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Joint changes in RNA, RNA 
polymerase II, and promoter 
activity through the cell cycle 
identify non‑coding RNAs involved 
in proliferation
Siv Anita Hegre1,7, Helle Samdal2,7, Antonin Klima2, Endre B. Stovner2,3, Kristin G. Nørsett2,6, 
Nina Beate Liabakk1, Lene Christin Olsen1,4,5, Konika Chawla1,4, Per Arne Aas1 &  
Pål Sætrom1,2,3,4*

Proper regulation of the cell cycle is necessary for normal growth and development of all organisms. 
Conversely, altered cell cycle regulation often underlies proliferative diseases such as cancer. Long 
non‑coding RNAs (lncRNAs) are recognized as important regulators of gene expression and are 
often found dysregulated in diseases, including cancers. However, identifying lncRNAs with cell 
cycle functions is challenging due to their often low and cell‑type specific expression. We present a 
highly effective method that analyses changes in promoter activity, transcription, and RNA levels for 
identifying genes enriched for cell cycle functions. Specifically, by combining RNA sequencing with 
ChIP sequencing through the cell cycle of synchronized human keratinocytes, we identified 1009 
genes with cell cycle‑dependent expression and correlated changes in RNA polymerase II occupancy 
or promoter activity as measured by histone 3 lysine 4 trimethylation (H3K4me3). These genes were 
highly enriched for genes with known cell cycle functions and included 57 lncRNAs. We selected four 
of these lncRNAs—SNHG26, EMSLR, ZFAS1, and EPB41L4A-AS1—for further experimental validation 
and found that knockdown of each of the four lncRNAs affected cell cycle phase distributions and 
reduced proliferation in multiple cell lines. These results show that many genes with cell cycle 
functions have concomitant cell‑cycle dependent changes in promoter activity, transcription, and RNA 
levels and support that our multi‑omics method is well suited for identifying lncRNAs involved in the 
cell cycle.

Genome-wide gene expression studies have revealed that several genes are regulated in a cell cycle-specific 
 manner1–5. Many of these genes are involved in basic cellular processes, such as cell cycle control, DNA repair, 
DNA replication, and chromosome  segregation2,6. One example is the cyclins, which in complex with cyclin-
dependent kinases (CDKs), control cell cycle progression. The cyclins are periodically expressed throughout the 
cell cycle; the E-type cyclins CCNE1 and CCNE2 are G1/S-specific2,7,8, whereas the B-type cyclins CCNB1 and 
CCNB2 are G2/M-specific2,9,10.

Long non-coding RNAs (lncRNAs) have emerged as important regulators of gene expression at the epige-
netic, transcriptional, and translational level, and are recognized as key modulators in several cancers as well as 
neurological, autoimmune, and cardiovascular diseases. LncRNAs are more than 200 nucleotides long with little 
or no protein coding potential, and they generally have a more cell type-specific expression pattern compared to 
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 mRNAs11. LncRNAs are classified into five main categories according to where they are encoded in the genome 
in relation to mRNAs: sense, antisense, bi-directional, intergenic, and intronic. They are able to regulate the 
gene expression at the transcriptional level by acting as signals, guides, scaffolds, or  decoys12. Most lncRNAs 
are transcribed by RNA Polymerase II (Pol II) and are poly-adenylated and 5′-capped like  mRNAs13. A curated 
knowledgebase of lncRNAs from existing databases and published literature indicates that there are more than 
268,000 human lncRNA transcripts, and only a few of them have known functional  roles14.

Several lncRNAs are involved in the cell cycle, possibly through the regulation of other well-known cell cycle 
regulators like the cyclins, p53, retinoblastoma protein (RB), CDKs, and the CDK  inhibitors15. Many lncRNAs 
have a cyclic expression profile, and the majority peak during the G1 phase. The cell cycle phase-specific expres-
sion of lncRNAs may be consistent with their phase-specific function. For instance, the expression of Metastasis 
Associated Lung Adenocarcinoma Transcript 1 (MALAT1) is highest during G1/S transition and mitosis, which 
is consistent with its independent function during these  phases16. A known cell cycle-associated lncRNA is the 
growth arrest-specific transcript 5 (GAS5), which is found downregulated in several cancers where its overex-
pression results in cell cycle arrest or apoptosis. In prostate cancer GAS5 functions as a tumor suppressor that 
inhibits proliferation by targeting the CDK inhibitor  p2717. Another known cell cycle-associated lncRNA is the 
zinc finger antisense 1 (ZFAS1). ZFAS1 can act as an oncogene in some cancer  types18,19, and as a tumor suppres-
sor in  others20, possibly depending on both type of tissue and state of progression.

The function of the majority of lncRNAs is still unknown, as only about 500–1500 have been functionally 
characterized. As lncRNAs can bind DNA, RNAs, and proteins, they can regulate the gene expression at the 
transcriptional, post-transcriptional, and epigenetic level. They can serve as signaling molecules, as sponges by 
binding microRNAs (miRNAs), and inhibit miRNA-induced degradation of mRNAs, as guides by recruiting 
transcription regulators, or act as scaffolds by binding proteins to regulate gene  expression21. As RNA molecules, 
lncRNAs need a physical proximity to exert their function. Thus, the subcellular localization of lncRNAs provides 
important information regarding their potential  function22. For example, nuclear enriched lncRNAs can act as 
transcriptional and epigenetic regulators, but they are unlikely to have any coding potential since translation 
occurs in the cytoplasm. In general, most lncRNAs demonstrate a stronger nuclear localization than  mRNAs23. 
Moreover, a higher cell type specificity means that targeting lncRNAs supposedly have less side-effects than 
targeting protein coding  genes24.

Some lncRNAs can regulate gene transcription by modulating histone  modifications25, although little is 
known about how lncRNAs are transcriptionally  regulated26. Histone modifications such as H3K4me3 and 
H3K27me3 are considered key epigenetic regulators of transcription. H3K4me3 is a mark of actively transcribed 
genes and H3K27me3 is associated with silenced  genes27. Previous studies have demonstrated that RNA sequenc-
ing (RNA-seq) combined with chromatin immunoprecipitation sequencing (ChIP-seq) are useful for detecting 
transcriptional fluctuations by correlating gene expression with changes in histone  modifications28,29. A study 
from Wan et.al combined RNA-seq with ChIP-seq and identified differential peaks for H3K4me3 and H3K27me3 
around the promoter area and at enhancer regions of differentially expressed lncRNAs in an Alzheimer’s disease 
mouse model compared to control, suggesting that most of these lncRNA genes were transcriptionally regulated 
by histone  modifications30. Since the majority of lncRNAs are spatially and temporally regulated and expressed, 
ChIP-seq is a sensitive method for capturing these changes by identifying enriched peak regions of histone 
modifications and other transcriptional  regulators26.

Building on our previous work, which identified protein coding genes with tissue-specific cell cycle-dependent 
 expression1, we set out to identify lncRNAs with cell cycle-dependent expression and potential cell cycle func-
tions. By combining RNA-seq and Pol II, H3K4me3, and H3K27me3 ChIP-seq data from synchronized HaCaT 
cells, we identified genes where expression and ChIP-seq signal were correlated and varied depending on the 
cell cycle. Genes with high correlation to Pol II or H3K4me3 were strongly enriched for cell cycle functions. 
From the RNA-seq data we identified 99 lncRNAs with cell cycle-dependent expression profiles; 57 of these had 
highly correlated Pol II or H3K4me3signals. We selected four lncRNAs for further functional characterization 
and showed that knockdown of these lncRNAs affected cell cycle phase distributions and reduced cell prolifera-
tion in multiple cell lines.

Results
Total RNA sequencing of HaCaT cells identifies cell cycle genes. Our group previously published 
a microarray-based study of cell cycle synchronized HaCaT cells identifying a set of genes with cell cycle-
dependent expression and strong enrichment for known cell cycle  functions1. Although our microarray-based 
study identified several genes with significant periodic expression patterns during the cell cycle, the microarrays 
precluded the detection of non-coding RNA (ncRNA) transcripts. To identify ncRNAs that are differentially 
expressed during cell cycle, we therefore set out to do total RNA-seq on synchronized HaCaT cells.

To study cell cycle regulated genes, it is essential to obtain a proper cell synchronization. In two independent 
experiments (Epi1, Epi2), we used a double thymidine block to arrest and subsequently release HaCaT cells at 
the G1/S transition, and collected cells every third hour for 24 h, covering approximately two cycles of DNA 
replication (Fig. 1A,B). Flow cytometry analyses of the cells’ DNA content showed that the distributions of cells 
through the cell cycle were reproducible between the two independent experiments (Fig. 1A). Upon release from 
thymidine block, approximately 90% of the cells progressed into S phase and continued through the cell cycle 
(Fig. 1B). Cells gradually lost synchrony, such that 70% instead of 90% of the cells synchronously re-entered 
the second S phase. Based on these results, we considered the HaCaT cells to be effectively synchronized and 
proceeded with gene expression profiling of the two experiments by using total RNA-seq.

Genes that had a cell cycle profile were identified using PLS regression, as described  in1. We identified 1803 
genes with significant periodic expression patterns during the HaCaT cell cycle. These genes are referred to as 
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Figure 1.  Total RNA-seq of synchronized HaCaT cells identifies cyclic gene expression patterns. (A) HaCaT 
cells were synchronized by double thymidine block in two independent experiments (Epi1, Epi2) and cell 
synchrony was monitored by flow cytometry of propidium iodide-stained cells. The figure shows superimposed 
DNA content profiles of the two replicate experiments for each time point. Horizontal axes show DNA content 
(arbitrary units) and vertical axes show the number of cells with the corresponding DNA content. Control is 
unsynchronized cells. (B) Percentage of cells assigned to G1, S, and G2/M phases for each of the time points 
analyzed. Values and error bars are averages and standard deviations (n = 2). (C) Percentage of cell cycle genes 
assigned to G1/S (21.5%), S (46.3%), G2 (10.1%), G2/M (3.8%), and M/G1 (18.2%) phases. (D) Heatmap 
showing the expression changes of the cell cycle genes relative to their median expression. Colour bars in the 
gene margin (y axis) show the genes’ assigned cell cycle phase; blue bars above the time points (x axis) show 
the time points having the highest percentage of S phase cells. (E) Distribution of the genes’ average RNA-seq 
expression for cell cycle genes in G1/S (n = 388), S (n = 835), G2 (n = 183), G2/M (n = 68), and M/G1 (n = 329) 
phases. ****p ≤ 0.0001 (Welch’s t-test, p-values for each phase group against S phase were Bonferroni corrected 
for multiple testing). (F) RNA-seq profiles for cell cycle genes CCNB1, CCNE2, PCNA, and TOP2A. (G) Relative 
expression profiles for CCNB1, CCNE2, PCNA, and TOP2A as measured by RT-qPCR in two new biological 
replicates (Val1, Val2; Figure S3). Spearman’s correlation coefficients (ρ) were calculated based on the mean 
RNA-seq expression per time point (Epi1, Epi2) and mean RT-qPCR fold change per time point (Val1, Val2).
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cell cycle genes. Using the Ensembl BioMart tool (human genes dataset GRCh38.p13), we found 1692 protein 
coding genes and 108 ncRNAs (Supplementary Dataset 1). Three genes were not detected in BioMart. We used 
existing  annotations2 to subdivide the genes into five main groups that represent G1/S, S, G2, G2/M, and M/G1 
phases of the cell cycle. Of the 1803 cell cycle genes, 835 were assigned to S phase, whereas only 68 were assigned 
to G2/M phase (Fig. 1C); the genes’ cyclic expression patterns are presented in Fig. 1D. Examining the RNA-seq 
expression for the 1803 cell cycle genes by their different cell cycle phases, we observed a significant difference 
in gene expression between different phases (analysis of variance (ANOVA) p-value < 2e−16) and that S phase 
genes had a significantly lower expression level than the genes expressed in the other phases (Fig. 1E). This was 
in accordance with our previous  findings1. When examining the genes with comparable expression levels to the 
cell cycle genes (that is, mean expression ≥ the cell cycle gene with lowest mean expression) but no significant 
cell cycle-dependent expression pattern (!CC genes), we found that these genes had a bimodal distribution of 
expression levels (Figure S1). We therefore divided this group of genes into genes with high expression level 
(!CC_high, n = 9259) and genes with low expression level (!CC_low, n = 3003) as reference sets for comparison 
against the cell cycle genes in further analysis.

