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Abstract—In this work, the Mixed-Integer (MIP) formulation
for unit commitment problem (UC) for power systems is dis-
cussed. A new formulation for the start-up cost is suggested
as well. This new formulation of the start-up cost exploits the
transformation of the conditional statements into inequalities that
comprise linear combination of binary variables. Solutions of the
suggested optimization problem were obtained. A comparison
between these solutions and those of a strategy common in
literature is held to show that the new strategy gives same results
with less number of constraints and tighter capture of the start-
up cost.

Nomenclature:
Parameters

c j(p j(t)) Fuel consumption cost of unit j in time slot
t.

cu
j(t) Start-up cost of unit j in time slot t.
cc j Maximum start-up cost when the unit is

cold.
D j Time period that unit j is required (sched-

uled) to be off at the start of the planning
horizon.

D(t) Total demand in time slot t.
DTj Minimum period required for unit j to be

off before it can be turned on.
hc j Minimum start-up cost when the unit is still

hot.
j Unit index.
J Number of generators.

ND j Number of discrete steps of the start-up cost
function of unit j.

P j Maximum output power of unit j.
P j Minimum output power of unit j.

R(t) Spinning reserve at time slot t.
RD j Maximum ramp-down rate for unit j.
RU j Maximum ramp-up rate for unit j.
SD j Maximum shut-down rate for unit j.
SU j Maximum start-up rate for unit j.

t Time slot (period) index.
T Length of planning horizon in time slots.
U j Time period that unit j is required (sched-

uled) to be on at the start of the planning
horizon.

UTj Minimum period required for unit j to be
on before it can be turned off.

τ j Minimum time period required for unit j to
completely cool down.

τ j Maximum time period for which unit j is
considered hot.

Variables
p j(t) Power generated by unit j in time slot t.

p j(t) Maximum available power produced by unit
j in time slot t.

u j(t) Binary variable to indicate the status of unit
j in time slot t.

α j(t) Binary variable to indicate the start-up of
unit j in time slot t.

β j(t) Binary variable to indicate the shut-down of
unit j in time slot t.

I. INTRODUCTION
Unit commitment (UC) (see [1]) is the problem of finding

(scheduling) the optimal number of generating units that must
be activated to meet the total demand in a power system,
and their output power levels. Basically, UC problem is an
optimization problem that aims to minimize the operational
cost, mainly, fuel consumption, start-up cost and shut-down
cost, subject to constraints that guarantee appropriate working
conditions. This paper considers thermal units that are fueled
by any kind of fossil fuel. UC problem can be formulated by
using different approaches; neural networks, or Mixed-Integer
Problem (MIP). In this paper, the latter is considered. MIP
concerns problems that involve integer or binary variables,
which are not allowed to take fractional values. The existence
of such variables make the problem non-linear and probably
non-convex even if the objective function and constraints
are linear. This type of problems is usually referred to as
mixed-integer linear problem (MILP). The complexity of such
problems increases with the number of the integer variables,
and of course, with the number of constraints. Needless to say,
if the objective function is non-linear, the problem will be more
complicated. However, many numerical methods have been
suggested in literature to solve such problems. The authors
in [7], mention several numerical methods. Namely, Cutting
plane, Decomposition, Logic-based, Branch and Bound (BB),
and Outer Approximation (OA). Of these methods, BB seems
to be the more efficient method [7]. But this does not mean
that various methods can not be combined. For example, the
CPLEX solver has the ability to combine the cutting plane
method with BB to reduce the feasible region.
Spurred by the progress in the technology of processors and
computers, many authors used the MIP formulation for the
UC problem for on-land power systems (see e.g. [1], [6],



[10], and [4]). In such formulations, a binary variable is
used to indicate the status of each generator. A cost function
which represents the operational costs is suggested. Then, the
problem is formulated as a minimization of the cost function
subject to some constraints. Such constraints are suggested to
ensure optimum operation of the generating units, as will be
explained later.
In this work, the MIP formulation of the UC problem is
presented. Besides, an alternative strategy to take the start-up
costs in considerations is proposed. A comparison between
the new strategy and the strategy proposed in [1] and [2]
is done and presented. In the next section, the mathematical
formulation of the problem is introduced, including the ob-
jective function and the constraints. In the third section, the
comparison is presented based on the numerical solutions of
the optimization problems formulated by the two strategies. In
the last section, some conclusions are emphasized.

