
Resource-aware Online Parameter Adaptation for
Computationally-constrained Visual-Inertial Navigation Systems

Pranay Mathur1, Nikhil Khedekar2, and Kostas Alexis2

Abstract— In this paper, a computational resources-aware
parameter adaptation method for visual-inertial navigation
systems is proposed with the goal of enabling the improved
deployment of such algorithms on computationally constrained
systems. Such a capacity can prove critical when employed
on ultra-lightweight systems or alongside mission critical com-
putationally expensive processes. To achieve this objective,
the algorithm proposes selected changes in the vision front-
end and optimization back-end of visual-inertial odometry
algorithms, both prior to execution and in real-time based on
an online profiling of available resources. The method also
utilizes information from the motion dynamics experienced
by the system to manipulate parameters online. The general
policy is demonstrated on three established algorithms, namely
S-MSCKF, VINS-Mono and OKVIS and has been verified
experimentally on the EuRoC dataset. The proposed approach
achieved comparable performance at a fraction of the original
computational cost.

I. INTRODUCTION

Robotic systems and especially Micro Aerial Vehicles
(MAVs) owe their autonomous capabilities largely due to the
progress in the domain of localization and mapping methods
capable of running online and onboard. Among the multiple
sensor fusion strategies employed, fusing visual cameras,
LiDAR sensors and more, the combination of vision and
inertial sensors is an appealing solution due to its small size,
low weight, low cost and demonstrated ability to estimate the
robot pose with accuracy and robustness. Major successes
in the domain have been demonstrated through important
milestones, including the ability to provide reliable odometry
in both outdoor [1] and indoor [2] settings, reliability in fast
navigation [3–5], resilience against visual degradation [6–8]
and more. The community has particularly focused on robust
Visual-Inertial Odometry (VIO) solutions, while selected
works aim to address the overall Simultaneous Localization
And Mapping (SLAM) problem [9, 10]. Despite the progress,
however, visual-inertial odometry estimation remains com-
putationally expensive and necessitates significant compu-
tational resources onboard the flying robot. This in turn
prohibits the potential of integrating such systems onboard
ultra lightweight systems or the ability to run alongside
other computationally expensive processes (e.g., planning)
in computationally-constrained systems.

1 Pranay Mathur is an undergraduate student pursuing
Electronics and Instrumentation Engineering at Birla Institute
of Technology and Science (BITS) Pilani Goa Campus, India
f20170487@goa.bits-pilani.ac.in

2 The authors are with the Autonomous Robots Lab, Norwegian Univer-
sity of Science and Technology, O. S. Bragstads Plass 2D, 7034, Trondheim,
Norway.

In response to the above, this work contributes a general
policy to automatically adapt the behavior and computational
profile of a selected set of successful VIO frameworks in
order for them to maintain accuracy and robust performance,
while self-adjusting their functionality to best fit onboard
computationally-constrained systems and respond to real-
time changes in the overall available resources as other
threads run simultaneously. More specifically, the proposed
approach on Computational Resources-aware Visual-Inertial
Odometry Scheduling (CRVIOS), is demonstrated in con-
nection to three established VIO methods, namely a) Stereo
Multi-State Constraint Kalman Filter (S-MSCKF) VIO [5],
b) Robust and Versatile Monocular Visual-Inertial State
Estimator (VINS-Mono) [3] and c) Open Keyframe-based
Visual-Inertial SLAM (OKVIS) [11].

For all three methods, we define a unifying policy, that
given different computing systems and online profiling of
available resources, proposes selected changes on the vision
front-end and optimization back-ends of these methods both
for compile-time variables such as the image resolution, and
online real-time manipulation of parameters including the
number of features tracked, the number of iterations in the
optimization steps and the ratio of images processed. The
method further relates its online parameter manipulation to
the motion dynamics experienced by the robot at any given
time. The proposed VIO scheduling functionality achieves
almost identical performance to the original methods but
often at a fraction of the computational cost hence enhancing
the ability to be deployed onboard extremely lightweight,
power-efficient processing boards.

