Beyond ecological opportunity: prey diversity rather than abundance shapes predator niche variation
Javier Sánchez-Hernández ${ }^{1 *}$, Anders G. Finstad ${ }^{2,3}$, Jo Vegar Arnekleiv ${ }^{2}$, Gaute Kjærstad ${ }^{2}$ and Per-Arne Amundsen ${ }^{4}$
${ }^{1}$ Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
${ }^{2}$ Department of Natural History, NTNU University Museum, Trondheim, Norway
${ }^{3}$ Aquatic Ecology Department, Norwegian Institute for Nature Research (NINA), Trondheim, Norway
${ }^{4}$ Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway

*Author to whom correspondence should be addressed. Tel.: +34 630156 186; ORCID:
0000-0001-9684-4774; e-mail: javier.sanchezh@urjc.es

Keywords: individual and population niches; individual specialisation; niche variation hypothesis; predator-prey interactions; trophic niche.

Abstract

1. Ecological opportunity, i.e. the diversity of available resources, has a pivotal role in shaping niche variation and trophic specialisation of animals. However, ecological opportunity can be described with regard to both diversity and abundance of resources. It is still relatively unexplored to what degree these two components contribute to niche variation. 2. To address this, we utilise an extensive dataset on fish diet and benthic invertebrate diversity and density from 73 sampling events in three Norwegian rivers in order to explore realised trophic niches and the response of dietary niche variation along gradients of resource diversity (potential trophic niches), resource density (as a proxy of resource abundance) and fish density (as a proxy of inter- and intraspecific competition) in a freshwater top predator (the brown trout, Salmo trutta L.). 3. Linear models indicated that individual and population niche variation increased with increasing ecological opportunity in terms of prey diversity. However, no simple cause-and-effect associations between niche indices and prey abundance were found. Our multiple regression analyses indicated that the abundance of certain resources (e.g. Chironomidae) can interact with prey diversity to determine individual and population realised trophic niches. Niche variation (within-individual component and interindividual diet variation) decreased with increasing inter- and intraspecific competition. 4. This study extends prevailing trophic ecology theory by identifying diversity, rather than density, of available prey resources as a primary driver of niche variation in fish of temperate riverine systems with no extensive resource limitation. The study also shows that ecological opportunity may mask the direction of the effect (compression or expansion) of competition on niche variation when food resources are diverse.

5. Our study supports the view that broader trophic niche potentials promote broader realised trophic niche variation of individuals, which lead to individual niche diversification by opening access to alternatives resources, resulting in a concomitant rise in the realised trophic niche width of the population.

Introduction

Ecologists have long emphasised the importance of ecological opportunity, i.e. the availability of ecologically accessible resources that may be exploited (Stroud \& Losos, 2016), in understanding niche variation and dietary specialisation of animals (Bolnick et al., 2003; Araújo, Bolnick, \& Layman, 2011). By definition, ecological opportunity has typically been understood as the prey richness (i.e. species or resource diversity) available for consumers, but it can also be considered as abundance or density of resources (reviewed by Wellborn \& Langerhans, 2015; but also see Stroud \& Losos, 2016). In addition, ecological opportunity can be extended towards the ecological niche concept (Hutchinson, 1944; 1957), being key to distinguish realised (i.e. resource use by the model species) and fundamental (resource availability) niches when attempting to identify niche expansion and specialisation of animals (Dolédec, Chessel, \& Gimaret-Carpentier, 2000; Bolnick et al., 2003). Thus, consumers' specialisation can be decomposed into fundamental (promoted by intrinsic traits such as morphology or behaviour) and realised (promoted by intrinsic and/or extrinsic mechanisms such as prey patchiness and social interactions) specialisation (Bolnick et al., 2003). Because prey resources are dynamically affected by the focal species (Peterson et al., 2011), resource availability does not define the fundamental trophic niche of model organisms per se, but rather reflects which prey resources that are accessible and potentially can be utilised by the consumer species (i.e. its ecological opportunity or potential trophic niche).

The niche variation hypothesis (NVH) suggests that populations tend to display niche expansion when they are released from interspecific competition (Van Valen, 1965). However, there are also other factors governing the magnitude of among-individual diet variation in animals such as intraspecific competition, predation and ecological opportunity (Araújo et al., 2011; Sjödin, Ripa, \& Lundberg, 2018). Recent studies support
the view that resource competition promotes niche variation among individuals within a population, including an important role of intraspecific competition for individual specialisation (Svanbäck \& Bolnick, 2007; Araújo et al., 2011; Tinker et al., 2012; CostaPereira, Araújo, Souza, \& Ingram, 2019; Mendes, Fernandes, Penha \& Mateus, 2019). There is also empirical support that fish species can display a generalist foraging behaviour independent of density-dependent intraspecific competition (SánchezHernández \& Cobo, 2013). However, intraspecific niche variation is expectedly also influenced by ecological opportunity which may have an even stronger diversifying effect on dietary niche width than the constraining effects of competition (Costa-Pereira et al., 2019). Here, we empirically explore realised and potential trophic (diversity of available prey resources) niches and test the response of niche variation at the individual and population levels along gradients of resource diversity and density.

Theoretical and empirical work postulate that high ecological opportunity in terms of prey diversity can promote higher intraspecific niche variation via both broader individual niches and individual specialisation (e.g. Araújo et al., 2011; Araújo \& Costa-Pereira, 2013; Costa-Pereira et al., 2019; Salvidio, Costa, \& Crovetto, 2019; Rosa, Costa, Salvidio, 2020) and population niche expansion of consumers (Sjödin et al., 2018), whereas competing species may segregate in resource use by displaying different specieslevel specialisation (Sánchez-Hernández, Gabler, \& Amundsen, 2017a). Thus, population niche expansion can suggestively occur in scenarios of high ecological opportunity in terms of resource diversity by individual resource-specialisation (i.e. strict phenotypic differentiation) (Sjödin et al., 2018). A growing number of studies indicate that trophic niche breadth of both semi-aquatic (frog species) and terrestrial (lizards) consumers expands along increases in diversity of available prey (Moreno-Rueda et al., 2018; CostaPereira et al., 2019).

On the other hand, when addressing ecological opportunity in terms of abundance of resources, individual variation in consumer's resource use has often been found to increase with decreasing prey resource abundance leading to individual dietary specialisation towards different prey types (Tinker, Bentall, \& Estes, 2008; Svanbäck, Rydberg, Leonardsson, \& Englund, 2011). Therefore, it is thought that when preferred resources are scarce, individuals expand their niche through the utilisation of previously unutilised resources depending on the diversity of available resources (Araújo et al., 2011), and thus it is reasonable to posit that this might only occur in high prey diversity scenarios. In this sense, Rosa et al. (2020) observed differences in individual specialisation of newts between two locations with similar prey abundance, concluding that individual specialisation was promoted by high prey diversity.. Thus, it is possible that the importance of prey abundance as a driver of consumer's niche variation depends largely on prey diversity. Prey patchiness can also facilitate the understanding of niche variation of animals as prey patchiness promotes realised specialisation and drives high levels of individual specialisation (Bolnick et al., 2003; Araújo et al., 2011). However, empirical studies addressing simultaneously the relative importance of the two different facets of ecology opportunity (i.e. diversity and abundance) on individual and population niches are still limited, especially on the basis of the ecological niche concept (Hutchinson, 1944; 1957), remaining an important challenge for the understanding of the mechanisms affecting niche variation.

To address this challenge, we here study the relative contribution of ecological opportunity in terms of resource diversity and density (as a proxy of prey abundance) on niche variation at both the individual and population levels using riverine brown trout (Salmo trutta L.) and its prey as model system. Based on earlier studies (Tinker et al., 2008; Araújo et al., 2011; Svanbäck et al., 2011; Araújo \& Costa-Pereira, 2013; Salvidio
et al., 2019), niche variation both in terms of population niche width and individual specialisation would be impacted by ecological opportunity; increasing with increasing prey diversity and/or with decreasing prey density. However, we expected that prey diversity, and not prey density, act as the true bottleneck in driving predator niche variation because the diversity of available resources limits the baseline from where individuals can segregate in prey categories (Figure 1). Our reasoning relies on the view that scenarios with food resource limitation (low prey density) may promote niche compression in consumer's population when prey diversity is low, and niche extension when prey diversity is high. Thus, individuals can expand their niche to include previously unutilised resources when preferred resources are scarce (Araújo et al., 2011), but the magnitude of the expansion will greatly rely on the diversity of available resources (Figure 1). Additionally, we explored whether fish density (as a proxy of inter- and intraspecific competition) impacts niche variation, expecting that inter- and intraspecific competition in line with NVH will play an important role for intraspecific niche variation (Van Valen, 1965; Araújo et al., 2011). More specifically, we expect that higher consumer densities (increasing both inter- and intraspecific competition) may lead individuals to reduce their individual variation and specialise in resource use.

