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Abstract: Crowdsensing offers a cost-effective way to collect large amounts of environmental sensor
data; however, the spatial distribution of crowdsensing sensors can hardly be influenced, as the
participants carry the sensors, and, additionally, the quality of the crowdsensed data can vary
significantly. Hybrid systems that use mobile users in conjunction with fixed sensors might help to
overcome these limitations, as such systems allow assessing the quality of the submitted crowdsensed
data and provide sensor values where no crowdsensing data are typically available. In this work,
we first used a simulation study to analyze a simple crowdsensing system concerning the detection
performance of spatial events to highlight the potential and limitations of a pure crowdsourcing
system. The results indicate that even if only a small share of inhabitants participate in crowdsensing,
events that have locations correlated with the population density can be easily and quickly detected
using such a system. On the contrary, events with uniformly randomly distributed locations are
much harder to detect using a simple crowdsensing-based approach. A second evaluation shows that
hybrid systems improve the detection probability and time. Finally, we illustrate how to compute the
minimum number of fixed sensors for the given detection time thresholds in our exemplary scenario.

Keywords: crowdsensing; event detection; detection time simulation; performance analysis

1. Introduction

For decades, people have been collecting sensor measurements in urban areas to derive
environmental models or to adapt their behavior to changing situations, such as traffic
routing concerning the current traffic volumes. In the past, the processes of data collection,
data analysis, and deduction of models or action guidelines were time-consuming, and
the overall coverage of the sensing information was somewhat limited due to the required
number of dedicated sensing equipment; however, the rise of novel concepts such as
smart cities creates an increasing demand for fine-grained and up-to-date environmental
information, which cannot be fulfilled with traditional approaches that solely build on a
small number of highly specialized (offline) sensing equipment.

One possibility to tackle this challenge is the usage of a large number of Internet
of Things (IoT)-based sensing nodes. Recently, many vendors started to offer cheap
hardware boards that combine Internet connectivity, low power consumption, and simple
programmability. Again, these boards can be used as a basis for customized sensing nodes
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that continuously deliver real-time environmental data. Another option to collect large
amounts of environmental data is mobile crowdsensing (MCS). With the still increasing
number of smartphones, smart devices, and wearables, many people carry a diverse set
of sensory equipment, including, for example, microphones, cameras, brightness sensors,
and gyroscopes. Due to the connectivity features of the devices, the sensor information
can be made available in almost real-time and can often be further combined with location
information, e.g., based on the devices’ GPS receiver. MCS tries to leverage this source of
sensing data by directly involving people in environmental data collection. Primarily due
to the low investment costs and no need for additional sensor hardware deployment, MCS
is a promising source for sensor information in smart cities.

One major drawback of MCS is the missing control of the sensor nodes. The reliability
and accuracy of sensors built into smart devices can vary, and so the sensor’s position (e.g.,
handheld, inside a bag, or a backpack) is unreliable. Further, the spatial distribution of
the sensor nodes is often hard to influence. The sensor nodes, i.e., the smart devices, are
carried by the participating citizens, and the density of the sensory network is consequently
highly correlated with the population density. Considering the daily routines of the MCS
participants, e.g., going to work in the morning and returning home at night, the population
density and the geographical density of the sensor network change even during the day.
Concerning this limitation, two questions arise: how good the actual sensor coverage of an
MCS approach is and whether MCS can reliably detect spatial events.

In this work, we address this question using a simulative evaluation of a real-life
scenario in which inhabitants of a small city contribute to an MCS system to detect different
types of spatial events that can be correlated or uncorrelated with the density of people.
We analyze the detection probability for all event types, i.e., the share of events detected by
the MCS users and the detection time, i.e., the time between the event’s appearance and its
detection. The traffic infrastructure in our example uses OpenStreetMap data for the city of
Würzburg, Germany, and the movement patterns of the MCS participants are generated
using the Simulation of Urban Mobility (SUMO) [1]. Our first results show that even if only
1% of the 125,000 inhabitants of the city contributes to the MCS system, correlated events
can be detected with a very high probability and within a short time after their occurrence.
In contrast, uncorrelated events are harder to detect using an MCS-based approach, and
only about 30% of them can be detected in a reasonable amount of time [2]. These results
further confirm the need to consider additional means to increase the sensor coverage and
decrease event detection time. One option to improve current systems is using hybrid
systems of MCS with additional fixed sensors that can help assess the quality of MCS data
better and fill areas with a low density of crowdworkers. Thereby, trade-offs need to be
made between fixed sensors’ costs and the resulting improvements in sensor coverage and
event detection performance.

This work extends our previous publication [2] with the introduction and evaluation
of such hybrid systems that employ fixed sensors in addition to MCS. The evaluation
results show that fixed sensors can further increase the detection performance; however,
the optimal placement of fixed sensors is not trivial as it depends on the event type, the
movements of the mobile sensors, and the available budget for buying, installing, operating,
and maintaining fixed sensors. Nevertheless, the results can serve as a baseline and
benchmark for the performance evaluation of more sophisticated placement approaches
that are expected to bring additional benefits to MCS.