To further examine cell cycle profiles at the single gene level, we selected four genes with cell cycle-specific 
expression patterns and known functions in the cell cycle: Proliferating cell nuclear antigen (PCNA), Cyclin E2 
(CCNE2), DNA topoisomerase 2-alpha (TOP2A), and Cyclin B1 (CCNB1). PCNA is essential for DNA replication 
whereas CCNE2 plays a role in the G1/S transition of the cell cycle. Thus, both PCNA and CCNE2 are G1/S-
specific genes. TOP2A is involved in processes such as chromosome condensation and chromatid separation 
whereas CCNB1 is a regulatory protein involved in mitosis. Thus, both TOP2A and CCNB1 are G2/M-specific 
genes. For all four genes, our RNA-seq data corresponded with their previously reported cell cycle-dependent 
expression (Fig. 1F). Technical validation by RT-qPCR confirmed the RNA-seq expression patterns (Figure S2). 
As a biological validation of the RNA-seq data, we did two new double thymidine block cell cycle synchroni-
zation experiments (Val1, Val2) in HaCaT cells (Figure S3). Analyses by RT-qPCR showed a high correlation 
between the original RNA-seq profiles and the new validation experiments (Fig. 1G). Thus, both the biological 
and technical validation indicated that gene expression profiling by total RNA-seq of HaCaT cells could suc-
cessfully identify cell cycle genes.

ChIP sequencing maps dynamic transcriptional responses in HaCaT cell cycle. By gene expres-
sion profiling we identified a set of genes with cell cycle-dependent expression patterns in HaCaT cells. We 
wanted to further characterize the dynamic transcriptional response of these genes during the cell cycle. Spe-
cifically, we asked whether the genes’ expression changes were accompanied by similar cell cycle-dependent 
changes in Pol II occupancy at the genes’ transcription start sites (TSSs). Moreover, we asked whether the histone 
modifications H3K4me3, associated with actively transcribed genes, and H3K27me3, associated with silenced 
genes, also changed dynamically with gene expression changes. Using ChIP-seq we measured and quantified 
genome-wide Pol II, H3K4me3, and H3K27me3 occupancy during two independent synchronization experi-
ments (Epi1, Epi2).

First, we performed a sanity check of our sequencing data, by correlating gene expression levels with histone 
modification patterns and Pol II occupancy in TSS regions for all genes expressed in our RNA-seq data. As Pol 
II and H3K4me3 both are linked to actively transcribed genes, we expected a positive correlation with gene 
expression. In contrast, we expected a negative correlation with gene expression for the H3K27me3 modifica-
tion. Indeed, we found that enhanced Pol II and H3K4me3 signals correlated well with highly expressed genes 
(Spearman’s correlation coefficient ρ = 0.61 and ρ = 0.64, respectively), whereas there was a negative correlation 
between gene expression and H3K27me3 signal (ρ = − 0.34) (Fig. 2A–C). Similarly, dividing the genes into quan-
tiles based on their RNA-seq expression showed that highly expressed genes had the highest Pol II and H3K4me3 
signals, whereas genes that were expressed at a low level or not expressed, had low levels of Pol II and H3K4me3 
(Figure S4). The opposite was observed for H3K27me3, where genes that were not expressed or expressed at a 
low level had the highest H3K27me3 signal.

When investigating the Pol II signal, we observed low signal at time 12 h in the Epi2 experiment (Figure S4), 
but western blot analysis of the global Pol II protein level throughout the cell cycle indicated no differences in 
Pol II protein levels between different time points in the cell cycle or between the two independent synchroni-
zation experiments (Figure S5A). Therefore, we concluded that this was not a biological but a technical issue 

Figure 2.  ChIP-seq of synchronized HaCaT cells identifies dynamic H3K4me3, H3K27me3, and Pol II changes 
during cell cycle. (A–C) Average RNA-seq expression (genes expressed > 0) plotted against average (A) Pol II 
(n = 30,744), (B) H3K4m3 (n = 30,729), and (C) H3K27me3 (n = 30,732) ChIP-seq signal normalized against 
input. Values are Spearman’s correlation coefficients (ρ). (D) Percentage of cell cycle gene promoters containing 
Pol II, H3K4me3 (K4), or H3K27me3 (K27) marks and combined Pol II/K4, Pol II/K27, or bivalent K4/K27 
marks. (E) The UCSC Genome browser (GRCh38/hg38) view of RNA-seq, Pol II, H3K4me3, H3K27me3, and 
input ChIP-seq data at the CCNB1 (NM_031966) gene locus. (F) Pol II ChIP-seq profiles for cell cycle genes 
CCNB1, CCNE2, PCNA, and TOP2A. (G) Biological validation of Pol II ChIP-seq data for CCNB1, CCNE2, 
PCNA, and TOP2A. Spearman’s correlation coefficients (ρ) were calculated based on the mean Pol II ChIP-
seq signal per time point (Epi1, Epi2) and mean Pol II ChIP-qPCR fold change per time point from the new 
biological replicates (Val1, Val2; Figure S3). (H–J) Distribution of the genes’ average (H) Pol II (n = 1737), (I) 
H3K4me3 (n = 1726), and (J) H3K27me3 (n = 802) ChIP-seq signal (normalized against input) for cell cycle 
genes in G1/S, S, G2, G2/M, and M/G1 phases. ns p > 0.05, *p ≤ 0.05; **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001 
(Welch’s t-test, p-values for each phase group against S phase were Bonferroni corrected for multiple testing).
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and decided to exclude the sample (12 h, Epi2) in the following analysis. We also investigated global H3K4me3 
and H3K27me3 modification levels and found no changes during cell cycle or between the two independent 
synchronization experiments (Figure S5B).

As cell cycle control is a central housekeeping function, we expected the cell cycle genes we identified by 
RNA-seq to be enriched for H3K4me3 within their promoters, as this epigenetic mark is associated with actively 
transcribed genes. We also expected the genes to be enriched for Pol II indicating active promoters. Indeed, 
96% of the cell cycle genes had promoter regions containing H3K4me3 or Pol II marks. Consistent with these 
genes being highly expressed, only 45% of the cell cycle gene promoters contained H3K27me3 marks (Fig. 2D). 
In 95% of the gene promoters we found combined Pol II/H3K4me3 marks, whereas 43% of the gene promoters 
contained combined Pol II/H3K27me3 or bivalent H3K4me3/H3K27me3 marks.

To further inspect the data quality, we visualized RNA-seq and ChIP-seq data in the UCSC Genome browser. 
CCNB1 was one of the well-known cell cycle genes we identified, and we observed RNA-seq reads for all exons 
and Pol II ChIP-seq signals were captured around the TSS (Fig. 2E). Additionally, H3K4me3 was highly enriched 
at this active promoter near TSS, whereas H3K27me3 signals were at the level of the background signal (input 
ChIP-seq). In contrast, Myelin transcription factor 1 (MYT1) is a transcription factor involved in the development 
of the nervous system, and this gene was not expressed in our HaCaT RNA-seq data (Figure S6). The H3K27me3 
histone modification was captured at the MYT1 locus, consistent with this gene not being expressed. Pol II and 
H3K4me3 signals were observed, but not higher than the level of the background signal.

To characterize the cell cycle ChIP-seq profiles, we first focused on the four cell cycle genes, CCNB1, CCNE2, 
PCNA, and TOP2A. The Pol II ChIP-seq profiles for CCNB1 and TOP2A indicated these genes had the highest 
Pol II signal and active transcription at 9 and 24 h (Fig. 2F), which is consistent with both genes having increased 
expression in the G2/M phase of the cell cycle (Fig. 1F). Additionally, H3K4me3 signals for CCNB1 and TOP2A 
showed the same cyclic patterns peaking in G2/M phase (Figure S7A). CCNE2 and PCNA are both G1/S-specific 
genes, but only CCNE2 showed the expected Pol II (Fig. 2F) and H3K4me3 (Figure S7A) profiles peaking at 
0–3 and 15–18 h. As PCNA displayed inconsistent RNA-seq and ChIP-seq profiles, we inspected the sequenc-
ing data for the PCNA locus in the UCSC Genome browser (Figure S8). Interestingly, PCNA has two different 
transcript variants separated by 6,664 bp between their TSSs. As illustrated in Figure S8, RNA-seq reads were 
from the short transcript variant (NM_182649) with a cyclic expression pattern peaking in the G1/S phase. In 
the ChIP-seq data analysis, the longest transcript variant is always selected (see “Methods”). Thus, the ChIP-seq 
signals we observed for PCNA were the weak signals from the longest transcript variant (NM_002592).This 
explains the inconsistency between RNA-seq and ChIP-seq data at the PCNA locus, and could also be the case for 
other genes with multiple TSSs separated by more than 5000 bp. The H3K27me3 ChIP-seq profiles for CCNB1, 
CCNE2, PCNA, and TOP2A showed negative H3K27me3 signal values, which are consistent with these genes 
being actively transcribed and highly expressed (Figure S7B).

To validate the Pol II ChIP-seq data for CCNB1, CCNE2, PCNA, and TOP2A we did Pol II ChIP-qPCR from 
the two new cell cycle synchronization experiments (Val1, Val2) in HaCaT cells. We designed PCR primers 
against the TSS region for these genes (Table S1); for PCNA we designed primers against the short transcript 
variant (NM_182649). For CCNB1, TOP2A, and CCNE2 we found good correspondence between the original 
Pol II ChIP-seq experiments and the Pol II ChIP-qPCR from the new validation experiments (Fig. 2G). Moreo-
ver, the Pol II ChIP-qPCR profile for the short PCNA transcript showed increased expression in the G1/S phase 
(Fig. 2G), which is consistent with the RNA-seq (Fig. 1F) and RT-qPCR (Fig. 1G) expression profiles for PCNA 
peaking in G1/S phase (Figure S9).

