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Abstract
Dispersal has a crucial role determining ecoevolutionary dynamics through both gene 
flow and population size regulation. However, to study dispersal and its consequences, 
one must distinguish immigrants from residents. Dispersers can be identified using 
telemetry, capture-mark-recapture (CMR) methods, or genetic assignment methods. 
All of these methods have disadvantages, such as high costs and substantial field ef-
forts needed for telemetry and CMR surveys, and adequate genetic distance required 
in genetic assignment. In this study, we used genome-wide 200K Single Nucleotide 
Polymorphism data and two different genetic assignment approaches (GSI_SIM, 
Bayesian framework; BONE, network-based estimation) to identify the dispersers in a 
house sparrow (Passer domesticus) metapopulation sampled over 16 years. Our results 
showed higher assignment accuracy with BONE. Hence, we proceeded to diagnose 
potential sources of errors in the assignment results from the BONE method due to 
variation in levels of interpopulation genetic differentiation, intrapopulation genetic 
variation and sample size. We show that assignment accuracy is high even at low lev-
els of genetic differentiation and that it increases with the proportion of a population 
that has been sampled. Finally, we highlight that dispersal studies integrating both 
ecological and genetic data provide robust assessments of the dispersal patterns in 
natural populations.
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1  |  INTRODUC TION

Dispersal is an important life-history trait and a key process deter-
mining both ecological and evolutionary dynamics of populations as 
well as their conservation status (Bonte & Dahirel, 2017; Van Dyck 
& Baguette, 2005). Dispersal is defined as permanent movement of 
individuals from birthplace to reproduction site (natal dispersal) or 
between reproduction sites (breeding dispersal; Greenwood, 1980; 
Ronce, 2007). When dispersers reproduce, dispersal leads to gene 
flow between populations which is expected to result in increased 
genetic diversity within a population and decreased genetic differ-
entiation between populations (Holsinger & Weir, 2009). Gene flow 
may prevent the fixation of deleterious mutations by counteracting 
genetic drift and introducing new genetic variation. Immigration 
may, thereby, increase mean fitness and adaptive potential of popu-
lations, which in turn is expected to improve their long-term viability 
(Whiteley et al., 2015). However, high rates of gene flow may also im-
pede local adaptation and have a negative effect on population per-
sistence (Alleaume-Benharira et al., 2006; Berdahl et al., 2015; Berg 
et al., 2010). In addition, dispersal is expected to have direct effects 
on population demography; while immigrants may increase the local 
population size, emigrants may reduce it (Millon et al., 2019; Vance, 
1984), depending on the relationships between population density 
and emigration/immigration rates. Consequently, dispersal plays a 
vital role in the ecological dynamics of structured populations such 
as metapopulations (Hanski & Gaggiotti, 2004). Thus, understanding 
the causes and consequences of dispersal is fundamental to be able 
to predict the short- and long-term viability of populations in rapidly 
changing environments (Akçakaya, 2000; Lowe et al., 2017; Travis 
et al., 2013).

To study dispersal, it is essential to collect high-quality dispersal 
data where dispersers are correctly distinguished from residents. 
This poses considerable challenges in many organisms because the 
study area needs to be large enough to cover normal dispersal dis-
tances (Armansin et al., 2020; Matthysen, 2012). The movement of 
a high proportion of individuals within and between a set of study 
populations should be monitored, and monitoring must start before 
the dispersal event and continue for a sufficiently long time period 
to include the settlement and establishment phase (Holyoak et al., 
2008). Telemetry and capture-mark-recapture (CMR) methods are 
commonly used ecological monitoring tools to identify dispersing 
individuals. Telemetry methods may provide accurate information 
on movement, dispersal distance and direction (Cagua et al., 2015; 
Hayden et al., 2014; Iwajomo et al., 2018; Mauritzen et al., 2002). 
However, high cost of electronic telemetry devices and the need for 
extensive field efforts often result in data with relatively small sam-
ple sizes that cover a restricted geographic area and span short time 
periods, relative to dispersal distances and the length of dispersal 
and establishment processes (Cayuela et al., 2018). Similarly, im-
plementing CMR surveys often have limitations because of logistic 
challenges and high costs due to the substantial field effort needed 
(Muriel et al., 2015; Truve & Lemel, 2003). Detecting dispersers 
using telemetry and CMR methods may therefore not be sufficient 

to obtain unbiased information on individual dispersal events and 
dispersal dynamics in many systems.

The use of genetic clustering methods that delineate the genetic 
structure of populations and genetic assignment methods that deter-
mine the origin of individuals based on genetic clusters has increased 
during the last two decades as a result of decreased costs of geno-
typing and sequencing in non-model organisms (Chen et al., 2018; 
Corander et al., 2003; François & Waits, 2015; Pritchard et al., 2000). 
Compared to ecological monitoring by use of telemetry and CMR, 
genetic assignment methods may offer a less labor-intensive and 
more cost-efficient way to identify dispersers. In principle, conven-
tional genetic assignment methods assign the individuals of interest 
to the most likely populations/groups based on the expected prob-
abilities of belonging (genetically) to each of the predefined source 
populations (Anderson et al., 2008; Manel et al., 2005; Paetkau et al., 
2004). Although genetic assignment has been successfully used in a 
number of studies of dispersal in natural population of vertebrates 
(Riley et al., 2006; Roffler et al., 2014; Schwartz et al., 2002), plants 
(Hanaoka et al., 2014; Orantes et al., 2012; Sinclair et al., 2018), and 
insects (Marchi et al., 2013; Vanden Broeck et al., 2017), there are 
some challenges and limitations. For instance, reduced accuracy due 
to low genetic differentiation (low FST values) and unbalanced sam-
ple sizes from sampled clusters, which both are common character-
istics of empirical data from natural populations, are challenges for 
most genetic approaches (Araujo et al., 2014; Broquet & Petit, 2009; 
Paetkau et al., 2004; Putman & Carbone, 2014). Additionally, many 
of the existing genetic assignment methods have computational lim-
itations and are not suitable for high numbers of molecular markers 
such as single nucleotide polymorphisms (SNPs; Piry et al., 2004; 
Pritchard et al., 2000). Some recently developed genetic assignment 
tools (Chen et al., 2018; Kuismin et al., 2020; Moran & Anderson, 
2019) seem to deal with some of the potential biases and challenges 
caused by, for instance, high-density marker genotype data and un-
balanced sample sizes. However, to better understand whether and 
when genetic assignment methods provide accurate assignments, 
we do not only need simulation studies but also high-quality empiri-
cal data sets from structured populations with information on many 
resident and dispersing individuals with known natal and adult pop-
ulations, which can be used to explore the effects of sampling and 
population characteristics on the assignment performance (Cayuela 
et al., 2018).

