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Abstract—For efficient converter design, modeling of switching
components must be both accurate and fast. A variety of
simulation models for SiC Power MOSFETs has been developed.
To achieve adequate accuracy, models are adjusted to exper-
imental data by applying fitting methods. However, proposed
universal fitting methods result in high-dimensional optimization
problems. Their computational inefficiency leads to either long
run times or low accuracy. This paper proposes a new universal
parameter fitting method that is at least twice as fast and
yields a more accurate outcome than presented methods under
comparable conditions. It effectively reduces the dimensionality
of the parameter fitting optimization problem by sensitivity-based
reduction of optimization parameters. Thereby, it optimizes both
model adjustment speed and accuracy, which are critical factors
for an efficient converter design process. The method does not
compromise flexibility as it is universally applicable to any SPICE
model and can meet any model architecture preference.

Index Terms—SiC, WBG, MOSFET, SPICE, Model Adjust-
ment, Sensitivity Analysis, Fitting, Model Optimization

I. INTRODUCTION

Silicon Carbide (SiC) exhibits a great potential to replace

Silicon (Si) as the most popular base material for state-of-the-

art power electronic devices [1]. Accurate switch component

modeling is crucial for exploring how to utilize the superior

characteristics of SiC devices and to accelerate the design

process of converters. Recent research on SiC MOSFET

modeling has focused on single models [2]–[9]. The degree

of given information that is necessary for rebuilding the

model varies greatly. Even a reproducible model may lack

a parameter fitting method, or a given method is specific to

the presented model [2]–[9]. Efforts in creating a generic

approach to parameter fitting have resulted in an interface

to MATLAB® optimization algorithms [10]. For any given

PSpice device model, parameters are defined as variables that

are then fitted to experimental data. This versatile approach

does not depend on the model origin. However, if the consid-

ered model is not well-known, the relevance and variability

of its parameters remain unclear. Consequently, optimization

will be performed using a multitude of parameters. The result-

ing high-dimensional optimization problem is computationally

demanding and exhibits long run time.

To address this issue, this paper proposes a parameter

adjustment method that reduces the demand for computational

resources when solving the optimization problem while pre-

serving the accuracy of the fitted model. This is achieved by

enabling smart selection of only highly influential parameters

for optimization. Thus, it is as flexible as existing methods,

but more accurate and significantly faster.

The paper is organized as follows. In Section II, the prin-

ciple of the proposed fitting method is explained in detail.

This includes model preparation steps, the sensitivity analysis,

parameter optimization. In addition, several aspects that have

an additional influence on the fitting result but are not specific

to the proposed method, are discussed. Section III presents

an exemplary application of the proposed method, fitting

the manufacturer SPICE model of a SiC MOSFET to static

ID-VDS characteristic data obtained from a Power Device

Characterizer (PDC). The findings are summarized in Section

IV.

II. PROPOSED MODEL ADJUSTMENT METHOD

The proposed parameter fitting method determines locally

optimal values for the highly influential SPICE MOSFET

model parameters to resemble experimental data with the

highest possible accuracy. In this paper, the proposed method

was applied to the static output characteristic ID-VDS of a

SiC power MOSFET. PDC ID-VDS measurements served as

fitting reference. A SPICE circuit imitates the measurement

setup and contains the chosen MOSFET model in the Device

Under Test (DUT) position for the simulation.

The proposed method comprises three major steps for any

optimization objective.

• First, the previously chosen SPICE MOSFET model is

made adjustable by transforming model constants into

variable parameters.

• Second, the sensitivity values of all model parameters are

calculated. The most influential parameters are chosen as

optimization parameters.

• Third, values of these parameters are determined by a

local optimization algorithm so that the deviation of the

simulation output from measurement data is minimal.

This paper focuses on the fitting of model parameters to static

ID-VDS characteristic data as an optimization objective.
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Fig. 1. Substitution of model constants by variables (SPICE parameters) from
original (a) to parameterized form (b)

A. Choice of SPICE Model

As a preparation step, a SPICE MOSFET model is chosen.

It is up to the user to decide on a preferred model type,

structure and implementation. The freedom of model choice

is one of the main advantages of the proposed method. It is

universally applicable to any SPICE MOSFET model given

that adjustments to the model code are possible as described

below.