Since we observed a significant difference in gene expression between the S phase genes and the genes 
upregulated in the other cell cycle phases (Fig. 1E), we wanted to examine the distribution of Pol II, H3K4me3, 
and H3K27me3 ChIP-seq signals during cell cycle. We included cell cycle genes with positive ChIP-signal in at 
least two time points of the cell cycle. As for gene expression, we observed a significant difference in both Pol 
II and H3K4me3 signals between different cell cycle phases, with ANOVA p-values of 7.6e−11 and 1.6e−10, 
respectively. And as for gene expression, the S phase genes had significantly lower Pol II and H3K4me3 signals 
than the genes expressed in the other phases (Fig. 2H,I), with the exception of H3K4me3 signal for genes in 
G2 phase, which showed no significant difference from S phase genes. As expected, genes with high expression 
(!CC_high) showed significantly higher levels of Pol II and H3K4me3 signals than genes with low expression 
(!CC_low). There were no significant differences in H3K27me3 signal between different cell cycle phases, and 
as expected, !CC_low genes had significantly higher levels of H3K27me3 signal than !CC_high genes (Fig. 2J).

A set of cell cycle genes is highly correlated with Pol II and H3K4me3 changes and has strong 
enrichment for cell cycle functions. Having quantified gene expression and mapped histone modifica-
tion patterns together with Pol II occupancy during the cell cycle, we did an integrated bioinformatic analysis 
of RNA-seq and ChIP-seq data for the cell cycle genes. Specifically, we asked to what extent the genes’ RNA-seq 
expression through the cell cycle were correlated with their ChIP-seq data and whether such correlation pat-
terns were related to the genes’ functional role in the cell cycle. As a reference, we included the genes without cell 
cycle-dependent expression profiles, divided by their gene expression levels (!CC_high, !CC_low; Figure S1).

We found that all three gene sets (cell cycle (CC) genes, !CC_high, and !CC_low) on average showed a 
significant positive correlation for RNA-seq expression against Pol II ChIP-seq signal (Fig. 3A). Importantly, 
CC genes showed a significantly higher correlation than !CC genes. The cell cycle genes CCNB1 (Spearman’s 
ρ = 0.47), CCNE2 (ρ = 0.74), and TOP2A (ρ = 0.78) are examples of genes with high correlation values. We also 
found that CC genes and !CC_high genes, but not !CC_low genes, showed a significant positive correlation 
for RNA-seq expression against H3K4me3 ChIP-seq signal (Fig. 3B). Again, CC genes showed a significantly 
higher correlation than !CC genes. Correlation values for CCNB1, CCNE2, and TOP2A were ρ = 0.74, ρ = 0.24, 



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18952  | https://doi.org/10.1038/s41598-021-97909-w

www.nature.com/scientificreports/

Figure 3.  A set of cell cycle genes correlate with Pol II and H3K4me3 signals. (A,B) Cumulative distributions 
of Spearman’s correlation between RNA-seq expression and ChIP-seq signal through the cell cycle for the cell 
cycle (CC) genes, and other highly (!CC_high) and lowly (!CC_low) expressed genes. Marked on the x axis 
are the correlation values for CCNB1, CCNE2, and TOP2A. (A; Pol II) All three gene sets had a significant 
(p-value < 2.2e−16) positive correlation for RNA-seq against Pol II ChIP-seq. CC genes showed significantly 
higher correlation than !CC_high (p = 1.49e−11) and !CC_low (p-value < 2.2e−16). (B; H3K4me3) CC genes 
and !CC_high had a significant positive correlation for RNA-seq against H3K4me3 ChIP-seq with p-values of 
3.83e−15 and < 2.2e−16, respectively. P-value for the !CC_low gene set was not significant (p = 0.2287). CC genes 
showed significantly higher correlation than !CC_high (p = 0.0003859) and !CC_low (p = 1.002e−08). Significant 
differences were determined by Student’s t-test (unpaired, two-tailed) assuming unequal variances. (C) GO 
analysis for cell cycle genes. The results show GO biological process (BP), cellular component (CC), molecular 
functions (MF) terms, and KEGG and REACTOME pathways significantly enriched (p-values < 0.05) for cell 
cycle genes divided in five groups (Figure S11). (D) Cell cycle genes are divided into four groups based on the 
arrangement of TSSs and other nearby genes. Genes in group 1 (n = 127) have one single TSS and a TSS from at 
least one other gene within 10 kb. Genes in group 2 (n = 61) have one single TSS and no TSSs from other genes 
within 10 kb. Genes in group 3 (n = 356) have multiple TSSs all within 1 kb and a TSS from at least one other 
gene within 10 kb. Genes in group 4 (n = 152) have multiple TSSs all within 1 kb and no TSSs from other genes 
within 10 kb. (E) Odds ratios from Fisher’s exact tests comparing the fraction of highly correlated genes in the 
groups (d) with all cell cycle genes with Pol II signals (n = 1735). Group 1 p = 0.006, group 2 p = 0.026, group 3 
p = 0.028, and group 4 p = 0.041.



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:18952  | https://doi.org/10.1038/s41598-021-97909-w

www.nature.com/scientificreports/



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18952  | https://doi.org/10.1038/s41598-021-97909-w

www.nature.com/scientificreports/

and ρ = 0.58, respectively. There were no significant differences between the three gene sets for the H3K27me3 
modification (Figure S10).

Further, we divided the cell cycle genes in high (ρ > 0.2), low (ρ < − 0.2), and middle (ρ > − 0.2 and ρ < 0.2) 
correlated genes, based on the genes’ Spearman correlation value. We did a gene ontology (GO) analysis for 
five different groups (Figure S11); high correlation for both Pol II and H3K4me3 (n = 400), high correlation for 
Pol II only (n = 423), high correlation for H3K4me3 only (n = 186), middle correlation for Pol II or H3K4me3 
(n = 580), and low correlation for both Pol II and H3K4me3 (n = 125). We identified non-redundant terms among 
the top 20 significant terms within each GO category. The results showed that genes with high correlation for 
Pol II and H3K4me3 were specifically enriched for cell cycle-related terms, including cell cycle regulation, DNA 
replication, and nuclear division (Fig. 3C, Supplementary Dataset 2). Moreover, middle correlated genes were 
specifically enriched for cell signalling, including p53 signalling, whereas genes with low correlation were specifi-
cally enriched for initiation of replication. For H3K27me3, genes with high or middle correlation were weakly 
enriched for cell cycle functions whereas genes with low correlations were weakly enriched for the ribosome 
biogenesis pathway (Figure S12; Supplementary Dataset 3).

The combined RNA-seq and ChIP-seq analysis indicated distinct functions for cell cycle genes based on their 
correlation with Pol II and H3K4me3 signals, as highly correlated genes had strong enrichment for cell cycle 
functions. Nevertheless, we wondered to what extent the results were affected by ambiguous mapping of ChIP-
seq signals. Specifically, we wondered if the correlation was affected by whether the gene had one or multiple 
annotated TSSs and by whether the gene was isolated or had annotated TSSs for neighboring genes within its 
TSS region. Thus, we divided the cell cycle genes into four different groups based on the arrangement of TSSs and 
other nearby genes (Fig. 3D). Genes in group 1 had one single TSS and other genes within 10 kb, whereas genes 
in group 2 had one single TSS and no other genes within 10 kb. Genes in group 3 had multiple TSSs all within 
1 kb and other genes within 10 kb, whereas genes in group 4 had multiple TSSs all within 1 kb and no other genes 
within 10 kb. Compared with all cell cycle genes (CC), a larger fraction of genes with one TSS (groups 1, 2) were 
highly correlated with their Pol II signal (Fig. 3E); for genes in groups 3 and 4, the fractions were between those 
of all CC genes and single TSS genes. Moreover, for genes with clearly defined TSS areas and with no overlap with 
other genes (group 2 compared to 1 and group 4 compared to 3), there was a slightly larger fraction of highly 
correlated genes. We found no such differences for H3K4me3 and H3K27me3 modifications (Figures S13 and 
S14), possibly because these signals on average cover wider genomic regions than do Pol II.

Thus, whereas ambiguous gene annotations could explain low correlation levels for some genes with cell 
cycle functions, including PCNA, genes with cell cycle-dependent expression and correlated Pol II or H3K4me3 
changes were strongly enriched for known cell cycle functions. This result suggested that these highly correlated 
genes are prime candidates for functional follow-up, so we focused on lncRNAs among these genes.

Combined RNA‑seq and ChIP‑seq analysis identifies cell cycle‑associated lncRNAs. By com-
bining RNA profiling with ChIP-seq data, we identified 97 cell cycle lncRNAs (Table S2). Similar to a set of 57 
well-described cell cycle  genes2, these lncRNAs had higher expression in proliferating tissues than in non-pro-
liferating tissues (Fig. 4A), further supporting their potential role in proliferation. Thus, the combinational use 
of RNA-seq and ChIP-seq data enabled us to focus on lncRNAs with strong enrichment for cell cycle functions.

We selected four lncRNAs for further functional characterization. The two lncRNA candidates Small nucleo-
lar RNA host gene 26 (SNHG26) and E2F1 mRNA stabilizing lncRNA (EMSLR) were chosen as they had high 
correlation for Pol II and H3K4me3. SNHG26 is located between the genes TOMM7 and FAM126A on chromo-
some 7 (Fig. 4B), while EMSLR is located at the same chromosome between the genes FIS1 and IFT22 (Fig. 4C). 
The lncRNA ZNFX1 Antisense RNA 1 (ZFAS1) was identified among the candidates and since it has previously 
been reported to affect proliferation in different types of  cancer31, we chose this lncRNA as a candidate. ZFAS1 
is located between the genes DDX27 and ZNFX1 on chromosome 20 (Fig. 4D). In addition, we chose EPB41L4A 

Figure 4.  Joint RNA-seq and ChIP-seq analysis identifies lncRNA affecting cell growth and cell cycle 
progression. (A) Relative tissue expression (log transcript per kilobase million) of known cell cycle  genes2 
and our cell cycle lncRNAs in selected tissues from the Genotype-Tissue Expression (GTEx) project. Gene 
expression values were normalized to relative expression values by subtracting the gene’s average expression 
across all GTEx tissues. (B–E) The genomic loci of SNHG26, EMSLR, ZFAS1, and EPB41L4A-AS1 from 
the Ensembl Genome Browser (http:// www. ensem bl. org/). (F) RNA-seq profiles for SNHG26, EMSLR, 
EPB41L4A-AS1, and ZFAS1. (G) Relative expression profiles for SNHG26, EMSLR, EPB41L4A-AS1, and 
ZFAS1 as measured by RT-qPCR in two new biological replicates. Spearman’s correlation coefficients (ρ) 
were calculated based on the mean RNA-seq expression per time point (Epi1, Epi2) and mean RT-qPCR fold 
change per time point (Val1, Val2). (H) Effect of siRNA-mediated knockdown of SNHG26 (siRNA A1; siRNA 
A2 for A549), EMSLR (siRNA R1), EPB41L4A-AS1 (siRNA E1), and ZFAS1 (siRNA Z1) on proliferation in 
four different cell lines. Data are the number of cells following siRNA treatment relative to control-treated 
cells (percentage of control) as measured by cell counting. Bars and error bars are mean and SEM of three or 
more independent replicates. (*p ≤ 0.05; **p ≤ 0.01 (Welch’s t-test, Bonferroni corrected for multiple testing). 
ANOVA p-values from the hierarchical, linear model: SNHG26 p = 6.9e−4, EMSLR p = 3.92e−4, EPB41L4A-AS1 
p = 0.09, and ZFAS1 p = 0.371. (I) The distribution of cells in G1, S, and G2/M phases in response to knockdown 
of SNHG26 (siRNA A1), EMSLR (siRNA R1), EPB41L4A-AS1 (siRNA E1), and ZFAS1 (siRNA Z1) in HaCaT 
cells. Data are the difference in percentages of G1, S, and G2/M cells of siRNA-treated HaCaT cells to those of 
control-treated HaCaT cells. Bars and error bars are mean and SEM of three independent replicates. *p ≤ 0.05; 
**p ≤ 0.01 (Welch’s t-test, Bonferroni corrected for multiple testing).