II. MATHEMATICAL FORMULATION

First of all, let the set of all generators be denoted by J ,
such that J = {1, ...,J}. Let, also, the set of the time indexes
that span the planning horizon be T , such that T = {1, ...,T}.

A. Assumptions and Constraints

The following assumptions are used to specify the
constraints required for the optimization problem:

1) A binary variable, u j(t), is assigned to each generator j
in each time slot t such that:

u j(t) =
{

1 if unit j is on during slot t.
0 otherwise (1)

2) Two binary variables, α j(t) and β j(t), are assigned to
each generator in each time slot to express that the unit
is turned on or off according to:

α j(t) =
{

1 if unit j is turned on in slot t
0 otherwise. (2)

β j(t) =
{

1 if unit j is turned off in slot t
0 otherwise. (3)

Note that the switching variables α j(t) and β j(t) can be
expressed by using the binary variable u j(t) as follows:

α j(t) =
⌊u j(t)−u j(t−1)+1

2

⌋
(4a)

β j(t) =
⌈u j(t)−u j(t−1)−1

2

⌉
, (4b)

where b c and d e denote floor and ceiling values,
respectively.

3) Power generation: The power generated by each gen-
erator is bounded from above and below according to
manufacturer recommendations, that is, P j ≤ p j(t) ≤
P j, ∀ j ∈J , ∀t ∈T . The binary variable u(t) is, usually,
included in this inequality, that is to say ([1], [4], and [6]):

P ju j(t)≤ p j(t)≤ p j(t)≤ P ju j(t), (5)

thus, if u(t) is zero, then so is p(t). The variable p j(t) is
another decision variable that determines the maximum
available output power of unit j during time slot t. Note
that p j(t) is not necessarily the same as P j.

4) Power balance: The power generated by all generators
must be sufficient for the total demand in each time slot.
The total demand, D(t), during time slot t is assumed
known. So, ([1], [4], and [6]):

∑
j∈J

p j(t)≥ D(t). (6)

5) Spinning reserves: This is the redundant capacity that
can be activated upon request within certain time. The
working generators must also be able to provide this
reserve, so ([1], [4], and [6]):

∑
j∈J

p j(t)≥ D(t)+R(t), (7)

where R(t) denotes the reserve capacity, and is usually
given as a percentage of the total demand.

6) Ramping: The change (up or down) of the output power
level of a generating unit during successive time slots.
The rapid change of the output level will "lead to the rotor
fatigue and shorten the operational lives of generating
units [9]". So, limitations on such changes must be
put to ensure longer operational lives and less need
for maintenance. In order to take such limitations into
account, the following inequalities are used to constrain
ramp-up and ramp-down, respectively ([1], and [6]):

p j(t)− p j(t−1)≤ RU ju j(t−1)+SU jα j(t) (8a)
p j(t−1)− p j(t)≤ RD ju j(t)+SD jβ j(t). (8b)

7) Uptime and Downtime: The minimum time each gener-
ating unit should stay on (or off) before being shut down
(or started up). So ([1], and [6]):

t+UTj−1

∑
i=t

u j(i)≥UTjα(t),

∀t ∈ {L j +1, ...,T −UTj +1} (9a)
t+DTj−1

∑
i=t

(1−u j(i))≥ DTjβ (t),

∀t ∈ {Fj +1, ...,T −DTj +1} (9b)
T

∑
i=t

(u j(i)−α j(i))≥ 0,

∀t ∈ {T −UTj +1, ...,T} (9c)
T

∑
i=t

(1−u j(i)−β j(i))≥ 0,

∀t ∈ {T −DTj +2, ...,T} (9d)
Fj

∑
i=1

u j(i) = 0 (9e)

L j

∑
i=1

u j(i) = L j, (9f)



where, in all inequalities, j ∈J . Fj = min{T,D j}, and
L j =min{T,U j}. Where D j and U j denote the time period
that unit j is scheduled to be off and on, respectively, at
the start of the planning horizon based on the solutions
for the previous planning horizon.