The remainder of the paper is structured as follows. Section 2 reviews related work and
puts our work in context. Section 3 details on the methodology, including the generation
of the events, the mobility model used for the citizens, and the event detection. Section 4
presents and discusses the performance of a purely crowdsensing-based system for the
detection time and detection probability of events. Section 5 illustrates the benefits of a
combined approach of MCS and fixed sensors. Section 6 discusses the findings and points
out directions for future research. Section 7 concludes our paper.
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2. Related Work

In this section, we outline general concepts that are important for MCS. These include
use cases, goal functions of platform providers, system architectures, and incentives to
increase user participation. Additionally, we present related work that deals with MCS,
particularly considering location-specific tasks, spatial coverage, and user mobility. Fur-
thermore, we provide an overview of hybrid systems that combine sensed data from fixed
sensors and mobile users.

2.1. Crowdsensing Systems

The widespread availability of smartphones, which are equipped with different sen-
sors and cameras, has paved the way for large-scale MCS and a multitude of crowdsensing
applications [3,4]. These include use cases such as temperature and traffic monitoring [5],
detection of traffic regulators [6], WiFi localization [7], as well as WiFi characterization [8].

Thereby, MCS systems have to cope efficiently with a large amount of sensor data and a
high frequency of information exchange. Thus, several architectural frameworks have been
proposed [9,10], which standardize the common steps of sensing, transmission, aggregation,
processing, and forwarding to applications. Additionally, there are protocols [11] and
applications [7], which reduce the overhead in terms of energy consumption of MCS to
lower the barrier for end-user participation.

There are two main goals for MCS service providers, first, minimizing the cost for
sensing, and second, maintaining high quality and reliable data [5]. In addition, high user
participation is required for keeping sensed information up-to-date. Several research ini-
tiatives have already been dealing with the topic of incentives [12–14], primarily focusing
on monetary incentives, which can be tuned to favor honest reports while minimizing
expenditures for the provider. Such techniques include reverse auction approaches [15],
Stackelberg game models [16], reputation systems that quantify users’ trustworthiness [17],
as well as systems for estimating and utilizing the users’ expertise [18]. Recently, privacy
concerns are additionally addressed by incentive mechanisms to increase data trustwor-
thiness, e.g., [19,20]. Further, different methodologies, such as game theory, are applied
to optimize MCS systems [21] in general; however, we assume a simplified setting in this
work, i.e., users provide honest reports, and we do not consider energy consumption and
privacy. This simplified setting allows us to derive generalizable results that can be used as
benchmarks for more sophisticated real-world settings.

2.2. Mobility and Location Awareness

Several works already tackled the challenges of location-specific tasks, i.e., sensing
events, which occur at specific locations and whose detection requires the presence of a
nearby participant. Those works were summarized in several surveys [22–24], and as such,
only the most relevant works are discussed further.

While in our work, users do not stray from their regular path to detect events, the
authors of [25] propose the notion of a time budget, which can be spent on detours
for MCS tasks; however, they note that the corresponding optimization problems for
achieving minimal costs are NP-hard and propose heuristic and approximation algorithms
to cope with large-scale problem instances. Another particular issue, which was addressed
in [26], is the location uncertainty that arises from users who hide their location due to
privacy concerns.

As an alternative to pure MCS, hybrid sensor deployments are discussed in [27]. The
authors add readings from fixed sensors and cameras to the crowdsensed data in order to
increase the performance in terms of precision and coverage. To fully leverage the benefits
of such hybrid systems as well as systems that feature only fixed sensors, an optimization
of the spatial placement of the fixed sensor’s needs is necessary [28,29] and a suitable
notion of coverage should be chosen [30]. Concerning our particular scenario, this means
less-frequented city areas would be candidates for sensor locations to enable quick event
detection despite a low population density.
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Finally, particular MCS services might not need to activate all potential participants
to meet their constraints. In these cases, the MCS provider might choose to recruit only a
subset of users to minimize the costs. The selection constitutes an optimization problem,
and it was shown in simulation studies [31] as well as case studies [32] that algorithmic
user selection strategies could significantly reduce the payments while maintaining high
service quality. With respect to our scenario, this means such techniques could also be
implemented to reduce costs during busy hours when the population density in urban
areas is typically higher than necessary to achieve almost instantaneous detection of events.
Moreover, exchanging and aggregating data locally before sending them to the service
provider based on social interaction between humans can be used to reduce network
overhead [33]. Recently, it was also proposed to utilize deep learning to increase the
robustness of mobile MCS in terms of sensing platform utility and data accuracy [34].