To demonstrate the potential and capabilities of the
method, we present a set of experimental case studies. Ex-
ploiting the widely-adopted EuRoC dataset [2], we demon-
strate CRVIOS for the selected VIO methods on both a)
a low-key x86 architecture processor, and b) a low-power
ARM system. Specifically, an Intel Core i3-4010U with
two cores at 1.7GHz and a Raspberry Pi 4B integrating a
Quad core Cortex-A72 (ARM v8) 64-bit SoC at 1.5GHz
are considered. For both systems, we run tests by launching
additional processes in real-time, thus modifying the actual
available resources, and evaluating the resilience of CRVIOS
in delivering accurate results by adjusting the parameters of
the underlying estimation frameworks.

The remainder of this paper is organized as follows:
Section II outlines related work. The proposed approach
is detailed in Section III with the implementation details
provided in Section IV. Evaluation studies are detailed in
Section V, followed by conclusions drawn in Section VI.



II. RELATED WORK

With respect to how different approaches lead to reduced
computational cost, most computationally lightweight VIO
methods can be broadly classified into two categories. The
first relies heavily upon implementation and targets lowering
the complexity of the computations or a reduction in time
taken by reorganization, pipelining and parallelization [12].
The other relies upon researchers altering a) the front-end by
choosing to process only selective information-rich features
and landmarks [13, 14] or b) the back-end by graph sparsifi-
cation [15, 16]. The authors in [17] propose an entropy-driven
metric to select only the most informative measurements
and achieve a 10× reduction in computation, although the
method has been developed for use in AR/VR glasses and
well-lit settings. Certain keyframe-based methods discard all
other measurements and only process measurements from a
subset of spatially distributed camera poses [18, 19]. Adjust-
ing the sensitivity of feature detection while simultaneously
altering the back-end to switch between EKF-based SLAM
and MSCKF [20] to fully utilize the computational resources
was shown in [21]. A similar resource-aware approach is
assigning different portions of the CPU budget for processing
after classifying features on their feature track length [22]. A
different approach is lowering the computational complexity
of individual steps involved in the SLAM process [23]. The
work in this paper specifically focuses on creating a policy
that requires minimum alteration of the underlying frame-
work of the VIO method and proposes an adaptive strategy
to alter the parameters according to an online profiling of
the resources available.

III. PROPOSED APPROACH

This section details the proposed policy to automatically
adapt a set of visual-inertial odometry estimation frame-
works such that resilient performance with minimal accuracy
degradation is ensured, along with a significant decrease in
computational complexity and adaptability to the resources
available at any given time during a robot mission. It should
be noted that the proposed approach does not exploit factors
that are specific to any certain VIO framework, rather a set
of ubiquitously applicable methods that could be extended to
multiple visual-inertial odometry algorithms are presented.

A. Selected Visual-Inertial Odometry Baselines

The selection of baseline VIO algorithms, VINS-
Mono [3], OKVIS [11], and S-MSCKF [5], was made
based on two criteria, namely a) their performance on
established datasets (e.g., EuRoC [2]), and b) their diversity
and utilization of distinct functional principles such that our
approach can be applicable to a diverse set of methods.
Firstly, while VINS-Mono and OKVIS utilize a non-linear
optimisation approach in their back-end with a sliding win-
dow in the former and a set of keyframes in the latter, S-
MSCKF demonstrates a filter-based approach. Furthermore,
while VINS-Mono tracks features detected in images from
a monocular camera, OKVIS and S-MSCKF are both stereo
based.

Fig. 1. VINS-Mono block diagram. Modifiable parameters are indicated by
the color of the blocks: Green indicates parameter changes during execution,
pink indicates parameter changes at compile time, blue indicates setting the
parameters prior to execution and grey indicates no changes.

1) VINS-Mono: The “Robust and Versatile Monocu-
lar Visual-Inertial State Estimator” (VINS-Mono) [3], is
a monocular visual-inertial 6 DoF state estimator based
on tightly-coupled sliding window non-linear optimization.
Loosely-coupled sensor fusion is performed to initialize
the estimator from an unknown initial state. Subsequently,
preintegration [24] is performed on IMU measurements
before being added to the optimization, and a tightly-coupled
formulation for re-localisation is proposed. In the vision
processing front-end, for every incoming image frame, robust
corner features [25] are detected and tracked using the KLT
sparse optical flow algorithm [26]. A minimum separation
is enforced between them to ensure uniform feature distribu-
tion. The method also features modules for tightly integrated
loop closure and 4 DoF pose-graph optimization. Its basic
processing steps are illustrated in Figure 1.