B. Parameter Establishment in a SPICE Model

SPICE models contain equations that describe the behavior

of the modeled component. Figure 1a shows an exemplary

excerpt from a SPICE MOSFET model approximating the

temperature dependent threshold voltage as a second-degree

polynomial. As a first step, the SPICE model is made ad-

justable by substitution of equation constants by variables,

i.e. SPICE parameters. Figure 1b shows a possible outcome

of applying this step to the code snippet from Figure 1a.

SPICE allows for a variety of expressions, among others,

if/else statements, exponential, trigonometric and hyperbolic

terms as well as user-defined lookup tables. To illustrate the

proposed method, the simple temperature dependent threshold

voltage equation, that takes the form of a second-degree poly-

nomial, has been chosen as an example. The proposed method,

however, is equally applicable to more complex expressions.

C. Metric for Model Adjustment

To measure deviation between two sets of data, the Root-

Mean-Square-Error (RMSE) can be used. It is defined as

RMSE =

√

√

√

√

1

N
·

N
∑

i=1

(y1,i − y2,i)2 (1)

with N being the number of data points. It is assumed that

the two sets of data share the same x data. To ensure this, one

of the data sets is evaluated at the x data points of the other

using linear interpolation.

In case of two data sets with a different resolution, the

set with the higher resolution is first evaluated at the data

points of the other set using linear interpolation and then

the RMSE is calculated. Interpolating the lower resolved data

would not increase its quality but instead lead to unnecessary

data generation and numerical operations. In addition, linear

interpolation distorts nonlinear data. Thus, the more often

linear interpolation is applied, the greater the influence of

this distortion. By interpolating only the higher resolved data,

the number of interpolations is minimized as well as the

interpolation error that causes distortion. Thereby, the validity

of the RMSE as a deviation metric is ensured.

It has to be noted that the simulation is set to generate

roughly ten times the resolution of the given experimental

data to avoid interpolation distortion of the simulation data as

described above. This also means a greater RMSE calculation

effort if two simulation results are compared.

For the rare case that a parameter set causes severe con-

vergence issues, the objective function features a timeout.

After that, the simulation is aborted and a deviation of 0 is

returned. Experiments have shown that two conditions may

lead to such convergence issues. Either the model behavior

is so degenerated that very high values occur, or there are

boundary parameter values in control statements that lead to

oscillations as a consequence of unsteady function definitions.

In both cases, the zero-deviation choice is questionable regard-

ing the aim of describing an actual deviation. On the other

hand, this also has the effect of lowering the probability of

convergence issues during the optimization procedure, since

a zero-deviation value lowers the chance of a high sensitivity

value and thus choosing the parameter in question is unlikely.

For this paper, various handling strategies of convergence

issues have been investigated and the zero-deviation strategy

has lead to adequate results. The timeout for simulations has

been set to 30 minutes.

D. Optimization Parameter Choice

Previously presented model fitting methods suffer from

either long run time or low accuracy, which are interrelated

factors. By lowering the demand on accuracy, it is possible to

obtain results from a long run time method within reasonable

time limits. This way, the run time issue is alleviated but the

outcome is of lower quality.

Previously presented model adjustment methods apply an

optimization algorithm blindly to all model parameters. The

user can reduce the long run time and increase accuracy of the

result by manually reducing the parameter set that is subject

to optimization. However, knowledge concerning the role and

importance of every single model parameter is limited in most

practical cases. Hence, the manual preselection of parameters

is challenging, if at all possible.

As opposed to previously presented methods, the smart

preselection of parameters is assisted by a so-called sensitivity

analysis. The outcome of this analysis is a sensitivity value

for each parameter that describes, how much this parameter

impacts the model behavior. It serves as the main decision cri-

terion for whether a parameter is either included in or excluded

from the optimization procedure. Only the parameters with

high sensitivity values are chosen as optimization parameters.

Sensitivity Analysis: A SOBOL type sensitivity analysis

[11] is used in the proposed method. The SALib library



for python [12] was used for this purpose. For the SOBOL

sensitivity analysis type, an objective function that evaluates

a parameter set to a scalar value, needs to be defined.

To find impactful parameters, the scalar objective function

result has to represent changes in the model behavior. The

input to the objective function is an arbitrary set of parameters.

With this parameter set, the simulation is performed. Then, the

RMSE between the simulation result and the reference, i.e. the

simulation result with the manufacturer parameter choice, is

calculated. This way, an arbitrary set of parameters is evaluated

to a scalar value that represents the magnitude of change from

the original state of the model.

