The switch improved the analysis time, allowed
running more evaluations in parallel, and reduced the number of
failed evaluations to an insignificant number. The results reported
below are for the OneCompute cloud.
Results and Discussion. Figure 2 presents an NSGA-J input and
output. NSGA-J compute times are on the order of 12 hours for
each GA run of 150 generations.8 While substantial, such compute
times can reasonably fit into jacket engineering work processes.

The final problem formulation (see Definition 4.1), configuration,
and results of NSGA-J, as presented here, were arrived at after many
careful pilot studies.9 Originally, and instead of what is shown in
Definition 4.1, the two objectives used were total weight 𝑔1 and
weld weight 𝑔4. However, this version produced little variation
in individuals in experiments. An experiment was also performed
with each result function (see Table 1) as an NSGA-J objective, but
it produced too many infeasible individuals for any meaningful

7https://devpeuwwa01platonecomputedocumentation.azurewebsites.net/docs/v3.0/
8The NSGA-J-1 run took 12 hours 40 minutes, while the NSGA-J-2 run took 13 hours.
9Unfortunately, the configurations and results of these pilot studies are too numerous
to discuss in detail here. Further, they are also deemed to be less interesting to the
interested reader than the successful configurations and results being reported.

1554

https://azure.microsoft.com/en-us/overview/what-is-azure/
https://devpeuwwa01platonecomputedocumentation.azurewebsites.net/docs/v3.0/


A Multi-Objective Genetic Algorithm for Jacket Optimization GECCO ’21 Companion, July 10–14, 2021, Lille, France

(a) NSGA-J-1 (b) NSGA-J-2

Figure 4: Objective space plots, with 𝑓1 on the 𝑥-axis and 𝑓2 on the 𝑦-axis, for NSGA-J. These plots are for the last generation of
the experiments, and detail the corresponding plots in Figure 3, which are also duplicated in upper-right-corner insets.

advancement. Utilization was once used as an objective to be maxi-
mized whilst keeping the per-element utilization below 1, as it is a
common jacket design guideline. But this approach also led to poor
front advancement by NSGA-J, and was abandoned.

5.3 Experimental Results II: Convergence
Goal. What does the convergence behavior of NSGA-J look like?
Results and Discussion. Figure 3 shows, over all generations,
individuals in the objective space with outliers removed for large
values of both objectives. Outliers were removed as follows: the
third percentile of largest 𝑓1 (x)-values and the fifth percentile of
largest 𝑓2 (x)-values were removed.

Individuals are color-coded, see Figure 3(c), based on when they
entered the population. The individuals are plotted in this way: If in-
dividuals from several generations occupy the same spot, the color
for the earliest generation is shown. Crosses represent infeasible in-
dividuals, whilst dots represent the feasible ones.10 Due to the strict
constraint handling method of NSGA-J, infeasible individuals are
only in early generations. Every experiment shows a large diversity
of solutions in the early generations, and NSGA-J shows a relatively
large objective space diversity even in the final generations. This
follows the two design principles of NSGA-II, namely converge
towards the Pareto front and diversity maintenance.

The experiments suggest several interesting points about NSGA-
J. One interesting behavior relates to constraint handling. NSGA-J
uses the constraint handling method presented in Definition 3.5,
which always prefers feasible solutions. This scheme makes it diffi-
cult to navigate in the infeasible space, thus it is problematic with

10The difference between crosses and dots may be easiest to appreciate when zooming
in using a soft-copy of this paper.

only infeasible individuals in initial population. We see in Figure
3 that NSGA-J-1 and NSGA-J-2 have both feasible and infeasible
individuals in the early (red) populations, while later populations
(green, blue, and purple) consist of feasible individuals only.

5.4 Experimental Results III: Last Generation
Goal. What does the last generation look like, in experiments?
Results and Discussion. Figure 4 shows the last generation of
the experiments described already. Both NSGA-J-1 and NSGA-J-2
show a single final front. A significant point about NSGA-J is the
following. NSGA-J was changed relative to NSGA-II by implement-
ing duplicate removal, and thus the population always contained
𝑚 = 50 individuals that differed at least slightly.

Considering both 𝑓1 and 𝑓2, NSGA-J-2 is a substantially better
run than NSGA-J-1. In Figure 4(a), it appears that NSGA-J-1 may
undergo some type of premature convergence. However, the un-
derlying reasons for the substantially poorer results for NSGA-J-1
are not well-understood and this calls for future research.

6 DISCUSSION AND FUTUREWORK
The problem of designing and optimizing offshore jackets is a com-
plex engineering problem. Our premise in this work is that a com-
puterized method for jacket design and optimization should be
working as an assistant to the engineer, using the same software
and computing infrastructure. The experience of doing so is what
we report on in this paper, where we study the development and
experimental validation of a multi-objective GA, NSGA-J. NSGA-J is
based on the Non-Dominated Sorting GA (NSGA-II) [4], but adds to
it by: (i) using multiple and more complex mutation and crossover
operators; (ii) avoiding duplicates in the population; (iii) creating
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the initial population from an existing jacket design; and (iv) tailor-
ing fitness and constraint functions to jacket design optimization.

While some design constraints are included in NSGA-J, many
more exist. Examples of design constraints that could be added are:
legs should be splayed, leg can diameter must equal diameter of
leg above, bottom leg sections must widen to increase buoyancy,
and so forth. However, as requirements differ between projects, it
is difficult to formalize and include all such constraints once and
for all. An alternative is to shift focus to the early stage of jacket
design projects. During that stage, simple designs (compared to the
ones optimized here) are studied to decide on the rough topology
of a jacket. In this stage, significantly fewer constraints are needed.

Another area of future work is to expand the scope of analyses
performed during jacket design optimization. Examples of these
are analyses of transportation, launch, and accidental limit state.
In the general case, one would like to perform all such analyses
after changing a design, as adjustments aimed at improving one
aspect of a design might decrease its performance in other areas.
Adding more analyses would increase the compute cost and time
considerably, but on the other hand our use of the OneCompute
cloud makes this addition realistic.

As observed by Li et al. [13], “[m]uch attention has been given to
maintaining solution diversity in the objective space. However, little
attention has been given to how tomaintain solution diversity in the
decision space.” Our experimental results, including the apparent
premature convergence of run NSGA-J-1 compared to run NSGA-J-
2, underline the importance of this observation. Thus, we encourage
future research at the intersection of multimodal and multiobjective
optimization in the decision space or in both the decision and
objective spaces [13, 17].

A final area of future research would be to adjust the genotype
in order to extend the search space. Currently, topology and shap-
ing optimization rely on jacket designs having parameters that
influence these domains. An example of such a parameter is the
base width which determines the angles of legs, and consequently
the lengths of horizontal beams. This is an example of the cur-
rent method’s tight coupling between the genotype and phenotype
representation. Making this coupling less tight and more genera-
tive would make it possible to design jackets that are substantially
different from the original design. On the other hand, it may put
more pressure on ensuring that a more “creative” design adheres to
design constraints, which is already a complex issue.

Overall, we believe that this study contains important lessons
learned for the application of MOEAs, especially multi-objective
GAs, in real-world structural design optimization problems.
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