
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

O
.G

. Aspaas &
 O

.C. Vik
Leveraging G

raph Attention N
etw

orks and Know
ledge G

raphs for Fake N
ew

s D
etection

Odd Gunnar Aspaas & Oscar Carl Vik

Leveraging Graph Attention
Networks and Knowledge Graphs for
Fake News Detection

Casting Fact-Checking as a Link Prediction task

Master’s thesis in Computer Science
Supervisor: Özlem Özgöbek

June 2021

M
as

te
r’s

 th
es

is

Odd Gunnar Aspaas & Oscar Carl Vik

Leveraging Graph Attention Networks
and Knowledge Graphs for Fake News
Detection

Casting Fact-Checking as a Link Prediction task

Master’s thesis in Computer Science
Supervisor: Özlem Özgöbek
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

A severe downside of online media has been the increase in the propagation of
fake news. Every day, technology is exposing millions of people to advertisements,
articles, and social media posts, not subject to third-party filtering, fact-checking,
or editorial judgment. Though there has been a rapid increase in the amount of
research towards effective computational detection techniques, the majority of
approaches cannot explain what is fake in the target news content. As the cred-
ibility of media and third-party checking organizations is at an all-time low, we
argue the interpretability of any new method should be imperative when choos-
ing detection techniques for fake news. One approach often argued to accommo-
date such requirement, which will be the focus of this thesis, are those based on
computational-oriented fact-checking. In essence, this thesis present the study, de-
sign and implementation of a novel link prediction model and a framework to au-
tomatically extract and verify claims in order to classify news documents. The aim
of our thesis has three parts: (i) explore the potential for attention-based Graph
Neural Networks to reach state-of-the-art link prediction performance in knowl-
edge graphs; (ii) investigate this model’s ability to achieve state-of-the-art fake
news detection performance; and (iii) evaluate the effectiveness of claim extrac-
tion in the context of fact-checking. The proposed link prediction model, named
mrGraphStar, has shown ability to reach performance in close proximity to that
of state-of-the-art models on two benchmark datasets. We argue, by investigating
some potential venues of improvements, graph attention networks may be able to
overtake the currently best performing link prediction models. While the efforts
of adopting this model in a fake news detection framework did not yield the same
success, we investigate multiple reasons explaining why the approach could still
bear fruitful results.

iii

Sammendrag

Sosiale medier har hatt stor innvirkning i hvordan informasjon deles og kon-
sumeres. En klar negativ medfølge har vært den store økningen i spredning av
falske nyheter. En falsk nyhet som spres i USA kan være i Norge kun sekunder
senere. Hver dag blir mennesker verden over eksponert for målrettet annonser-
ing, artikler og poster fra sosiale medier. Disse spres uten noen krav til tred-
jeparts filtrering eller faktasjekking. Samtidig har det blitt gjort store fremskritt
i teknologi for automatisk deteksjon av falske nyheter. På tross av dette har det
vært manglende fokus på teknologi hvor brukere kan forstå begrunnelsen bak
dens konklusjoner. Ettersom kredibiliteten til media og faktasjekkere er lavere
enn noen sinne, argumenterer vi for at forståelige prediksjoner er avgjørende ved
valg av teknologi for å detektere falske nyheter. En type teknologi som støtter
denne egenskapen, og som vil være fokus i denne oppgaven, er teknologi basert på
computational-oriented fact-checking. Denne oppgaven presenterer studiet, de-
sign og implementeringen av en ny tilnærming til link prediction problemet gjen-
nom en tilpasning av en eksisterende arkitektur, samt konstruksjon av et komplett
system for å trekke ut og validere påstander fra nyhetsartikler. Målet med opp-
gaven er tredelt; (i) undersøke om Graph Attention Networks kan tilpasses for
å gjennomføre og nå state-of-the-art link prediction ytelse i knowledge graphs;
(ii) vil denne modellen kunne bli brukt til å nå samme ytelse som state-of-the-
art teknologi for fake news detection; og (iii) evaluere effektiviteten til et system
som trekker ut påstander fra tekst i forbindelse med deteksjon av falske nyheter.
Vår foreslåtte attention-based GNN modell, ved navn mrGraphStar, har gjennom
denne oppgaven vist potensiale til å nå ytelse nært opp mot dagens beste link pre-
diction modeller. Vi utreder også hvorfor, med noen forbedringer, en slik modell
vil kunne overgå selv de beste nåværende løsningene. Våre forsøk på å utnytte mr-
GraphStar til deteksjon av falske nyheter viser seg å ikke kunne konkurrere med
ytelsen til dagens state-of-the-art modeller. På tross av dette undersøker vi flere
mulige forklaringer, og setter lys på faktorer som kan gjøre at et slikt rammeverk
kan fungere godt.