8) Logical constraints: To ensure that α j(t) = 1 only when
the unit is scheduled to be switched on in slot t (i.e.,
u j(t − 1) = 0 and u j(t) = 1), and β j(t) = 1 only when
the unit is scheduled to be switched off in slot t (i.e.,
u j(t− 1) = 1 and u j(t) = 0), the authors in [1] suggest
the following constraint:

u j(t−1)−u j(t)+α j(t)−β j(t) = 0,
∀t ∈T ,∀ j ∈J . (10)

B. Cost function

The cost function to be optimized can be given as:

min
p j(.),u j(.)

∑
t∈T

∑
j∈J

(c j(p(t))+ cu
j(t)), (11)

which comprises two parts:
1) Fuel consumption c j(p(t)): The fuel consumption is

supposed to be a function of the generated power of each unit
and it is usually approximated by a quadratic function [1],
[2]. For MIP, it is easier to consider it as a piece-wise linear
function [1]. The total fuel consumption of all generators in
time slot t is the sum of the fuel consumption of all generators,
which can be written as:

FC(t) = ∑
j∈J

c j(p j(t)). (12)

2) Start-up cost cu
j(t): The start-up cost depends on the

time the unit has been left inactive. Because the colder the
thermal engine gets, the more fuel and time it needs to warm
up [5]. In fact, modeling the start-up cost has been discussed
in many treatises. The start-up cost is usually modeled as an
exponential function of the time the unit has been inactive.
The authors in [8] suggested the following model:

cu
j(t̃) = hc j +(cc j−hc j)(1− e(−t̃/τ)), (13)

where t̃ here is the continuous time, and τ is a factor to
determine how fast the function converges to the final value.
When using this model of the start-up cost, two problems
arise; the non-linearity of the function, and counting the time
slots during which the unit has been inactive. To solve the
first problem, the authors in [10] approximated the nonlinear
exponential problem by a linear function bounded from below
and from above, that is:

cu
j(t̃) = hc j +

cc j−hc j
τ j−τ j

(x j(t̃)− τ j),

∀τ j ≤ x j(t̃)≤ τ j, (14)

where x j(t̃) denotes the number of time slots during which
unit j has been off up to continuous time t̃. The variable x j(t̃)
is, however, not easy to determine (see [10] for more details).
In [5], the non-linear exponential function (13) was discretized

into ND discrete steps, and the start-up costs were formulated
as:

cu
j = max

ND j=0,..,ND∗j
a

ND j
j (u j(t)−

ND j

∑
i=1

u j(t− i)), (15)

where a
ND j
j are cost coefficients, and ND∗j is the number of the

discrete steps (or time slots) that partitions the maximum time
needed for the unit to cool down (τ j). Based on this assump-
tion, other authors, (e.g., [1], and [6]) suggested modeling the
start-up cost by a decision variable bounded by the following
constraints:

cu
j(t)≥ Kk

j

[
u j(t)−

k

∑
i=1

u j(t− i)
]
,

∀ j ∈J , ∀t ∈T , ∀k ∈ {1, ...,ND j} (16a)
cu

j(t)≥ 0, ∀ j ∈J , ∀t ∈T , (16b)

where the discrete start-up steps Kk
j were assumed to take two

values only; hc j for t ≤ DTj + τ j, and cc j for DTj + τ j < t ≤
ND j. The approach above is clever, specially, if the discrete
steps Kk

j are taken to cover the whole range of the start-up
cost. However, the inequality in (16a) includes ND j more
inequalities, because for each time slot t, and unit j, the step
index k should take values in {1, ..,ND j}. To illustrate, the
inequality in (16a) is, actually, rewritten as:

cu
j(t) ≥ K1

j

[
u j(t)−u j(t−1)

]
cu

j(t) ≥ K2
j

[
u j(t)−u j(t−1)−u j(t−2)

]
...