In this study, we combine genetic assignment results and eco-
logical CMR data to reveal the true dispersers and explore dispersal 
patterns in a long-term study of an insular house sparrow meta-
population off the coast of northern Norway (Baalsrud et al., 2014; 
Pärn et al., 2012; Ringsby et al., 2002). To do so, we use two genetic 
assignment methods implementing different model-based frame-
works: (i) a commonly used genetic stock identification method 
based on Bayesian inference “GSI_SIM” (Anderson et al., 2008; see 
Moran & Anderson, 2019 for implementation of GSI_SIM in a re-
cently released R package “RUBIAS”), and (ii) a recently developed 
network-based estimation method, BONE (Kuismin et al., 2020). 
We selected these methods because they can process high-density 
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genome-wide SNP genotype data for a large number of individuals 
and they performed well for a subset of our data in Kuismin et al., 
(2020). First, we tested the accuracy of these genetic assignment 
methods and investigated the possible sources of error using in-
dividuals with known natal population and dispersal status. These 
analyses are based on individual CMR data on recruiting offspring, 
as natal dispersal occurs during the first autumn in an individual's 
life in the study metapopulation. Second, we also investigated the 
effects of population genetic differentiation, heterozygosity, popu-
lation size, and proportion of population sampled on the accuracy of 
the genetic assignment to portray when and how genetic assignment 
methods could and should be used. For example, the reliability of ge-
netic assignment is expected to be poor with small sample sizes from 
potential source populations or low genetic differentiation between 
source populations (Araujo et al., 2014; Kalinowski 2004). Our re-
sults may provide general guidelines about when genetic assignment 
methods are expected to lead to erroneous assignments. Third, we 
constructed an extensive dispersal data set by combining results 
from the genetic assignment method that performed best with 
ecological CMR data and parentage information from a SNP-based 
metapopulation-level pedigree (Niskanen et al., 2020). We used this 
combined dispersal data set to examine some patterns of variation 
in dispersal in the study metapopulation: (i) Does the proportion of 

dispersing recruits vary across years? If so, such temporal variation 
could indicate annual variation in environmental conditions that af-
fect emigration probability and/or establishment success (Bowler & 
Benton, 2005). (ii) Are there differences between populations and/
or habitat types in proportions of dispersing recruits, which may sug-
gest the existence of source-sink dynamics in the study metapopula-
tion (Dias, 1996)? (iii) Is the proportion of dispersers female-biased, 
as found in most bird species (Clarke et al., 1997; Pusey, 1987)?

2  |  MATERIAL S AND METHODS

2.1  |  Study metapopulation and data collection

The study was carried out in an insular house sparrow (Passer do-
mesticus) metapopulation in the Helgeland archipelago in northern 
Norway, which has been monitored since 1993 (Figure 1). The study 
metapopulation consists of 18 island populations, interconnected al-
most exclusively by natal dispersal. Moreover, the study area spans 
over more than 1600 km2 and covers a large area relative to the av-
erage house sparrow dispersal distances (10–15 km in our study sys-
tem; Baalsrud et al., 2014; Pärn et al., 2012; Tufto et al., 2005; Ranke 
et al., 2021). Data were collected every year (from 1993 to present) 

F I G U R E  1  The study area in the 
Helgeland archipelago in northern 
Norway. Nonfarm islands (dark blue), farm 
islands (orange) and out-group 2 islands 
(teal) used in this study are shown [Colour 
figure can be viewed at wileyonlinelibrary.
com]

https://onlinelibrary.wiley.com/
https://onlinelibrary.wiley.com/
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in the breeding season from May to August and in the autumn be-
tween mid-September and mid-November. Offspring were ringed as 
nestlings (in nest boxes or cavities under the roofs) in the summer 
season, whereas pre-/post-moult juveniles and any unringed recruits 
were captured using mist nets during summer and autumn seasons. 
Individuals were marked with a metal ring with a unique number and 
three coloured plastic rings to provide a unique colour combination. 
Most (~90%) house sparrows in the study metapopulation were in-
dividually marked, and the average resighting/recapture rate in the 
study metapopulation was 74% (Niskanen et al., 2020). Blood sam-
ples (~25 μl) were collected from the brachial vein located under the 
wing for genotyping. These extensive fieldwork procedures ensured 
high recapture rates, as well as high-quality data on recruitment, an-
nual survival of adult birds, and dispersal within the study system 
(Holand et al., 2016; Jensen et al., 2004, 2008; Kvalnes et al., 2018; 
Pärn et al., 2009, 2012; Ringsby et al., 2002; Stubberud et al., 2017). 
House sparrows are sedentary species and they are only found 
around human settlements or agricultural areas which makes them 
easy to monitor (Summers-Smith, 1988).

A custom Affymetrix Axiom 200,000 SNP array was devel-
oped by using the house sparrow reference genome (Elgvin et al., 
2017) and whole genome resequencing data from 33  house spar-
rows sampled at different localities in Norway (n = 29) and Finland 
(n = 4; Lundregan et al., 2018). A total of 3253 individuals recorded 
as adults on a subset of islands in our study metapopulation between 
the years 1998–2013 were genotyped with this custom Affymetrix 
Axiom SNP array (Figure 1; Table 1). Based on Affymetrix’ MonoHigh 
and PolyHigh quality criteria, 185 587 SNPs were passed on to fur-
ther quality control (Lundregan et al., 2018). After removing the 
birds with low sample quality (genotyping rate < 0.90, n = 68), po-
tential duplicate samples based on identity by state (IBS) above 0.98 
(n = 20), and excluding the loci likely to have a relatively high level 
of genotyping errors (SNP call rate < 95%; Mendelian error rate 
based on parental relationships > 5%) or low minor allele frequency 
(MAF < 0.01), 3116 individuals and 183,145 SNPs were found suit-
able for further analyses (Niskanen et al., 2020).

On five islands (Aldra, Gjerøy, Hestmannøy, Indre Kvarøy and 
Nesøy), we SNP-genotyped adults sampled from 1998 to 2013 
(Table 1). These islands are denoted with the habitat type “farm 
island” because sparrows mainly live and breed at or near dairy 
farms. On three other islands (Myken, Selvær, and Træna) we SNP-
genotyped adults sampled from 2003 (Selvær, Træna) and 2004 
(Myken) to 2013 (Table 1). On these three islands, denoted with 
the habitat type “nonfarm island”, there are no dairy farms, and the 
house sparrows breed in nest boxes or in cavities under the roofs of 
houses and forage in gardens. Because birds on farm islands live on 
farms, they experience higher local densities (in “colonies”) during 
the breeding season, but also have better access to shelter during 
bad weather conditions (especially in winter) compared to birds 
on nonfarm islands (see Araya-Ajoy et al., 2019; Pärn et al., 2012). 
Because house sparrows may be expected to move more around 
on nonfarm islands, and any effects of population size (e.g., density) 
may be stronger on farm-islands, we expect that dispersal patterns 

may differ between habitat types. Population sizes were estimated 
as described in Baalsrud et al. (2014) and Stubberud et al. (2017).