Fig. 2. S-MSCKF block diagram. Modifiable parameters are indicated by
the color of the blocks: Green indicates parameter changes during execution
while grey indicates no changes.

2) S-MSCKF: The authors of “Robust Stereo Visual Iner-
tial Odometry for Fast Autonomous Flight” [5] contributed
S-MSCKF, a stereo, filter-based visual-inertial odometry
algorithm that uses the established Multi-State Constraint
Kalman Filter (MSCKF) originally proposed in [20]. The
original algorithm [20] proposes a measurement model to
express the geometric constraints that arise on observing an
image feature from multiple camera poses without explicitly
adding the features in the state vector. In S-MSCKF, the
position of the feature is calculated in the world frame using
the least squares method in [20] and the estimated camera



poses. During the filter update step, two camera states are
removed and the feature observations obtained are used for
the measurement update. The implementation utilizes the
FAST [27] feature detector and tracks features temporally
using the KLT optical flow algorithm [26] which is also used
for stereo feature matching.

Fig. 3. OKVIS block diagram. Modifiable parameters are indicated by the
color of the blocks: Green indicates parameter changes during execution,
blue indicates parameter change prior to execution, and grey indicates no
changes.

3) OKVIS: The “Open Keyframe-based Visual-Inertial
SLAM” (OKVIS) [11] method is based on tightly-coupled
fusion of visual information with IMU estimates and uses
non-linear optimization over a sliding window of keyframe
poses. A probabilistic strategy is used to integrate the IMU
error term with the landmark re-projection error resulting in
the joint non-linear cost function to be optimized. Partial
marginalization of older keyframes in the sliding window
is carried-out to maintain a bounded computational com-
plexity. The vision front-end of the algorithm employs a
customized Harris corner detector which enforces uniform
keypoint distribution and is combined with BRISK descriptor
extraction [28]. For initialization, the last pose propagated by
IMU measurements is used to obtain a preliminary uncertain
estimate of the state.

B. Tracking of Computational Resources

The proposed resource-aware online parameter adaptation
of VIO strategies, exploits both prior information for the
overall CPU capabilities and online monitoring of CPU core
usage during the operation of the robotic system. An initial
specification of the CPU that details the number of cores,
µ, and the maximum and minimum clock speeds, νmax and
νmin, is acquired. While both the core usage and process
usage for every process associated with the algorithm are
recorded, only the core usage, χ, is used for our parameter
adaptation. This information is acquired and updated at a
rate of 1Hz using widely available system monitoring tools.
When run on multi-core architectures, the core of execution
- within the results presented in this work- is fixed to a
specified core for ease of resource monitoring.

C. Algorithm Description

Our proposed approach involves altering key parameters
of both the vision front-end and the optimization back-end
to achieve a reduction in computational resource usage.

1) Front-End Adaptation: The computational reduction
in the vision front-end for all methods is achieved by a)
choosing to process only a subset, P , of the total incoming
frames, I , and b) by changing the maximum number of
features, Φ, detected in the frame. The choice of whether
frame Ik ∈ P and thus if is to be processed is determined
by an agility metric, α, and the core usage, χ, on which the
process is executed. The agility is defined using the average
values of linear acceleration, αaavg, and angular velocity,
αωavg , over a sliding window of fixed length, lα. The degree
of agility is determined by a comparison with the respective
predefined thresholds αaT and αωT . We formalize the above in
the following equation, where αωn and αan denote the angular
velocity and linear acceleration values at time n, while k
denotes the time that the latest measurement is received:

αωavg = (1/lα)

n=k∑
n=k−lα

αωn

αaavg = (1/lα)

n=k∑
n=k−lα

αan

(1)

To counter excessive loss of frames in the case of low
agility trajectories, a queue over a fixed window of incoming
frames is maintained which records whether a frame was
processed or dropped and αωT and αaT are adjusted based on
whether the number of processed frames in the queue, N(P ),
exceeds or falls below fixed thresholds of minimum, C0, and
maximum, C1, number of frames to be processed. It is noted
that no image frames are dropped during the initialization
period.

Finally, the resolution, r, of the images is another factor
influencing resource usage and estimation accuracy, and
may be altered prior to execution based on the overall
computational capabilities at hand.

