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DIGITAL CORRECTION FILTER IN PROBLEMS
OF RECOVERY OF INPUT SIGNALS AND OBSERVING
SYSTEMS’ DATA IN ENERGY OBJECTS

The task of signal recovery is one of the most important for auto-
mated diagnostics and control systems of an energy object. When solv-
ing the inverse problems of recovering signals, images and other types
of data, spectral distortions and losses occur (in some cases, very sig-
nificant ones). They are primarily stipulated due to ill-posedness of
these problems, which is the result of loss of information about the
original signal due to strong (and even complete) suppression in the
observed signal of a part of spectral components, which become indis-
tinguishable against the background of errors and noise [1]. Besides,
additional spectral distortions may occur in the process of solving re-
covery problems, which depend on specific methods used and their pa-
rameters. A method for building a digital correcting filter for pro-
cessing the results of solving incorrect inverse problems is proposed,
which effectively improves the quality of the solution. The method is
based on the use of a singular decomposition of the matrix (SVD) of a
system of algebraic equations that approximates the integral operator.

Key words: inverse problems, signal recovery, digital filter,
SVD decomposition, integral equations.

Formulation of the problem. Methods and means of recovered signals’
filtering correction and use of apriori information are intended to improve the
quality of the inverse problems’ solutions. It should be noted that there are
many efficient algorithms for solving inverse problems, the idea of which is to
use additional apriori information, for example, information about smooth-
ness, monotonicity, or convexity of the solution [2-4]. However, the problem
of ensuring the quality of obtained results remains relevant. Errors in the spec-
trum of the recovered signal naturally lead to its distortion and to a decrease in
the accuracy of recovery. One of the most significant points is that, in the
presence of fast change zones (jumps, peaks, etc.) in the original, truncation or
sharp limitation of the spectrum leads to appearance of oscillations (Gibbs
phenomenon) [5-7], which can have a very significant intensity and cover
large areas. Often, these oscillations introduce significant distortions into the
recovered signal, which mask important details of the recovered data and can
lead to appearance of artifacts. The existing methods of handling the undesira-
ble effects associated with the Gibbs phenomenon can themselves lead to ap-
pearance of additional distortions.
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Inverse problems in most cases resolve themself into solving the sys-
tems of linear equations. The most time-consuming and complex problems
arise precisely at this stage of solution.

Consider the classical inverse problem — the solution of the
Fredholm integral equation of the 1st kind:

b
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where K(x,s), f(x) are the given functions, y(x) is the desired solution.
We split the segment (a,b) by a uniform grid {x}_, , with a pitch h, and
pass on to the system:

b
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a

Method description. To calculate integrals on the left side of the
system (2), we use the formula for trapezoids on a uniform grid {sj}rj”:l,

with a pitch h, . The performed operations make it possible to obtain the
matrix of the operator A, that approximates the integral operator in equa-
tion (1). Thus, the problem of solving the integral equation (1) resolves
itself into to solving a system of algebraic equations:
AY =F. (3)
where
h K (X ,sj), j=2,3,...,m-1,
Ai,j =1h ) i=1n,
?K(xi $), i=1m,
Fo=f(x) i=1n,Y; =y(s;), j=Lm
are values of the unknown function at nodes of the splitting.
To solve system (3), we use the SVD (singular) decomposition of a ma-
trix, which means that any matrix A of dimension nxm can be represented as:
A=U3zV', (4)
where U is the orthogonal nxn matrix, V is the orthogonal mxm ma-
trix, T is the diagonal nxm matrix with diagonal elements
0y20,2...20,20, p=min{n,m}. Schematically, such a decomposi-

tion can be represented as (Fig. 1).
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Fig. 1. Matrix decomposition structure
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Columns U (or V respectively) are called left (right) singular vec-
tors A, and o; — singular numbers. An important property of this de-

composition is the fact that rank(A)=r if and only if when

o >0,00y=...=0,=0.