2.2  |  Dispersal data

We defined a disperser as a bird that emigrated from its natal island 
and recruited on another island based on CMR (i.e., initially ringed 
on natal island and subsequently recaptured after recruitment). 
Natal dispersal comprises nearly all dispersal in the metapopulation 
(only c. 0.2% of recruited birds perform breeding dispersal as adults; 
Altwegg et al., 2000; Tufto et al., 2005). In the study metapopula-
tion, natal dispersal usually occurs between early autumn and early 
winter (i.e., August–December). Hence, many dispersal events have 
therefore already occurred during the period between the summer 
and autumn fieldwork (i.e., between approximately mid-August and 
October). Consequently, ecological CMR data can only be used to 
determine individuals’ natal island with certainty for nestlings and 
fledged juveniles captured during summer fieldwork (May–August). 
For individuals captured for the first time in the autumn (any unringed 
post-moult juveniles or adults), natal island cannot be determined 
based on the ecological data (i.e., the island of first capture may 
in some cases not be the bird's natal island). Our data set includes 
1645 recruits with known natal island; 1354 of these recruited on 
their natal island (i.e., residents) and 291 dispersed to another island 
before recruitment (i.e., dispersers). Furthermore, there were 1096 
recruits for which the recruitment island but not the natal island was 
known; some of these birds could be dispersers that we were not 
able to detect using our ecological CMR data.

2.3  |  Genetic assignment methods

Our aim was to construct a complete and accurate dispersal data 
set for the house sparrow study system. Therefore, we generated 
genetic assignments of individuals to their natal island with two 
different approaches and compared the assignment accuracy with 
known natal island and dispersal information generated from our 
extensive CMR data. We utilized: (i) the GSI_SIM software, which 
is based on the conditional maximum likelihood algorithm of the 
ONCOR software but further developed to handle a high number 
of markers (Anderson et al., 2008; see Moran & Anderson, 2019 
for an R package “RUBIAS” which is equivalent to GSI_SIM), and (ii) 
the recently developed BONE method (Kuismin et al., 2020). BONE 
uses sparse multinomial least absolute shrinkage and selection op-
erator (LASSO) regression, and is based on estimating network com-
munities from genetic data (see also CONE “Community Oriented 
Network Estimation” method in Kuismin et al., 2017). GSI_SIM uses 
an “individual assignment test” to assign every individual in a “mix-
ture population” (i.e., individuals with unknown population origin) to 
the population among a set of “baseline populations” (i.e., samples 
of individuals from pre-defined potential populations of origin, that 
should not include the individuals in the “mixture population”) that 
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the individual had the highest posterior probability of belonging to 
given its multilocus genotype and allele frequencies in the baseline 
populations (Anderson et al., 2008). BONE uses similar “mixture” and 
“baseline” populations, but is a multiphasic approach that uses model 
and tuning parameter selection for estimating undirected genetic re-
lationship networks based on high-density genotype data (Kuismin 
et al., 2020). The BONE approach then uses the nodes and edges 
from the estimated networks to infer the probability of an individual 
belonging to each of the different baseline populations, calculated 
from the individual's node degrees and number of neighbours. The 
individual is then assigned to the baseline population which it has 
the highest probability of belonging to. Importantly, the BONE ap-
proach can also identify individuals originating from a population not 
among any of the baseline populations.

Because sampling of the different island groups for high-density 
SNP-genotyping started in different years, data for the baseline and 
mixture populations were assembled in four different stages when 
utilizing the two genetic assignment methods (see Table 1). First, 
adults from farm islands were included in the baseline populations 
for each of the years 1998–2012, since data were available for these 
islands throughout all these study years. Second, to be able to iden-
tify immigrants from nonfarm islands before 2004, that is, before 
the systematic sampling for these islands started (Træna and Selvær 
in 2003; Myken in 2004), we created an outgroup (denoted as “out-
group 1”; Table 1). “Outgroup 1” consisted of a small set of individuals 
(27 < n < 74) which were present on these three nonfarm islands in 
the years 1998–2003 (Table S1). This outgroup was included as one 
of the baseline populations for annual assignment analyses before 

2004. For the assignment analyses for 2004 and later, each of the 
three nonfarm islands (Træna, Selvær and Myken) were included as a 
separate baseline population. Third, a new outgroup was created for 
the years 2004–2012 (denoted as “outgroup 2”; Table 1), including 
SNP-genotyped individuals that had hatched on an island within the 
metapopulation that was not actively selected for genotyping (out-
group 2 islands: Lovund, Lurøy-Onøy and Sleneset). The outgroup 2 
baseline populations were constructed separately for each year by 
pooling the SNP-genotyped adults (23 < n < 66) that were known 
to have hatched on any of the three islands (based on ecological 
data) from 1997 up to the year of the analysis (e.g., the outgroup 2 
baseline population for 2004 was constructed by including the adult 
individuals that were ringed as nestlings or juveniles May–August 
on Lovund, Lurøy-Onøy or Sleneset from 1997 to 2003). Although 
individuals present on the islands and years included in the two out-
groups had not been selected for high-density SNP-genotyping to 
represent samples from the outgroups, some genotyped adult in-
dividuals from these islands and years were present in our data set 
because they had dispersed from one of the outgroup islands to an 
island where adult individuals were genotyped (see Table 1). Finally, 
as a last step, any duplicates that occurred both in the baselineand 
pooled set of one year old recruits (i.e., mixture populations; see 
below for details) due to the way we constructed the outgroups, 
were removed from baseline populations in order to avoid self-
assigning of these individuals.

After preparing the data, we ran the assignment analyses accord-
ing to the following procedure: a mixture population was assembled 
separately for each year (t + 1) by pooling all the recruited individuals 

TA B L E  1  House sparrow populations included in the current study with information on whether or not it was selected for high-density 
SNP-genotyping, its habitat type (Type) and its classification in the genetic assignment analyses; a population was either included as a 
separate baseline population per year or in one of the two outgroup baseline populations for the time periods 1998–2003 and 2004–2012

Island
Selected for 
SNP-genotyping Type

Separate baseline population per year Total number 
of adults 
SNP-genotypedYears 1998–2003 Years 2004–2012

Aldra Yes Farm Yes Yes 181

Indre Kvarøy Yes Farm Yes Yes 344

Hestmannøy Yes Farm Yes Yes 1014

Gjerøy Yes Farm Yes Yes 528

Nesøy Yes Farm Yes Yes 122

Selvær Yes Nonfarm No (included in 
outgroup 1)

Yes 247

Træna Yes Nonfarm No (included in 
outgroup 1)

Yes 223

Myken Yes Nonfarm No (included in 
outgroup 1)

Yes 79

Lovund No Nonfarm - No (included in outgroup 2) 24

Sleneset No Nonfarm - No (included in outgroup 2) 22

Lurøy-Onøy No Farm - No (included in outgroup 2) 25

Total number of SNP-genotyped adult individuals indicates the number of genotyped adults for the islands selected for SNP-genotyping (i.e., total 
number of unique adult individuals in all the baseline populations for that island), whereas for the islands not selected for SNP-genotyping (outgroup 
2) it indicates the number of individuals that hatched on the island (as determined by ecological CMR data) and emigrated to one of the islands 
selected for SNP-genotyping.
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in our data that were born in the previous year (t). Every individual 
in the mixture population was then assigned to the baseline popula-
tions for year t using the two genetic assignment methods described 
above. The assumption was that one of these baseline populations 
should include parents and/or other ancestors and relatives of the 
recruit (see Figure S1). Note that for the individuals in the mixture 
population, no population-specific information was provided in the 
analyses. This procedure was carried out for each year (t) 1998–2012.