2) Back-End Adaptation: The computational reduction
and adaptability in the back-end is obtained by altering the
maximum number of iterations, Λ, required for linearization
in case of filter-based methods or by the linear solver for
non-linear optimisation based methods. In the case of the
latter, the size of the sliding window, W , is also altered.

The alterations made can further be classified into three
categories depending on when the changes occur: a) prior
to compilation b) at initialization and c) during execution
(online) and are highlighted in pink, blue and green respec-
tively in Figures 1-3 for the baseline VIO methods. Certain
parameters have a major impact in decreasing resource usage
when fixed initially, however have a detrimental impact when
they are altered online and lead to instability in the system.
In the case of OKVIS, all of these parameters are fixed prior
to execution. For S-MSCKF both Φ and Λ are altered online.
For VINS-Mono, only Φ is altered online while W and Λ are
fixed prior to execution. The aforementioned agility-based
selective processing of frames is utilized for all methods
and thus the system adapts online which frames to process.
On the other hand, the image resolution is fixed prior to
execution.



Algorithm 1 outlines the main steps in the proposed
approach. Upon initialization, the method provides an initial
estimate of all parameters for the VIO method on the basis
of the CPU specifications and instantiates a queue, queueI ,
to record whether the frame Ik is processed or dropped. The
choice of altering the maximum number of features detected,
Φ, the maximum number of iterations, Λ, and the extent
to which they are altered is determined based on a metric
∆ = χ−χT corresponding to the difference of current core
usage and a fixed threshold.

Algorithm 1 Resource-Aware Policy Adaptation
Input: CPUspec, χT , αT , κ0,f , κ0,p

1: Φ, Λ, W ← ComputeInitialParameters(CPUspec)
2: κf ← 0 , κp ← 0 , queueI ← 0
3: for all Ik ∈ I do
4: if (αωk < αωT and α

a
k < αaT and κf > κ0,f ) then

5: queueI .enqueue(0) , κf ← 0
6: return
7: end if
8: ∆← χ− χT
9: if (∆ > ∆0 and κf > κ0,f ) then

10: queueI .enqueue(0) , κf ← 0
11: return
12: else if (κp > κ0,p) then
13: UpdateIterations(∆,Λ)
14: UpdateFeatures(∆,Φ)
15: κp ← 0
16: end if
17: queueI .enqueue(1)
18: while (size(queueI) >= lI) do
19: pop queueI
20: end while
21: if (sum(queueI) > C0) then
22: Increment αωT , αaT
23: else if (sum(queueI < C1) then
24: Decrement αωT , αaT
25: end if
26: Increment κf , κp
27: end for

Due to different amounts of reduction in the computational
resources being achieved by dropping a frame entirely,
reducing the number of iterations or reducing the number
of features tracked, these adaptations are made on the basis
of different thresholds ∆0, ∆1 and ∆2. Additionally, as
dropping several frames could lead to an unstable system, it
is also governed by the number of frames processed, N(P ),
over a fixed window. A count of the number of frames since
the last frame drop, κf , is maintained to ensure that if the
current frame is dropped, no frame within κ0,f subsequent
frames may be dropped. To prevent degeneracy due to rapid
changes in Λ or Φ, no parameter is altered till the number of
iterations since the last modification, κp, exceeds a minimum
of κ0,p after an alteration is made.

IV. IMPLEMENTATION DETAILS

In this section, we review further details of the particu-
lar implementation of our strategy. Tuning certain method-
specific parameters apart from those detailed as part of our
general approach resulted in better performance however
these were not changed while evaluating the algorithm on
different sequences of the dataset in the interest of fair
evaluation. They were fixed to the values which gave the
best performance when tested without the resource-aware
algorithm. Loop closure was disabled in every case and
all VIO methods were compiled with the highest levels of
compiler optimization.

For every VIO algorithm, an initial estimate of the param-
eters is calculated using the maximum clock speed, νmax,
and number of cores in the CPU, µ. The domain for this
initialization is divided into three regions, namely R1 for
single core architectures with νmax < 1.2GHz, R2 for multi-
core architectures with 1.2GHz ≤ νmax ≤ 2.1GHz and R3

for multi-core architectures with νmax > 2.1GHz. These
regions were chosen since the variation of each parameter
as a function of the clock speed, νmax and number of cores
in the CPU, µ followed a similar trend in the given ranges.
Upon experimental evaluation an evident change was noted
upon moving between regions.