Model parameters may be largely different in magnitude. To

optimize the sensitivity analysis performance, relative values

with respect to the manufacturer parameterization are used.

Additionally, the relative values are centered around 0 instead

of 1. Also, the parameters are subject to boundaries, which can

be changed individually for each parameter. Choosing individ-

ual parameter boundaries is a fine-tuning step to avoid conver-

gence issues of the simulation provoked by changes of very

sensitive parameters. Although this step is very application

specific, global boundaries of ±14% for all parameters yielded

consistent and reliable results in the experiments conducted

for this paper. The ±14% boundary has been identified during

experiments for this paper, balancing exploratory behavior and

stability of the simulations conducted in the course of the

sensitivity analysis.

According to the SOBOL analysis procedure, a fixed num-

ber of sample parameter sets are created obeying the parameter

boundaries using a suitable algorithm [13]. Afterwards, the

objective function is evaluated for all sample parameter sets.

Since all sample parameter sets are known after generation

and all simulation results are needed for the calculation of the

sensitivity values, the task of simulation can be parallelized.

When all simulation results are available, the sensitivity

values are calculated. The SOBOL analysis result contains so-

called sensitivity indices of varying order. First order indices

describe the impact that changes in a single parameter have

on the objective function result. There are as many first order

indices as there are parameters. Second order indices describe

the interaction of two parameters and therefore, the number of

second order indices adds up to the factorial of the parameter

number. Finally, the total sensitivity indices describe the

cumulative effect one parameter has on the objective function

result [14]. Hence, there are also as many total sensitivity

indices as parameters. The total sensitivity index is chosen

as the sensitivity metric for the proposed method because of

its comprehensive nature.

Parameter Choice: The total sensitivity index of one param-

eter is a relative value and only meaningful in the context of all

other total sensitivity indices. A visualization of an exemplary

sensitivity analysis result is presented in Figure 2.

The parameters with the highest sensitivity values are then

chosen for the optimization procedure, because the biggest

effect of a parameter adjustment is expected from these

parameters. In some cases, a few very sensitive parameters
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Fig. 2. Exemplary total sensitivity indices

may hide the effect of less impactful ones that are nevertheless

of high relevance. For example, the threshold voltage at room

temperature, V th 0, has a much lower sensitivity index than

the three parameters p gmos 1, p gmos 2 and p gmos 3.

It might be of interest to set the latter parameters constant

and repeat the sensitivity analysis, especially, if only few

parameters exhibit very high sensitivity values. Then, more

parameters might reveal high sensitivity and would therefore

be included in the choice of optimization parameters.

E. Model Parameter Optimization

With the choice of parameters made above, the same SPICE

model is used for simulations. The same objective function is

used to evaluate a parameter set, but with experimental data

gathered from a PDC [15] as reference instead of another

simulation result. More information on the reference data will

be given in Section III-A.

Optimization Procedure: During the optimization proce-

dure, a gradient-descend type local optimization algorithm

determines a set of values for the adjustment parameters that

minimizes the deviation of the simulation from the mea-

surement result. The objective function described above is

designed to be evaluated with any given parameter set, using

the mean characteristic derived from the PDC measurements

as a reference. Therefore, the objective function can be passed

to a general purpose gradient-descent type local optimization

algorithm [16], [17]. Due to the generalized form of the

objective function, the method is not restricted to local opti-

mization algorithms. Nevertheless, using a local optimization

algorithm yielded good results in the proposed method and

simultaneously offered a run time advantage compared to

global optimization alternatives.

F. Setting the Adjustment Focus

Various factors influence the adjustment focus, e.g. on

different operation regions. In part, the proposed method can

be manipulated to shift the adjustment focus. An example for

this is the deviation metric explained in Section II-C. Choosing



the RMSE as a metric will result in evenly distributed weight

among all measurement series. Another metric could use

relative instead of absolute errors. This would favor low over

high amplitude data. For example, such a metric could be a

relative RMSE:

RMSErel =

√

√

√

√

1

N
·

N
∑

i=1

(

y1,i − y2,i

y1,i

)2

(2)

Apart from that, data choice and experiment design are

relevant factors for the outcome of the model adjustment

method and should be considered in light of the intended

model application. By choosing a different experimental de-

sign in which, for example, only high gate source voltages

are used, the model adjustment could be concentrated on the

linear region at high gate voltages. Another example could be

the usage of only high drain source voltages to obtain a better

fit to the saturation region of the device.