Material and methods

Study systems
We used a comprehensive dataset of fish diet composition and prey community structure sampled in three Norwegian rivers [Beiarelva ($67^{\circ} 00^{\prime} 07.1^{\prime \prime} \mathrm{N}$ 14³7'29.9"E), Klubbvasselva (6541'53.3"N 13¹1'52.3"E) and Litjvasselva (65³3'00.8"N $13^{\circ} 38^{\prime} 51.8^{\prime \prime} \mathrm{E}$)] (Figure 2). Brown trout and Atlantic salmon (Salmo salar Linnaeus, 1758) are the dominant species in the fish communities of the studied rivers. Other fish species,
such as European eel (Anguilla anguilla, Linnaeus, 1758) and three-spine stickleback (Gasterosteus aculeatus Linnaeus 1758), are also present in the river basins, but only sporadically found at the current study sites. The study included 73 sampling events between 1988 and 1992, implemented during the ice-free season (from April to October), except in May, when high water-flow conditions due to spring flood made sampling impossible. The study was replicated spatially across three (Beiarelva and Litjvasselva) and five (Klubbvasselva) sampling stations. At each sampling event, fish and benthic invertebrates were collected. Sampling protocols used in this study conform to the ethical laws of the country (see Acknowledgements).

Fish sampling and stomach contents analysis
We attempted to collect at least 20 brown trout for stomach contents analyses (SCA) in each sampling event depending on fish abundance (sample size: 14-370 brown trout, mean $=104.8 \pm 10.4 \mathrm{SE}$). In order to avoid confounding effects of maturation and migratory behaviour between migratory (i.e. anadromous) and resident individuals within the populations (e.g. Klemetsen et al., 2003), we focused the current study on parr fish (i.e. resident individuals mostly composed by juveniles). Accordingly, brown trout were collected in their typical parr habitat (riffle stretches) of the rivers using portable backpack electrofishing gear with pulsed direct current and a single anode of 30 cm diameter. Fish sampling was conducted in an upstream direction from the riverbank to a water depth of about 70 cm over a stream section of 100 m .

In total, the material for SCA included 8149 individuals (fish length range: $24-226 \mathrm{~mm}$, mean $=77.4 \mathrm{~mm} \pm 0.34 \mathrm{SE}$). Each individual was measured (fork length, mm) and stomachs were removed for diet analysis. The stomachs were opened, and the percentage of total fullness visually determined, ranging from empty (0\%) to full (100\%) (further
details in Amundsen \& Sánchez-Hernández, 2019). Each prey item was then identified to the lowest taxon possible (mostly family or order) under a binocular microscope (magnification $\times 80$). The contribution of each prey category to the diet was estimated based on their proportional abundance, and the diet composition at the individual and population level was estimated using relative prey abundances (Amundsen, Gabler, \& Staldvik, 1996; Amundsen \& Sánchez-Hernández, 2019).

Fish density

Because fish populations are commonly regulated through density-dependent mechanisms (Henderson \& Magurran, 2014), within and among-species fish density can indicate levels of intra- and inter-specific competition, respectively (e.g. SánchezHernández \& Cobo, 2013; Hasegawa, 2016). For some of the sampling events in Beiarelva and Klubbvasselva ($n=23$), fish densities were estimated through three-pass removal electrofishing with 30 min intervals. Fish captured in each sampling pass were removed and retained in oxygenated tanks before processing. Fish were identified to species level, counted, and returned to the river (except for a sub-sample collected for SCA; see above). Due to large river widths and depths, no nets were used to block the upstream and downstream boundaries. The fish density was estimated as number of fish per $100 \mathrm{~m}^{2}$ using Zippin multiple-pass depletion method (Zippin, 1956; Bohlin, Hamrin, Heggberget, Rasmussen, \& Saltveit, 1989). This covariate (fish density) covered the dominant species in these fish communities, including brown trout density (as a proxy of intraspecific competition) and Atlantic salmon density (as a proxy of interspecific competition).

Ecological opportunity

The ecological opportunity was defined by Stroud \& Losos (2016) as "the availability of ecologically accessible resources that may be evolutionarily exploited", but it can also be considered as abundance or density of resources (Wellborn \& Langerhans, 2015). Thus, ecological opportunity can be decomposed into two components, i.e. taking into account abundance and/or diversity of niche availability. We estimated ecological opportunity from the availability of benthic invertebrates, which are the prime food resource for brown trout parr and juveniles (e.g. Sánchez-Hernández, Finstad, Arnekleiv, Kjærstad, \& Amundsen, 2019). It should be noted that benthic communities may reflect spatial differences in the drift compositions among riverine systems as there is a positive relationship between benthic and drift invertebrates (e.g. Sagar \& Glova ,1992; Siler, Wallace, \& Eggert, 2001; Shearer, Stark, Hayes, \& Young, 2003). Diptera (mainly Chironomidae), Ephemeroptera, Plecoptera and Trichoptera are commonly the most abundant drifting invertebrates over the ice-free season in Norwegian rivers (e.g. Johansen, Elliott, \& Klemetsen, 2000; Saltveit, Haug, \& Brittain, 2001). The contribution of surface prey (terrestrial arthropods and emerged aquatic insects) to the drift in Norwegian rivers may also be noteworthy (Johansen et al., 2000). Unfortunately, no information is available about drift patterns or magnitude of terrestrial subsidies into the studied rivers and drifting invertebrates could therefore not be included in the analysis. Since brown trout individuals were collected from riffles, we also sampled benthic invertebrates from the same riffle habitats. Following protocols for quantitative sampling in wadeable and hard-bottomed streams (Stark, Boothroyd, Harding, Maxted, \& Scarsbrook, 2001), five benthic invertebrate samples were collected using a $0.15 \mathrm{~m}^{2}$ Surber sampler ($500 \mu \mathrm{~m}$ mesh size) at each sampling event. After collection, we fixed the samples using 70% ethanol and stored them for later processing. In the laboratory, the benthic invertebrates were sorted and identified to the same taxonomic level as for the
stomach contents. We partitioned ecological opportunity into two components: (i) prey diversity, and (ii) prey density (number of individuals per m^{2}). Because dietary indices used in this study (see Components of the trophic niche section below) rely on prey categories and their relative abundance, we also explored the importance of the absolute abundance of the most represented prey categories. These prey categories included Chironomidae, Ephemeroptera, Hydracarina, Oligochaeta, Plecoptera, Simuliidae and Trichoptera (see Appendix 1), which includes primary dietary components of streamdwelling brown trout populations (i.e. Diptera, Ephemeroptera, Trichoptera and Plecoptera) (Sánchez-Hernández et al., 2019). Thus, we covered total prey density and absolute abundance of the most represented prey categories.

Prey diversity was calculated as taxon richness (i.e. number of taxa of benthic invertebrates) and Shannon-Wiener’s diversity index (hereafter "Shannon index"):

Shannon index $\left(H^{\prime}\right)=-\sum_{i=1}^{s} p_{i} \log _{i 10} p_{i}$ Eq. 1
where p_{i} is the proportion of individuals found in species i and s is the number of species in the benthic invertebrate samples (Shannon \& Weaver, 1949). The use of these two indices (taxon richness and Shannon index) enabled us to account for the structural complexity of the benthic invertebrate community including only diversity (taxon richness) and relative abundances (Shannon index).

Realised and potential trophic niches

Fundamental niche refers to the sum of all the environmental factors acting on the organism, including both abiotic and biotic variables (Hutchinson, 1944; 1957), but here
we restrict our niche analyses to the diversity of available prey resources (i.e. ecological opportunity) as a proxy of the potential trophic niche. The potential trophic niche consists of all prey categories that the brown trout is able to consume (i.e., the availability of prey resources in the environment). In contrast, the realised trophic niche is the variety of organisms that actually are eaten. An exploration of the realised versus the potential trophic niches of the model organism was carried out using the Outlying Mean Index (OMI) (Dolédec et al., 2000) in the subniche package version 1.2 (Karasiewicz, Dolédec, Lefebvre, 2017). This enabled us to disentangle how different the realised niches are from the potential trophic niches, as well as to compare the species' realised trophic niches along spatial scales (here among rivers).

Diet selectivity

We explored diet selectivity of brown trout by employing Chesson's selectivity index (Chesson, 1983) and using data from all sampling events based on nine common prey categories (Sánchez-Hernández et al., 2019): (i) benthic Crustacea, (ii) Mollusca, (iii) Diptera larvae, (iv) Trichoptera larvae, (v) Coleoptera (both larvae and adults), (vi) Heteroptera, (viii) Ephemeroptera nymphs, (viii) Plecoptera nymphs and (ix) other benthic invertebrates (mostly Hydracarina, Oligochaeta, Turbellaria and Hirudinea). In mathematical terms, Chesson's index (S) is based on proportional data:
$S=\frac{d_{i} / b_{i}}{\sum_{j=1}^{m} d_{j} / b_{j}}, i=1, \ldots, m$,
where d and b are the relative abundance of each prey category in the diet and in the benthic invertebrate community, respectively (Chesson, 1983). This index varies from zero (complete avoidance) to one (complete preference).