◂
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Antisense RNA 1 (EPB41L4A-AS1) as a candidate, as this lncRNA had similar ChIP-seq characteristics as ZFAS1 
(Figure S15, Table S2). EPB41L4A-AS1 is located between the genes NREP and EPB41L4A on chromosome 5 
(Fig. 4E). Of these neighboring genes, FAM126, IFT22, and ZNFX1 had cell cycle-dependent expression (Fig-
ure S16). Tissue-specific expression for the four lncRNA candidates confirmed that all were highly expressed 
in proliferating tissues (Figure S17). All candidates were predicted to have a low protein coding probability, as 
assessed by the Coding Potential Assessment  Tool32 (Table S3).

Since lncRNAs are dependent on proximity to their target molecules to exert their function, the subcellular 
localization can provide important information about their biological role. We used the lncAtlas online tool 
(https:// lncat las. crg. eu/) to determine the subcellular localization of the four candidate lncRNAs. The lncAtlas 
displays the subcellular localization of lncRNAs based on a relative concentration index (RCI = concentration 
of a gene, per unit mass of RNA between cytoplasm and nucleus) derived from RNA-seq data sets from avail-
able cell lines and cellular compartments from Human Gencode  v2433. Based on RCI from several cell lines, the 
four lncRNA candidates were mainly localized in either the nucleus or cytoplasm. SNHG26 was enriched in the 
nucleus with an average RCI of − 2.03, whereas EMSLR, EPB41L4A-AS1, and ZFAS1 had the highest level in 
cytoplasm with an average RCI of 1.82, 1.12, and 1.43, respectively (Figure S18).

The RNA-seq data showed that all four lncRNA candidates had cell cycle-dependent expression profiles that 
peaked 12 h after release (Fig. 4F). At 12 h, the majority of the cells were in G1 phase (Fig. 1B), but when taking 
into account each gene’s overall profile compared with those of known cell cycle genes, the genes were assigned 
to G2/M (SNHG26), M/G1 (EMSLR, EPB41L4A-AS1), and G1/S (ZFAS1). These profiles were confirmed by 
technical validation by RT-qPCR (Figure S19), but only the profiles for SNHG26 and EMSLR could be vali-
dated in the two new independent double thymidine block synchronization experiments (Val1, Val2) in HaCaT 
cells (Fig. 4G). The phase-dependent expression profile of SNHG26 was further confirmed by FACS analysis of 
HaCaT cells, showing a significantly reduced expression in S phase compared to G1 phase (Figure S20). Whereas 
EMSLR and EPB41L4A-AS1 also showed reduced expression in S phase, these differences were not significant 
(p-values = 0.054 and 0.074, respectively).

To explore the functional role of the candidate lncRNAs in the cell cycle, we used siRNAs to knockdown each 
candidate (Figure S21) and cell counting to evaluate the effect of knockdown on proliferation. We tested four 
different cell lines—HaCaT, A549, LS411N, and DLD1—and used a hierarchical, linear model and ANOVA to 
calculate percent growth inhibition across the four cell lines assuming a random effect for each cell line (Fig. 4H). 
The growth in all four cell lines was significantly affected by SNHG26 knockdown, with an average growth inhi-
bition of 35% (Fig. 4H). Antisense oligos are supposedly more effective than siRNAs for nuclear localized tran-
scripts, therefore we used ASO-mediated knockdown to confirm the overall growth inhibitory effect of SNHG26 
knockdown (average 55%; Figure S22). Proliferation was also significantly reduced in all cell lines in response to 
siRNA-mediated knockdown of EMSLR, with average growth inhibition of 28% and 37% for two independent 
siRNAs (Figs. 4H; S22). Meanwhile, the overall growth reduction in all four cell lines in response to EPB41L4A-
AS1 and ZFAS1 knockdown was not significant. However, knockdown of EPB41L4A-AS1 resulted in a significant 
growth reduction in HaCaT, A549, and DLD1 cell lines (average 31%; p-value = 0.045; Fig. 4H), but the growth 
of LS411N cells was not affected. An independent siRNA gave similar results, although the growth reduction in 
HaCaT, A549, and DLD1 was not significant (p-value = 0.070; Figure S22). In response to ZFAS1 knockdown, 
the growth of the cancerous cell lines A549, LS411N, and DLD1 was significantly reduced by an average of 19% 
(p-value = 0.0054; Fig. 4H), which was validated using another siRNA (average 20%; p-value = 0.0016; Figure S22). 
Notably, both ZFAS1 siRNAs gave a slight growth increase in HaCaT cells (20% and 6%; Figs. 4H and S22).

Finally, we investigated the distribution of HaCaT cells in different cell cycle phases in response to siRNA-
mediated knockdown of the candidate lncRNAs (Figs. 4I, S23). Whereas the effects of individual siRNAs varied 
somewhat per phase, the overall patterns in increased and decreased percentages of cells per phase were largely 
consistent between the two independent siRNAs. Specifically, ANOVA showed that knockdown of SNHG26 
shifted the phases to a decrease in G1 and increase in G2/M cells; EMSLR shifted to increase in G1 and decrease 
in S; EPB41L4A-AS1 shifted to decrease in G1 and increase in G2/M; and ZFAS1 shifted to decrease in G1 and 
increase in G2/M (Figure S23). Finally, as SNHG26 was mainly enriched in the nucleus (Figure S18), we used 
ASO-mediated knockdown (Figure S24) and confirmed the significant reduction of cells in the G1 phase and 
the significant enrichment of cells in the G2/M phase (Figure S25).

Discussion
Whereas many lncRNAs have a tissue-specific expression, about 11% of lncRNAs are ubiquitously expressed, 
suggesting an involvement in cellular functions generally necessary for normal growth and  development34,35. By 
sequencing total RNA through the cell cycle we identified 99 lncRNAs with cell cycle-dependent gene expression. 
Of these, 57 lncRNAs were highly correlated with changes in Pol II or H3K4me3 occupancy at their annotated 
TSS as measured by ChIP-seq, supporting that these lncRNAs are transcribed in a cycle-dependent manner and 
thereby are likely to have roles in cell proliferation. Indeed, protein coding genes with similar cell cycle-dependent 
expression and correlated Pol II changes were strongly enriched for cell cycle functions.

We have previously shown that a subset of protein coding cell cycle genes is cell type-specific in their expres-
sion and  function1. Due to the high cell type specificity of many lncRNAs, we therefore expect that some of the 
lncRNAs identified as cell cycle-associated in HaCaT cells will differ somewhat in other cell types. Neverthe-
less, similar to protein coding genes with known cell cycle functions, the cell cycle lncRNAs had increased 
expression in samples from proliferating compared with non-proliferating tissues, suggesting that many of these 
lncRNAs will have roles in cell proliferation in multiple cell types. Indeed, several lncRNAs that are commonly 
dysregulated in cancer and that have known cell cycle functions, such as GAS5, ZFAS1, LINC00963, DANCR, 
and MALAT120,36–39, were among the 99 lncRNAs with a cyclic expression profile. Moreover, three of the top 

https://lncatlas.crg.eu/


11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18952  | https://doi.org/10.1038/s41598-021-97909-w

www.nature.com/scientificreports/

five lncRNAs (Table S2) have already been connected to proliferation and cancer in at least one functional 
study; CTD-2555C10.340, SNHG1641, and SNHG2642. Of these, SNHG16 is best categorized and is often found 
overexpressed in cancers where it is associated with poor  prognosis43,44. Cao et.al.41 demonstrated that SNHG16 
increases proliferation in bladder cancer by epigenetic silencing of p21, a potent CDK inhibitor with several 
functions in the cell  cycle45.

To further investigate the cell cycle-associated lncRNAs, we used siRNAs to down-regulate four candidates—
SNHG26, EMSLR, EPB41L4A-AS1, and ZFAS1—and evaluated the resulting effects on cell proliferation in four 
cell lines (HaCaT, A549, DLD1, and LS411N) and cell cycle progression in HaCaT.

SNHG26 was the top cell cycle-associated lncRNA candidate, based on its expression and corresponding 
correlation to Pol II and H3K4me3 ChIP-seq signals. Downregulation of SNHG26 led to growth inhibition in all 
four cell lines and affected the cell cycle distribution of HaCaT cells by increasing the number of cells in G2/M 
by more than 10 percentage points. Thus SNHG26 seems to be necessary for a normal G2/M progression, which 
is in line with the gene’s expression profile from RNA-seq, which was most similar to those of known G2/M 
phase genes. SNHG26 is also known as small nucleolar RNA host gene 26 (SNHG26), which belongs to a group 
of lncRNAs called small nucleolar RNA host genes (SNHGs) that are often found upregulated in cancers, and 
that have oncogenic functions connected to proliferation and cell cycle progression. Zimpta et al.44 reviewed the 
role of SNHGs focusing on oncogenic properties and potential clinical applications. Overexpression of SNHGs 
is often correlated with progression and lower overall survival in several cancers, including lung, stomach, bone, 
esophagus, liver, brain, and colon. Moreover, in line with our results, the oncogenic properties of SNHGs can 
be effectively impaired by downregulating their expression using RNA  interference44. SNHG26 has been identi-
fied as dysregulated in gene expression datasets from different types of  cancer46–48. The only study involving any 
functional characterization of SNHG26 was a recent publication identifying SNHG26 as a direct transcriptional 
target of the well-known oncogenic c-MYC and a mediator of MYC-driven proliferation in human lymphoid 
 cells42. Our study is the first to report that SNHG26 is necessary for a proper G2 to M transition during cell cycle, 
and is important for normal proliferation in HaCaT, A549, DLD1, and LS411N cells.

EMSLR expression peaked in G1 phase, and its knockdown gave growth inhibition in all four cell lines, 
enrichment of cells in the G1 phase by 3–7 percentage points and a corresponding reduction of cells present in 
the S phase. These results are in line with a previous functional study of EMSLR in A549  cells49. In addition to 
reporting similar growth inhibition and enrichment of cells in G1 phase, the study revealed that EMSLR, there 
named E2F1 mRNA stabilizing (EMS) lncRNA, is a direct transcriptional target of c-MYC. Mechanistically, their 
results suggest that EMS modulates E2F1 stability and promotes G1 to S cell cycle progression through c-MYC. 
EMSLR is upregulated in tissue from colon cancer patients in several datasets, and its expression is associated with 
poor  prognosis50–52. In one study EMSLR was differentially expressed between patients with early and advanced 
stage endometrial carcinoma, where increased expression of EMSLR was associated with disease  progression53. 
Previous studies together with our results, indicate an oncogenic role of EMSLR, possibly by interfering with the 
progression from G1 to the S phase of the cell cycle.