2.4  |  Accuracy of the genetic assignment methods

In order to evaluate the accuracy of the genetic assignment analyses 
carried out using GSI_SIM and BONE, the natal island and dispersal 
status obtained from each genetic assignment method were com-
pared with the individuals’ known natal island and dispersal status 
obtained from the CMR data. In these analyses we used the 1645 
(60%) recruits for which ecological CMR data can reliably be used to 
determine natal island (i.e., nestlings and fledged juveniles captured 
during the summer season). If the natal and “adult” islands (i.e., the 
island on which they recruited; see above) were the same, the indi-
vidual was defined as a “resident”. Whereas in cases where natal and 
adult islands of an individual differed, the individual was regarded as 
a “disperser”. These criteria were used both for the ecological CMR 
data and the genetic assignment data. We distinguished two types 
of misassignments. We refer to false positives (type I error), when 
the ecological CMR data showed that the individual was a resident 
and the genetic assignment wrongly indicated it was a disperser, and 
false negatives (type II error) when the ecological CMR data showed 
the individual was a disperser and the genetic assignment wrongly 
indicated it was a resident.

2.5  |  Causes of errors in genetic assignment

After determining which method yields the highest assignment ac-
curacy, causes of any errors in genetic assignments were investi-
gated using assignment results from the approach performing best. 
We tested whether the annual number of misassignments per popu-
lation or population pair were related to genetic and ecologic popu-
lation characteristics such as genetic differentiation between pairs 
of populations, within-population genetic diversity and sample size. 
Furthermore, the effect of the proportion of the population sam-
pled (i.e., the proportion of the adult population in year t that was 
successfully SNP-genotyped and included in the baseline population 
that year) on the number of errors was also tested to examine the 
effect of sampling regime on the accuracy of genetic assignment. 
To investigate the relationships between these variables and genetic 
assignment accuracy, statistical models were fitted for each variable 
separately and together (all variables except genetic differentiation, 
to account for any effects of the other variables) using the “glm-
mTMB” package in R (Brooks et al., 2017). Correlations among the 
explanatory variables were examined using the “psych” package in R 

(Revelle, 2018; Figure S9). Additionally, we carried out similar analy-
ses using proportion of misassignments instead of number of misas-
signments (see Supporting Information Materials for description of 
methods and results from these analyses). Parameter estimates are 
given ±1 SE.

In order to estimate pairwise genetic differentiation (FST) be-
tween baseline populations, and the genetic diversity (i.e., observed 
heterozygosity) within baseline populations, we used a subset of the 
183,145 SNPs that were highly variable and unlinked to decrease 
computational time. The subset was generated using plink 1.09 
(Purcell et al., 2007) and consisted of 5807 SNPs with high MAF 
(>0.2) that were in low linkage disequilibrium (LD; variance inflation 
factor < 1.04 using a sliding window approach; 50 SNPs of window 
size and window overlap of five SNPs) across all islands and years 
combined.

2.5.1  |  Pairwise number of misassignments vs. 
pairwise genetic differentiation

Pairwise genetic differentiation between baseline populations 
was estimated for each year t based on the FST estimator of Weir 
and Cockerham (1984) implemented in the R-package “hierfstat” 
(Goudet, 2005). Misassignments between pairs of populations were 
calculated for each year t by taking the sum of misassignments for 
a given pair of baseline populations that year (i.e., the number of 
birds known to have hatched in each of the two population with the 
other population wrongly assigned as their natal population). To ex-
amine the effect of genetic differentiation between population pairs 
on number of pairwise misassignments, we fitted a zero-inflated 
Poisson generalized linear mixed model (ZIP GLMM), where pairwise 
number of misassignments was fitted as the response and genetic 
differentiation (FST) as a continuous covariate. We included island 
pair identity as a random factor to account for nonindependence of 
island pairs across years.

2.5.2  |  Number of misassignments vs. observed 
heterozygosity

To assess the effect of genetic diversity within a baseline popula-
tion on the number of misassignments, we calculated observed 
mean heterozygosity across SNPs using the R-package hierfstat 
(Goudet, 2005). In order to separate and identify the reasons behind 
the reduced accuracy in the genetic assignment method correctly, 
the number of misassignments were calculated separately for each 
year t in each baseline population in two ways; (i) the sum of mis-
assignments “given away” (i.e., individuals known to have hatched 
in the focal population in year t based on ecological CMR data, but 
assigned to another baseline population), and (ii) the sum of misas-
signments “received” (i.e., individuals assigned to the focal baseline 
population in year t, but known to have hatched in another popula-
tion based on ecological CMR data). The number of misassignments 



4746  |    SAATOGLU et al.

was used as the response variable in two sets of models (misassign-
ments given away in one model, misassignments received in another) 
where the observed heterozygosity was fitted as a continuous co-
variate in a ZIP GLMM.

2.5.3  |  Number of misassignments vs. sample 
size of baseline populations

The effect of baseline populations’ sample size (i.e., number of adults 
in the baseline population in year t that were SNP-genotyped) on 
the number of misassignments was examined using annual data for 
each baseline population. Number of misassignments (given away 
and received in separate models, as described above) was fitted as 
the response variable whereas sample size was a continuous covari-
ate in a ZIP GLMM.

2.5.4  |  Number of misassignments vs. 
proportion of the population included in the baseline

Finally, we examined how the proportion of the sampled adult pop-
ulation included in the baseline population (“baseline proportion”) 
affected the number of misassignments. Baseline proportion was es-
timated for each island and year t separately by dividing the number 
of individuals included in a baseline population with the population 
size estimate for that island and year. ZIP GLMMs were fitted with 
separate models for misassignments given away and misassignments 
received. In both models, baseline proportion was included as a con-
tinuous covariate.

2.6  |  Constructing an extended dispersal data set

To determine the natal island and dispersal status of the 1096 (40%) 
recruits with unknown natal island based on the ecological CMR 
data set (i.e., unringed new recruits captured in year t + 1 and re-
cruits first captured as fledged juveniles in the autumn season of 
year t), we used results from the genetic assignment method with 
higher assignment accuracy.

Furthermore, to verify and correct the genetically assigned 
natal island and dispersal status of the individuals with unknown 
natal island based on the ecological CMR data set, we utilized a 
metapopulation-level pedigree that was recently constructed based 
on parentage analyses using high-density SNP-genotype data 
(Niskanen et al., 2020).

Verifications and corrections based on the pedigree could be 
made for the 743 recruits with at least one parent in the pedigree 
(the other 353 recruits with unknown natal island based on the eco-
logical CMR data also had unknown parents). For these 743 recruits, 
each recruit's genetically assigned island was compared with the is-
land on which its mother and/or father was present in the year that 
the recruit was born (based on the ecological CMR data). In cases 

where the genetically assigned natal island of a recruit did not match 
with the adult island of its mother and/or father, the genetically 
assigned natal island was assumed to be wrong, and the true natal 
island was assumed to be the island on which its parent(s) were pres-
ent in its year of birth. Finally, when the verifications of the recruits’ 
natal island had been carried out, each recruit's dispersal status was 
determined by comparing its (corrected) natal island with its adult 
island. When a similar check against the pedigree was done for the 
1460 recruits (out of 1645) with known hatch island based on the 
ecological CMR data and at least one known parent, we found that 
only two individuals (0.14%) had hatched on an island that did not 
match with the adult island where their mother and/or father were 
recorded.