In VINS-Mono, the size of the sliding window, W , is
varied quadratically in R2, while its value is fixed in R1

and R3. The maximum number of iterations, Λ, is varied in
steps of two across each region. The number of features, Φ,
is varied linearly in all regions.

Since S-MSCKF ensures a uniform distribution of features
by ensuring that a certain number of features are detected
in every cell of a grid overlayed on the image, the grid
dimensions are varied according to the operating region and
are fixed prior to execution. The modifications in Φ are linear
in R1 and R2 and fixed in R3, while the modifications in Λ
are fixed in R1 and linear in R2 and R3. Being a filter-based
approach, the size of the sliding window in the backend, W
is not applicable.

OKVIS was, by comparison to VINS-Mono and S-
MSCKF, computationally expensive and since execution
could not be performed on a single fixed core, used two
cores instead. Due to OKVIS maintaining a sliding window
of IMU-linked temporal frames as well as one of keyframes,
two separate window sizes, Wt and Wkf were set. It was
tested on the x86-based laptop and all parameters were fixed
prior to execution with the only online modification being
the agility based dropping of frames.

V. EVALUATION STUDIES

The proposed approach is evaluated on the EuRoC [2]
dataset in Vicon Room 1 and Vicon Room 2 which includes
speeds of upto 0.75m/s along with significant motion blur
and differences in illumination. The dataset provides stereo
WVGA monochrome images at 20Hz, and temporally syn-
chronized IMU data at 200Hz with ground-truth provided by
a VICON motion capture system.



The algorithm is evaluated on the x86 architecture using a
dual-core Intel Core i3-4010U CPU with a processor clocked
at 1.7 GHz along with a 8GB DDR4 RAM on a laptop,
and on the ARM architecture using a quad-core Cortex-A72
(ARM v8) 64-bit SoC at 1.5 GHz processor, with an 8GB
LPDDR4 SDRAM on a Raspberry Pi 4B.

The effects of individual parameter variation are calculated
by varying a parameter in appropriate step sizes and record-
ing the changes in accuracy and process usage. The best
estimate of a parameter is considered to be the value at which
the highest accuracy is obtained. Analogously, simultaneous
variation is performed to examine evidence of any correlation
and combined impact on the accuracy and process usage.

In the optimization back-end of the VIO algorithm, the
parameters altered include the number of iterations, Λ, and
the window size, W , both of which yield a significant
reduction in process usage. A reduction in the former is
accompanied with a negligible decline in accuracy while a
steep decline is observed on reduction of the latter. In the
vision front-end, the number of features, Φ, has the greatest
influence on accuracy while the number of frames processed,
N(P ), has the maximum influence on process usage.

For every trial, the resultant trajectory of each VIO method
with and without CRVIOS running alongside was recorded
and evaluated using the trajectory evaluation toolbox from
[29]. The accuracy is defined by the root mean square error
(RMSE) for translation and rotation against ground truth
over the entire trajectory. The accuracy and process usage
results on the x86-based laptop are shown in Table I and on
the ARM-based Raspberry Pi 4B in Table II. The accuracy
with the implementation of our policy is comparable to the
original algorithm, however a significant reduction in CPU
usage is observed. No significant reduction in memory usage
was observed.

To evaluate the reaction of the proposed policy to online
changes, all cores of the system are artificially stressed for a
fixed duration periodically. Indicative plots for the resulting
parameter variation in VINS-Mono and S-MSCKF on the
ARM-based Raspberry Pi 4B are provided in Figure 4 and
Figure 5 respectively, utilizing the EuRoC sequences V1 02
and V2 02. The 3D plots of the corresponding trajectories
are provided in Figure 6 and Figure 7 respectively.

Indicative plots comparing OKVIS with and without
CRVIOS on EuRoC sequences V1 02 and V2 02 are pro-
vided in Figure 8 to illustrate the acceptable reduction in ac-
curacy with the reduction in process usage as can be seen in
Table I. A video recording of a selected subset of the results
is available at https://youtu.be/H5gIe418zwc.