cu
j(t) ≥ K

ND j
j

[
u j(t)−

ND j

∑
i=1

u j(t− i)
]
, (17)

for each time slot t, and unit j. This means that, we will have
ND j × J× T more constraints to describe the start-up cost,
even if the start-up cost steps take two values only. Actually,
making the discrete steps Kk

j take two values or more will not
change the number of constraints.
The start-up cost depends on the time the unit has been inac-
tive, as mentioned earlier. Note that the uptime and downtime
constraints in (9) ensures that unit j will stay active after being
turned on for at least UTj. Similarly, if unit j is turned off it
will stay inactive for at least DTj. So, certainly, if the start-
up status variable α j(t) is chosen to be one, then unit j has
been down for at least DTj. We propose to use this, as will
be shown, to estimate the time period during which the unit
has been inactive. However, the values of DTj and ND j play
a crucial role here. So, two cases must be discussed:

1) When DTj ≥ ND j.
2) When DTj < ND j.

In the first case, the time needed for the unit to fully cool
down (ND j) -which is equal to the time steps of the discretized
exponential function in (13)- is less than the time period the
unit should stay inactive after being turned off. That is to say,
the unit will stay inactive till it cools down completely. So, it



makes sense to penalize the start-up status binary variable by
the maximum start-up cost cc j. Thus:

cu
j(t)≥ α j(t)cc j. (18)

Compared to the start-up cost formulated in (16), the formula-
tion in (18) looks simpler and more intuitive. Besides, it will
reduce the number of constraints.
In the second case, the situation becomes more complicated
because it is not easy to count the time periods during which
the unit has been inactive. We propose to do this by using
propsitional calculus presented in [7] to express conditional
statements by linear combination of binary variables. We can
begin with the first conditional state as follows:

[α j(t) = 1]∧ [α j(t−DT ) = 0]−→ cu
j(t)≥ KDT+1

j , (19)

where ∧, and −→ denote the logical operations "AND", and
"IF", respectively. When the conditions in the statement above
are satisfied, then unit j has been inactive for at least DT +1
time slots. So, the start-up cost is, necessarily, greater than the
start-up cost when the unit is turned off for DT +1 time slots.
Similarly, we can write:

[α j(t) = 1]∧ [α j(t−DTj) = 0]

∧[α j(t−DTj−1) = 0]−→cu
j(t)≥ K

DTj+2
j (20a)

...

[α j(t) = 1]
ND j−1∧
i=DTj

[α j(t− i) = 0]

−→cu
j(t)≥ cc j. (20b)

Now let γ1
j (t) be a binary variable which is equivalent to the

statement [α j(t) = 1]∧ [α j(t −DTj) = 0], such that γ1
j (t) is

one when the statement is true and zero when the statement
is false. Then, according to [7], the binary variable γ1

j can be
determined by the following constraints:

−α j(t)+ γ
1
j (t) ≤ 0

−(1−α j(t−DTj))+ γ
1
j (t) ≤ 0

α j(t)+(1−α j(t−DTj))− γ
1
j (t) ≤ 1. (21)

Then, the conditional statement in (19) can be replaced by:

cu
j(t)≥ γ

1
j (t)(K

DTj+1
j −K

DTj
j )+α j(t)K

DTj
j , (22)

because, when γ1
j (t) = 1, then α j(t) = 1. So, the start-up

cost must be greater than or equal to K
DTj+1
j as stated

before. While, when γ1
j (t) = 0, then α j(t) could be either

zero (so the start-up cost is zero), or one (so the start-up
cost is K

DTj
j only). Analogously, let γ2

j be a binary variable
corresponding to the statement [γ1

j = 1]∧ [α j(t−DT −1) = 0].
And, in general, let γ i

j(t) be equivalent to the statement
[γ i−1

j = 1]∧ [α j(t −DT − i+ 1) = 0]. Then, the start-up cost

can be formulated as:

(ND j−DTj)cu
j(t)≥ ∑

ND j−DTj
i=1 γ i

j(t)K
DT+i
j

+(1− γ i
j(t))hc j,

∀t ≥ ND j,∀ j ∈J , (23)

subject to the constraints:

−α j(t)+ γ
ND j−DTj
j (t)≤ 0

ND j−DTj

∑
i=1

[α j(t−DT − i+1)−1+ γ
i
j(t)]≤ 0

α j(t)−
ND j−DTj

∑
i=1

[α j(t−DT − i+1)−1

+γ
i
j(t)]≤ (ND j−DTj),

∀ t ≥ ND j, ∀ j ∈J , (24)

where the above constraints are obtained after summing the
constraints in (21) for all γ j variables. While, for t <ND j, ND j
is replaced with t in equations (24) and (23). One problem with
this formulation is that the time index in (23) is forced to start
from DTj. This means that this strategy neglects the start-up
cost for times below DTj. But this can be compensated for by
adding the term in (18) to the cost function for the time slots
less than DTj, that is:

cu
j(t)


= α j(t)cc j, t ≤ DTj

≥ ∑
ND j−DTj
i=1 γ i

j(t)K
DT+i
j

+(1− γ i
j(t))hc j, t > DTj

 . (25)

Besides, formulating the start-up costs as in (23) with con-
straints in (24) will add to the complexity of the optimization
problem because it will increase number of the decision
variables. In fact, the number of decision variables will in-
crease by the number of the variables γ i

j. While, the number
of constraints is less compared to the constraints in (16).
However, if the difference between ND j and DTj is not large,
then the increase of the number of constraints will not be
drastic compared to the constraints in (16). Here, we need
only three constraints for each cu

j(t), while in (16), we need
ND j constraints as mentioned earlier.
The merit of this new formulation of the start-up cost manifests
itself clearly when the discrete start-up cost steps Ki

j are
approximated by few steps instead of taking all ND j steps.
For example, if the steps Ki are assumed to take two values
only (which is usually the case) as follows:

Kt
j =

{
hc j, t ≤ (ND j/2)
cc j, t > (ND j/2) , (26)

then the number of the extra binary variables γ i
j required for

this formulation will be equal to (ND j/2)−DTj if (ND j/2)>
DTj. Whereas, if (ND j/2) ≤ DTj then no extra variables are
needed.



Table I
THE SPECIFICATIONS OF THE GENERATION UNITS USED IN NUMERICAL

SOLUTIONS [2]

Type I Type II Type III

P[MW ] 455 130 85

P[MW ] 150 20 25

RD (RU)[MWh] 225 50 60

SD (SD)[MWh] 150 20 25

DT (UT )[h] 8 5 3

ND[h] 14 12 3

τ[h] 5 4 2

hc[$/h] 4500 560 260

cc[$/h] 9000 1120 520

a[$/MW 2h] 0.00048 0.002 0.00079

b[$/MWh] 16.19 16.6 27.74

c[$/h] 1000 700 480

III. NUMERICAL RESULTS

The planning horizon was assumed to be 24 hours divided
into 24 time slots each of length 1 hour. Three different
types of power generation units were assumed based on the
specifications given in [1], and [2]. The specifications of the
three types are listed in Table I. Note that the three types of
the power generation units used differ according to DTj and
ND j. For type I, DT > (ND/2). For type II, DT < (ND/2).
While, for type III, DT = ND. The specific fuel consump-
tion function c j(p(t)) was assumed quadratic of the form
a j p j(t)2+bp j(t)+c, with the coefficients a j, b j, and c j are as
listed in Table I. Then, the quadratic function was expressed
as a piecewise linear function. The optimization problem in
(11) subject to the constraints given in (5), (6), (7), (8), (9),
and (10) was solved twice for two different examples:

1) Example I: 14 power generating units were assumed, 4
of type I , 6 of type II, and 4 of type III.

2) Example II: 60 units were assumed, 20 of type I, 25 of
type II, and 15 of Type III.

The demands were assumed arbitrarily, and they are listed in
Table II for the two examples. The spinning reserves were
assumed to be 5% of the total demand. In both examples,
the discrete start-up cost steps Kt

j were assumed to take
two values only, as in (26). Then, each case was solved
twice; once with the start-up cost as in (16); the other, the
proposed strategy in (25) with the constraints in (24) was
used. IBM ILOG CPLEX Optimization Studio V12.5 was
used. The codes were written in Optimization Programming
Language (OPL). This program was chosen for its simplicity
in constructing the problem.