2.7  |  General dispersal patterns in the house 
sparrow metapopulation

To examine (i) the temporal and spatial variation in interisland dis-
persal, (ii) proportion of recruits that dispersed between islands 
within the same and different habitat types (farm islands and non-
farm islands), and (iii) differences in the sex-ratio between dispersers 
and residents, generalized linear mixed models with a binomial error 
distribution were fitted using the “glmmTMB” package in R (Brooks 
et al., 2017). We expect spatial variation in dispersal because previ-
ous results from the study metapopulation suggest that there are 
differences between islands and/or habitat types (farm and non-
farm islands) in morphological traits and their heritable genetic basis 
(Araya-Ajoy et al., 2019; Muff et al., 2019) as well as in demographic 
parameters (Holand et al., 2016; Pärn et al., 2012; Ringsby et al., 
1999, 2002; Sæther et al., 1999). All sampling years were used in 
investigation of spatiotemporal variation and differences in the sex-
ratio. However, because the sampling period for nonfarm islands did 
not include years before 2004, we chose to use only data from years 
2004–2012 in the examination of differences between the habitat 
types. Finally, random intercepts were included for natal island and 
year when investigating whether the sex-ratio differed between dis-
persers and residents.

3  |  RESULTS

3.1  |  Accuracy of the genetic assignment methods

We used GSI_SIM and BONE genetic assignment methods to assign 
a total of 2741 recruits to their most likely natal island population 
within our metapopulation. When testing the accuracy of the as-
signment methods, we only used individuals with known natal island 
based on the ecological CMR data (n = 1645; Figure S2).

Based on the recruits with known natal island and dispersal 
status, the error rates for GSI_SIM were 9.5% (total), 7.3% (type I), 
and 2.2% (type II), whereas corresponding error rates for BONE 
were 4.8%, 3.6%, and 1.2% (see Supporting Information Material 
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and Figures S3 and S12 for details on GSI_SIM assignment results). 
Because the BONE method gave considerably lower error rates, 
and thus more accurate results than GSI_SIM, we constructed 
our new dispersal data set using the BONE genetic assignment 
method.

In the BONE analysis we used the so called “Winner Takes it All” 
(WTA) approach that assigns a given individual to the most proba-
ble genetic network, and can also detect any immigrants from any 
unsampled populations not included among the baseline popula-
tions (see Kuismin et al., 2020 for details). However, BONE did not 
identify any such individuals in our data set.

3.2  |  Causes of errors in genetic assignment

3.2.1  |  Pairwise number of misassignments vs. 
pairwise genetic differentiation

Among 414 population pair-years, 85.5% had no misassignments and 
9.2% had only one misassigned individual (Figure 2). The maximum 
number of misassigned individuals between two populations was 
7 (between Træna and Selvær in 2011, with pairwise FST = 0.005), 
and 53% of all misassignments were between populations with 
pairwise FST < 0.013. Accordingly, there was very strong evidence 
that genetic differentiation, estimated as annual pairwise FST, ex-
plained variation in number of misassignments between population 
pairs (χ2

(1) = 18.534; p <  .001). The number of misassignments for 
a given population pair increased when populations were geneti-
cally similar, in other words, when pairwise FST values were lower 
(β = −54.792 ± 12.125; p < .001; Figure 2; see Table S6 and Figure 
S10 for the impact of pairwise FST on pairwise proportion of misas-
signments). For example, the model predicts on average 0.16 misas-
signed individuals per year between a pair of islands, if the pairwise 
FST among the islands is equal to the mean in our study metapopula-
tion (FST = 0.036), and 0.51 misassigned individuals between islands 
when pairwise FST = 0.010).

3.2.2  |  Number of misassignments vs. 
observed heterozygosity, sample size of baseline 
populations, and proportion of the population included 
in the baseline

To examine how within-population characteristics may cause errors 
in genetic assignments, we tested whether the number of misas-
signments in a given year (misassignments given away and received) 
was related to the population's level of heterozygosity (mean: 0.415; 
range: 0.391–0.433), sample size (mean: 51.431; range: 2–231), and 
proportion of the population that was included in the baseline popu-
lation (mean: 0.884; range: 0.429–1).

There was evidence for positive relationship between the num-
ber of misassignments (both given away and received) and the 
observed heterozygosity of baseline populations (p-values <.05; 
Figure 3a, b; Table S3; Table S4). Furthermore, there was a positive 
relationship between the number of misassignments received and 
sample size of the baseline population (p  <  .05; Figure 3d; Table 
S4). Finally, we found that as the proportion of the sampled adult 
population increased, there were fewer misassignments given away 
(Figure 3e, Table S3).

Results were generally similar when models were fitted with 
all three population characteristics as covariates simultaneously, 
to test whether each of them explained variation in the number of 
misassignments (given away and received) when any effects of the 
other two characteristics were controlled for. The positive relation-
ship between observed heterozygosity and misassignments given 
away was still present (β = 69.540, p < .05, Table S5), whereas there 
now was little evidence that heterozygosity had an effect on mis-
assignments received (β = 41.758, p = .126, Table S5). Additionally, 
the relationship between sample size and the assignment accuracy 
did not change (β  =  –0.192, p  =  .363 for misassignments given 
away; β  =  0.553, p  <  .01 for misassignments received). However, 
these analyses suggested that the proportion of the adult popula-
tion sampled had a negative effect on the assignment accuracy for 
both misassignments given and received (β = –1.939, p =  .015 for 

F I G U R E  2  Relationship between the annual number of genetically misassigned recruits and FST for each population pair in an insular 
house sparrow metapopulation. The line shows the predicted values for the number of pairwise misassignments, and the grey area shows 
its 95% confidence interval from a ZIP GLMM where island pair ID was included as a random factor [Colour figure can be viewed at 
wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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misassignments received, Table S5; see Tables S7, S8 and Figure 
S11 for the impacts of observed heterozygosity, loge of the annual 
sample sizes of the baseline populations, and the proportion of the 
population that was sampled on proportion of misassignments given 
away and received).