3. Methodology

In this work, we focus on the event detection scenario for the performance evaluation
of MCS. This means that events appear at random times and locations on a map and have to
be detected as fast as possible by the sensors. In this scenario, when ignoring the shielding
caused by obstacles, a regular placement of fixed sensors could cover the whole map, which
would lead to an immediate detection of all occurring events; however, depending on the
detection range of the sensors, a large number of fixed sensors would be required, which
causes high capital and operational expenditures. To reduce these costs, we investigate the
potential savings and trade-offs of MCS in this work.

We assume that users perform opportunistic crowdsensing, which means that they
can freely move on the map and passively sense their environment. In particular, users are
not instructed to move to or sense a specific area. Moreover, they might even be completely
unaware of the sensing, e.g., if the sensing is implemented as a background process on their
smartphone. We consider these users as mobile sensors, which, similar to fixed sensors,
have a given detection range. The coverage of the mobile sensors is thus determined
by the activity and mobility of the users, such that there is a probabilistic availability
of measurements from mobile sensors in terms of time and location. We conduct the
performance evaluation based on a discrete event simulation, which is described in full
detail in the following.

3.1. Event Appearance

In the performance evaluation, we simulated the occurrence of 1,000,000 events. The
time of appearance of each event is independently and uniformly distributed over one day
and the location of each event is determined randomly according to one of three methods.

(1) First, we consider uncorrelated events, which means that their location of appearance
is uncorrelated to the density of people. These events are inspired by events in the real
world, such as rain or lightning strikes, which are also completely or at least to a large
extend uncorrelated to the population density. In this case, the event location is uniformly
distributed over the map. (2) Second, events might also be correlated to the density of
people. As a real-world analogon, consider here, for example, accidents or traffic jams
that occur more frequently at locations that more people visit. To realistically model
such events in the simulation, the location of correlated events is distributed identically to
the density of people. (3) Finally, we also consider partially correlated events that depend
on people only to some extent. An example of such events is a fire, which could be
caused by humans (correlated) or by sunlight (uncorrelated). Partially correlated events
are modeled by introducing a percentage p, such that p% of the events are correlated
events, i.e., their location is distributed according to population density, and (100 − p)% are
uncorrelated events, i.e., their location is uniformly distributed. These three types of events
can approximate a huge set of real-world events, such that our simulative performance
evaluation can provide general theoretical results for MCS-based event detection.
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3.2. User Mobility

We employ the free and open traffic simulation suite SUMO (Simulation of Urban
Mobility) [1,35], which was implemented by Deutsches Zentrum für Luft- und Raumfahrt
(DLR, German Aerospace Center) to generate synthetic, but realistic movements of users
for our performance evaluation. SUMO allows the modeling of intermodal traffic systems,
including road vehicles, public transport, and pedestrians. A key feature of the highly
customizable tool is that it can create mobility traces for arbitrary cities (e.g., based on
OpenStreetMap data) and purposes (e.g., traffic light control, and emission calculation).

We our MCS event detection scenario took place in the small city of Würzburg, Ger-
many, which has a population of 130,500 [36] people and generated a pedestrian mobility
trace with SUMO for a whole day. For this, a map of Würzburg of size 8.75 km × 6.05 km
was obtained from OpenStreetMap and imported into SUMO as a road network. Every
second, the mobility simulation spawns one new pedestrian at a random location on the
map. Then, the pedestrian walks through the city to a random destination and vanishes.
For each of these trips, two edges of the SUMO network, i.e., roads on the Würzburg map,
are selected uniformly random as the start and end of the walk, constrained by a maximum
walking distance of 2 km. SUMO performs a fastest-path routing using Dijkstra’s algo-
rithm [37] to determine the intermediate roads. According to the trip definition and using
a pedestrian mobility model with default parameters [38] (e.g., maximum speed 5.4 km/h),
the position of the pedestrian is updated every second and added to the mobility trace file.
In total, the resulting mobility traces include walks on the Würzburg map for a period of
30 h, i.e., a whole day plus some margins before and after the evaluated time frame.

To model diurnal activity patterns, we thin out the spawning of pedestrians based on
the typical hourly vehicle volume on streets [39]. Figure 1 depicts the normalized traffic
volume with respect to peak rate, which then also resembles how the pedestrian rate
was thinned out. It can be seen that the peak rate of one new pedestrian per second is
reached only for hours, which typically have peak traffic volume. For the other hours,
pedestrians can only spawn with a probability corresponding to the relative traffic volume.
After thinning, the mobility trace contains the locations of 43,355 unique pedestrians that
perform walks with an average trip length of 1660.77 m. Figure 2 presents the empirical
cumulative distribution function (ECDF) of the trip duration. Apart from slight deviations
for very short and very long trips, we observe an almost uniform distribution having an
average walking duration of 1387.82 s (ca. 23 min). This means, following Little’s law, that
on average L = λ · W = 1 1/s · 1387.82 s ≈ 1388 pedestrians participate in crowdsensing
during peak hours, which is roughly 1% of the population of the simulated city.
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Figure 1. Normalized pedestrian rate with respect to peak rate. Adapted from the typical hourly
vehicle volume of streets [39].
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Figure 2. Distribution of trip duration.