Components of the trophic niche
We addressed dietary niche variation at the population and individual levels using the RInSp package version 1.2.3 (Zaccarelli, Bolnick, \& Mancinelli, 2013). The total niche width of a population (TNW) can be partitioned into two components: (i) the withinindividual component (WIC, i.e. the variation in resource use within individuals) and (ii) the between-individual component (BIC, i.e. the variance between individuals), so that TNW = WIC + BIC (Roughgarden, 1972; 1974; Bolnick et al., 2002):

$$
\begin{equation*}
T N W=-\sum_{k} q_{k} \ln \left(q_{k}\right) \tag{Eq. 3}
\end{equation*}
$$

$$
\begin{equation*}
W I C=-\sum_{i} r_{i}\left(-\sum_{k} r_{i k} \ln \left(p_{i k}\right)\right) \tag{Eq. 4}
\end{equation*}
$$

$$
\begin{equation*}
B I C=-\sum_{k} r_{i} \ln \left(r_{i}\right)-\sum_{k} q_{k}\left(-\sum_{i} t_{i k} \ln \left(t_{i k}\right)\right) \tag{Eq. 5}
\end{equation*}
$$

where: r_{i} is the proportion of all resources used by individual $i ; q_{k}$ is the proportion of the k th resource category in the population's niche, and $t_{i k}$ is the proportion of the population's total use of resource k that was used by individual i (Zaccarelli et al., 2013). The ratio WIC/TNW (inter-individual diet variation) quantifies how much smaller the average individual niche is in comparison to the population niche (Araújo et al., 2011). Values near 1 indicate low inter-individual diet variation (i.e. all individuals utilise the full range of the population's niche), whereas values near 0 indicate decreasing interindividual overlap and hence a higher degree of individual specialisation (Bolnick et al.,
2002). To distinguish between more and less specialised individuals within the populations, the proportional similarity $\left(\mathrm{PS}_{\mathrm{i}}\right)$ index was calculated (Bolnick et al., 2002):

$$
\begin{equation*}
P S_{i}=1-0.5\left|P_{i j}-Q_{j}\right|=\sum\left(P_{i j}, Q_{j}\right) \tag{Eq. 6}
\end{equation*}
$$

where $P_{i j}$ is the proportion of resource category j in the diet of individual i, and Q_{j} the proportion of resource category j in the diet of the population. This index compares each individual's diet to that of the population, with values ranging between 0 and $1\left(0<\mathrm{PS}_{\mathrm{i}}\right.$ <1). For individuals that specialise on a single or few prey types, PS_{i} values are low, whereas for individuals that consume resources in a similar proportion to the population as a whole, PS_{i} values approach 1 (Bolnick et al., 2002). Thus, niche variation includes several indices that reflect the population and individual level (TNW, WIC, BIC, WIC/TNW and PS_{i}).

Statistics

All analyses and visualization were carried out using R version 3.6.2 (R Core Team, 2019). A significance level of $P=0.05$ was used for all analyses. The following subsections show the methodological sequence in our analyses.

Normality checking and data transformation Prior to modelling, data normality was tested. There were indications of non-normality in some of the variables (Kolmogorov-Smirnov tests with Lilliefors correction), and WIC, WIC/TNW, prey diversity (richness), total prey density and absolute abundance of the most represented prey categories (i.e. densities of Chironomidae, Ephemeroptera,

Hydracarina, Oligochaeta, Plecoptera, Simuliidae and Trichoptera) were log-transformed before the analysis (Zuur, Ieno, Walker, Saveliev, \& Smith, 2009).

Linear models

We used linear models to explore simple cause-and-effect associations between the response variable (prey selectivity and trophic niche components) and explanatory variables. We first tested for relationship between prey selection (Chesson's index) as response variable and the relative abundance of the same taxonomic group in the benthos as predictor in order to explore whether brown trout populations select certain prey categories irrespective of their relative availability (Sánchez-Hernández et al., 2019). Secondly, in order to test how the various trophic niche components related to ecological opportunity, we fitted a set of linear models with trophic niche components (TNW, WIC, BIC, WIC/TNW or PS_{i}) as response variable, and prey diversity (taxon richness and Shannon index) or prey density (total prey density, Chironomidae density, Ephemeroptera density, Hydracarina density, Oligochaeta density, Plecoptera density, Simuliidae density and Trichoptera density) as predictors.

Multiple regression models
We fitted a set of multiple regression models with the various trophic niche components as response variable and prey diversity (taxon richness and Shannon index), prey density (Chironomidae density, Ephemeroptera density, Hydracarina density, Oligochaeta density, Plecoptera density, Simuliidae density and Trichoptera density) and mean fish length (as a proxy of population size structure) as predictors. Spatial (sampling stations and river) and size (fish length) effects were included as covariates in all multiple regression models since ontogeny, population size structure and environmental
heterogeneity linked to geographic location play a key role in the trophic ecology of brown trout (Sánchez-Hernández, Eloranta, Finstad, \& Amundsen, 2017b; SánchezHernández et al., 2019), which calls for the need to control for them (i.e. controlling variables) in the analyses.

Multiple regression models were also re-run for a subset of the data that included fish densities (Atlantic salmon and brown trout; see section "Fish density") in order to disentangle the role of inter- and intraspecific competition on trophic niche components. In this case, the full model consisted of trophic niche components as response variable, 12 predictor variables (taxon richness, Shannon index, fish length, intraspecific competition, interspecific competition, Chironomidae density, Ephemeroptera density, Hydracarina density, Oligochaeta density, Plecoptera density, Simuliidae density and Trichoptera density) and the interaction term between intra- and interspecific competition. These additional analyses allowed a better foundation for exploring the drives of niche variation based on the integration of multiple factors in the modelling.

Nested design of models (both linear and multiple)
Since several stations were sampled within each river, there may be a dependency between sampling stations due to a nested design. Hence, we started out with the abovementioned full structure of linear and multiple regression models incorporating sampling stations nested within each river as a random factor. Sampling time (month) was entered as GAM smoother terms in order to account for unobserved seasonal effects (generalised additive mixed model fitted with the mgcv package version 1.8.28; Wood, 2017). We tested for the inclusion of random terms into the models with a likelihood ratio test according to Zuur et al. (2009). Except for linear models exploring TNW and BIC over
prey density, there was no indication of sampling stations nested within a river contributing to the overall fit in any of the models (P-value >0.05, allowing us to accept the null hypothesis that the models are similar). Hence, modelling (both linear and multiple) was conducted without random terms, but including smoother terms for month (generalised additive models).

Choosing the best model structure in multiple regression approaches
For the multiple regression approaches, we used Δ AIC based model selection (Burnham \& Anderson, 2002) to select the optimal fixed effects structure and rank candidate models by model comparison using the MuMIn package version 1.40.0 (Bartoń, 2016). Models with Δ AIC <2 relative to best model were considered to have substantial support (Burnham \& Anderson, 2002). In all cases, there were several competing models within the designated confidence set, and we conducted parameter estimation and explored relative importance using model averaging (MuMIn package).

Bootstrapping replication In order to generate robust interpretations overcoming possible problems with heterogeneous data collection and unbalanced design, we applied bootstrapping techniques with 999 replications in: i) the measure of the components of the trophic niche (Zaccarelli et al., 2013), ii) the exploration of differences among rivers in subniche position using the rtest.discrimin function (Chessel, Dufour, \& Thioulouse, 2004), and iii) the estimation of confidence intervals for the model coefficients (Wood, 2004; Nakagawa \& Cuthill, 2007) using the boot package version 1.3.22 (Canty \& Ripley, 2019). In the case of models, we assumed that when observed and predicted
(bootstrapped) 95\% confidence intervals were similar in data visualization, associations between explanatory and response variables were reliable.

Model testing

Residuals of the final selected models were visually inspected for deviations from normality and heteroscedasticity. Overall, no evidence for violation of model assumptions were found in all cases except for four prey categories (Coleoptera, Crustacea, Mollusca and Coleoptera) out of nine prey categories when modelling Chesson's selectivity index.

Results

Ecological opportunity and diet selectivity

Ephemeroptera was the most abundant taxon in the three river systems, representing (mean \pm S.E.) $42.7 \% \pm 3.4$ (Beiarelva), $34.5 \% \pm 4.1$ (Klubbvasselva) and $30.9 \% \pm 7.8$ (Litjvasselva) of the total number of individuals. Less numerous in the benthos, but still abundant in all sampling events were Chironomidae (see Appendix 1). Regarding stomach contents, Chironomidae (mean \pm S.E., $25.2 \% \pm 0.55$ and $25.5 \% \pm 1.10$ in Beiarelva and Klubbvasselva, respectively) and Ephemeroptera (27.5\% ± 1.66 in Litjvasselva) emerged as the primary dietary components of brown trout, with substantial spatial variations within these taxon among rivers (see Appendix 2). Prey abundance and seasonal effects had influence on diet selectivity (Appendix 3). The selection of the dominant prey taxa (Trichoptera, Diptera, Ephemeroptera and Plecoptera) was negatively linked to prey abundance (Figure 3), showing that brown trout preferred to consume prey categories irrespective of their relative abundance in the environment.