v

Preface

This thesis is submitted to the Norwegian University of Science and Technology
(NTNU) as a part of the course TDT4900 - Computer Science, Master Thesis. The
progress and direction of our research has been supervised by Özlem Özgöbek, As-
sociate Professor at NTNU’s Department of Computer and Information Science (IDI).
The research builds upon, and proceeds the efforts and findings of our previous
work [1]. We would like to thank our supervisor, Özlem Özgöbek, for guiding the
research as well as providing valuable feedback throughout the process.

vii

Contents

Abstract . iii
Sammendrag . v
Preface . vii
Contents . ix
Figures . xiii
Tables . xv
1 Introduction . 1

1.1 Background and motivation . 1
1.2 Problem Outline . 2
1.3 Research Goals and Questions . 4
1.4 Research Contributions . 4
1.5 Thesis Outline . 5

2 Theoretical Background . 7
2.1 Fake News . 7
2.2 Fake News Detection . 8

2.2.1 Feature extraction . 8
2.2.2 Detection Techniques . 10

2.3 Graph Theory . 14
2.3.1 Directed Graph . 15
2.3.2 Multi-Relational Graphs . 16
2.3.3 Multi-graph . 16
2.3.4 Network Graph . 17

2.4 Knowledge Graphs . 17
2.5 Triple Extraction . 19

2.5.1 Named Entity Recognition . 20
2.5.2 Coreference Resolution . 21
2.5.3 Relation extraction . 22
2.5.4 Post extraction . 22

2.6 Distributional Hypothesis . 24
2.6.1 Word Embedding . 24
2.6.2 Graph Embedding . 25

2.7 Link Prediction . 27
2.7.1 Geometric Models . 29
2.7.2 Tensor Decomposition Models 29

ix

x

2.7.3 Deep Learning Models . 30
2.8 Graph Neural Networks . 31

2.8.1 Neural Message Passing . 32
2.9 Attention Mechanism . 33

2.9.1 Attention in graphs . 33
3 Related Work . 37

3.1 Fake News Detection . 37
3.1.1 Detection based on Content Features 37
3.1.2 Detection based on Context Features 39
3.1.3 Computational-Oriented Fact-Checking 39

3.2 Link Prediction . 40
3.2.1 Geometric models . 40
3.2.2 Tensor Decomposition models 41
3.2.3 Deep Learning models . 41

3.3 GraphStar . 45
3.3.1 Model Architecture . 45
3.3.2 Limitations . 48

4 Method . 49
4.1 mrGraphStar . 49
4.2 Fake News Detection . 52

4.2.1 The Proposed Framework . 52
4.2.2 Triple Extraction . 53

5 Experiments . 55
5.1 Tools and libraries . 55
5.2 Datasets . 57

5.2.1 Link Prediction . 57
5.2.2 Fake News Detection . 58
5.2.3 Link Prediction vs Fake News Detection 62

5.3 Hyperparameter tuning . 63
5.3.1 Link Prediction Preprocessing 64

5.4 Evaluation Metrics . 65
5.4.1 Link Prediction . 65
5.4.2 Fake News Detection . 67

6 Results . 69
6.1 Link Prediction . 69

6.1.1 Hyperparameter tuning . 70
6.1.2 Training . 73
6.1.3 Loss Function . 74
6.1.4 Preprocessing . 75
6.1.5 LP Examples . 76