In our study, knockdown of EPB41L4A-AS1 resulted in an overall growth inhibition of HaCaT, A549, and 
DLD1 cells, and the distribution of HaCaT cells in the different phases of the cell cycle was also affected with an 
increase of cells in the G2/M phase by 7 percentage points and a decrease in G1 by 6 percentage points. In the 
RNA-seq data and RT-qPCR technical validation, EPB41L4A-AS1 expression peaked in M/G1, but this pattern 
was only reproduced in one of the two biological validation experiments (Val2, Fig. 4C). Several gene expression 
studies have identified EPB41L4A-AS1 as both over- and underexpressed in cancer, probably depending on type 
of tissue and stage of  progression54–56. Functional studies suggest a central role of EPB41L4A-AS1 in metabolic 
reprogramming and as a repressor of the Warburg effect in placental tissue of  miscarriage57 and in cancer 
cells (cervical, breast, bladder, and liver)58. Another functional study investigating the role of miR-146a on the 
proliferation of bone marrow-derived mesenchymal stem (BMSC) cells, reported that miR-146a interacts with 
and inhibits the expression of EPB41L4A-AS1 and SNHG7. Also, overexpression of EPB41L4A-AS1 increased 
proliferation and affected the phase distribution of BMSCs, with a reduction of cells in G1/G0 phase and an 
increased percentage of cells in the S and G2/M  phase59. The expression of EPB41L4A-AS1 is higher in colorectal 
cancer tissue compared to normal tissue, and in line with our results, knockdown of EPB41L4A-AS1 decreased 
proliferation in colorectal cancer cell lines HCT116 and  SW62060. Based on previous studies, the expression of 
EPB41L4A-AS1 and its biological role seem to vary in different types of cells, tissues, and stage of disease, sug-
gesting a potential role as a biomarker for disease progression and as a therapeutic target. Our study is the first 
to evaluate how EPB41L4A-AS1 affects the cell cycle and proliferation in HaCaT, A549, and DLD1 cells. The 
results suggest an oncogenic role of EPB41L4A-AS1, possibly by affecting the progression from G2 to M phase.

The function of ZFAS1 has been evaluated in several papers, and like many other lncRNAs it varies depend-
ing on the type of cell line or tissue being investigated. ZFAS1 was first described as a regulator of mammary 
 development61. Later studies identified it as an oncogene upregulated in several cancers, including lung, colon, 
ovary, glioma, liver, and gastric cancers, but downregulated in breast  cancer62. In a study from Fan et. al., over-
expression of ZFAS1 resulted in G1/G0 phase arrest in two breast cancer cell  lines20. In contrast, we found that 
ZFAS1 knockdown had no significant effect on HaCaT proliferation and phase distributions. Instead, our results 
demonstrated reduced proliferation in response to knockdown in the cancerous cell lines A549, DLD1, and 
LS411N. Consequently, and in line with previous studies describing the oncogenic characters of ZFAS1, our 
results show that ZFAS1’s effects on cell proliferation are cell type-specific and may depend on other oncogenic 
transformations.

Three of the four lncRNAs we investigated (SNHG26, ZFAS1, and EPB41L4A-AS1) overlap with snoRNAs 
and could therefore be SNHGs—the primary transcripts for these snoRNAs. Whereas our results show that 
knockdown of these lncRNAs affect proliferation and cell cycle progression, we acknowledge that some of these 
effects may be mediated by overlapping snoRNAs.
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In this study we used double thymidine block to arrest and subsequently release HaCaT cells at the G1/S 
transition and we identified 1803 genes with significant periodic expression patterns during the cell cycle. How-
ever, all chemical synchronization procedures have disadvantages as they may perturb the normal cell cycle and 
potentially trigger stress‐related responses and cause DNA  damage63. Thus, disruptions of normal biological 
processes caused by the manipulations during cell synchronization can give false positive cyclic profiles and 
hide the expression of true cell cycle regulated genes. Although we cannot exclude such false positives among 
our list of candidate lncRNAs, the additional FACS and RT-qPCR analyses showed reduced expression levels in 
S phase for SNHG26, EPB41L4AAS1, and EMSLR (Figure S20), consistent with their RNA-seq profiles following 
the double thymidine block.

Several lncRNAs have been identified as cell cycle-associated64–67. Hung et al.66 used tiling microarrays to 
investigate ncRNA expression in promoters of 56 cell cycle genes. Their expression data included HeLa and 
U2OS cells synchronized by double thymidine block, primary cells or cell lines perturbed by DNA damage, or 
differentiation or oncogenic stimuli, and tumors and paired normal tissues. Cell cycle-dependent expression of 
lncRNAs in HeLa cells synchronized by double thymidine block was also confirmed by RNA-seq67, though this 
study identified a different set of 39 lncRNAs with cyclic expression. Ali et al.64 used RNA-seq of nascent RNAs in 
HeLa cells synchronized by thymidine and hydroxyurea. The data included three time points in the subsequent 
S-phase and their analyses identified 1145 lncRNAs with temporal expression changes. Hao et al.65 used deep 
RNA-seq of U2OS cells synchronized to different phases of the cell cycle and identified more than 2000 lncRNAs 
that had phase-specific expression. Cells were synchronized to different stages by nocodazole (M) followed by 
mitotic shake-off (G1), and by double thymidine block (G1/S) and subsequent isolation at 4 h (S) and 8 h (G2) 
following release. They observed that 35–40% of the genes differentially expressed during the cell cycle consisted 
of lncRNAs, with the majority being highly expressed in G1 phase. In our study, 56% of the cell cycle-associated 
lncRNAs were assigned to S phase, whereas 19% were assigned to G1. All of our candidate lncRNAs were identi-
fied in the study by Hao et al.65 where SNHG26, EPB41L4A-AS1, and EMSLR showed reduced expression levels 
in S phase, which is in line with our results. We do note the differences between these studies in the number of 
identified lncRNAs and in their phase-specific expression characteristics. But we also note differences in data 
generation, lncRNA annotations, and data analyses, which all may have contributed to these differences.

Our analyses suggest that by using a positive correlation between the RNA-seq expression profile and 
H3K4me3 and Pol II signal as a selection criteria, we identify genes that are actively transcribed and highly 
enriched for cell cycle functions. Although this is a useful method for detecting cell cycle-associated lncRNAs, 
cyclic lncRNAs with low correlation to ChIP-seq signal should not be dismissed, as they may also be possible 
candidates for cell cycle involvement. As exemplified by PCNA, genes with several transcripts may have a low 
correlation value if the wrong TSS was selected for ChIP-seq signal analysis. More sophisticated analyses that 
use the ChIP-seq data to identify the most likely active TSS per gene may eliminate some of these false negatives.

In summary, our results indicate that all four candidate lncRNAs tested in this study influenced both prolifera-
tion and cell cycle progression, although the degree of effect varied between the candidates. The top candidate 
SNHG26, which has a cyclic expression pattern and the highest overall correlation to Pol II and H3K4me3 ChIP-
seq signal, did have a consistent effect on overall growth inhibition and cell cycle phase distribution in response 
to knockdown. Results from our functional evaluation support that our multi-omics method is well suited for 
identifying lncRNAs involved in the cell cycle.

Methods
Cell culture. All cell lines were obtained from the American Type Culture Collection (ATCC) and culti-
vated in a humidified incubator at 37 °C and 5%  CO2. The human keratinocyte cell line HaCaT was cultured 
in Dulbecco’s modified Eagle’s medium (DMEM, Sigma-Aldrich, D6419) supplemented with 10% fetal bovine 
serum (FBS, Sigma-Aldrich, F7524), 2 mM glutamine (Sigma-Aldrich, G7513), 0.1 mg/ml gentamicin (Gibco, 
15710049), and 1.25 µg/ml fungizone (Sigma-Aldrich, A2942). For the lung carcinoma cell line A549 we used 
DMEM supplemented with 10% FBS and 2 mM glutamine, while the colorectal carcinoma cell line LS411N and 
the colorectal adenocarcinoma cell line DLD1 were cultivated in RPMI 1640 medium (Gibco, A1049101) sup-
plemented with 10% FBS.

Cell cycle synchronization. HaCaT cells were seeded in 150-mm culture dishes (2 ×  106 cells each dish) 
and were arrested in the G1/S transition by double thymidine block. Briefly, cells were treated with 2 mM thymi-
dine for 18 h, released from the arrest for 10 h and arrested a second time with 2 mM thymidine for 18 additional 
hours. After blocking, media was replaced and cells were collected every third hour for 24 h, covering approxi-
mately two cell cycles. Unsynchronized cells were used as a reference sample.

Cell cycle and fluorescence‑activated cell sorting (FACS) analysis. We used FACS analysis to 
determine the cell cycle phase distribution. HaCaT cells were washed twice with preheated PBS and trypsinated 
for 8 min before collected using cold PBS supplemented with 3% FBS. Then we centrifuged the cells at 4 °C for 
5 min. The cell pellet was resuspended in 100 µl cold PBS and fixed by adding 1 ml cold (− 20 °C) methanol 
dropwise while vortexing at 1600 rpm and stored at 4 °C until DNA measurement. Cells were then washed with 
cold PBS and incubated with 200 µl of DNase-free RNAse A in PBS (100 μg/ml) for 30 min at 37 °C before DNA 
staining with 200 µl of Propidium Iodide (PI, Sigma; 50 μg/ml) at 37 °C for 30 min. Cell cycle analyses were per-
formed by using a BD FACS Canto flow cytometer (BD Biosciences). The excitation maximum of PI is 535 nm 
and the emission maximum is 617 nm. Here, PI-stained cells were excited with the blue laser (488 nm), and the 
PI fluorescence was detected in the Phycoerythrin (PE) channel (578 nm). PE channel (578 nm). Quantification 
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of cells in each phase was done with the FlowJo software and the percentage of cells assigned to G1, S, and G2/M 
phases was calculated.

Total RNA‑seq. Total RNA was isolated using the mirVana miRNA Isolation Kit (ThermoFisher Scientific, 
AM1560) according to the manufacturer’s protocol. Integrity and stability of RNA samples were assessed by 
Agilent 2100 Bioanalyzer (Agilent Technologies), whereas the RNA concentration and quality were measured 
on a NanoDrop ND-1000 UV–Vis Spectrophotometer. RNA-seq libraries were prepared using the Illumina 
TruSeq Stranded Total RNA with Ribo-Zero™ Human/Mouse/Rat kit, according to the manufacturer’s instruc-
tions (Illumina; Supplementary Method 1). The sequencing (50 cycles single end reads) was performed on an 
Illumina HiSeq2500 instrument, in accordance with the manufacturer’s instructions. FASTQ files were created 
with bcl2fastq 2.18 (Illumina).