Realised and potential trophic niches

Brown trout had broader realised trophic niches in Beiarelva (Figure 4a) and Klubbvasselva (Fugure 4b) than in Litjvasselva (Figure 4c); a pattern that was closely linked to taxon richness (Beiarelva>Klubbvasselva>Litjvasselva) (Appendix 4). There were differences in the realised trophic subniches among rivers ($P=0.001$), with Klubbvasselva having the broadest subniche (Figure 4d). Klubbvasselva and Litjvasselva extended their subniches along the upper-left and bottom-left parts because of their higher consumption on Planorbidae and Megaloptera, respectively (Figure 4e and Appendix 2). Indeed, several prey categories (Ostracoda, Lymnaeidae, Planorbidae, Ceratopogonidae, Simuliidae, Ephemeroptera, Plecoptera, Oligochaeta, surface prey and fish) were responsible for the differences in the among-river comparisons (Table 1, see Appendix 2 for stomach contents).

Components of the trophic niche

We found a positive relationship between: i) prey diversity (both Shannon index and taxon richness) and TNW, ii) WIC and the Shannon index, and iii) BIC and taxon richness (Figure 5 and summary table in Appendix 4). PS_{i} decreased with increasing Shannon index and taxon richness (Figure 5). There was also consistent seasonal variation in some trophic niche components (TNW, BIC and PS_{i}) (Appendix 4). There was in contrast little support for any relationship between the trophic niche components and prey density, both measured as absolute abundance of the most represented prey categories (Figure 5 and Appendix 4) and total prey density (Appendix 4).

Multiple regression models (outputs from the model averaging are shown in the Appendix 5) showed the combined effect of prey diversity and absolute abundance of some key prey categories (mainly Chironomidae, Oligochaeta and Ephemeroptera) on the components of the trophic niche (Tables 2 and 3). With exception of WIC/TNW, the
model output supported the importance of prey diversity in combination with Chironomidae density (TNW, BIC and PS_{i}) and Oligochaeta density (WIC) as a drivers for the trophic niche components at both the population and individual levels according to the best model configuration (Table 2) and the relative importance measure (Table 3). Among the ecological opportunity measures, taxon richness emerged as the main driver for PS_{i}, while TNW and BIC had similar support of taxon richness and Chironomidae density and WIC from a combined effect of the Shannon index and Oligochaeta density (Table 3). There was also consistent seasonal variation in the trophic niche components (TNW, BIC and PS_{i}), as evident from the strong support of the GAM smoother variable (month), which was included in all top-confidence sets of the model selection (Appendix 5 and Table 3). Most trophic niche components (TNW, WIC, BIC and WIC/TNW) increased from April to July, but thereafter tended to decrease, whereas the opposite pattern was observed for PS_{i} (Figure 6). Our best model configurations indicated a positive effect of population size structure (i.e. mean fish length) on all the trophic niche components (Table 2, also see all top-confidence sets in Appendix 5), which is also in line with the relative importance measure (especially in WIC and WIC/TNW, Table 3).

Components of the trophic niche (re-run including fish density)

When the models were re-run for a subset of the data that included fish densities, the best model configurations showed that inter- and intraspecific competition had little importance compared to the other predictors (Table 4), with the exception of interspecific competition having a negative effect on WIC and WIC/TNW (Appendix 6). Overall, scenarios of higher inter- and intraspecific competition drove individuals to reduce their individual variation (WIC) and specialise (WIC/TNW) in resource use according to the models with substantial support ($\Delta \mathrm{AIC}<2$) (Appendix 6), but the competition effect
seemed to be masked by the stronger effect of ecological opportunity (both prey diversity and Chironomidae density) and population size structure on the components of the trophic niche (Table 4).

Discussion

This study brings novel insights to the understanding of individual and population niche variation of animals and in particular of freshwater fish. Our multiple regression analyses indicated that the abundance of certain resources (e.g. Chironomidae) can interact with prey diversity to determine individual and population realised trophic niches. However, we provided evidence that prey diversity, rather than density, is the major factor shaping the trophic niche components of the studied predator as no simple cause-and-effect associations between prey abundance and niche indices were found. We accept the view that prey patchiness and broad potential trophic niches are fundamental to understand niche extension or compression of animals (e.g. Tinker et al., 2008; Svanbäck et al., 2011; Costa-Pereira et al., 2019), but diversity of available resources can have a stronger effect on individual and population trophic realised niches than the constraining effects of resource abundance (see Figure 1). We posit that scenarios with food resource limitation (low prey density) may promote niche compression in consumer's population when prey diversity is low, but rather lead to niche extension when prey diversity is high.

Prey availability effects on niche variation

We identified that niche variation increased with increasing prey diversity at the population level via specialist individuals, supporting other studies concluding that environments with high prey diversity can promote high intraspecific niche variation and segregation in resource use by specialisation among competing consumers (Araújo et al.,

2011; Araújo \& Costa-Pereira, 2013; Sánchez-Hernández et al., 2017a; Salvidio et al., 2019; Rosa et al., 2020). Our study confirms that prey diversity per se can be more important than prey density for dietary specialisation and niche variation both at the population and individual levels. Generally, we identified that higher relative abundance of available resources did not drive diet selectivity, which underlines that prey selection patterns are complex and depend on the balance between diversity, density and accessibility (i.e., patchiness) of available prey resources as well as intrinsic features of the predator population (e.g. size-structured dominance hierarchies and personality traits linked to boldness and experience of individuals; Reiriz, Nicieza, \& Braña, 1998; Harwood, Armstrong, Griffiths, \& Metcalfe, 2002; Johnson, Coghlan \& Harmon, 2007). Although it is difficult to predict how predators respond to changes in prey availability, we conclude that trophic niche utilisation and partitioning is better explained by prey diversity. Our reasoning relies on the fact that increased prey diversity according to niche theory should enhance the possibility of resource partitioning among individuals and species (Sánchez-Hernández et al., 2017a and references therein). Feeding habits of consumers, and thus niche variation, can be limited either by low prey abundance or high consumer abundance (e.g. Araújo et al., 2011; Costa-Pereira, Tavares Camargo \& Araújo, 2017). Some sampling events included high consumer densities (range: 0.01-0.47 and 00.65 ind. $/ \mathrm{m}^{2}$ for brown trout and Atlantic salmon, respectively) according to a previous categorisation of salmonids densities (Table 3 in Sánchez-Hernández, Cobo, \& Amundsen, 2015). However, it is possible that prey densities were not low enough (range: 43.9-4351.7 ind. $/ \mathrm{m}^{2}$) to limit food consumption in comparison to other riverine systems with substantially higher variation in benthic macroinvertebrate production (e.g. range: 7-12249 ind./m²; Miserendino, 2001). Thus, we accept the view that behavioural diversification in feeding is primarily driven by prey diversity under scenarios with no
extensive food resource limitation, whereas prey density may become more important when resource limitations are severe.

Our study supports recent conclusions that increased ecological opportunity promotes population niche expansion through individual resource specialisation (i.e. strict phenotypic or behavioural differentiation) of predators rather than a generalist feeding strategy (Sjödin et al., 2018). These findings are consistent with a recent study in the Alpine newt, Ichthyosaura alpestris (Laurenti, 1768), demonstrating that high ecological opportunity in terms of prey diversity promotes higher individual specialisation (Salvidio et al., 2019). Unlike Araujo et al. (2011) who concluded that individual niche width (WIC) depends on the diversity of available resources, the individual's phenotypic traits and resource abundance, our findings showed that individual niche width and specialisation rely on prey diversity rather than prey abundance. Caution should however be exercised regarding this conclusion as contradictory outcomes were found between two indices measuring the degree of individual specialisation (PS_{i} and WIC/TNW). The proportional similarity index $\left(\mathrm{PS}_{\mathrm{i}}\right)$ showed a negative association with prey diversity measured both by species richness and Shannon index, whereas the inter-individual diet variation (WIC/TNW) in contrast suggested that individual specialisation decreased with increasing prey diversity measured as Shannon index (Figure 5). A disadvantage of WIC/TNW is that it assumes that resources are evenly distributed, maximised both by many diet categories and an equal utilisation of each prey type, which in some cases may bias the measurements and lead to inaccurate conclusions in respect to generalisation versus specialisation (reviewed by Bolnick et al., 2002). Bolnick et al. (2002) also pointed out that if resources are measured in a coarse-grained manner, which partly is the case in the present study (see Appendices 1 and 2, i.e. mostly family level), the individuals may falsely appear as generalised from the WIC/TNW ratio. WIC/TNW and PS S_{i} could also be
overestimated with calculations based on single feeding events and more attention needs to be paid in the future to multiple feeding events or diet-tracing techniques other than stomach contents analysis, such as stable isotopes (Bearhop, Adams, Waldron, Fuller, \& Macleod, 2004; Sheppard et al., 2018), in order to enhance our understanding about niche variation at the population and individual levels.

The view that variation in available prey types is a keystone in determining patterns of individual niche variation is increasingly supported (e.g. Darimont, Paquet, \& Reimchen, 2009; Robertson, McDonald, Delahayb, Kellyd, \& Bearhop, 2015; Costa-Pereira et al., 2019; Salvidio et al., 2019). For example, Yurkowski et al. (2016) observed an increasing total niche width with increasing prey diversity in Arctic marine predators. Moreover, Costa-Pereira et al. (2019) have recently provided empirical evidence that individual niche breadth of tropical frog species increases with resource diversity. The present study supports the previous findings demonstrating that trophic niche components increase with enhanced ecological opportunity in terms of increased prey diversity. However, our study also provides a novel empirical insight into the driving forces behind niche variation and contributes to expanding prevailing trophic ecology theory by identifying diversity, rather than density, of available prey resources as a primary driver of niche variation.