6.2 Fake News Detection . 77
6.2.1 Triple classification . 78

7 Discussion . 79
7.1 Link Prediction . 79

Contents xi

7.1.1 Scoring Function . 79
7.1.2 Loss Function . 80
7.1.3 Training . 81
7.1.4 Preprocessing . 82
7.1.5 Concluding Remarks . 82

7.2 Fake News Detection . 82
7.2.1 The Proposed Framework . 83
7.2.2 Domain overlap . 84
7.2.3 Triple Extraction . 84
7.2.4 Interpretability . 85
7.2.5 Concluding Remarks . 85

7.3 Work Practice . 86
7.3.1 LP Model . 86
7.3.2 Domain and Dataset . 86
7.3.3 Technical Challenges . 87

8 Conclusion . 89
8.1 Summary of Contributions . 90
8.2 Future Work . 91

8.2.1 Link Prediction . 91
8.2.2 Fake News Detection . 91

Bibliography . 93

Figures

2.1 Hierarchy of types of misinformation [16] 7
2.2 Types of features in fake news detection [16] 9
2.3 Automatic news fact-checking process [55] 14
2.4 Simple graph with loop and adjacency matrix 15
2.5 Directed graph with loop and adjacency matrix 15
2.6 Juxtaposition of naive illustrations of a homogeneous graph and

heterogeneous graph . 16
2.7 A labeled directed heterogeneous multi-graph permitting loops . . . 17
2.8 Representation of knowledge graph network [71] 17
2.9 Simple triple extraction pipeline . 19
2.10 Named entity annotated document with entity type labels 20
2.11 Segmentation ambiguity . 21
2.12 Type ambiguity for the word Washington, from [78, p. 154] 21
2.13 Coreference chains from document, from [78, p. 416] 21
2.14 Two-dimensional projection of 60-dimensional embeddings trained

for sentiment analysis [78] . 24
2.15 DeepWalk used to generate a latent representation of the Karate

network [101] in R2 . 26
2.16 BFS and DFS search strategies from node u (k = 3) [102] 27
2.17 Proposed taxonomy for LP approaches [11] 29
2.18 Third-order tensor: X = ·· ∈ RI×J×K, where the (i, j, k) element

of X is given by x i jk = ai b jck [108] . 30
2.19 Message passing phase . 33
2.20 Visualization of multi-head attention on node 1. Three different

attention mechanisms are employed, depicted with different arrow
styles and colors [112] . 35

3.1 LP model with an R-GCN encoder and a DistMult decoder [136] . . 44

4.1 Hierarchical structure of the relations in Freebase 50
4.2 Flow chart of the proposed framework for fake news detection . . . 52
4.3 Triple extraction pipeline . 54

xiii

xiv

5.1 Textual content word-cloud for fake and real news from FakeNews-
Net [143] . 58

5.2 Top 25 most salient terms from FakeNewsNet 59
5.3 Content metrics of FakeNewsNet . 60
5.4 Distribution of relations in FNNAuto . 61
5.5 Distribution of relations in FNNManual 62

6.1 Heatmaps of the performance and runtime by neurons and layers . 70
6.2 Heatmaps of the performance and runtime by epochs and learning

rate . 72
6.3 Train loss and average precision curves over 100 epochs 73
6.4 Test loss and average precision curves over 100 epochs 73
6.5 Rank metrics computed in 10 epoch interval with optimum settings 74
6.6 Effect of corrupted triple generation on LP performance 74
6.7 Preprocessing effect on LP performance 76

Tables

5.1 General properties of LP datasets used in our implementation 57
5.2 General properties of automatically extracted triples vs manual . . . 62
5.3 Comparison and overlap of entities in the employed datasets 63
5.4 Spectrum of grid search . 63
5.5 Parameter selection of node2vec implementation 64

6.1 Best experimental results on FB15k and FB15k-237 test set 69
6.2 Combined average of AUC and AP scores. C PC denotes the average

performance on the three datasets; Cora, Pubmed, and Citseer [137] 70
6.3 Metrics of grid search iteration 1.