3.3. Event Detection

We consider every participating pedestrian as a mobile sensor that can detect events.
As described above, we focus our evaluation scenario only on events such as fire, rain, and
traffic incidents that can easily be recognized and reported by all humans via smartphones.
Note that we explicitly leave out events that require dedicated sensing equipment such
as air pollution; however, as this would only decrease the MCS population, the modeling
could be also adjusted for such events in the future.

We further assume that all events that can be detected by the participating pedestrians,
i.e., the mobile sensors, could also be detected by fixed sensors; however, in practice, this
would require specialized sensors for each type of event. For example, fires could be
detected by infrared cameras or simple smoke detectors. Rain and other weather effects
are monitored by official stations or, more recently, also with private IoT devices. Inner-city
and highway traffic are often monitored using surveillance cameras or dedicated sensors
built directly into the roads. Alternatively, applications such as Google Maps or navigation
software use the movement patterns and the current users’ mobility information, i.e.,
position, velocity, and density of users, to estimate traffic density or detect traffic incidents.
To limit the parameter set of our analysis and achieve a general performance evaluation
of MCS, we do not differentiate between the actual types of events, such as fire, rain, or
traffic incidents, and do not consider the different types of required sensors, their costs, and
detection ranges. In contrast, we assume a hypothetical generic sensor or crowdsensing
user that is able to detect any occurring event as long as the user or the sensor is within the
detection range. Consequently, the detection range of the sensors has to be modeled. For
this, we divide the map into a regular grid of small cells of width 50 m. Moreover, we use
the simple assumption that an event can be detected if a sensor is in the same cell as the
event, and we compute the detection time of an event as the time from the appearance of
an event until a sensor covers the event cell. Note that the detection time is 0 if a fixed or
mobile sensor is co-located in the same cell during the appearance of an event.

4. Crowdsensing Results

We quantify the performance of MCS to detect events in terms of detection time
and detection probability. First, we investigate the ECDF of the detection time, which is
depicted in Figure 3, and look at the distribution of detection times for uncorrelated events
with a uniformly distributed location, which is given by the light curve. The curve shows
that around 3% of the events have a detection time of 0, which means they are detected
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immediately because a mobile sensor is already present when an event appears. The ECDF
shows a fast increase in the first quartile, which eventually slows down. It can be seen that
59.73% of the events have a detection time larger than 180 min or are never detected. This
finding was expected given that the map has areas where only a few roads are located or
no roads at all. Consequently, there is a significantly lower number of potential visitors
in these areas, making it difficult or impossible to detect events that appear in these cells
using MCS. In particular, when inspecting the mobility trace, we see about 49% of all cells
were not visited by any mobile sensor, which is well aligned with these results. The dark
curve represents the ECDF of the detection time for correlated event locations, which are
distributed identically to the population density of the mobile trace. It can be seen that
24.18% of the events can be detected immediately, and generally, the events are detected
much faster. The median detection time is 91 s and only very few events (0.07%) have a
detection time larger than 180 min or are never detected. Further, these results are not
surprising given that population density and event density perfectly match. Consequently,
events are more likely to occur in cells that people often visit, and thus, MCS is well suited
to detect such events quickly.
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Figure 3. Distribution of detection time for uniform and population based events.

In the real world, almost no event will remain apparent or relevant for an infinite
amount of time. Instead, events can disappear after some time, e.g., a traffic jam dissolves
or occasional rain turns into a heavy shower. These events have to be detected within a
particular time to provide helpful information, e.g., until the next traffic report or weather
forecast on a radio channel. In practice, this maximum detection time is determined by
the event type; however, by just inspecting the shapes of the distributions in Figure 3, we
can already clearly see that the detection of uncorrelated events is much more sensitive to
setting a maximum detection time than the detection of correlated events.

To gain more insights, we investigate the trade-offs between the detection proba-
bilities and different maximum detection time thresholds in Figure 4. The percentage p
of correlated events is plotted on the x-axis, meaning that (100 − p)% of the events are
uncorrelated, and differently colored lines represent different maximum detection time
thresholds. Partially correlated events are linearly combined from the set of uncorrelated
and correlated events by design, and single events appear independently and are detected
independently; therefore, a linear increase can be observed from the detection probability
of uncorrelated events dpuncorr in case of p = 0 (only uncorrelated events) to the detection
probability of correlated events dpcorr for p = 100 (only correlated events). This means that
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we can compute the detection probability dpp of partially correlated events with percentage
p as

dpp = p% · dpcorr + (100 − p)% · dpuncorr.
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Figure 4. Detection probabilities for partially correlated events and different maximum detection
time thresholds.