Competition effects on niche variation

Our findings suggest that higher inter- and intraspecific competition drive individuals to reduce their niche variation (i.e. variation in resource use within individuals) and thereby reduce niche diversification by among-individual differences in resource specialisation. In line with the niche variation hypothesis (Van Valen, 1965), the direction of the effects (compress or expand) of intra- and interspecific competition on niche variation can be variable, chiefly depending on differences in rank-preference variation among individuals
and species (Araújo et al., 2011). Sheppard et al. (2018) observed that intragroup competition promotes niche partitioning through individual specialisation within social groups in a terrestrial mammal [banded mongooses Mungos mungo (Gmelin, 1788)]. Our data suggest that higher consumer densities (i.e. both inter- and intraspecific competition) drove individuals to reduce their individual niche width and specialise in resource use. This support the findings of Svanbäck \& Persson (2004), Tinker et al. (2012) and Mendes et al. (2019), which suggested that increased intraspecific competition (i.e. population density) promotes individual specialisation in perch (Perca fluviatilis L.), sea otters [Enhydra lutris (Linnaeus, 1758)] and neotropical fish species [Hoplerythrinus unitaeniatus (Spix \& Agassiz, 1829)], respectively.

As pointed out earlier, the effect of competition on consumer diet variation may be context dependent and driven by e.g. rank-preference variation among individuals/species (Araújo et al., 2011). Indeed, Jones \& Post (2016) have recently proposed that species with large ecological top-down effects (i.e. predators) respond to increasing intraspecific competition by niche compression at the population level, whereas other consumers may respond with diversifying their niche. Although our results suggest that increased interand intraspecific competition may reduce the variation in resource use within individuals, we posit that prey diversity rather than competition acts as the main driver of niche variation. Hence, in systems with no apparent resource limitation as in the current study, variation in prey diversity may mask the direction of the effect of competition on niche variation when food resources are diverse, advocating that the diversifying effects of ecological opportunity have a stronger effect on dietary niche width than the constraining effects of competition (Costa-Pereira et al., 2019).

Our study provides novel empirical insight to the driving forces behind niche variation and reveals that diversity, rather than density, of available prey resources may be a primary driver of niche variation in freshwater fish. Conclusions from the current study should be contextualised in a scenario where the trophic niche components reflect a population's realised trophic niche, while ecological opportunity in terms of prey diversity reflects the potential trophic niche. Soberón \& Arroyo-Peña (2017) empirically tested in reptiles and amphibians that fundamental niches are wider than the realised niches. Our study provides compelling evidence that differences in taxa richness among riverine systems determined the degree to which the realised and potential trophic niches differ. Thus, the current study supports the view that broader potential trophic niches promote broader realised trophic niche variation of individuals, which lead to individual niche diversification by opening access to alternatives resources while niche overlap among individuals tends to decrease (Figure 1).

Acknowledgements

The environmental department of the Governor of Nordland County granted permission for sampling and protocols were approved by the Institutional Animal Care and Use Committee of the Norwegian University of Science and Technology (NTNU). All procedures conformed to European Union (86/609/EEC) and Norwegian (The Norwegian Animal Protection Act No. 73 of 20th December 1974) guidelines on animal care and experimentation. All efforts were made to minimise animal stress and suffering during this study. Animals were immediately euthanised using an overdose of anaesthetics (MS222) and stored in 96% ethanol until examination of stomach content in the laboratory. We appreciate constructive comments from two anonymous reviewers, which considerably improved the quality of the manuscript.

Data accessibility

Data from the manuscript will be archived in the Figshare Digital Repository (https://figshare.com/) on acceptance of the manuscript for publication.

References

Amundsen, P.-A., Gabler, H.-M., \& Staldvik, F. J. (1996). A new approach to graphical analysis of feeding strategy from stomach contents data - modification of the Costello 1990 method. Journal of Fish Biology, 48, 607-614.

Amundsen, P.-A., \& Sánchez-Hernández, J. (2019). Feeding studies take guts - critical review and recommendations of methods for stomach contents analysis in fish for publication. Journal of Fish Biology, 95, 1364-1373.

Araújo, M. S., \& Costa-Pereira, R. (2013). Latitudinal gradients in intraspecific ecological diversity. Biology Letters, 9, 20130778.

Araújo, M. S., Bolnick, D. I., \& Layman, C. A. (2011). The ecological causes of individual specialisation. Ecology Letters, 14, 948-958.

Bartoń, K. (2016). MuMIn: Multi-Model Inference. R package version 1.15.6. Available at: https://CRAN.R-project.org/package=MuMIn. Last accessed January 2019.

Bearhop, S., Adams, C. E., Waldron, S., Fuller, R. A., \& Macleod, H. (2004). Determining trophic niche width: a novel approach using stable isotope analysis. Journal of Animal Ecology, 73, 1007-1012.

Bohlin, T., Hamrin, S., Heggberget, T. G., Rasmussen, G., \& Saltveit, S. J. (1989). Electrofishing-theory and practice with special emphasis on salmonids. Hydrobiologia, 173, 9-43.

Bolnick, D. I., Ingram, T., Stutz, W. E., Snowberg, L., Lau, O. L., \& Paull, J. (2010). Ecological release from interspecific competition leads to decoupled changes in population and individual niche width. Proceedings of the Royal Society B: Biological Sciences, 277, 1789-1797.

Bolnick, D. I., Svanbäck, R., Fordyce, J. A., Yang, L. H., Davis, J. M., Hulsey, C. D., \& Forrister, M. L. (2003). The ecology of individuals: incidence and implications of individual specialization. The American Naturalist, 161, 1-28.

Bolnick, D. I., Yang, L. H., Fordyce, J. A., Davis, J. M., \& Svanbäck, R. (2002). Measuring individual-level resource specialization. Ecology, 83, 2936-2941.

Burnham, K. P. \& Anderson, D. R. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretical Approach (2nd Edition). New York, NY: Springer-Verlag.

Canty, A., \& Ripley, B. (2019). boot: Bootstrap R (S-Plus) Functions. R package version 1.3-22. Available at: https://CRAN.R-project.org/package=boot. Last accessed January 2019.

Chessel, D., Dufour, A. B. \& Thioulouse, J. (2004). The ade4 package - I: one-table methods. R News, 4, 5-10.

Chesson, J. (1983). The estimation and analysis of preference and its relatioship to foraging models. Ecology, 64, 1297-1304.

Clark, J. S., Dietze, M., Chakraborty, S, Agarwal, P. K., Ibanez, I., LaDeau, S., \& Wolosin, M. (2007). Resolving the biodiversity paradox. Ecology Letters, 10, 647-659.

Costa-Pereira, R., Araújo, M. S., Souza, F. L., \& Ingram, T. (2019). Competition and resource breadth shape niche variation and overlap in multiple trophic dimensions. Proceedings of the Royal Society B, 286, 20190369.

Costa-Pereira, R., Tavares, L. E. R., Camargo, P. B., \& Araújo, M. S. (2017). Seasonal population and individual niche dynamics in a tetra fish in the Pantanal wetlands. Biotropica, 49, 531-538.

Costa, A., Salvidio, S., Posillico, M., Matteucci, G., De Cinti, B., \& Romano, A. (2015). Generalisation within specialization: inter-individual diet variation in the only specialized salamander in the world. Scientific Reports, 5, 13260.

Darimont, C. T., Paquet, P. C. \& Reimchen, T. E. (2009). Landscape heterogeneity and marine subsidy generate extensive intrapopulation niche diversity in a large terrestrial vertebrate. Journal of Animal Ecology, 78, 126-133.

Dolédec, S., Chessel, D., \& Gimaret-Carpentier, C. (2000). Niche separation in community analysis: a new method. Ecology, 81, 2914-2927.

Harwood, A. J., Armstrong, J. D., Griffiths, S. W., \& Metcalfe, N. B. (2002). Sympatric association influences within-species dominance relations among juvenile Atlantic salmon and brown trout. Animal Behaviour, 64, 85-89.

Hasegawa, K. (2016). The density dependent interspecific competition between nonnative salmonids, Rainbow Trout and Brown Trout. Environmental Biology of Fishes, 99, 433-438.

Henderson, P. A., \& Magurran, A. E. (2014). Direct evidence that density-dependent regulation underpins the temporal stability of abundant species in a diverse animal community. Proceedings of the Royal Society B, 281, 20141336.

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., \& Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.

Hutchinson, G. E. (1944). Limnological studies in Connecticut. VII. A critical examination of the supposed relationship between phytoplankton periodicity and chemical changes in lake waters. Ecology, 26, 3-26.

Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposium on Quantitative Biology, 22, 415-427.

Johansen, M., Elliott, J. M., \& Klemetsen, A. (2000). Diel fluctuations in invertebrate drift in a Norwegian stream north of the Arctic circle. Norwegian Journal of Entomology, 47, 101-112.

Johnson, R. L., Coghlan S. M., \& Harmon, T. (2007). Spatial and temporal variation in prey selection of brown trout in a cold Arkansas tailwater. Ecology of Freshwater Fish, 16, 373-384.