Before discussing the solutions of the optimization problem
for all the cases, important results of the proposed strategy
can be noted without the need for calculations. Those results
can be drawn from the following two cases. First, if unit j
was scheduled to be off for D j time slots at the beginning of
the planning horizon, then the start-up cost would be equal to

Table III
COMPARISON BETWEEN THE SOLUTIONS OF THE OPTIMIZATION PROBLEM

BY THE TWO STRATEGIES IN EQUATIONS (16) AND (25) FOR EXAMPLE I

Model in (16) Model in (25)

Constraints 5472 3366

Variables 2339 2461

Binary var. 994 1116

Objective $902,835.6 $912,344.6

Time [Sec] 2 2

Table IV
COMPARISON BETWEEN THE SOLUTIONS OF THE OPTIMIZATION PROBLEM

BY THE TWO STRATEGIES IN EQUATIONS (16) AND (25) FOR EXAMPLE II

Model in (16) Model in (25)

Constraints 23700 14265

Variables 10036 10531

Binary var. 4275 4770

Objective $4,205,487 $4,257,331

Time [Sec] 8 7

hc j, according to the strategy in (16), if D j < DTj + τ j. And
this is not accurate, because scheduling unit j to be off for
D j time slots at the beginning of the planning horizon, infers
that this decision was made in the previous planning horizon
(Specially, if the optimization problem is solved on-line).
Hence, according to the constraints in (9), unit j should stay
off for at least DTj. So, the start-up cost should not be equal
to hc j. The second case concerns the small power generation
units, that do not take too long to cool down completely.
That is to say, the units for which the difference ND j − τ j
is not too large. In that case, the start-up cost can not be
captured as cc j according to the constraints in (16), because
Kt

j was assumed to take the value cc j when t > τ j + DTj,
as mentioned earlier. These two cases make the start-up cost
less, which in turn, makes the decision of turning on a unit
easier. While, in the proposed strategy, the start-up cost is
usually higher, which in turn make the decision of turning on
a unit harder to take, or at least, more highly penalized.

A comparison between the proposed strategy and the
one in (16) is presented for the two cases in Table III, and
IV. The solutions of the two problems were almost identical
regarding the binary variables and scheduled power levels.
The discrepancy seen in the objective function results from
the difference of the start-up cost as explained earlier. The
times required for computations in the two formulations are
not of considerable difference. However, the difference is in
favor of the proposed strategy. The number of constraints are
less in the proposed strategy.

IV. CONCLUSIONS

In this paper, MIP formulation of the unit commitment
problem for power systems were presented. A new strategy for
considering the start-up cost was suggested based on counting
the time periods for which the unit has been inactive. The



Table II
TOTAL DEMAND ASSUMED: EXAMPLE I, AND EXAMPLE II

Time slot 1 2 3 4 5 6 7 8
Demand, example I [MW ] 1313 1189 1138 1324 1511 1731 1566 1832
Demand, example II[MW ] 6206 5621 5381 6261 7141 8181 7405 8661

Time slot 9 10 11 12 13 14 15 16
Demand, example I [MW ] 1765 2125 2357 2616 1714 1630 1613 1452
Demand, example II[MW ] 8342 10046 11143 12367 9583 10046 8822 8822

Time slot 17 18 19 20 21 22 23 24
Demand, example I [MW ] 1232 1155 1144 1177 2027 2125 1866 1866
Demand, example II [MW ] 8103 7703 7623 6864 5824 5460 5408 5564

proposed strategy exploits the propositinal calculus by which,
conditional statements can be transformed into inequalities of
linear combination of binary variables. Two variables were
depended on to formulate the proposed strategy, the time
required for the unit to cool down completely, and the time
it must stay down after being turned off. The optimization
problem was solved by using well-known formulation used in
literature (e.g., [1]), and by the proposed strategy. The results
showed that the suggested formulation requires less number of
constraints, and it gives a tighter capture of the start-up cost.
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