Considering a maximum detection time threshold of 3 h, the resulting detection
probabilities are 42.03% for uncorrelated events and 99.31% for correlated events, which
can be seen at the right margin of Figure 3. When lowering the maximum detection
time threshold down to 1 min to focus only on very fast event detection, the detection
probabilities decrease. Nevertheless, 6.94% of uncorrelated events and 43.51% of correlated
events can be detected within one minute. This clearly indicates that the threshold for the
maximum detection time, which in practice is defined by the type of detected event, has a
huge impact on the performance of MCS. A 30 min threshold is a good compromise of low
detection times and high detection probabilities, which range from 27.98% for p = 0 (only
uncorrelated events) to 93.91% for p = 100 (only correlated events). Thus, in the rest of
this section, we will assume a maximum detection time of 30 min. This means an event is
considered not detected or missed if the detection time is larger than 30 min.

Figure 5 depicts the detection time distributions when considering only events, which
have a maximum detection time of 30 min. Thus, the figure shows the detection time
distribution from Figure 3 truncated at 30 min. The plot shows that the detection times
are still shorter for correlated events, which is expected, but the shapes of the ECDFs have
become more similar. In this case, the respective probabilities of immediate detection are
11.0% for uncorrelated and 25.7% for correlated events, respectively.

As we have already noted above, the detection probability is heavily influenced by
the maximum detection time of 30 min. When looking at the hourly detection probability
in Figure 6, i.e., the detection probability of an event that appeared during a particular
hour of the day, two interesting observations become evident. The first observation, as
also indicated by Figure 3, is that correlated events (dark curve) have high detection
probabilities and reach a maximum of 98.6%. Even the minimum detection probability of
84.4% during nighttime is considerably high and confirms that MCS can be applied to detect
such events. When considering uncorrelated events (light curve), detection probabilities
are much smaller and range between 18.5% and 34.5%. Thus, for these events, MCS shows
a relatively poor event detection performance and, therefore, has to be complemented by
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fixed sensors to achieve a serviceable detection probability. The second observation is that
the shape of the hourly detection probability resembles the MCS participation in Figure 1.
This shape is more pronounced for uncorrelated events because, for correlated events, it is
superimposed with the generally high detection probability in this case. Nevertheless, this
shows that increasing the participation in MCS results in higher detection probabilities for
all kinds of events.
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Figure 5. Distribution of detection time for events with maximum detection time of 30 min.
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Figure 6. Hourly detection probability.

Next, the hourly median detection time is investigated in Figure 7, i.e., the median
detection time of an event that appeared during that hour of the day. The dark bars depict
the median detection time for uncorrelated events, and it is visible that the shape resembles
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the inverse of the crowdsensing participation in Figure 1. It can be seen that the highest
median detection times of up to 8.5 min occur during nighttime, as expected when only
a few people are walking on the streets and actively sensing. In contrast, for hours with
high MCS participation, the median detection times decrease down to 2.6 min at 7 a.m.,
8 a.m., and 5 p.m.. The corresponding hourly median detection time for correlated events is
depicted as light bars. The trend of the median detection time is similar to the uncorrelated
events, but the absolute values are much lower. At peak hours, many events are detected
immediately, resulting in a median detection time of 16 s. The highest median detection
time is 5.0 min at 2 a.m., which is still very low considering the low participation in MCS in
the middle of the night. Although these numbers seem small, it has to be remembered that
the detection time distributions have a long tail, which could be seen in Figure 3. Thus,
although low median detection times are reported here, many events face much larger
detection times or cannot be detected at all. Nevertheless, MCS can detect most events
quickly, which again confirms that MCS is a promising approach for detecting correlated
events.
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Figure 7. Hourly median detection time.

5. Hybrid System of Crowdsensing and Fixed Sensors

Pure MCS has some limitations, especially concerning the detection of uncorrelated
events. Consequently, additional means have to be considered. Two possibilities are to
add fixed sensors in a hybrid crowdsensing system or to recruit dedicated participants
to cover spatial and temporal areas with a low density of people, which is called active
crowdsensing.

In a hybrid crowdsensing system, fixed sensors can be placed inside a cell. They
will immediately detect all events that appear in the cell, and presumably, the detection
will be perfectly reliable for a very long time. Fixed sensors should best be deployed in
cells into which people never or rarely move; however, they introduce CAPEX and OPEX
for purchase, installation, operation, and maintenance, limiting the number of sensors
deployed in such a hybrid system. Moreover, once deployed, it is typically expensive to
change the cell of a sensor, which reduces the system’s flexibility.

In active crowdsensing, additional participants are recruited to sense cells with a low
density of people or wherever sensor readings are additionally needed. In contrast to fixed
sensors, active crowdsensing typically does not involve CAPEX, and crowdworkers can
be dynamically instructed about their sensing task, such that this system shows very high
flexibility; however, it involves costs to incentivize crowdworkers depending on the active
selection strategy, which might consider different aspects, such as availability, mobility,
and reliability of crowdworkers, and to reimburse their expenses, such as travel costs. If
the sensing budget is exceeded, no more participants can be actively recruited, and the
coverage of the active crowdsensing system will decrease to pure MCS.