Jones, A. W., \& Post, D. M. (2016). Does intraspecific competition promote variation? A test via synthesis. Ecology and Evolution, 6, 1646-1655.

Karasiewicz, S., Doledec, S., \& Lefebvre, S. (2017). Within outlying mean indexes: refining the OMI analysis for the realized niche decomposition. PeerJ, 5, e3364.

Klemetsen, A., Amundsen, P.-A., Dempson, B., Jonsson, B., Jonsson, N., O’Connel, M., \& Mortensen, E. (2003). Atlantic salmon, brown trout and Arctic charr: a review of their life histories. Ecology of Freshwater Fish, 12, 1-59.

Mendes, A., Fernandes I. M., Penha, J., \& Mateus, L. (2019). Intra and not interspecific competition drives intra-populational variation in resource use by a neotropical fish species. Environmental Biology of Fishes, 102, 1097-110.

Miserendino, M. L. (2001). Macroinvertebrates assemblages in Andean Patagonian rivers and streams: environmental relationships. Hydrobiologia, 444: 147-158.

Moreno-Rueda, G., Melero, E., Reguera, S., Zamora-Camacho, F., \& Alvarez-Benito, I. (2018). Prey availability, prey selection, and trophic niche width in the lizard

Psammodromus algirus along an elevational gradient. Current Zoology, 64: 603613.

Nakagawa, S., \& Cuthill, I. C. (2007). Effect size, confidence interval and statistical significance: a practical guide for biologists. Biological Reviews, 82, 591-605.

Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura, M., \& Araújo, M. B. (2011). Ecological Niches and Geographic Distributions (MPB-49). Princeton: Princeton University Press.

R Core Team (2019). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Available at: http://www.r-project.org. Last accessed June 2020.

Reiriz, L., Nicieza, A. G., \& Braña, F. (1998). Prey selection by experienced and naive juvenile Atlantic salmon. Journal of Fish Biology, 53, 100-114.

Robertson, A., McDonald, R. A., Delahayb, R. J., Kellyd, S. D. \& Bearhop, S. (2015). Resource availability affects individual niche variation and its consequences in group-living European Badgers Meles meles. Oecologia, 78, 31-43.

Rosa, G., Costa, A., \& Salvidio, S. (2020). Trophic strategies of two newt populations living in contrasting habitats on a Mediterranean island. Ethology Ecology \& Evolution, 32, 96-106.

Roughgarden, J. (1972). Evolution of niche width. American Naturalist, 106, 683-718.
Roughgarden, J. (1974). Niche width: biogeographic patterns among Anolis lizard populations. The American Naturalist, 108, 429-442.

Sagar, P. M., \& Glova, G. J. (1992). Invertebrate drift in a large, braided New Zealand river. Freshwater Biology, 27, 405-416.

Saltveit, S. J., Haug, L., \& Brittain, E. J. (2001). Invertebrate drift in a glacial river and its non-glacial tributary. Freshwater Biology, 46, 1777-1789.

Salvidio, S., Costa, A., \& Crovetto, F. (2019). Individual trophic specialisation in the Alpine newt increases with increasing resource diversity. Annales Zoologici Fennici, 56, 17-24.

Sánchez-Hernández, J., \& Cobo, F. (2013). Foraging behaviour of brown trout in wild populations: Can population density cause behaviorally-mediated foraging specializations? Animal Biology, 63, 425-450.

Sánchez-Hernández, J., Cobo, F., \& Amundsen P.-A. (2015). A simple approach for assigning the conservation status of freshwater fish based on their natural variability - a case study from the Iberian ecoregion. Fisheries Management and Ecology, 22, 125-133.

Sánchez-Hernández, J., Eloranta, A. P., Finstad, A. G., \& Amundsen, P.-A. (2017b). Community structure affects trophic ontogeny in a predatory fish. Ecology and Evolution, 7, 358-367.

Sánchez-Hernández, J., Finstad, A. G., Arnekleiv, J. V., Kjærstad, G., \& Amundsen, P.A. (2019). Drivers of diet patterns in a globally distributed freshwater fish species. Canadian Journal of Fisheries and Aquatic Sciences, 76, 1263-1274.

Sánchez-Hernández, J., Gabler, H.-M., \& Amundsen, P.-A. (2017a). Prey diversity as a driver of resource partitioning between river-dwelling fish species. Ecology and Evolution, 7, 2058-2068.

Shannon, C. E., \& Weaver, W. (1949). The mathematical theory of communication. Illinois: University of Illinois Press.

Shearer, K. A., Stark, J. D., Hayes, J. W., \& Young, R. G. (2003). Relationships between drifting and benthic invertebrates in three New Zealand rivers: Implications for drift-feeding fish. New Zealand Journal of Marine and Freshwater Research, 37, 809-820.

Sheppard, C. E., Inger, R., Mcdonald, R. A., Barker, S., Jackson, A. L., Thompson, F.J., ... Marshall, H. H. (2018). Intragroup competition predicts individual foraging specialisation in a group-living mammal. Ecology Letters, 21, 665-673.

Siler, E. R., Wallace, J. B., \& Eggert, S. L. (2001). Long-term effects of resource limitation on stream invertebrate drift. Canadian Journal of Fisheries Aquatic Science, 58, 1624-1637.

Sjödin, H., Ripa, J., \& Lundberg, P. (2018). Principles of niche expansion. Proceedings of the Royal Society B: Biological Sciences, 285, 20182603.

Soberón, J., \& Arroyo-Peña, B. (2017). Are fundamental niches larger than the realized? Testing a 50-year-old prediction by Hutchinson. PLoS ONE, 12, e0175138.

Stark, J. D., Boothroyd, I. K. G., Harding, J. S., Maxted, J. R., \& Scarsbrook, M. R. (2001). Protocols for Sampling Macroinvertebrates in Wadeable Streams. New Zealand Macroinvertebrate. Working Group Report No. 1. Prepared for the Ministry for the Environment, Sustainable Management Fund Project No. 5103. Wellington, New Zealand.

Stroud, J. T., \& Losos, J. B. (2016). Ecological opportunity and adaptive radiation. Annual Review of Ecology, Evolution, and Systematic, 47, 507-532.

Svanbäck, R., \& Bolnick, D. I. (2007). Intraspecific competition drives increased resource use diversity within a natural population. Proceedings of the Royal Society B: Biological Sciences, 274, 839-844.

Svanbäck, R., \& Persson, L. (2004). Individual diet specialisation, niche width and population dynamics: implications for trophic polymorphisms. Journal of Animal Ecology, 73, 973-982.

Svanbäck, R., Rydberg, C., Leonardsson, K., \& Englund, G. (2011). Diet specialisation in a fluctuating population of Saduria entomon: a consequence of resource or forager densities? Oikos, 120, 848-854.

Tinker, M. T., Bentall, G., \& Estes, J. A. (2008). Food limitation leads to behavioral diversification and dietary specialisation in sea otters. Proceedings of the National Academy of Sciences of the United States of America, 105, 560-565.

Tinker, M. T., Guimarães, P. R. Jr, Novak, M., Marquitti, F. M., Bodkin J. L., Staedler M., ... Estes, J. A. (2012). Structure and mechanism of diet specialization: testing models of individual variation in resource use with sea otters. Ecology Letters 15, 475-483.

Van Valen, L. (1965). Morphological variation and width of ecological niche. The American Naturalist, 99: 377-390.

Wellborn, G. A., \& Langerhans, R. B. (2015). Ecological opportunity and the adaptive diversification of lineages. Ecology and Evolution, 5, 176-195.

Wood, M. (2004). Statistical inference using bootstrap confidence intervals. Significance 1, 180-182.

Wood, S. N. (2017). Generalized Additive Models: An Introduction with R. Boca Raton, FL: CRC Press.

Yurkowski, D. J., Ferguson, S., Choy, E. S., Loseto, L. L., Brown, T. M., Muir, D. C. G., ... Fisk, A. T. (2016). Latitudinal variation in ecological opportunity and intraspecific competition indicates differences in niche variability and diet specialization of Arctic marine predators. Ecology and Evolution, 6, 1666-1678. Zaccarelli, N., Bolnick, D. I., \& Mancinelli, G. (2013). RInSp: an r package for the analysis of individual specialization in resource use. Methods in Ecology and Evolution, 4, 1018-1023.

Zippin, C. (1956). An evaluation of the removal method of estimating animal populations. Biometrics, 12, 163-189.

Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., \& Smith, G. M. (2009). Mixed Effects Models and Extensions in Ecology with R. New York, NY: Springer.

Figure legends

Figure 1. Conceptual view of the effect of ecological opportunity in terms of prey diversity on components of the trophic niche (TNW = total niche width of a population [yellow arrows], BIC = between-individual component [blue arrows], and WIC $=$ withinindividual component [orange arrows]). This conceptual view illustrates that prey diversity, and not prey density, act as the true bottleneck in driving predator niche variation because the diversity of available resources limits the baseline from where individuals can segregate in prey utilization. Arrows and boxes in red represent scenarios under resource limitations (both low prey abundance and diversity), whereas the opposite (high prey abundance and diversity) is presented in green. Dashed arrows show potential predator-prey interactions under the two scenarios (red = resource limitations and green = no resource limitations).