VI. CONCLUSIONS

In this work, we defined a unifying policy that, given dif-
ferent computing systems, provided optimal initial estimates
of parameters and varied them according to the online pro-
filing of available computational resources. Our results show
that the proposed VIO scheduling functionality achieves
almost identical performance to the original methods but with
a major reduction in the computational cost. As evaluated

Fig. 4. Parameter adaptation on indicative runs of VINS-Mono on the
Raspberry Pi 4B on EuRoC sequences V1 02 (Left) and V2 02 (Right)
with periods of artificial stressing shown in red.

Fig. 5. Parameter adaptation on indicative runs of S-MSCKF on the
Raspberry Pi 4B on EuRoC sequences V1 02 (Left) and V2 02 (Right)
with periods of artificial stressing shown in red.

0

4

0.5

z
 (

m
)

1

22

y (m) x (m)

1.5

00

-2

-1

-0.5

0

2

0.5

z
 (

m
)

1

2

y (m)

1.5

0

x (m)

0

-2-2

Ground Truth

VINS-Mono

CRVIOS

Fig. 6. Indicative plots showing the reduced accuracy on running VINS-
Mono with CRVIOS on EuRoC sequence V1 02 (Left) and V2 02 (Right)
on the ARM-based Raspberry Pi 4B.



TABLE I
ACCURACY AND PROCESS USAGE CHANGES ON X86 - INTEL CORE I3-4010U @ 1.7GHZ

Dataset S-MSCKF CRVIOS VINS-Mono CRVIOS OKVIS CRVIOS
Trans. RMSE (m) Change Trans. RMSE (m) Change Trans. RMSE (m) Change

V1 02 0.179 0.163 0.016 0.156 0.171 -0.015 0.119 0.094 0.024
V1 03 0.176 0.311 -0.135 0.263 0.314 -0.052 0.158 0.180 -0.022
V2 02 0.179 0.243 -0.064 0.160 0.218 -0.058 0.129 0.135 -0.006
V2 03 0.724 0.852 -0.129 0.311 0.334 -0.023 0.184 0.237 -0.053

Rot. RMSE (deg) Change Rot. RMSE (deg) Change Rot. RMSE (deg) Change
V1 02 1.248 1.615 -0.367 2.203 1.797 0.406 1.196 1.006 0.189
V1 03 2.094 2.377 -0.283 3.042 3.431 -0.389 2.924 3.103 -0.179
V2 02 1.232 2.009 -0.776 2.325 2.557 -0.232 1.021 1.181 -0.160
V2 03 3.441 4.279 -0.838 2.537 2.805 -0.268 1.734 1.514 0.220

CPU usage % Change CPU usage % Change CPU usage % Change
V1 02 69.7 40.8 28.9 107.6 72.2 35.4 257.0 209.0 48.0
V1 03 64.8 38.6 26.2 96.0 66.9 29.1 247.0 206.0 41.0
V2 02 73.6 42.2 31.4 128.6 77.6 51.0 252.0 223.0 29.0
V2 03 74.5 40.6 33.9 100.9 85.0 15.9 241.0 190.0 51.0

TABLE II
ACCURACY AND PROCESS USAGE CHANGES ON ARM

- CORTEX-A72 (ARM V8) @ 1.5GHZ

Dataset S-MSCKF CRVIOS
Trans. RMSE (m) Change

V1 02 0.162 0.148 0.014
V1 03 0.237 0.223 0.014
V2 02 0.184 0.183 0.001
V2 03 5.274 1.726 3.549

Rot. RMSE (deg) Change
V1 02 1.464 1.418 0.047
V1 03 2.274 3.155 -0.881
V2 02 1.507 1.472 0.035
V2 03 7.444 3.102 4.342

CPU usage % Change
V1 02 83.9 63.6 20.3
V1 03 84.2 70.4 13.8
V2 02 97.2 66.9 30.3
V2 03 71.5 57.2 14.3

Dataset VINS-Mono CRVIOS
Trans. RMSE (m) Change

V1 02 0.215 0.185 0.030
V1 03 0.257 0.305 -0.047
V2 02 0.163 0.243 -0.080
V2 03 0.311 0.362 -0.051

Rot. RMSE (deg) Change
V1 02 2.257 2.235 0.022
V1 03 2.983 3.284 -0.301
V2 02 2.615 2.846 -0.231
V2 03 2.537 3.137 -0.600