When deciding between the two alternatives, there are trade-offs whether the sensing
budget should be better spent for fixed sensors with high reliability and longevity but low
flexibility or for the active recruitment of crowdworkers, which have increased flexibility
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of data collection but might be less available or reliable. Obviously, in that sense, a hybrid
active crowdsensing system can also be implemented consisting of both fixed sensors and
additionally recruited crowdworkers.

In this work, as a start, we focus on a hybrid crowdsensing system, in which the detec-
tion is improved by adding fixed sensors only. The other option of active crowdsensing
can be better evaluated in future works using the performance of this hybrid crowdsensing
system as a baseline. In this section, two evaluations of hybrid crowdsensing systems are
presented. First, the number of fixed sensors is limited, e.g., due to cost constraints, and the
detection performance is studied. Second, the detection performance is predefined, and
the needed amount of fixed sensors will be determined.

The numbers presented in the following will consider the expenditures for adding
additional fixed sensors to a pure crowdsensing-based system; however, the results can
be equivalently applied considering the savings when adding MCS to a system, in which
a fixed sensor was deployed in every cell. Figure 8 studies the impact of the number
of fixed sensors on the detection times. The share f indicates the share of cells, which
were equipped with fixed sensors, and thus, can be seen as the parameter, which defines
the expenditures for the fixed sensors. The fixed sensors have been deployed in the f % of
cells with the lowest density of people, and thus, should boost the detection, especially for
uncorrelated events. The detection of these uncorrelated events suffered because many
cells (49%) were never visited by any person. Figure 8a shows the distribution of detection
times for pure MCS, i.e., without any fixed sensors ( f = 0%), cf. Figure 3, as a reference.
Figure 8b illustrates the situation when fixed sensors are distributed to f = 10% of the cells.
This means that fixed sensors were only placed cells that no person ever visited. It can
be observed from the light curve that the share of uncorrelated events that are detected
immediately increased from 3% for f = 0% to 11.61%. Further, the share of events having
a detection time larger than 180 min or not being detected at all decreased from 59.73%
for f = 0% to 50.09%. The cumulative distribution function is generally shifted to the
left compared to the reference, which means that the detection times generally shorten.
These effects become stronger when more vacant cells are equipped with fixed sensors. In
Figure 8c, half of the cells, and thus all cells that were never visited by any person (49%,
c.f. Section 4), contain a fixed sensor. Consequently, the share of immediately detected
uncorrelated events reaches 45.97%. When f = 90% of the cells contain a fixed sensor,
which is depicted in Figure 8d, the detection times of uncorrelated events further decrease,
as 90.36% all of these events are immediately detected by a sensor.

It can be seen from Figure 8 that the detection of correlated events (dark curve) is
much less affected by adding fixed sensors to cells, which are never visited by any person,
because also no correlated events will appear in those cells. Thus, the distributions shown in
Figure 8b,c resemble the reference of Figure 8a. Nevertheless, a small decrease in the overall
detection times can be observed for Figure 8d. For f > 51%, fixed sensors are also deployed
in cells that are visited by people, and, thus, the sensors also start detecting correlated
events. The positive effect can be seen in Figure 8d from the increase in immediate detected
correlated events, from 24.18% for f = 0%, f = 10%, and f = 50% up to around 41.79%
for f = 90%. Additionally, the detection time distribution is also shifted to the left, i.e.,
towards shorter detection times.
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Figure 8. Distribution of detection time for uniform and population-based events in a hybrid system with fixed sensors.
The fixed sensors are placed according to the global density of people, i.e., they are placed in the f % of cells, which have the
lowest density of people.

To improve the detection of correlated events that are distributed according to the
density of people, it is not beneficial to place fixed sensors in cells that people never visit
because no correlated events can appear there; thus, Figure 9 depicts an investigation of
hybrid detection systems, which place the fixed sensors according to the relative density of people.
This means fixed sensors are first distributed to the visited cells that have the lowest density
of people. After all visited cells are equipped, i.e., for f > 42%, fixed sensors are also
placed randomly in vacant cells.