3.3  |  The extended dispersal data set

The number of dispersers identified by ecological CMR monitoring 
was 291. This constituted 17.7% of the subset of recruits with eco-
logically known natal island (n = 1645) and 10.6% of the total num-
ber of recruits (n = 2741) included in the study. Genetic assignment 
of recruits’ natal island using the BONE method suggested however 
that 658 of the recruits (24.0%) had hatched on a different island 
in the study metapopulation than the one on which they recruited 

(Table S2). In order to reduce the number of potential errors in the 
final extended dispersal data set, we first checked the genetic as-
signment results against the ecological CMR data for individuals 
where this was available (n = 1645; see detailed information in the 
section on accuracy of genetic assignment methods above). This en-
abled us to correct some assignment errors, and reduced the number 
of dispersers to 621 (22.7% of the recruits). Second, we used the 
SNP-pedigree either to confirm or potentially correct the recruits’ 
natal islands. This was done for the individuals without ecological 
CMR data with at least one parent in the SNP-pedigree (n = 743). 
For these recruits, the majority of genetically assigned natal islands 
was consistent with the island on which their parent(s) was breeding 
(97.8%; n = 727); for the other 16 recruits the natal island was cor-
rected to the island where their parent(s) was breeding. Note that 
seven out of these 16 recruits had parents that were both dispersers 
themselves, and of these (7) recruits three were actually genetically 

F I G U R E  3  The number of recruits in an insular house sparrow metapopulation, among the ones that were known to have hatched on a 
focal island based on the ecological CMR data (n = 1645), that were either wrongly assigned to another island population (misassignments 
given away; a, c, e), or wrongly assigned to a focal island population (misassignments received; b, d, f). Relationships are shown for the 
number of misassignments per population and year against observed heterozygosity (a, b), loge of the baseline population sample size (c, d), 
and the proportion of the population included in the baseline population (e, f). Blue lines show the predicted relationships, and grey areas 
show the 95% confidence intervals from ZIP GLMMs [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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assigned to the natal island of their parent(s). Finally, for the re-
maining recruits (n = 353), which had no available ecological CMR 
or pedigree information, we only used the results from the genetic 
assignment analyses to determine their natal island. In total, this re-
sulted in an extended dispersal data set with 607 dispersers (22.2% 
of recruits), which is about twice the number identified with ecologi-
cal CMR information (Table S2). The proportions of recruits with dif-
ferent levels of natal island reliability are shown in Figure S4. Finally, 
in the extended dispersal data set, the annual proportion of dispers-
ing recruits that were only identified using genetic assignment with 
pedigree correction was on average 54.1% and ranged from 19.1% 
(recruits born in 2012) to 91.7% (recruits born in 1998; Figure S5).

3.4  |  Dispersal patterns in the house sparrow 
metapopulation

There was considerable variation between years in both the number 
(Figure S5) and the proportion of dispersers among recruits (Figure 
S6). There was strong evidence that the proportion of recruits that 
dispersed varied among years (χ2

(14)  =  34.666; p  <  .01). Dispersal 
was most frequent in 2004 and 2006, when nearly 30% of the re-
cruits dispersed, whereas the lowest dispersal rates were observed 
in 2000, 2002 and 2008, when 15%–16% of recruits dispersed 
(Figure S6). There was also very strong evidence for considerable 
variation among islands in the number and proportions of recruits 
that emigrated (test for differences in proportions among islands: 
χ2

(9) = 510.25; p < .001), and in the proportion of individuals that re-
cruited to a population that were immigrants from each of the other 
island populations in the metapopulation (Figure 4). The proportion 
of recruits born on an island that dispersed to another island in the 
study system ranged from less than 6% (Aldra) to ~40% (Nesøy and 
Selvær), and on the two populations with the largest average popu-
lation sizes across the study period (Gjerøy and Hestmannøy) about 
11% of the recruits dispersed to another island. Furthermore, the 
proportion of recruits on an island that were immigrants ranged from 
c. 13% (Aldra) to 42% (Træna). For the years 2004–2012, emigration 
was slightly lower than immigration on six of the study islands, with 
net dispersal rates (difference between number of immigrants and 
number of emigrants, divided by the number of birds that recruited 
on an island) ranging from 2% to 8%. However, on two islands the 
net dispersal rate was highly negative; –15% on Selvær and –39% 
on Nesøy.

The majority of dispersal events occurred within each of the two 
habitat types (farm to farm and nonfarm to nonfarm; Figure 5). There 
was strong evidence that a higher proportion of recruits dispersed 
between nonfarm islands (24.3%; 131 out of 540 recruits) than be-
tween farm islands (9.6%; 134 out of 1394 recruits; 2004–2012 data: 
β = 1.199 ± 0.137; p < .001). Furthermore, the proportion of recruits 
dispersing from nonfarm islands to farm islands was higher (7.2%; 
39 out of 540 recruits) than from farm islands to nonfarm islands 
(2.1%; 29 out of 1394 recruits; 2004–2012 data: β = 1.357 ± 0.251; 
p < .001).

Finally, we found strong evidence that dispersal was female 
biased across all years and islands in the study metapopulation 
(χ2

(1) = 14.97; p < .001; Figure S7). Overall, 58.6% of the dispersing 
recruits were females whereas only 49.1% of the resident recruits 
were females. The female bias in dispersal was slightly higher in this 
data set, which included genetic assignment information, than the 
data set that included only ecological CMR data (55% female dis-
persing recruits; G = 0.114, df = 1, p > .05; Figure S7).

4  |  DISCUSSION

We have shown that genetic assignment can be a successful ap-
proach to identify the natal population and dispersal status of 
individuals in geographically structured populations even with con-
siderable amounts of gene flow. Our results corroborate previous 
studies showing that genetic assignment is a powerful tool to ex-
plore key ecological and genetic processes in fragmented popula-
tions in plants, insects and mammals (Roffler et al., 2014; Sinclair 
et al., 2018; Vanden Broeck et al., 2017). Using genetic assignment 
tools can be crucial to accurately track animal and plant movements 
as well as examine how dispersal affects adaptive and nonadaptive 
divergence of populations. This tool will thus improve our ability to 
develop optimal conservation and management strategies for spa-
tially structured populations (Shafer et al., 2016).

4.1  |  Accuracy of genetic assignment

In the present study, we applied two different genetic assignment 
approaches on a unique and extensive long-term individual-based 
ecological data set to study the accuracy of these methods in a wild 
vertebrate metapopulation. Using high-quality ecological CMR 
data on 1645 individuals, we showed that the error rate of BONE 
was lower than for GSI_SIM (4.8% and 9.5%, respectively; Figure 
S3). Our results agree with a recent study using both simulations 
and empirical data on Chinook salmon and house sparrows (data 
from year 2012, also included in the current study), where the as-
signment accuracy of the BONE approach was found to be more 
robust than three other genetic assignment methods (including 
GSI_SIM; Kuismin et al., 2020). Therefore, the results of the BONE 
assignment method were chosen to complement our ecological 
CMR data when identifying the natal island and dispersal status 
of the recruiting individuals without known origin. The lower error 
rate of the BONE genetic assignment approach could have two 
main causes. First, the adapted network estimation method allows 
the user to use more flexible model selection properties compared 
to more traditional genetic assignment methods that are based on 
the Bayesian framework. Second, analyses of different empirical 
and simulated data sets indicate that the genetic assignment al-
gorithm of BONE is rather robust to uneven sample sizes, which 
is often the case when sampling wild populations (Kuismin et al., 
2017; Lawson et al., 2018).
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We investigated plausible reasons for wrong genetic assignments 
obtained using the BONE genetic assignment method. First, a strong 
negative relationship was observed between pairwise FST values and 
the number of misassignments shared by each pair of islands (i.e., 
baseline populations; Figure 2). Using the BONE genetic assignment 
method, very few population pairs had any wrong assignments: 
94.3% of populations with a pairwise FST value higher than 0.025, 
and 77.5% of populations with a pairwise FST value between 0.010–
0.025 had no wrong assignments. However, this percentage dropped 
to 25% for populations with a pairwise FST value below 0.01. We also 
noted that a large proportion of wrong assignments (27%) were ob-
served between the islands Træna and Selvær, that are known to be 
highly connected through natal dispersal (Pärn et al., 2012) and have 
the lowest mean pairwise FST among population pairs in the study 
system (0.006; Figure S8). This means that the genetic assignment 