CPU usage % Change
V1 02 116.3 100 16.3
V1 03 131.3 90.2 41.1
V2 02 156.6 100.6 56.0
V2 03 156.3 100.6 55.7

on two computationally constrained systems, this improves
the ability for their deployment. Although we present the
effectiveness of our approach on three state-of-the-art VIO
algorithms, it can be easily extended to various VIO systems
as it targets common functional blocks in both the vision
front-end and optimization back-end. Even though there
exists an unavoidable trade-off between the computational
cost of a VIO system and its accuracy, our contribution
endeavours to ensure that this reduction in performance is

-0.5

0

4

0.5
z
 (

m
)

22

1

y (m) x (m)

1.5

0
0

-2

-1

-0.5

0

2

0.5

z
 (

m
)

1

2

y (m)

1.5

0

x (m)

2

0

-2-2

Ground Truth

S-MSCKF

CRVIOS

Fig. 7. Indicative plots showing the reduced accuracy on running S-MSCKF
with CRVIOS on EuRoC sequence V1 02 (Left) and V2 02 (Right) on the
ARM-based Raspberry Pi 4B.

0

4

0.5

z
 (

m
)

1

22

y (m) x (m)

1.5

00

-2

-0.5

0

2

0.5z
 (

m
)

1

2

y (m)

1.5

0

x (m)

2

0

-2 -2

Ground Truth

OKVIS

CRVIOS

Fig. 8. Indicative plots showing the reduced accuracy on running OKVIS
with CRVIOS on EuRoC sequence V1 02 (Left) and V2 02 (Right) on the
x86-based laptop. The corresponding reduction in process usage can be seen
in Table I.

minimal.



REFERENCES

[1] M. Achtelik, M. Achtelik, Y. Brunet, M. Chli, S. Chatzichristofis,
J. Decotignie, K. Doth, F. Fraundorfer, L. Kneip, D. Gurdan, L. Heng,
E. Kosmatopoulos, L. Doitsidis, G. H. Lee, S. Lynen, A. Martinelli,
L. Meier, M. Pollefeys, D. Piguet, A. Renzaglia, D. Scaramuzza,
R. Siegwart, J. Stumpf, P. Tanskanen, C. Troiani, and S. Weiss,
“Sfly: Swarm of micro flying robots,” in 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2012, pp. 2649–2650.

[2] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari,
M. W. Achtelik, and R. Siegwart, “The euroc micro aerial vehicle
datasets,” The International Journal of Robotics Research, 2016.
[Online]. Available: http://ijr.sagepub.com/content/early/2016/01/21/
0278364915620033.abstract

[3] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monoc-
ular visual-inertial state estimator,” IEEE Transactions on Robotics,
vol. PP, 08 2017.

[4] P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, and G. Huang, “Openvins:
A research platform for visual-inertial estimation,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA), 2020,
pp. 4666–4672.

[5] K. Sun, K. Mohta, B. Pfrommer, M. Watterson, S. Liu, Y. Mulgaonkar,
C. J. Taylor, and V. Kumar, “Robust stereo visual inertial odometry
for fast autonomous flight,” IEEE Robotics and Automation Letters,
vol. 3, no. 2, pp. 965–972, 2018.

[6] S. Khattak, C. Papachristos, and K. Alexis, “Keyframe-based direct
thermal–inertial odometry,” in IEEE International Conference on
Robotics and Automation (ICRA), May 2019.

[7] S. Khattak, F. Mascarich, T. Dang, C. Papachristos, and K. Alexis,
“Robust thermal-inertial localization for aerial robots: A case for direct
methods,” in 2019 International Conference on Unmanned Aircraft
Systems (ICUAS). IEEE, 2019, pp. 1061–1068.

[8] S. Zhao, P. Wang, H. Zhang, Z. Fang, and S. Scherer, “Tp-tio: A robust
thermal-inertial odometry with deep thermalpoint,” arXiv preprint
arXiv:2012.03455, 2020.

[9] C. Campos, R. Elvira, J. J. Gomez, J. M. M. Montiel, and J. D. Tardos,
“ORB-SLAM3: An accurate open-source library for visual, visual-
inertial and multi-map SLAM,” arXiv preprint arXiv:2007.11898,
2020.