Again, Figure 9a shows the baseline distributions of detection time of correlated (dark
curve) and uncorrelated (light curve) events as a reference, cf. Figure 3. Figure 9b presents
the results for a system with fixed sensors in f = 10% of the cells. It can be seen that the
detection of uncorrelated events (light curve) is improved with shorter detection times. The
distribution of the detection times for uncorrelated events is very similar to Figure 8b, as for
uncorrelated events, only the increase in coverage by the fixed sensors affects the detection
performance regardless of their position. The detection of correlated events (dark curve)
is not significantly affected by the additional fixed sensors, and the share of immediately
detected uncorrelated events increases only marginally from 24.18% to 24.46%. When
the share of fixed sensors increases to f = 50% in Figure 9c, almost all populated cells
(51%) are covered with fixed sensors. It can be seen that all correlated events (dark curve)
are immediately detected because they only appear in populated cells. Further, 57.33%
of the uncorrelated events (light curve) can be immediately detected in the investigated
simulation run. As the other cells are vacant, mobile sensors cannot increase the detection
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performance in this case, which can also be seen from the horizontal shape of the orange
CDF. Finally, Figure 9d shows the detection time distributions for a share of f = 90%. As
expected, the share of detected uncorrelated events has increased to 91.46%, and all events
are either detected immediately or not at all.
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Figure 9. Distribution of detection time for uniform and population-based events in a hybrid system with fixed sensors.
The fixed sensors are placed according to the relative density of people, i.e., they are placed in the f % of visited cells, which
have the lowest density of people.

The results show that a hybrid system with additional fixed sensors can successfully
improve the detection performance for both uncorrelated and correlated events; however,
depending on the type of events and the coverage of the mobile sensors, different placement
strategies for fixed sensors have to be applied.

In the following section, we describe our investigation into how many fixed sensors
are needed in a hybrid MCS system to keep a certain detection time threshold for all events.
This means no event should be missed, and all detection times should be shorter than a
given maximum detection time threshold. Figure 10 shows the share of cells that have to be
equipped with fixed sensors, on the y-axis for different maximum detection time thresholds
from 0 to 180 min on the x-axis. The colored lines depict the results for correlated events
(dark curve) and uncorrelated events (light curve). The presented results show a best-case
analysis, i.e., the minimum share of cells with a fixed sensor. Thereby, an optimal placement
of fixed sensors was assumed, which considers the appearance of all future events and the
movement of mobile sensors in the simulation run. In a real system, the appearance of
future events and the movement of mobile sensors cannot be accurately predicted to obtain
an optimal placement, and thus, more cells might have to be equipped with fixed sensors
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to keep a given maximum detection threshold. Further, the budget for buying, installing,
operating, and maintaining fixed sensors has to be considered and might further constrain
the maximum detection threshold or the detection rate.
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Figure 10. Needed share of cells with fixed sensors for keeping all detection times below a threshold.

The light curve in Figure 10 shows the minimum share of cells that have to be equipped
with a fixed sensor to keep the detection time for all uncorrelated events below a given
maximum value. For an immediate detection of all events (maximum detection time is
0 min), at least 83.35% of the cells have to be equipped with a fixed sensor. In the remaining
cells, all appearing events were immediately detected by MCS because a mobile sensor
was present during the appearance of the event. We observe that fewer fixed sensors are
needed for higher detection time thresholds because MCS can detect more events within
the given detection time. For detecting all events within 30 min at least 78.15% of cells have
to be equipped. If the threshold is set to 180 min, fixed sensors have to be placed in only at
least 62.72% of the cells.

When considering correlated events (dark curve in Figure 10), generally fewer cells
have to be equipped with fixed sensors because the events can only appear in visited cells.
Thus, fixed sensors have to be placed only in at least 37.66% of all cells to detect all events
immediately. Again, this number decreases when the maximum detection time threshold
is relaxed. Only at least 34.20% of the cells have to be equipped for holding a threshold
of 30 min, while only at least 13.05% of the cells need a fixed sensor to keep a threshold
of 180 min. This need for fixed sensors in visited cells even for such high detection time
thresholds might seem counter-intuitive compared to the results for uncorrelated events;
however, it has to be remembered that the location of correlated events does not follow
a uniform distribution truncated to visited cells only, but it has a completely different
distribution identical to the density of people. Thus, fixed sensors are still needed for cells
that are visited, but in which mobile sensors move very rarely. If events appear in such a
cell, they might face long detection times until a mobile sensor moves there, which have to
be shortened by placing fixed sensors.

The results show that fixed sensors are still needed to keep maximum detection time
thresholds for MCS systems; however, they do not have to be placed in all cells, which
means that adding mobile MCS can reduce the need for fixed sensors. As the appearance
of events and the movement of mobile sensors cannot be predicted in practice, still a higher
amount of fixed sensors might be needed than presented in Figure 10, where an optimal
placement was assumed. Further, in practice, the budget has to be considered as it limits
the number of fixed sensors. Thus, there will always be a trade-off between the maximum
detection time threshold and the detection rate, which depends not only on the mobile
MCS but also on the actual placement of the fixed sensors.

6. Discussion

In this work, we conducted a simulative performance evaluation of MCS to investigate
trade-offs for the event detection scenario. For this, we prepared a mobility trace of the
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city of Würzburg with random walks of pedestrians over the course of a single day corre-
sponding to an MCS participation of roughly 1% of the population. Events were simulated
to appear uniformly random during 24 h, and their locations were randomly spread over
the map of Würzburg. For this, we considered three types of event location distributions,
namely, correlated to the population density, partially correlated, or uniformly random over
the entire map (uncorrelated). It was shown that the trade-offs between detection time and
detection probabilities could be adjusted by different maximum detection time thresholds,
although this threshold might be determined by the type of detected event in practice. For
the remaining analyses, we assumed a maximum detection time of 30 min, which showed
a good compromise between low detection times and high detection probabilities.