Figure 2. Map of Norway showing the location of the sampling sites used in this study and annual mean temperatures $\left({ }^{\circ} \mathrm{C}\right.$) according to Worldclim (Hijmans, Cameron, Parra, Jones, \& Jarvis, 2005) (A). Finer location of sampling sites in Beiarelva (B) and Litjvasselva and Klubbvasselva (C).

Figure 3. Linear relationships between Chesson selectivity index of brown trout and the relative contribution (\%) of each prey type in the benthos (A-H) showing that prey categories are consumed irrespective of their relative abundance in the environment. Note that Chesson's index is based on proportional data, so no units are displayed. This index varies from zero (complete avoidance) to one (complete preference). Fitted line (red line) is shown in all models, whereas 95\% confidence intervals (black lines) and bootstrapped 95% confidence intervals (dashed lines) only are shown for statistically significant
relationships. 95\% confidence limits intervals were reliable in Diptera (C), Ephemeroptera (F) and Plecoptera (G). Model outputs are available in Appendix 3.

Figure 4. OMI (Outlying Mean Index) analysis showing realised (prey used by brown trout) and potential trophic niches (prey resources that are accessible and potentially can be utilised by brown trout). The blue polygon represents the overall diversity of available resources (potential trophic niches) and the orange polygon represents the realised trophic niche (resource use) of brown trout for each river system (A, B and C). The part D shows subniche (realised) positions according to riverine systems compared to the potential trophic niche (blue polygon). The scatterplot (E) illustrates prey' niche positions in red and canonical weights of available prey categories (potential trophic niches) in black of the among-riverine comparison (D).

Figure 5. Linear relationships between trophic niche components and ecological opportunity (Shannon index, taxon richness and prey density). Note panels about prey density only included most relevant prey categories according to our best models (Table 1). $\mathrm{TNW}=$ total niche width of a population (A-C), WIC = within-individual component (D-F), BIC = between-individual component (G-I), WIC/TNW = inter-individual diet variation (J-L) and $\mathrm{PS}_{\mathrm{i}}=$ individual specialisation (M-O). Fitted line (red line) is shown in all models, but 95% confidence intervals (black lines) and bootstrapped 95% confidence intervals (dashed lines) only are shown for statistically significant relationships. 95\% confidence limits intervals were reliable in all cases. Model outputs are available in Appendix 4.

Figure 6. Violin plots showing the seasonal (month) variation of the components of ecological opportunity (A-C) and trophic niche components (D-H). Statistically significant seasonal effects were found only for total niche width of a population (TNW) and individual specialisation $\left(\mathrm{PS}_{\mathrm{i}}\right)$, see Table 2 for all model configurations. WIC $=$ within-individual component, $\mathrm{BIC}=$ between-individual component and $\mathrm{WIC} / \mathrm{TNW}=$ inter-individual diet variation. April $=4$, June $=6$, July $=7$, August $=8$, September $=9$, and October $=10$. Seasonal variation of the absolute abundance of the most represented prey categories (Chironomidae, Ephemeroptera, Hydracarina, Oligochaeta, Plecoptera, Simuliidae and Trichoptera) is shown in the Appendix 4.
methods for further details. Statistically significant outcomes are marked in bold.

Prey category	Code	Outlying Mean Index (OMI)	Standard deviation of OMI	P-value
Ostracoda	Ost	10.8	2.784	$\mathbf{0 . 0 2 9}$
Lymnaeidae	Lym	12.7	4.511	$\mathbf{0 . 0 0 2}$
Planorbidae	Pla	57.0	3.685	$\mathbf{0 . 0 0 2}$
Diptera (L)	Dip	7.3	1.915	0.062
Chironomidae (L)	Chi	0.1	0.399	0.312
Ceratopogonidae (L)	Cer	6.0	2.283	$\mathbf{0 . 0 3 9}$
Pericoma sp. (L)	Psy	4.2	-0.211	0.396
Simuliidae (L)	Sim	1.7	5.223	$\mathbf{0 . 0 0 1}$
Tipulidae (L)	Tip	1.2	0.200	0.311
Trichoptera (L)	Tri	0.1	0.905	0.176
Coleoptera	Col	1.5	-0.119	0.439
Hemiptera (Heteroptera)	Hem	3.5	-0.658	0.898
Ephemeroptera (N)	Eph	0.1	4.464	$\mathbf{0 . 0 0 1}$
Plecoptera (N)	Ple	0.2	2.979	$\mathbf{0 . 0 0 6}$
Hydracarina	Hyd	1.0	-0.073	0.461
Megaloptera (L)	Meg	46.4	1.183	0.133
Oligochaeta	Oli	1.4	3.322	$\mathbf{0 . 0 0 7}$
Copepoda	Cop	17.5	1.607	0.082
Collembola	Coll	3.3	-0.451	0.511
Surface prey	Ins	0.5	3.977	$\mathbf{0 . 0 0 1}$
Fish	Fis	5.2	2.669	$\mathbf{0 . 0 1 9}$

		Dependent variable (components of the trophic niche of brown trout)				
		TNW	WIC	BIC	WIC/TNW	PS ${ }_{\text {i }}$
Parametric coefficients						
Constant (Intercept)	Estimate	1.040	0.015	1.013	0.050	0.401
	t-value	5.513 ($\boldsymbol{P}<\mathbf{0 . 0 0 1}$)	0.523 ($P=0.603$)	$5.579(\boldsymbol{P}<\mathbf{0 . 0 0 1})$	3.157 ($\boldsymbol{P}=\mathbf{0 . 0 0 2)}$	9.212 ($\boldsymbol{P}<\mathbf{0 . 0 0 1}$)
	CI	0.756, 1.337	-0.0492, 0.0743	0.689, 1.282	0.0248, 0.0853	0.3203, 0.4890
Fish length (mm)	Estimate	0.002	0.0004	-	0.0003	-0.0004
	t-value	1.439 ($P=0.155$)	$1.452(P=0.151)$	-	1.661 ($P=0.101$)	$-1.527(P=0.131)$
	CI	-0.0014, 0.0047	-0.0001, 0.0010	-	0.0000, 0.0006	-0.0010, 0.0002
Richness	Estimate	0.338	-	0.361	-	-0.070
	t-value	3.553 ($\mathbf{P}<\mathbf{0 . 0 0 1)}$	-	4.003 ($\mathbf{P}<\mathbf{0 . 0 0 1)}$	-	-3.183 ($\mathbf{P = 0 . 0 0 2 \text {) }}$
	CI	0.1828, 0.5454	-	0.2077, 0.5302	-	-0.1256, -0.0254
Shannon	Estimate	-	0.043	-	-	-
	t-value	-	2.821 ($\boldsymbol{P}=\mathbf{0 . 0 0 6)}$	-	-	-
	CI	-	0.0122, 0.0814	-	-	-
Chironomidae density (ind $/ \mathrm{m}^{2}$)	Estimate	-0.048	-	-0.039	-	0.006
	t-value	-2.775 ($\boldsymbol{P = 0 . 0 0 7 \text {) }}$	-	-2.775 ($\boldsymbol{P}=\mathbf{0 . 0 2 1)}$	-	$1.592(P=0.116)$
	CI	-0.0795, -0.0078	-	-0.0760, -0.0012	-	-0.0034, 0.0142
Ephemeroptera density (ind/m²)	Estimate	-	-	-	-0.003	-
	t-value	-	-	-	-1.291 ($P=0.201$)	-
	CI	-	-	-	-0.0074, 0.0010	-
Oligochaeta density (ind/m²)	Estimate	-	-0.010	-	-0.005	-
	t-value	-	-3.320 ($\boldsymbol{P}=\mathbf{0 . 0 0 1}$)	-	-2.485 ($\boldsymbol{P}=\mathbf{0 . 0 1 5}$)	-
	CI	-	-0.0175, -0.0023	-	-0.0094, 0.0000	-
Smooth terms						
Seasonal effects	Edf	1.617	-	1.557	-	1.761
	F-value	1.617 ($\boldsymbol{P}=\mathbf{0 . 0 4 4}$)	-	$4.208(P=0.057)$	-	5.589 ($\boldsymbol{P}=\mathbf{0 . 0 1 4)}$
Observations		73	73	73	73	73
Adjusted R ${ }^{2}$		0.31	0.20	0.30	0.10	0.31
GCV		0.030	0.002	0.029	0.001	0.002
Deviance explained		35.3	23	33.7	14	35.3

Table 2. Summary table of the selected models according to Δ AIC values (see Appendix 5 for model selection table including models with Δ AIC <2 relative to best model) explaining the niche variation at the individual and population levels of brown trout. Total niche width of a population (TNW), within-individual component (WIC), betweenindividual component (BIC), inter-individual diet variation (WIC/TNW), individual specialisation $\left(\mathrm{PS}_{\mathrm{i}}\right)$, and ecological opportunity [in terms of diversity (Shannon index and taxon richness) and prey density]. Seasonal effects $=\mathrm{s}($ Month $)$. Edf $=$ estimated degree of freedom for smooth terms are shown. Bootstrapped 95\% confidence intervals (CI) for parametric coefficients. Statistically significant model fits are marked in bold.