The best scores are in bold and the second best scores are underlined 71
6.4 Metrics of grid search iteration 2 . 72
6.5 node2vec; cosine similarity predictions to: Blood Diamond 75
6.6 Relation cosine similarity predictions to: /people/person/ethnicity . 75
6.7 Head and tail predictions of the triple (Jack Bruce, /music/artist/-

genre, hard rock). 76
6.8 Experimental results on FakeNewsNet 77
6.9 Comparison of experimental classification results on triple datasets 77
6.10 Experimental classification results on in-domain vs out-of-domain

entities from FNNManual . 78
6.11 Experimental triple classification results 78
6.12 Experimental triple classification results on in-domain vs out-of-

domain entities from FNNManual . 78

xv

Chapter 1

Introduction

This chapter will provide an introduction to the problem domain and context of
the thesis. We start by highlighting some general information about the motivation
and importance of our topic. Then, in a concise matter, we present the problem
outline and the research goals and questions which form the basis of our research.
Further, we present the contributions and thesis outline.

1.1 Background and motivation

On the last day of 2019, a novel virus was identified in Wuhan, China. This virus
was later named SARS-CoV-2 and has, as of 10th of June 2021, claimed over
3.7 million lives and infected over 174 million people1. Surrounding the virus, a
veil of myths and misinformation emerged. Among them were both false claims
about the vaccines, as well as ideas of unproven substitutes [2]. As a result, when
hydroxychloroquine was touted as a possible treatment, even though it has no
documented effect on the virus, Lupus patients suffered a shortage of essential
medicine [3]2. During the Munich Security Conference in 2020, the World Health
Organization Director-General stated:

"We are not just fighting an epidemic; we are fighting an infodemic"

— T. A. Ghebreyesus3

While online media has allowed for fast dissemination and easy access at a low
cost, it has also been the source of wider propagation of fake news. Every day,
millions of people are exposed to advertisements, articles, and social media posts,
not subject to third-party filtering, fact-checking, or editorial judgment. Currently,

1https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#
/bda7594740fd40299423467b48e9ecf6

2https://www.sciencedaily.com/releases/2020/11/201106103103.htm
3https://www.who.int/director-general/speeches/detail/munich-security-conference

1

https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html##/bda7594740fd40299423467b48e9ecf6
https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html##/bda7594740fd40299423467b48e9ecf6
https://www.sciencedaily.com/releases/2020/11/201106103103.htm
https://www.who.int/director-general/speeches/detail/munich-security-conference

2

more than half of U.S. adults read news from social media [4]. Additionally, re-
search has found that for all categories of information, falsehood diffuses signifi-
cantly faster and farther than the truth, and in many cases, by an order of magni-
tude [5]. Hesitancy to vaccines, one of the top ten threats to global health4, can
be directly linked with the spreading of fake news [6]. This is a growing trend
where we could see a majority of people having anti-vaccination views in the next
decade [7]. The anti-vaccination movement serves as just one example of the ris-
ing concern described in [8]; that online news makes it easier for like-minded
citizens to form "echo chambers" insulating them from contrary perspectives. In
general, we are at a point in time where media credibility is at an all-time low
[9], and the need for automated and unbiased fake news detection tools is at an
all-time high.