The evaluation showed that correlated events faced long detection times and a rather
low detection rate of 27.98% (detection threshold 30 min). This is mainly caused by areas
on the map that have no roads, and thus, are never visited by mobile sensors. Thus, events
appearing in these cells cannot be detected by MCS. The detection rate could be increased
up to 40.27% by setting a higher maximum detection time of 180 min; however, with such
high detection time threshold, in practice, events might disappear or become irrelevant
in the meantime. Considering correlated events, the evaluation showed generally much
shorter detection times and high detection rates of 93.91% within 30 min and 99.93% within
180 min. High detection rates could even be observed during the night. The detection
of correlated events was also much less sensitive to setting a maximum detection time
than the detection of uncorrelated events. As partially correlated events consisted of p%
correlated and (100 − p)% uncorrelated events, the results for a given percentage of p can
be interpolated from both marginal cases.

The performance evaluation showed that MCS could achieve almost total coverage
of the city for correlated events. Moreover, it was confirmed that detection rates for all
kinds of events could be increased by increasing participation in MCS. Although it was
found that most detected events could be detected very fast, the distribution showed a
long tail. This means that a considerable amount of events faced significant detection
times or could not be detected at all by MCS, especially for uncorrelated events. Thus, the
performance evaluation confirmed the need to consider other means to increase the sensor
coverage and decrease event detection time. Such means could be adding fixed sensors
in a hybrid crowdsensing system or employing active crowdsensing, in which users are
actively recruited and paid for sensing sparsely frequented or missing locations/times.

As a start, a hybrid system of MCS and additional fixed sensors was investigated. The
results showed that equipping vacant cells, i.e., cells where no mobile sensors move, with
fixed sensors can increase the overall detection rate for uncorrelated events. It does not
affect the detection performance for correlated events that only appear where people move.
When fixed sensors are only placed in cells that people visit, the detection performance
for uncorrelated events increases almost by the same amount as if sensors are placed in
vacant cells due to the uniformly distributed event location; however, the contribution of
additional MCS is reduced when fixed sensors are placed in cells that mobile sensors can
also cover. Placing fixed sensors in visited cells could only reduce the detection times for
detecting correlated events because MCS almost achieved a perfect coverage.

The detection performance in hybrid systems largely depends on the placement
strategy of the fixed sensors. Thereby, the characteristics of the event type and mobile
sensors’ movement have to be taken into account. Considering an optimal placement, the
minimal amount of fixed sensors was investigated that is needed to keep a certain detection
time threshold. This means no event should be missed, and all events should be detected
before the maximum detection time. It was found that an immediate detection of all events
was possible for both uncorrelated and correlated events without placing fixed sensors
in every cell. This shows that adding MCS is able to reduce the need for fixed sensors.
When the maximum detection time threshold is relaxed, fewer cells need to be equipped
with fixed sensors. Still, a practical placement of fixed sensors in a hybrid MCS system
needs to consider not only the budget, the type of event, and the movement of mobile
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sensors but can also trade-off detection rate and maximum detection times. Further, the
presented placement uses prior knowledge about the events and the distribution of the
MCS participants that is not available in a real-world setting. Thus, the results show a best-
case scenario and can be used as benchmarks for other placement or crowd-orchestration
mechanisms, such as active crowdsensing.

In future work, the performance evaluation of the event detection scenario could
be improved by considering more realistic mobility traces including vehicular mobility.
Additionally, comparing real-world traffic and movement traces with the simulated SUMO
traces would be of interest. Similarly, a study of different city traffic networks and topolo-
gies. Moreover, the impact of other distributions of event locations can be studied. The
economic dimension in hybrid systems could be further evaluated, especially considering
the trade-offs between needs and costs for fixed sensors. Further, the employment of active
crowdsensing as an alternative or in addition to the placement of fixed sensors can be
considered. One question in this context is whether the sensing budget should be better
spent for fixed sensors with high reliability and longevity but low flexibility, or for the
active recruitment of crowdworkers, which have high flexibility of data collection but
might be less available or reliable. Finally, new scenarios, such as periodic sensing and
continuous sensing, could be tackled.

7. Conclusions

This paper investigated the detection capabilities of hybrid systems, i.e., systems
consisting of fixed sensors and mobile crowdsourcing users, concerning different event
types. The results showed that hybrid systems could considerably improve detection time
and probability compared to pure MCS, especially for events that appear uncorrelated
to the population density; thus, hybrid crowdsensing can efficiently detect various event
types in smart cities, even if only a small share of the population participates in the sensing
efforts and only a relatively small number of sensors is deployed.
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