method identifies an individual's source population more reliably 
when populations are genetically different from each other. Still, the 
BONE method appears remarkably reliable even when the level of 
differentiation (FST) is as low as 0.01 in our study system. Similar 
positive effects of genetic differentiation on assignment reliability 
are expected from theory and simulations also in other geograph-
ically structured populations (Anderson, 2010; Araujo et al., 2014; 
Latch et al., 2006; Paetkau et al., 2004; Waples & Gaggiotti, 2006), 
and have been documented in other wild populations, such as a 
grand skink (Oligosoma grande) metapopulation (Berry et al., 2004), 
arctic char (Salvelinus alpinus) populations (Moore et al., 2017), and 
in seven other species of vertebrates and three species of insects 
(Manel et al., 2002). In general, results from our and other studies 
suggest that genetic assignment is reliable when the genetic differ-
entiation (FST) between individuals’ potential source populations is 

F I G U R E  4  Spatial variation in dispersal in an insular house sparrow metapopulation in northern Norway. The direction of arrows show 
the direction of dispersal from natal island to adult island. Different habitat types and outgroups are shown in different colours. The 
thicknesses of arrows indicate the proportion of recruits born on an island that dispersed to the other island connected by the arrow across 
15 years of study (cohorts 1998–2012 for the five farm islands, and cohorts 2003–2012 for the three nonfarm islands; arrow thicknesses 
shown as examples in the legends correspond to 1%, 5% and 10% of the recruits, respectively). See Figure 1 for the study islands’ true 
geographical structure [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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in the order of 0.02–0.07, with the lower limit of differentiation de-
pending on, for example, assignment method and number and type 
of genetic markers.

Second, the number of misassignments given away and re-
ceived for a population were positively related to the average ob-
served genome-wide level of heterozygosity of the population (Ho; 
Figure 3a, b; Table S3; Table S4). However, after controlling for sam-
ple size and proportion of the baseline population sampled, we ob-
served a positive relationship only between Ho and misassignments 
given away (Table S5). In contrast to what we found, it has been 
previously shown that genetic diversity may positively affect the 
accuracy of genetic assignments especially if the genetic differenti-
ation between the populations is moderate (FST > 0.08; Berry et al., 
2004; Manel et al., 2002). In our metapopulation, annual pairwise 
FST estimates were lower than 0.08 for most of the population pairs 
(Figure 2). Thus, the observed increase in misassignments with in-
creasing Ho may be a consequence of relatively low genetic differen-
tiation in our study metapopulation. Accordingly, populations with 
high Ho actually appear to be more closely genetically connected 
and genetically similar to other populations in the system (correla-
tion between annual pairwise FST and average Ho of population pairs: 
r = –0.68, p < .001). As a consequence, a high population-specific Ho 
in our system indicates relatively high level of gene flow and low FST 
with at least one population. This results in that for some individu-
als there is another baseline population that provides a sufficiently 
good but incorrect genetic network match in BONE; the misassign-
ments occur most likely with populations in which relatives of an 
individual are present (Kuismin et al., 2020).

Third, we found a positive relationship between the number 
of wrong assignments received and the sample size of the base-
line population (Figure 3d; Table S4); this relationship was robust 
and remained the same also after controlling for other covariates 
(Table S5). In our study metapopulation, there is a strong positive 

correlation between the sample size and the adult population size 
(i.e., the annual estimated number of adults within each island pop-
ulation; n = 102 island years; r = 0.98). A positive relationship be-
tween genetic diversity and population size is expected from theory 
(Soulé, 1976) and has been reported before (Frankham, 1996). One 
possibility could therefore be that the positive relationship be-
tween sample (~population) size and wrong assignments received 
simply reflects the increase in misassignments with higher genetic 
diversity discussed above. On the other hand, this may not be the 
only explanation in our case as the relationship with baseline sam-
ple sizes remained even when genetic diversity (Ho) was accounted 
for (Table S5). One plausible complementary reason could be that 
subpopulations with large population size harbour individuals with 
more diverse genetic backgrounds that consequently may result in 
sufficient genetic resemblance between an individual and a large 
population even if this population is not the individual's true natal 
population. Another reason might be that this is due to the negative 
correlation between sample size and level of genetic differentiation 
in the system (correlation between annual pairwise FST and average 
sample size of population pairs: r = –0.44, p < .001).

Fourth, a negative relationship was found between the number 
of misassignments given away and the proportion of a population 
included in the baseline population (Figure 3e; Table S3). Moreover, 
when the effects of Ho and sample size were controlled for, a strong 
negative relationship was observed between the proportion of the 
population that is sampled and both misassignments given away and 
received (Table S5). This clearly indicates that more realistic rep-
resentations of the genetic variation and relatedness structure of 
a population will cause fewer assignment errors in network based 
genetic assignment analysis such as BONE, and hence increase the 
accuracy of the genetic assignments in such situations. However, 
one should note that this may not be the case for the assignment 
methods utilizing a Bayesian framework: it has in fact been shown 

F I G U R E  5  The annual percentages of 
dispersers between and within habitat 
types among all birds that recruited on the 
eight islands in the study metapopulation. 
Abbreviations used for the habitat types 
are: “F” for “Farm”, “NF” for “nonfarm”, 
“OG1” for “Outgroup 1” and “OG2” for 
“Outgroup 2”. See Table S9 for details 
and actual numbers [Colour figure can be 
viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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that inclusion of close relatives in baseline populations can decrease 
the accuracy of genetic assignments using methods such as ONCOR 
(Östergren et al., 2019).