In case o,,..,0, are very small in comparison with o,...,0,,
then for computational purposes it is assumed that the rank of the matrix A is
equal to r, and it is said that A has an effective rank r . Applying decompo-
sition (4) for system (3), we can obtain the solution sought in the form:

Y=V(m1:n*@:r,1:r)U" @:r, n)F, (5)
where £ is a diagonal matrix with diagonal elements 1/ ,,1/ o5, ...,1/ o, ,
orby replacing C = £*(1:r,1:r)U" (1:r, n)F we obtain:
Y =V Cra- )
It can be seen from relation (6) that we are looking for a solution to
equation (1) in the so-called SVD basis, the basis functions of which are
columns of a matrix V., with rates from column C.

Building a corrective filter. The next task is to build an optimal fil-
ter for suppressing Gibbs phenomena, which can be observed in places
where the sought-for function changes rapidly (jumps).

The idea behind filtering is as follows: for the signal decomposed on

the basis {¢, (x)}, ,

r
y(x) = ch% (X), )
k=1
we look for the so-called sigma factors o(r,k) and multiply them by cor-

responding rates c, , i. e.

r
y) =~ > o(r ke (x) 8)
k=1
suppressing high-frequency components of the signal in a way that improves
the signal shape, reducing oscillations caused by the Gibbs phenomenon.

The Lanczos filter and (a(r, k) = WJ the Fejer filter
T r
(o-(r, k)= ﬂ] , which are widely known, are used for the Fourier's series
r

[8]. To build a filter that is optimal for the SVD basis, let's consider a test case.
Let in equation (1) be as K(x,s)=e°*" a=-1b=2,n=100,
and the desired solution have the form:
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(x) = 0, x¢(0,1),
o=y, x € (0,1).

Having found the right side of equation (1), we will numerically re-
cover the original signal (using the Matlab environment software mod-
ules). The results of programs can be seen in Fig. 2-4.

1.2 T T T T

nETS : : |
06+ ‘ 3 :
04t : .

o2t : 4

02 1 1 I 1 1
-1 0.5 0 05 1 1.5 2

Fig. 2. Original signal (—), the signal recovered
using the Tikhonov regularization method (---)
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Fig. 3. Original signal (—), the signal recovered
using the SVD decomposition without filtering (---)
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Fig. 4. Original signal (—), the signal recovered using
the SVD decomposition with Lanczos filter (---)

As can be seen from Fig. 4, the Lanczos filter enables suppressing the
Gibbs phenomena, but the shock front is recovered worse in this case, and it
also does not provide reliable information about the jump signal height. We
will look for a new filter in the form of the third degree linear function:

2 3
a(r,k):a0+a1[£j+a2 [Ej +ag4 [Ej . 9
r r r

Let's build the functional:
23

2
W) =3 (yox) - 7a(x)) +

= (10)
58 2 100 2
+3 (v -90) + 2 (v - 7.0
j=43 i=78

where y(x) is the original signal, §,(x) is the signal recovered using the
SVD decomposition and the applied filter, a ={a,, a,, a,, a5}-
To find ratios, a;,i= 0,3 we minimize the functionality (10), this

can be done using the fmincon function built into the Matlab environment.
The results were as follows:
a, ~0.990118; a, ~0.001268;

a, = —0.00329; a; ~0.000073.
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Fig. 5. Lanczos filter (---) and the filter built for the test problem (—)