Identifying cell cycle genes. RNA-seq raw reads were quality-filtered using fastq_quality_filter 0.0.13 
(http:// hanno nlab. cshl. edu/ fastx_ toolk it/; parameters −Q33 −q 20 −p 80 −z), and subsequently aligned to human 
genome (version GRCh38.p7) with STAR 2.4.0.f168; parameters –chimSegmentMin 30 –runThreadN 12 –out-
FilterMultimapNmax 20 –alignSJoverhangMin 8 –alignSJDBoverhangMin 1 –outFilterMismatchNmax 10 –out-
FilterMismatchNoverLmax 0.04 –alignIntronMin 20 –alignIntronMax 1,000,000). Read alignments were then 
feature-counted on annotated exons and summarized on genes, using htseq-count 0.6.069; parameters -r pos 
-i gene_id -t exon -s yes. The resulting raw count matrix was stripped off genes with zero-count in any of the 
profiles, preventing such genes from dominating the partial least squares regression (PLS) model. Specifically, 
out of 58,051 gtf-annotated genes in Human Gencode v24, at least a single read was present for 31,433 genes, 
and a total of 14,059 was left for analysis. This filtered count matrix was finally transformed to the logarith-
mic domain and adjusted with precision weights to reduce heteroscedasticity based on abundance using voom 
from the Limma  package70. To identify genes with a cell cycle-dependent profile, we used PLS as previously 
 described1, except that we used the FACS cell fraction matrix directly for the response matrix. Cell cycle phases 
were assigned by using the profiles of known phase-associated cell cycle genes as described  in1.

Quantitative reverse transcription PCR (RT‑qPCR). We isolated total RNA by using the mirVana 
miRNA Isolation Kit (ThermoFisher Scientific, AM1560) before DNA was removed using TURBO DNA-free™ 
Kit (Invitrogen, AM1907), according to the manufacturer’s instructions. RNA concentration and quality were 
measured on a NanoDrop ND-1000 UV–Vis spectrophotometer. Total RNA was reverse transcribed using 
TaqMan reverse transcription reagents (Applied Biosystems, N8080234) followed by quantitative real-time PCR 
using SYBR™ Select Master Mix (Applied Biosystems, 44729199) and quantification by the Step One Real-time 
PCR system (Applied Biosystems).  RT2 lncRNA PCR assays (Qiagen, 330701) and QuantiTect primer assays 
(Qiagen, 249900) that were used for lncRNA and mRNA expression analysis are listed in Table S4. The relative 
expression of mRNAs and lncRNAs was calculated using the ∆∆Ct  method71 with Glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH) as an endogenous control.

ChIP‑seq. Chromatin immunoprecipitation (ChIP) was performed as described in Supplementary Method 
2. The antibodies used for immunoprecipitation (IP) were obtained from Diagenode; anti-H3K4me3 (C1541003-
50), anti-H3K27me3 (C15410195), and anti-Pol II (C15200004). As a control for successful IP, qPCR was per-
formed using human positive and negative control qPCR primer sets from Active Motif (Table S5). Immuno-
precipitated material and input chromatin were submitted to the Genomics Core Facility (GCF) at Norwegian 
University of Science and Technology (NTNU) for library preparation (Supplementary Method 3) and sequenc-
ing.  ChIP-seq libraries were prepared using the MicroPlex Library Preparation Kit v4 (Diagenode) and the 
sequencing (50 cycles single end reads) was performed on an Illumina HiSeq2500 instrument, in accordance 
with the manufacturer’s instructions (Illumina). FASTQ files were created with bcl2fastq 2.18 (Illumina).

ChIP‑seq data analysis. The ChIP-seq FASTQ files were aligned against the reference human genome 
hg38 with the hisat2  aligner72. Using the -k flag, we only kept 1 primary alignment per read. We also disallowed 
spliced alignments. We then found the reads per kilobase million (RPKM)-coverage of each alignment file for 
the genes in hg38 using deepTools  bamCoverage73. The coverage of each ChIP sample was divided by the aver-
age of the coverage of the input sample to provide a normalized expression per gene. For each gene in Human 
Gencode v24 we found the transcription start sites (TSSs) of the genes and the longest transcript variant was 
chosen. Then we binned the 10,000 bp area around the TSSs into bins of 50 bp. We found the counts of the reads 
within each bin by extending each read by 75 (half the fragment size). Then we saw which bin overlapped with 
the point TSS + 75. Each read was only considered to belong to one bin.

Pol II ChIP‑qPCR. Cells were harvested and Pol II ChIP was performed as described in Supplementary 
Method 2, except that cells were sonicated using a Bioruptor Pico (Diagenode) for 14 cycles of 30 s ON/30 s OFF 
in a volume of 300 µl. No digestion with Micrococcal Nuclease was included. For accurate fragment assessment, 
the shared chromatin was analyzed on a 2% agarose gel. Fragment size was optimized to be 200–500 bp. As a 
control for successful IP, qPCR was performed using human positive and negative control qPCR primer sets 
from Active Motif (Table S5). PCR primers were designed in the TSS region for selected genes (Table S1). ChIP 
DNA was diluted 1:2 in TE buffer and qPCR was performed on immunoprecipitated material and input chroma-
tin. We added 2 µl ChIP DNA and 500 nM of each primer to SYBR Select Master Mix (Applied Biosystems) in 
technical duplicates. Target values from all qPCR samples were normalized with matched input DNA using the 
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percent input method [100 *  2(Adjusted input − Ct (IP)]. The relative expression of selected genes (Table S1) was normal-
ized against GAPDH and ACTB (mean).

Western blot analysis. We used western blot analysis to validate the Pol II protein level, and H3K4me3 
and H3K27me3 modification levels in double thymidine blocked synchronized HaCaT cells (Supplementary 
Method 4). Primary antibodies for Pol II (C15200004), H3K4me3 (C15410003), and H3K27me3 (C15410195) 
were obtained from Diagenode.

RNA interference. All cells were transfected with 20 nM siRNAs or Antisense LNA GapmeR (Antisense 
oligo; ASO) using Lipofectamine RNAimax (Invitrogen™, 13778030) when seeded, according to the manufac-
turer’s protocol. Cells were harvested after 48 and/or 72 h at about 70% confluence.  MISSION® siRNA Universal 
Negative Control #1 (Sigma, SIC001) and the negative control A Antisense LNA GapmeR (Qiagen, LG00000002) 
were used as controls for siRNAs and ASO, respectively. The producers and sequences of siRNAs and ASO are 
listed in Table S6. All cell culture experiments were performed in three or more independent experiments, and 
with siRNAs/ASO targeting two different sequences within the same lncRNA.

Viability assay. We performed cell counting using Moxi z mini automated cell counter (ORFLO Technolo-
gies) to investigate how knockdown of the lncRNA candidates affected cell growth. All four cell lines (HaCaT, 
A549, LS411N, and DLD1) were seeded in triplicates for each condition in a 24-well tray and counted 72 h after 
transfection. Each well was washed twice with preheated PBS and trypsinated for 5–10 min before the cells were 
resuspended in preheated growth medium and counted. We applied a two-tailed, paired Student’s t-test to test 
whether the growth was significantly different (p < 0.05) between cells transfected with negative control siRNA/
ASO and a lncRNA target-specific siRNA/ASO in at least three independent experiments.

Statistical analysis. The results were presented as the mean values ± standard error of mean (SEM). Differ-
ences between groups were estimated using the two-tailed Welch’s t-test, assuming unequal variances. The one-
sample t-test was used to compare the mean of the sample data to a known value. We used a hierarchical, linear 
model and ANOVA to calculate (1) the percent growth inhibition across four cell lines and (2) the distribution 
of HaCaT cells in different cell cycle phases in response to siRNA/ASO-mediated knockdown of the candidate 
lncRNAs, assuming a random effect for each cell line/siRNA/ASO. A value of P < 0.05 was considered statistically 
significant for all tests. All data analyses were performed in R. Plots were made using the packages gglot2 and 
ggpubr. Gene ontology (GO) analyses were done with the package gProfileR.

Data availability
The RNA-seq and ChIP-seq datasets generated and analyzed during the current study are available in the Euro-
pean Nucleotide Archive (https:// www. ebi. ac. uk/ ena/) under the accession number of PRJEB40813; the processed 
data are available as a genome browser track hub from http:// tare. medis in. ntnu. no/ EpiPP/ EpiPP- hub/ hub. txt.

Received: 7 April 2021; Accepted: 26 July 2021

References
 1. Pena-Diaz, J. et al. Transcription profiling during the cell cycle shows that a subset of polycomb-targeted genes is upregulated 

during DNA replication. Nucleic Acids Res. 41, 2846–2856. https:// doi. org/ 10. 1093/ nar/ gks13 36 (2013).
 2. Whitfield, M. L. et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol. 

Biol. Cell 13, 1977–2000. https:// doi. org/ 10. 1091/ mbc. 02- 02- 0030 (2002).
 3. Bar-Joseph, Z. et al. Genome-wide transcriptional analysis of the human cell cycle identifies genes differentially regulated in normal 

and cancer cells. Proc. Natl. Acad. Sci. USA. 105, 955–960. https:// doi. org/ 10. 1073/ pnas. 07047 23105 (2008).
 4. Cho, R. J. et al. Transcriptional regulation and function during the human cell cycle. Nat. Genet. 27, 48–54. https:// doi. org/ 10. 

1038/ 83751 (2001).
 5. Beyrouthy, M. J. et al. Identification of G1-regulated genes in normally cycling human cells. PLoS ONE 3, e3943. https:// doi. org/ 

10. 1371/ journ al. pone. 00039 43 (2008).
 6. Crawford, D. F. & Piwnica-Worms, H. The G(2) DNA damage checkpoint delays expression of genes encoding mitotic regulators. 

J. Biol. Chem. 276, 37166–37177. https:// doi. org/ 10. 1074/ jbc. M1034 14200 (2001).
 7. Lew, D. J., Dulić, V. & Reed, S. I. Isolation of three novel human cyclins by rescue of G1 cyclin (Cln) function in yeast. Cell 66, 

1197–1206. https:// doi. org/ 10. 1016/ 0092- 8674(91) 90042-w (1991).
 8. Zariwala, M., Liu, J. & Xiong, Y. Cyclin E2, a novel human G1 cyclin and activating partner of CDK2 and CDK3, is induced by 

viral oncoproteins. Oncogene 17, 2787–2798. https:// doi. org/ 10. 1038/ sj. onc. 12025 05 (1998).
 9. Pines, J. & Hunter, T. Isolation of a human cyclin cDNA: Evidence for cyclin mRNA and protein regulation in the cell cycle and 

for interaction with p34cdc2. Cell 58, 833–846. https:// doi. org/ 10. 1016/ 0092- 8674(89) 90936-7 (1989).
 10. Jackman, M., Firth, M. & Pines, J. Human cyclins B1 and B2 are localized to strikingly different structures: B1 to microtubules, 

B2 primarily to the Golgi apparatus. EMBO J. 14, 1646–1654 (1995).
 11. Yan, J. et al. Long noncoding RNA expression profile and functional analysis in psoriasis. Mol. Med. Rep. 19, 3421–3430. https:// 

doi. org/ 10. 3892/ mmr. 2019. 9993 (2019).
 12. Mathy, N. W. & Chen, X. M. Long non-coding RNAs (lncRNAs) and their transcriptional control of inflammatory responses. J. 

Biol. Chem. 292, 12375–12382. https:// doi. org/ 10. 1074/ jbc. R116. 760884 (2017).
 13. Sun, Q., Hao, Q. & Prasanth, K. V. Nuclear long noncoding RNAs: Key regulators of gene expression. Trends Genet. 34, 142–157. 

https:// doi. org/ 10. 1016/j. tig. 2017. 11. 005 (2018).
 14. Ma, L. et al. LncBook: A curated knowledgebase of human long non-coding RNAs. Nucleic Acids Res. 47, 2699. https:// doi. org/ 

10. 1093/ nar/ gkz073 (2019).
 15. Kitagawa, M., Kitagawa, K., Kotake, Y., Niida, H. & Ohhata, T. Cell cycle regulation by long non-coding RNAs. Cell Mol. Life Sci. 