Table 3. Relative variable importance of the best models according to model averaging ($\Delta \mathrm{AIC}<2$) (see Appendix 5 for model selection table including models with $\Delta \mathrm{AIC}<2$ relative to best model) showing the most influential variables responsible of niche variation at the individual and population levels. Total niche width of a population (TNW), within-individual component (WIC), between-individual component (BIC), inter-individual diet variation (WIC/TNW), individual specialisation (PS_{i}). $n=$ number of containing models. The relative variable importance ranges from 0 to 1 , and thus 1 indicates that a variable was included in all models with substantial support. The most important variables in each model are marked in bold.

	TNW		WIC		BIC		WIC/TNW		PS ${ }_{\text {i }}$	
	Importance	Models \qquad (n)	Importance	Models \qquad	Importance	Models (n)	Importance	Models (n)	Importance	Models (n)
Predictor variables										
Shannon	0.06	2	1.00	11	0.15	2	0.34	7	0.09	3
Richness	1.00	21			1.00	11	0.13	3	1.00	29
Fish length (mm)			0.92	10	0.20	2	0.92	20	0.64	19
Chironomidae density (ind $/ \mathrm{m}^{2}$)	1.00	21	0.07	1	1.00	11	0.07	2	0.40	11
Plecoptera density (ind/m²)	$\underline{0.57}$	12	0.16	2	0.28	3	0.05	1	0.33	$\underline{9}$
Ephemeroptera density (ind $/ \mathrm{m}^{2}$)	$\underline{0.15}$	4	0.07	1	0.07	1	0.42	10	0.12	$\underline{5}$
Trichoptera density (ind $/ \mathrm{m}^{2}$)	$\underline{0.07}$	2	0.23	2	0.07	1	0.14	3	0.05	2
Simuliidae density	$\underline{0.03}$	1	0.07	1	0.07	1	0.07	2	0.19	$\underline{6}$
Hydracarina density (ind $/ \mathrm{m}^{2}$)	$\underline{0.17}$	4	0.07	1	0.08	1	0.11	3	0.07	3
Oligochaeta density (ind $/ \mathrm{m}^{2}$)	$\underline{0.29}$	6	1.00	11	0.07	1	0.96	21	0.05	2
$\underline{\text { Smooth terms }}$										
Seasonal effects	1.00	21	0.07	1	1.00	11	0.03	1	1.00	29

	TNW		WIC		BIC		WIC/TNW		PS ${ }_{\text {i }}$	
	Importance	Models (n)	Importance	Models (n)	Importance	Models (n)	Importance	Models (n)	Importance	Models (n)
Predictor variables										
Shannon	0.07	1	0.87	16	0.10	2	0.43	17	0.04	1
Richness	0.85	10	0.04	1	0.95	17	0.09	5	0.39	6
Fish length (mm)	1.00	12	1.00	19	1.00	18	0.83	34	1.00	16
Intraspecific competition (ind $/ \mathrm{m}^{2}$)	0.06	1	0.27	5	0.09	2	0.27	12	0.05	1
Interspecific competition (ind $/ \mathrm{m}^{2}$)	0.09	1	0.87	16	0.11	2	0.83	34	0.14	3
Chironomidae density (ind $/ \mathrm{m}^{2}$)	1.00	12	0.04	1	1.00	18	0.04	2	1.00	16
Plecoptera density (ind $/ \mathrm{m}^{2}$)	0.06	1	0.60	11	0.09	2	0.80	33	0.05	1
Ephemeroptera density (ind $/ \mathrm{m}^{2}$)	0.07	1	0.09	2	0.09	2	0.16	8	0.05	1
Trichoptera density (ind/m²)	0.12	1	0.04	1	0.45	8	0.29	13	0.21	$\underline{3}$
Simuliidae density	0.07	1	0.11	2	0.04	1	0.02	1	0.12	$\underline{2}$
Hydracarina density (ind $/ \mathrm{m}^{2}$)	0.14	2	0.16	3	0.09	2	0.21	9	0.87	14
Oligochaeta density (ind $/ \mathrm{m}^{2}$)	$\underline{0.07}$	1	0.14	14	0.10	2	0.77	31	0.10	2
Best model	$\begin{gathered} \text { TNW } \sim \text { Richness + } \\ \text { Length + } \\ \text { Chironomidae density } \end{gathered}$		WIC ~ Shannon + Interspecific competition + Length + Plecoptera density + Oligochaeta density		$\begin{gathered} \text { BIC } \sim \text { Richness + } \\ \text { Length }+ \\ \text { Chironomidae density } \end{gathered}$		WIC/TNW ~ Shannon + Interspecific competition + Length + Plecoptera density + Oligochaeta density		PS $\mathrm{S}_{\mathrm{i}} \sim$ Length + Chironomidae density + Hydracarina density	

Table 4. Relative variable importance of the best models for the subset of data that included fish density according to model averaging ($\Delta \mathrm{AIC}<2$) (see Appendix 6 for model selection table including models with $\Delta \mathrm{AIC}<2$ relative to best model) showing the most influential variables responsible of niche variation at the individual and population levels. Total niche width of a population (TNW), within-individual component (WIC), between-individual component (BIC), inter-individual diet variation (WIC/TNW), individual specialisation (PS_{i}). $n=$ number of containing models. The relative variable importance ranges from 0 to 1 , and thus 1 indicates that a variable was included in all models with substantial support. The most important variables in each model are marked in bold.

Figure 1. Conceptual view of the effect of ecological opportunity in terms of prey diversity on components of the trophic niche [TNW = total niche width of a population (yellow arrows), BIC = between-individual component (blue arrows), and WIC = within-individual component (orange arrows)]. This conceptual view illustrates that prey diversity, and not prey density, act as the true bottleneck in driving predator niche variation because the diversity of available resources limits the baseline from where individuals can segregate in prey utilization. Arrows and boxes in red represent scenarios under resource limitations (both low prey abundance and diversity), whereas the opposite (high prey abundance and diversity) is presented in green. Dashed arrows show potential predator-prey interactions under the two scenarios (red $=$ resource limitations and green $=$ no resource limitations).

Annual mean temperature $\left({ }^{\circ} \mathrm{C}\right)$

Figure 2. Map of Norway showing the location of the sampling sites used in this study and annual mean temperatures (${ }^{\circ} \mathrm{C}$) according to Worldclim (Hijmans, Cameron, Parra, Jones, \& Jarvis, 2005) (A). Finer location of sampling sites in Beiarelva (B) and Litjvasselva and Klubbvasselva (C).

$$
211 \times 178 \mathrm{~mm}(300 \times 300 \text { DPI })
$$

Figure 3. Linear relationships between Chesson selectivity index of brown trout and the relative contribution (\%) of each prey type in the benthos (A-H) showing that prey categories are consumed irrespective of their relative abundance in the environment. Note that Chesson's index is based on proportional data, so no units are displayed. This index varies from zero (complete avoidance) to one (complete preference). Fitted line (red line) is shown in all models, whereas 95\% confidence intervals (black lines) and bootstrapped 95\% confidence intervals (dashed lines) only are shown for statistically significant relationships. 95\% confidence limits intervals were reliable in Diptera (C), Ephemeroptera (F) and Plecoptera (G). Model outputs are available in Appendix 3.

Figure 4. OMI (Outlying Mean Index) analysis showing realised (prey used by brown trout) and potential trophic niches (prey resources that are accessible and potentially can be utilised by brown trout). The blue polygon represents the overall diversity of available resources (potential trophic niches) and the orange polygon represents the realised trophic niche (resource use) of brown trout for each river system (A, B and C). The part D shows subniche (realised) positions according to riverine systems compared to the potential trophic niche (blue polygon). The scatterplot (E) illustrates prey' niche positions in red and canonical weights of available prey categories (potential trophic niches) in black of the among-riverine comparison (D).

Figure 5. Linear relationships between trophic niche components and ecological opportunity (Shannon index, taxon richness and prey density). Note panels about prey density only included most relevant prey categories according to our best models (Table 1). TNW = total niche width of a population (A-C), WIC = within-individual component (D-F), BIC = between-individual component (G-I), WIC/TNW = inter-individual diet variation (J-L) and PSi = individual specialisation ($\mathrm{M}-\mathrm{O}$). Fitted line (red line) is shown in all models, but 95% confidence intervals (black lines) and bootstrapped 95\% confidence intervals (dashed lines) only are shown for statistically significant relationships. 95\% confidence limits intervals were reliable in all cases. Model outputs are available in Appendix 4.

```
144\times116mm (300 x 300 DPI)
```


Figure 6. Violin plots showing the seasonal (month) variation of the components of ecological opportunity (A-C) and trophic niche components (D-H). Statistically significant seasonal effects were found only for total niche width of a population (TNW) and individual specialisation (PSi), see Table 2 for all model configurations. WIC $=$ within-individual component, BIC $=$ between-individual component and WIC/TNW $=$ inter-individual diet variation. April $=4$, June $=6$, July $=7$, August $=8$, September $=9$, and October $=10$.

Seasonal variation of the absolute abundance of the most represented prey categories (Chironomidae, Ephemeroptera, Hydracarina, Oligochaeta, Plecoptera, Simuliidae and Trichoptera) is shown in the Appendix
4.