G. Advantages of the Proposed Method

The proposed method improves run time significantly be-

cause of the optimization space reduction. In addition, accu-

racy is improved because of two factors.

• If a large optimization parameter number is not reduced

at all, the solution of the optimization problem takes a

long time for a given accuracy. To obtain a solution after

an acceptable amount of time, the accuracy aim may be

relaxed, leading to a result of poorer quality.

• Alternatively, the reduction of parameters may reduce

the run time of the given optimization problem. Without

adequate information on the parameter relevance for the

model, accuracy may suffer if relevant parameters are

excluded from the optimization.

These disadvantages are addressed in the proposed method.

The sensitivity based parameter reduction enables an informed

selection of optimization parameters. Thus, highly relevant

parameters are not excluded from the optimization and the

parameter number is reduced at the same time. Thereby, both

accuracy and run time are improved in a smart way.

In addition, the proposed method is flexible. It allows for

usage of any model architecture that supports the establish-

ment of parameters. Moreover, the optimization algorithm

can be freely chosen due to the standard formulation of the

optimization problem.

III. METHOD APPLICATION AND RESULTS

To show both efficacy and efficiency of the proposed

method, an application is presented in the following. Discrete

MOSFET devices have been statically characterized and the

manufacturer SPICE model has been used as an input to the

proposed method.

A. Manufacturer Model and Experimental Data

The proposed method has been applied to adjust

the manufacturer SPICE model (v2) of Wolfspeed

C3M0075120K MOSFETs [18]. The behavior of the 3-

terminal C3M0075120D MOSFET, which was used for lab

mean

Measurements

Fig. 3. PDC Measurements (10x C3M0075120D)

experiments, was imitated by shortening the source and kelvin

source terminals of the C3M0075120K model.

Experimental data has been derived measuring the static

ID-VDS characteristic of 10 discrete MOSFET devices of

type C3M0075120D [19]. The measurements were performed

at room temperature. Then, the mean of all measurement

series was calculated. This mean is referred to as the mean

characteristic in the following. The measurement result and

the mean characteristic can be seen in Figure 3. The data

show considerable device spread in the static characteristics at

low gate-source voltages close to the threshold voltage that re-

duces towards higher gate-source voltages. The average device

spread measured by the RMSE from the mean characteristic

is 2.56 A.

B. Results

The effect of applying the proposed fitting method to the

manufacturer SPICE model is visualized in Figure 4. The

deviation of the model behavior from the measurements is

significantly higher before the application of the proposed

method (Figure 4a) than afterwards (Figure 4b). The RMSE

with reference to the experimental data could be reduced from

16.58 A to 2.66 A by applying the proposed method. This

deviation is in the same range as the individual device spread

and thus regarded an accurate representation of the device

behavior.

The run time of the proposed method was on the order of

O(1h) for the sensitivity analysis and O(1h) for the optimiza-

tion. Therefore, the method achieved considerable time savings

and accuracy improvement compared to the reference method

[10] that took O(6h) arriving at a residual of 8 A RMSE.

IV. CONCLUSION

A highly effective and efficient method of SPICE model pa-

rameter fitting has been developed. Unlike existing parameter

fitting methods, a sensitivity analysis is employed before the

parameter optimization. Choosing only highly sensitive param-

eters for the optimization procedure reduces the dimensionality
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Fig. 4. Simulation results vs. experimental data.
(a) initial parameterization (16.58 A RMSE)
(b) after applying the proposed method (2.66 A RMSE)

of the optimization problem and thereby the run time of the

parameter fitting. At the same time, high accuracy is preserved.

The method was applied to the manufacturer SPICE model

of C3M0075120K SiC MOSFETs. Experimental data was

obtained using a PDC and used as the fitting reference. In

this application, the proposed method achieved results with an

accuracy in the range of individual device spread, reducing the

model deviation from experimental data by 83.9 %. Compared

to alternative methods (e.g. [10]), the execution time is reduced

multiple times. At the same time, the model error is decreased

by more than 60%. The combination of high accuracy and

reduced run time makes this method valuable for applications

in converter and especially gate driver design, where model

accuracy and development time are critical factors.
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