70, 4785–4794. https:// doi. org/ 10. 1007/ s00018- 013- 1423-0 (2013).

https://www.ebi.ac.uk/ena/
http://tare.medisin.ntnu.no/EpiPP/EpiPP-hub/hub.txt
https://doi.org/10.1093/nar/gks1336
https://doi.org/10.1091/mbc.02-02-0030
https://doi.org/10.1073/pnas.0704723105
https://doi.org/10.1038/83751
https://doi.org/10.1038/83751
https://doi.org/10.1371/journal.pone.0003943
https://doi.org/10.1371/journal.pone.0003943
https://doi.org/10.1074/jbc.M103414200
https://doi.org/10.1016/0092-8674(91)90042-w
https://doi.org/10.1038/sj.onc.1202505
https://doi.org/10.1016/0092-8674(89)90936-7
https://doi.org/10.3892/mmr.2019.9993
https://doi.org/10.3892/mmr.2019.9993
https://doi.org/10.1074/jbc.R116.760884
https://doi.org/10.1016/j.tig.2017.11.005
https://doi.org/10.1093/nar/gkz073
https://doi.org/10.1093/nar/gkz073
https://doi.org/10.1007/s00018-013-1423-0


15

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18952  | https://doi.org/10.1038/s41598-021-97909-w

www.nature.com/scientificreports/

 16. Guiducci, G. & Stojic, L. Long noncoding RNAs at the crossroads of cell cycle and genome integrity. Trends Genet. 37, 528–546. 
https:// doi. org/ 10. 1016/j. tig. 2021. 01. 006 (2021).

 17. Luo, G. et al. LncRNA GAS5 inhibits cellular proliferation by targeting P27(Kip1). Mol. Cancer Res. 15, 789–799. https:// doi. org/ 
10. 1158/ 1541- 7786. Mcr- 16- 0331 (2017).

 18. Gao, K., Ji, Z., She, K., Yang, Q. & Shao, L. Long non-coding RNA ZFAS1 is an unfavourable prognostic factor and promotes glioma 
cell progression by activation of the Notch signaling pathway. Biomed. Pharmacother. 87, 555–560. https:// doi. org/ 10. 1016/j. biopha. 
2017. 01. 014 (2017).

 19. Fang, C. et al. Long non-coding ribonucleic acid zinc finger antisense 1 promotes the progression of colonic cancer by modulating 
ZEB1 expression. J. Gastroenterol. Hepatol. 32, 1204–1211. https:// doi. org/ 10. 1111/ jgh. 13646 (2017).

 20. Fan, S. et al. Downregulation of the long non-coding RNA ZFAS1 is associated with cell proliferation, migration and invasion in 
breast cancer. Mol. Med. Rep. 17, 6405–6412. https:// doi. org/ 10. 3892/ mmr. 2018. 8707 (2018).

 21. Wang, K. C. & Chang, H. Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell 43, 904–914. https:// doi. org/ 10. 1016/j. 
molcel. 2011. 08. 018 (2011).

 22. Carlevaro-Fita, J. & Johnson, R. Global positioning system: Understanding long noncoding RNAs through subcellular localization. 
Mol. Cell 73, 869–883. https:// doi. org/ 10. 1016/j. molcel. 2019. 02. 008 (2019).

 23. Cabili, M. N. et al. Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome 
Biol. 16, 20. https:// doi. org/ 10. 1186/ s13059- 015- 0586-4 (2015).

 24. Arun, G., Diermeier, S. D. & Spector, D. L. Therapeutic targeting of long non-coding RNAs in cancer. Trends Mol. Med. 24, 257–277. 
https:// doi. org/ 10. 1016/j. molmed. 2018. 01. 001 (2018).

 25. Böhmdorfer, G. & Wierzbicki, A. T. Control of chromatin structure by long noncoding RNA. Trends Cell Biol. 25, 623–632. https:// 
doi. org/ 10. 1016/j. tcb. 2015. 07. 002 (2015).

 26. Jiang, Q. et al. TF2LncRNA: identifying common transcription factors for a list of lncRNA genes from ChIP-Seq data. Biomed. 
Res. Int. 2014, 317642. https:// doi. org/ 10. 1155/ 2014/ 317642 (2014).

 27. Sati, S., Ghosh, S., Jain, V., Scaria, V. & Sengupta, S. Genome-wide analysis reveals distinct patterns of epigenetic features in long 
non-coding RNA loci. Nucleic Acids Res. 40, 10018–10031. https:// doi. org/ 10. 1093/ nar/ gks776 (2012).

 28. Klein, H. U. et al. Integrative analysis of histone ChIP-seq and transcription data using Bayesian mixture models. Bioinformatics 
30, 1154–1162. https:// doi. org/ 10. 1093/ bioin forma tics/ btu003 (2014).

 29. Angelini, C. & Costa, V. Understanding gene regulatory mechanisms by integrating ChIP-seq and RNA-seq data: Statistical solu-
tions to biological problems. Front. Cell Dev. Biol. 2, 51. https:// doi. org/ 10. 3389/ fcell. 2014. 00051 (2014).

 30. Wan, G. et al. Transcriptional regulation of lncRNA genes by histone modification in Alzheimer’s disease. Biomed. Res. Int. 2016, 
3164238. https:// doi. org/ 10. 1155/ 2016/ 31642 38 (2016).

 31. Liu, G. et al. LncRNA ZFAS1 promotes growth and metastasis by regulating BMI1 and ZEB2 in osteosarcoma. Am. J. Cancer Res. 
7, 1450–1462 (2017).

 32. Wang, L. et al. CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res. 41, 
e74. https:// doi. org/ 10. 1093/ nar/ gkt006 (2013).

 33. Mas-Ponte, D. et al. LncATLAS database for subcellular localization of long noncoding RNAs. RNA 23, 1080–1087. https:// doi. 
org/ 10. 1261/ rna. 060814. 117 (2017).

 34. Jiang, C. et al. Identifying and functionally characterizing tissue-specific and ubiquitously expressed human lncRNAs. Oncotarget 
7, 7120–7133. https:// doi. org/ 10. 18632/ oncot arget. 6859 (2016).

 35. Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and 
expression. Genome Res 22, 1775–1789. https:// doi. org/ 10. 1101/ gr. 132159. 111 (2012).

 36. Chen, L. et al. LncRNA GAS5 regulates redox balance and dysregulates the cell cycle and apoptosis in malignant melanoma cells. 
J. Cancer Res. Clin. Oncol. 145, 637–652. https:// doi. org/ 10. 1007/ s00432- 018- 2820-4 (2019).

 37. Wang, L. et al. Linc00963: a novel, long non-coding RNA involved in the transition of prostate cancer from androgen-dependence 
to androgen-independence. Int. J. Oncol. 44, 2041–2049. https:// doi. org/ 10. 3892/ ijo. 2014. 2363 (2014).

 38. Jin, S. J., Jin, M. Z., Xia, B. R. & Jin, W. L. Long non-coding RNA DANCR as an emerging therapeutic target in human cancers. 
Front. Oncol. 9, 1225. https:// doi. org/ 10. 3389/ fonc. 2019. 01225 (2019).

 39. Tripathi, V. et al. Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic tran-
scription factor B-MYB. PLoS Genet. 9, e1003368. https:// doi. org/ 10. 1371/ journ al. pgen. 10033 68 (2013).

 40. Zhang, X. et al. Novel long non-coding RNA LINC02323 promotes epithelial-mesenchymal transition and metastasis via sponging 
miR-1343-3p in lung adenocarcinoma. Thorac. Cancer 11, 2506–2516. https:// doi. org/ 10. 1111/ 1759- 7714. 13562 (2020).

 41. Cao, X., Xu, J. & Yue, D. LncRNA-SNHG16 predicts poor prognosis and promotes tumor proliferation through epigenetically 
silencing p21 in bladder cancer. Cancer Gene Ther. 25, 10–17. https:// doi. org/ 10. 1038/ s41417- 017- 0006-x (2018).

 42. Raffeiner, P. et al. An MXD1-derived repressor peptide identifies noncoding mediators of MYC-driven cell proliferation. Proc. 
Natl. Acad. Sci. USA 117, 6571–6579. https:// doi. org/ 10. 1073/ pnas. 19217 86117 (2020).

 43. Yang, M. & Wei, W. SNHG16: A novel long-non coding RNA in human cancers. Onco Targets Ther 12, 11679–11690. https:// doi. 
org/ 10. 2147/ ott. S2316 30 (2019).

 44. Zimta, A. A. et al. An emerging class of long non-coding RNA with oncogenic role arises from the snoRNA host genes. Front. 
Oncol. 10, 389. https:// doi. org/ 10. 3389/ fonc. 2020. 00389 (2020).

 45. Karimian, A., Ahmadi, Y. & Yousefi, B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA 
damage. DNA Repair 42, 63–71. https:// doi. org/ 10. 1016/j. dnarep. 2016. 04. 008 (2016).

 46. Liu, X. D. et al. Integrated analysis of lncRNA-mRNA co-expression networks in the α-particle induced carcinogenesis of human 
branchial epithelial cells. Int. J. Radiat. Biol. 95, 144–155. https:// doi. org/ 10. 1080/ 09553 002. 2019. 15398 80 (2019).

 47. Hu, A. X., Huang, Z. Y., Zhang, L. & Shen, J. Potential prognostic long non-coding RNA identification and their validation in 
predicting survival of patients with multiple myeloma. Tumour Biol. 39, 1010428317694563. https:// doi. org/ 10. 1177/ 10104 28317 
694563 (2017).

 48. Bao, Z., Zhang, W. & Dong, D. A potential prognostic lncRNA signature for predicting survival in patients with bladder urothelial 
carcinoma. Oncotarget 8, 10485–10497. https:// doi. org/ 10. 18632/ oncot arget. 14441 (2017).

 49. Wang, C. et al. Long noncoding RNA EMS connects c-Myc to cell cycle control and tumorigenesis. Proc. Natl. Acad. Sci. USA 116, 
14620–14629. https:// doi. org/ 10. 1073/ pnas. 19034 32116 (2019).

 50. Zhou, M. et al. Recurrence-associated long non-coding RNA signature for determining the risk of recurrence in patients with 
colon cancer. Mol. Ther. Nucleic Acids 12, 518–529. https:// doi. org/ 10. 1016/j. omtn. 2018. 06. 007 (2018).

 51. Yamada, A. et al. A RNA-sequencing approach for the identification of novel long non-coding RNA biomarkers in colorectal 
cancer. Sci. Rep. 8, 575. https:// doi. org/ 10. 1038/ s41598- 017- 18407-6 (2018).

 52. Sun, L. et al. Down-regulation of long non-coding RNA RP11-708H21.4 is associated with poor prognosis for colorectal cancer 
and promotes tumorigenesis through regulating AKT/mTOR pathway. Oncotarget 8, 27929–27942. https:// doi. org/ 10. 18632/ oncot 
arget. 15846 (2017).