As can be seen from Fig. 5, the filter formed, when compared with
the Lanczos one, has better suppressed the Gibbs oscillations, but at the
same time the jump front was restored less clearly. Applying the obtained
filter for a large number of other problems’ examples made it possible to
find out that the solution, as in the test example, successfully recovers the
original signal at a certain distance from the jump. This fact makes it pos-
sible, by finding the maximum derivative of the obtained solution (deter-
mining the place of the jump), to finish building the function in the inter-
vals close to the jump, approximating the function on well-recovered in-
tervals. The results of this operation can be seen in Fig. 6.
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Fig. 6. Original signal (—), the signal recovered by means
of the SVD decomposition using the built filter (---)
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In this case, the mean-root square error turned out to be 0.01316,
which is much less than the errors of the Tikhonov's method (0.972843)
and the singular value decomposition method with Lanczos filtering
(1.226638), which indicates the efficiency of the built algorithm for such
classes of problems. Figure 7 shows the result of solving the problem of
this type, which also confirms advantages of the considered method.
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Fig. 7. Original signal (—), recovered signal (---)

Conclusions. A method has been developed to improve the accuracy
and quality of recovering an energy object control system’ input signals
containing sharp jumps; which based on the use of optimized spectral fil-
tering and apriori information. In comparison with widely known methods
of filtering by Fejer and Lanczos, the proposed method makes it possible
to more accurately recover signals outside the jump zones, as well as to
extrapolate them within these zones.
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LM®OPOBUNA KOPEKTYIOUUU ®INbTP Y 3AAAYAX
BIAHOBJIEHHA BXIAHUX CUITHANIB | AAHUX CUCTEM
CNOCTEPEXEHHA EHEPTETUYHUX OB’EKTIB

3aBaaHHs BiHOBJIEHHS CUTHAIY € OJHHUM 3 HalBKIIMBILIMX JUIS aB-
TOMAaTHU30BaHHUX CHCTEM JIarHOCTHKU Ta KePyBaHHsS SHEPreTHYHUM 00'€K-
ToM. [Ipu BHpilIeHHI 3BOPOTHHUX 3aBIaHb BiTHOBJIECHHS CHI'HANIB, 300pa-
JKEHb Ta 1HIIMX BUAIB JAaHUX MAIOTh MICIE CIIEKTPalbHi CIOTBOPEHHS Ta
BTpatH (y ACSIKHMX BHIAAKaX JyXe 3Ha4Hi). BOoHM 3yMOBJIeHI Hacammepen
HEKOPEKTHICTIO LIMX 3aBJaHb, KA € Pe3yJbTaToM BTpar iHdopMarii mpo
BUXIJHUHA CUTHAJ BHACIIOK CHIBHOTO (I HABITh TOBHOTO) MPUIYIICHHS Y
CIIOCTEPEe)KYBAaHOMY CHTHAJl YacCTHHHU CIEKTPAJIbHHX KOMIIOHEHTIB, SKi
CTaIOTh HEPO3Pi3HIHUMHM Ha TJIi MOMHJIOK Ta 1ryMiB. Kpim Toro, y mpoeci
BUPIIICHHS 3aBJaHb BiJHOBJICHHS MOXYTb BUHUKATH JIOJATKOBI CIIEKTpa-
JIBHI CIIOTBOPEHHS, sIKi 3aeXaTh BiJl KOHKPETHUX METO[IB, IO 3aCTOCO-
BYIOTBCS, Ta IX MapaMeTpiB. 3alpONOHOBAHO METOA MOOYA0BH H(POBOTO
KOPUTYBAIBHOTO (QiTbTpa JJIsi OOPOOKH pe3yIbTaTiB pO3B'sI3aHHS HEKOPEK-
THUX OOCpHEHHX 33734, IO T03BOJISIE SPEKTHBHO ITiBHUIYBATH SKICTh pi-
nieHHs. MetoJ 3acHOBaHUWiT Ha 3acTocyBaHHI cuHTYyIspHOTO (SVD) po3k-
JaJJaHHs. MaTPUIl CHCTEMH PIBHSIHB anreOpw, IO alpOKCHMYE iHTErpajb-
HUH orepaTop.

KuwouoBi ciioBa: obepreni 3a60anus, 6i0HOGIEHHA CUSHANIB, YUPDPO-
suti ¢pinomp, SVD-posknadanns, inmeepanvHi pi6HAHHSL.

Otpumano: 8.10.2021