4.2  |  Dispersal in the house sparrow 
metapopulation

After merging the ecological CMR data with the genetic assign-
ments that had been checked and corrected with information from 
a metapopulation-level SNP-genotype-based pedigree, the number 
of dispersers in our data set increased from 291 recruits (17.7% of 
the ecological CMR data only) to 607 recruits (22.2% of all recruits 
included in the study; Table S2). This is a considerable increase, and 
mostly due to the fact that a high proportion of the dispersers did 
not have natal island information from ecological CMR data. Natal 
island may be unknown because an individual was captured for the 
first time in autumn and could have dispersed before/during this pe-
riod of the year, or that it was first captured and ringed after the natal 
dispersal season as a one year old adult (i.e., a new recruit; Figure 
S4). Even though the assignment accuracy was very high (95.2% of 
the assignments were correct based on the ecological CMR data), 
some errors in the assignment of individuals as dispersers or resi-
dents are still expected to be present in our extended dispersal data 
set (Figure S3), and the final number of dispersers may therefore be 
slightly overestimated. Most of these incorrectly defined dispersers 
are expected to be from population pairs with low levels of genetic 
differentiation (see Figure 2), such as the islands of Træna and Selvær 
(Figure S8). Although such populations may be considered as a single 
population in a population genetic context, it can be important to 
treat them as separate populations, with a high level of interpopula-
tion dispersal, in an ecological context, at least when dispersal is not 
occurring throughout the whole year. This is because most ecologi-
cal and social processes, such as any competition over mates and/or 
breeding sites or other resources, will happen within the local popu-
lations. Nevertheless, even if one assumes that 3.6% of the recruits 
were wrongly assigned as dispersers, and 1.2% of the recruits were 
wrongly assigned as residents (see Figure S3), the overall proportion 
of recruits that dispersed would still be c. 19.8%. Furthermore, note 
that the offspring of dispersers in our house sparrow metapopulation 
tend to have a higher probability of dispersing than the offspring of 
resident birds (Saatoglu et al., 2021). When this is the case, some 
individuals may have been assigned to a wrong island simply because 
their parents were immigrants from that island.

We found variation in the proportion of dispersers in both time 
and space in our house sparrow metapopulation (Figures 4, 5). The 
percentage of dispersers among cohorts of recruits ranged between 
15% and 30% across 16  study years (Figure S6). Interestingly, we 
found that six out of our eight island populations had approximately 
equal emigration and immigration rates, whereas the emigration rate 
was considerably higher than the immigration rate on two islands 
(Nesøy and Selvær). Furthermore, dispersal rates were higher among 
islands with nonfarm habitat than among islands with farm habitat, 

and higher from nonfarm habitat islands to farm-habitat islands than 
vice versa (Figure 5; Tables S9, S10). These results may help explain 
interisland differences in inbreeding levels (Niskanen et al., 2020) 
and the differences in mean morphology that appear to exist be-
tween birds in the two habitat types (Araya-Ajoy et al., 2019; Muff 
et al., 2019). Furthermore, the results may suggest the existence of 
habitat differences in productivity and dispersal probability, and 
hence that there could perhaps be source and sink populations in our 
study metapopulation. However, to properly identify populations as 
sources and sinks, other demographic parameters like reproduction 
and mortality rates also need to be quantified (Dias, 1996; Furrer 
& Pasinelli, 2016). In any case, the considerable spatiotemporal 
variation in dispersal rates we observed suggests that population 
properties, such as population size/density (Pärn et al., 2012) and 
relatedness (through inbreeding avoidance; Niskanen et al., 2020), 
environmental conditions, such as weather (Pärn et al., 2012), and/
or individual phenotypic characteristics, such as wing length (Araya-
Ajoy et al., 2019), may be important determinants of dispersal in our 
study system (Benton & Bowler, 2012; Cote et al., 2017). Examining 
the causes of variation in dispersal rates and individual dispersal 
decisions will help us to understand both the environmental (e.g., 
population size and/or density, food abundance, weather/climate 
conditions, social structure) and intrinsic drivers (e.g., genetic basis 
for dispersal, and inbreeding avoidance) of dispersal. Our new dis-
persal data set allows such investigations of both causes and con-
sequences of dispersal but this is outside the scope of the current 
study and will be the focus of future studies.

We found that a higher proportion of dispersers were females 
(0.59). This met with our expectation since it has been shown that 
female-biased dispersal is common in natural bird populations (spe-
cies level, 0.70; family level 0.65; Pusey, 1987).

The increased number of dispersers identified with high accuracy 
using a genetic assignment method, shows that even with extensive 
ecological CMR monitoring, the natal population (and dispersal sta-
tus) of a relatively large number of individuals may remain unidenti-
fied (e.g., 40% of recruits in our house sparrow metapopulation). The 
importance of duration and timing in CMR studies has been widely 
emphasized, and it has been shown that for instance in bird metapop-
ulations, capturing the nestlings in the nest or fledged juveniles with 
mist-nets during the breeding season is an efficient way to maximize 
the accuracy of the dispersal status information gathered (Chambert 
et al., 2012; Dupont et al., 2019). However, in long-term studies, it is 
challenging to carry out CMR monitoring during the whole year and 
in a sufficiently large study area to document dispersal events due 
to cost and effort limitations. Accordingly, a review study by Driscoll 
et al., (2014) that examined how dispersal was treated in conser-
vation biology, found that half of the ~600 studies had a dispersal 
knowledge gap (including basic information on individual status as 
disperser or resident) due to deficiencies in the information gath-
ering stage. Moreover, it has been shown that the consequences of 
inadequate dispersal knowledge may be incomplete or biased con-
clusions of the results from empirical studies, including effects on 
eco-evolutionary dynamics (Driscoll et al., 2014).
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Genetic approaches enable us to estimate dispersal rates di-
rectly over the sampled individuals when the sampling is adequate 
and timely, whereas dispersal rates over CMR data are usually es-
timated indirectly (i.e., with CMR models; Broquet & Petit, 2009). 
CMR models have been widely criticized in the literature because 
many are likely to give biased estimates due to inadequate dispersal 
data, limiting or unrealistic model assumptions, and unsuitable sam-
pling times (Cayuela et al., 2018; Dupont et al., 2019; Lebreton et al., 
2009). Moreover, many studies have a geographical scale that is sub-
optimal for obtaining unbiased estimates of dispersal, regardless of 
methods used to identify dispersers. However, the scale of our study 
system is large relative to normal dispersal distances of the house 
sparrow (Tufto et al., 2005), which allowed accurate identification of 
nearly all dispersers using the BONE genetic assignment methods. 
Therefore, as shown in this study, it may be very useful to comple-
ment even extensive ecological CMR monitoring with genetic as-
signment approaches to reduce any biases in estimates of dispersal.

5  |  CONCLUSIONS

To conclude, determining the true identity and number of dispers-
ers with a high accuracy is crucially important to increase the sta-
tistical power of both empirical studies as well as trainee data sets 
for theoretical studies, and thus help improve our understanding of 
ecological and evolutionary dynamics. We have shown that the re-
cently designed genetic assignment software BONE can identify the 
source population of individuals with a high accuracy. Nonetheless, 
one cannot completely eliminate genetic assignment errors, unless 
the study system consists of (at least) moderately differentiated 
populations with relatively few dispersal events. This is simply be-
cause the offspring of the dispersers will, with some probability, be 
assigned to the natal population(s) of their immigrant parent(s). Using 
a high-quality metapopulation-level pedigree is another way to test 
and increase the assignment accuracy (see also Berry et al., 2004). 
However, none of these findings would have been testable or open 
to discussion with ecological or genetic data alone. We believe that 
it will be increasingly important to integrate ecological and genetic 
approaches to improve our understanding, not only of dispersal 
dynamics of wild populations, but also of ecological and evolution-
ary dynamics (Cayuela et al., 2018; Moore et al., 2017; Shafer et al., 
2016).
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