 53. Sun, Y., Zou, X., He, J. & Mao, Y. Identification of long non-coding RNAs biomarkers associated with progression of endometrial 
carcinoma and patient outcomes. Oncotarget 8, 52604–52613. https:// doi. org/ 10. 18632/ oncot arget. 17537 (2017).

 54. He, M., Lin, Y. & Xu, Y. Identification of prognostic biomarkers in colorectal cancer using a long non-coding RNA-mediated 
competitive endogenous RNA network. Oncol. Lett. 17, 2687–2694. https:// doi. org/ 10. 3892/ ol. 2019. 9936 (2019).

https://doi.org/10.1016/j.tig.2021.01.006
https://doi.org/10.1158/1541-7786.Mcr-16-0331
https://doi.org/10.1158/1541-7786.Mcr-16-0331
https://doi.org/10.1016/j.biopha.2017.01.014
https://doi.org/10.1016/j.biopha.2017.01.014
https://doi.org/10.1111/jgh.13646
https://doi.org/10.3892/mmr.2018.8707
https://doi.org/10.1016/j.molcel.2011.08.018
https://doi.org/10.1016/j.molcel.2011.08.018
https://doi.org/10.1016/j.molcel.2019.02.008
https://doi.org/10.1186/s13059-015-0586-4
https://doi.org/10.1016/j.molmed.2018.01.001
https://doi.org/10.1016/j.tcb.2015.07.002
https://doi.org/10.1016/j.tcb.2015.07.002
https://doi.org/10.1155/2014/317642
https://doi.org/10.1093/nar/gks776
https://doi.org/10.1093/bioinformatics/btu003
https://doi.org/10.3389/fcell.2014.00051
https://doi.org/10.1155/2016/3164238
https://doi.org/10.1093/nar/gkt006
https://doi.org/10.1261/rna.060814.117
https://doi.org/10.1261/rna.060814.117
https://doi.org/10.18632/oncotarget.6859
https://doi.org/10.1101/gr.132159.111
https://doi.org/10.1007/s00432-018-2820-4
https://doi.org/10.3892/ijo.2014.2363
https://doi.org/10.3389/fonc.2019.01225
https://doi.org/10.1371/journal.pgen.1003368
https://doi.org/10.1111/1759-7714.13562
https://doi.org/10.1038/s41417-017-0006-x
https://doi.org/10.1073/pnas.1921786117
https://doi.org/10.2147/ott.S231630
https://doi.org/10.2147/ott.S231630
https://doi.org/10.3389/fonc.2020.00389
https://doi.org/10.1016/j.dnarep.2016.04.008
https://doi.org/10.1080/09553002.2019.1539880
https://doi.org/10.1177/1010428317694563
https://doi.org/10.1177/1010428317694563
https://doi.org/10.18632/oncotarget.14441
https://doi.org/10.1073/pnas.1903432116
https://doi.org/10.1016/j.omtn.2018.06.007
https://doi.org/10.1038/s41598-017-18407-6
https://doi.org/10.18632/oncotarget.15846
https://doi.org/10.18632/oncotarget.15846
https://doi.org/10.18632/oncotarget.17537
https://doi.org/10.3892/ol.2019.9936


16

Vol:.(1234567890)

Scientific Reports |        (2021) 11:18952  | https://doi.org/10.1038/s41598-021-97909-w

www.nature.com/scientificreports/

 55. Chen, P., Zhang, W., Chen, Y., Zheng, X. & Yang, D. Comprehensive analysis of aberrantly expressed long non-coding RNAs, 
microRNAs, and mRNAs associated with the competitive endogenous RNA network in cervical cancer. Mol. Med. Rep. 22, 405–415. 
https:// doi. org/ 10. 3892/ mmr. 2020. 11120 (2020).

 56. Zhou, M. et al. Characterization of long non-coding RNA-associated ceRNA network to reveal potential prognostic lncRNA 
biomarkers in human ovarian cancer. Oncotarget 7, 12598–12611. https:// doi. org/ 10. 18632/ oncot arget. 7181 (2016).

 57. Zhu, Y. et al. Overexpression of lncRNA EPB41L4A-AS1 induces metabolic reprogramming in trophoblast cells and placenta tissue 
of miscarriage. Mol. Ther. Nucleic Acids 18, 518–532. https:// doi. org/ 10. 1016/j. omtn. 2019. 09. 017 (2019).

 58. Liao, M. et al. LncRNA EPB41L4A-AS1 regulates glycolysis and glutaminolysis by mediating nucleolar translocation of HDAC2. 
EBioMedicine 41, 200–213. https:// doi. org/ 10. 1016/j. ebiom. 2019. 01. 035 (2019).

 59. Cui, P. et al. miR-146a interacting with lncRNA EPB41L4A-AS1 and lncRNA SNHG7 inhibits proliferation of bone marrow-derived 
mesenchymal stem cells. J. Cell Physiol. 235, 3292–3308. https:// doi. org/ 10. 1002/ jcp. 29217 (2020).

 60. Bin, J. et al. Long noncoding RNA EPB41L4A-AS1 functions as an oncogene by regulating the Rho/ROCK pathway in colorectal 
cancer. J. Cell Physiol. https:// doi. org/ 10. 1002/ jcp. 29880 (2020).

 61. Askarian-Amiri, M. E. et al. SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast 
cancer. RNA 17, 878–891. https:// doi. org/ 10. 1261/ rna. 25288 11 (2011).

 62. Dong, D., Mu, Z., Zhao, C. & Sun, M. ZFAS1: A novel tumor-related long non-coding RNA. Cancer Cell Int. 18, 125. https:// doi. 
org/ 10. 1186/ s12935- 018- 0623-y (2018).

 63. Kurose, A., Tanaka, T., Huang, X., Traganos, F. & Darzynkiewicz, Z. Synchronization in the cell cycle by inhibitors of DNA replica-
tion induces histone H2AX phosphorylation: An indication of DNA damage. Cell Prolif. 39, 231–240. https:// doi. org/ 10. 1111/j. 
1365- 2184. 2006. 00380.x (2006).

 64. Ali, M. M. et al. PAN-cancer analysis of S-phase enriched lncRNAs identifies oncogenic drivers and biomarkers. Nat. Commun. 
9, 883. https:// doi. org/ 10. 1038/ s41467- 018- 03265-1 (2018).

 65. Hao, Q. et al. The S-phase-induced lncRNA SUNO1 promotes cell proliferation by controlling YAP1/Hippo signaling pathway. 
Elife https:// doi. org/ 10. 7554/ eLife. 55102 (2020).

 66. Hung, T. et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat. Genet. 43, 621–629. 
https:// doi. org/ 10. 1038/ ng. 848 (2011).

 67. Dominguez, D. et al. A high-resolution transcriptome map of cell cycle reveals novel connections between periodic genes and 
cancer. Cell Res. 26, 946–962. https:// doi. org/ 10. 1038/ cr. 2016. 84 (2016).

 68. Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21. https:// doi. org/ 10. 1093/ bioin forma tics/ 
bts635 (2013).

 69. Anders, S., Pyl, P. T. & Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 
31, 166–169. https:// doi. org/ 10. 1093/ bioin forma tics/ btu638 (2015).

 70. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. 
Genome Biol. 15, R29. https:// doi. org/ 10. 1186/ gb- 2014- 15-2- r29 (2014).

 71. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta 
C(T)) method. Methods 25, 402–408. https:// doi. org/ 10. 1006/ meth. 2001. 1262 (2001).

 72. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360. 
https:// doi. org/ 10. 1038/ nmeth. 3317 (2015).

 73. Ramirez, F. et al. deepTools2: A next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160-165. 
https:// doi. org/ 10. 1093/ nar/ gkw257 (2016).

Acknowledgements
This work was supported by the Norwegian Cancer Society (grant number 2278701) and the Norwegian Research 
Council (grant number 230338). The library preparation and sequencing were provided in close collaboration 
with the Genomics Core Facility (GCF), Norwegian University of Science and Technology (NTNU). GCF is 
funded by the Faculty of Medicine and Health Sciences at NTNU and Central Norway Regional Health Authority.

Author contributions
S.A.H. designed and performed the cell cycle synchronization experiments, isolated RNA and performed ChIP, 
did the bioinformatic and statistical analysis and was a major contributor in writing the manuscript. H.S. designed 
and performed wet lab experiments (cell cycle synchronization validation, RT-qPCR, western blot analysis, RNA 
interference, cell cycle and viability assays), contributed with statistical analysis and was a major contributor in 
writing the manuscript. A.K. analyzed RNA-seq data and identified cell cycle genes. E.B.S. analyzed ChIP-seq 
data. K.G.N. performed cell cycle synchronization validation experiments and performed Pol II ChIP-qPCR 
analysis. N.B.L. performed all FACS analysis. L.C.O. and K.C. contributed with bioinformatics and statistical 
analysis. P.A.A. contributed with cell cycle synchronization experiments. P.S. designed and supervised the study 
and edited the manuscript. All authors read and approved the final manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 021- 97909-w.

Correspondence and requests for materials should be addressed to P.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.3892/mmr.2020.11120
https://doi.org/10.18632/oncotarget.7181
https://doi.org/10.1016/j.omtn.2019.09.017
https://doi.org/10.1016/j.ebiom.2019.01.035
https://doi.org/10.1002/jcp.29217
https://doi.org/10.1002/jcp.29880
https://doi.org/10.1261/rna.2528811
https://doi.org/10.1186/s12935-018-0623-y
https://doi.org/10.1186/s12935-018-0623-y
https://doi.org/10.1111/j.1365-2184.2006.00380.x
https://doi.org/10.1111/j.1365-2184.2006.00380.x
https://doi.org/10.1038/s41467-018-03265-1
https://doi.org/10.7554/eLife.55102
https://doi.org/10.1038/ng.848
https://doi.org/10.1038/cr.2016.84
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/btu638
https://doi.org/10.1186/gb-2014-15-2-r29
https://doi.org/10.1006/meth.2001.1262
https://doi.org/10.1038/nmeth.3317
https://doi.org/10.1093/nar/gkw257
https://doi.org/10.1038/s41598-021-97909-w
https://doi.org/10.1038/s41598-021-97909-w
www.nature.com/reprints


17

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18952  | https://doi.org/10.1038/s41598-021-97909-w

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

http://creativecommons.org/licenses/by/4.0/

	Joint changes in RNA, RNA polymerase II, and promoter activity through the cell cycle identify non-coding RNAs involved in proliferation
	Results
	Total RNA sequencing of HaCaT cells identifies cell cycle genes. 
	ChIP sequencing maps dynamic transcriptional responses in HaCaT cell cycle. 
	A set of cell cycle genes is highly correlated with Pol II and H3K4me3 changes and has strong enrichment for cell cycle functions. 
	Combined RNA-seq and ChIP-seq analysis identifies cell cycle-associated lncRNAs. 

	Discussion
	Methods
	Cell culture. 
	Cell cycle synchronization. 
	Cell cycle and fluorescence-activated cell sorting (FACS) analysis. 
	Total RNA-seq. 
	Identifying cell cycle genes. 
	Quantitative reverse transcription PCR (RT-qPCR). 
	ChIP-seq. 
	ChIP-seq data analysis. 
	Pol II ChIP-qPCR. 
	Western blot analysis. 
	RNA interference. 
	Viability assay. 
	Statistical analysis. 

	References
	Acknowledgements