[10] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE
Transactions on Robotics, vol. 32, no. 6, pp. 1309–1332, 2016.

[11] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and
P. Furgale, “Keyframe-based visual–inertial odometry using nonlinear
optimization,” The International Journal of Robotics Research,
vol. 34, no. 3, pp. 314–334, 2015. [Online]. Available:
https://doi.org/10.1177/0278364914554813

[12] Z. Zhang, A. Suleiman, L. Carlone, V. Sze, and S. Karaman, “Visual-
inertial odometry on chip: An algorithm-and-hardware co-design ap-
proach,” in Robotics: Science and Systems, 2017.

[13] A. J. Davison and D. W. Murray, “Simultaneous localization and map-
building using active vision,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 24, no. 7, pp. 865–880, 2002.

[14] H. Strasdat, C. Stachniss, and W. Burgard, “Which landmark is useful?
learning selection policies for navigation in unknown environments,”
in 2009 IEEE International Conference on Robotics and Automation,
2009, pp. 1410–1415.

[15] G. Huang, M. Kaess, and J. J. Leonard, “Consistent sparsification for
graph optimization,” in 2013 European Conference on Mobile Robots,
2013, pp. 150–157.

[16] L. Carlone, Z. Kira, C. Beall, V. Indelman, and F. Dellaert, “Elim-
inating conditionally independent sets in factor graphs: A unifying
perspective based on smart factors,” in 2014 IEEE International
Conference on Robotics and Automation (ICRA), 2014, pp. 4290–
4297.

[17] A. Fontán, J. Civera, and R. Triebel, “Information-driven direct rgb-d
odometry,” in 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2020, pp. 4928–4936.

[18] G. Klein and D. Murray, “Parallel tracking and mapping for small ar
workspaces,” 2007 6th IEEE and ACM International Symposium on
Mixed and Augmented Reality, pp. 225–234, 2007.

[19] K. Konolige and M. Agrawal, “Frameslam: From bundle adjustment
to real-time visual mapping,” IEEE Transactions on Robotics, vol. 24,
no. 5, pp. 1066–1077, 2008.

[20] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint kalman
filter for vision-aided inertial navigation,” in Proceedings 2007 IEEE
International Conference on Robotics and Automation, 2007, pp.
3565–3572.

[21] M. Li and A. I. Mourikis, “Vision-aided inertial navigation for
resource-constrained systems,” in 2012 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 2012, pp. 1057–1063.

[22] D. G. Kottas, R. DuToit, A. Ahmed, C. X. Guo, G. Georgiou,
R. Li, and S. Roumeliotis, “A resource-aware vision-aided inertial
navigation system for wearable and portable computers,” in 2014 IEEE
International Conference on Robotics and Automation (ICRA), 2014.

[23] L. M. Paz, J. D. Tardos, and J. Neira, “Divide and conquer: Ekf
slam in o(n),” Trans. Rob., vol. 24, no. 5, p. 1107–1120, Oct. 2008.
[Online]. Available: https://doi.org/10.1109/TRO.2008.2004639

[24] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “Imu preinte-
gration on manifold for efficient visual-inertial maximum-a-posteriori
estimation,” in Proceedings of Robotics: Science and Systems, Rome,
Italy, July 2015.

[25] Jianbo Shi and Tomasi, “Good features to track,” in 1994 Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition,
1994, pp. 593–600.

[26] B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in Proceedings of the 7th
International Joint Conference on Artificial Intelligence - Volume
2, ser. IJCAI’81. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1981, p. 674–679.

[27] M. Trajkovic and M. Hedley, “Fast corner detection,” Image and Vision
Computing, vol. 16, pp. 75–87, 02 1998.

[28] S. Leutenegger, M. Chli, and R. Y. Siegwart, “Brisk: Binary robust
invariant scalable keypoints,” in 2011 International Conference on
Computer Vision, 2011, pp. 2548–2555.

[29] Z. Zhang and D. Scaramuzza, “A tutorial on quantitative trajectory
evaluation for visual(-inertial) odometry,” in IEEE/RSJ Int. Conf. Intell.
Robot. Syst. (IROS), 2018.