Meanwhile, every year an increasing amount of data about human and natural
activities are being collected. The number of devices connected to IP networks is
estimated to surpass three times the global population by 2023 [10], and with this
growth follows an exponential increase of our digital footprint. Simply collecting
this information is not very useful, but enormous opportunities lie in the ability to
extrapolate knowledge from it. The past decades have bred the creation of many
approaches to extract and store data. Semantic networks, also known as graphs,
such as social graphs and knowledge graphs, have been widely employed due to
their inherent capability to model structured data in a machine-interpretable way
[11]. The sheer amount of knowledge contained within these networks is colos-
sal. As an example, Google KG5 contains an estimate of 18 billion facts about 570
million named entities. To extrapolate this knowledge, a considerable amount of
attention has been devoted to the computational analysis of networks, especially
in areas such as recommendation systems [12], combinatorial optimization [13],
and fake news detection [14][15]. However, albeit the size of current state-of-
the-art semantic networks, they all suffer from being incomplete. Consequently,
efforts have been made to utilize the underlying properties of networks to infer
missing facts, or links between entities; a task referred to as link prediction.

1.2 Problem Outline

While the issue of misinformation is more significant than ever, there has been a
rapid increase in the amount of research towards effective detection techniques
[16]. In particular, computational detection of fake news has been studied over
the past few years, yielding promising results. Although these approaches can be
effective, we argue a critical missing piece of these studies to be the interpretabil-
ity of such detection. In the context of machine learning systems, interpretability
refers to the degree to which a human can understand the cause of a decision made

4https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019
5https://www.blog.google/products/search/introducing-knowledge-graph-things-not/

https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/

Chapter 1: Introduction 3

by an algorithm [17]. Unfortunately, the majority of approaches cannot explain
what is fake in the target news content. As the credibility of media and third-party
checking organizations is at an all-time low [9], the interpretability of any new
method should be paramount when choosing detection techniques for fake news.

One approach often argued to accommodate such requirement are computational-
oriented fact-checking approaches. An essential aspect of these approaches is the
utilization of knowledge bases to conduct predictions. Each statement made in
a document must be checked against this knowledge base to verify its veracity.
Therein lies a promising opportunity; to extrapolate factual statements by uti-
lizing the enormous amount of knowledge from semantic networks. Automatic
systems built on semantic networks could help mitigate the spread of news hav-
ing no significant third-party filtering, fact-checking, or editorial judgment. Ide-
ally, fact-checking of statements could be done by conducting look-ups among the
large amount of publicly available semantic networks. However, the issue of in-
completeness remains, and the need for models that can infer missing facts arises.

The main issue with link prediction remains the quality of the inferred facts. A
severe weakness in early deep learning approaches stemmed from the finding
that Convolutional Neural Networks struggle with prediction tasks in large com-
plex graphs [18]. This was a result of the difficulties of defining convolutional
and pooling layers for non-Euclidean data. This, in turn, inspired the rise of Graph
Neural Networks (GNN), which is currently a prominent research area in the artifi-
cial intelligence community. Among the most cutting-edge architectures are those
based on the attention mechanism. These architectures omit several issues with
previous GNN architectures by enabling (implicitly) specifying different weights
to different nodes in a neighborhood without requiring any costly matrix oper-
ation. Graph attention models have achieved or matched state-of-the-art results
across various tasks on multiple graph benchmarks. However, they have not yet
been utilized for link prediction tasks in heterogeneous graphs such as knowledge
graphs to the best of our knowledge.

This thesis will present the creation and implementation of a novel framework
to automatically classify fake news. This is done through the combination of an
attention-based GNN model for link prediction in knowledge graphs and an infor-
mation extraction model, which takes a text as input and returns the claims made
in the form of (subject, predicate, object) triple. This system is to be used to clas-
sify news articles based on the truthfulness of these extracted claims. The research
is based on empirical testing of our hypotheses through objective data collection
and interpretation, with the aim of producing observable and quantifiable results.
We will base the performance of our implementation on multiple seminal and
state-of-the-art approaches to link prediction and fake news detection.

4

1.3 Research Goals and Questions

The goal of this thesis is to contribute to the research on link prediction by de-
veloping a novel model for link prediction in knowledge graphs and evaluating
its potential application in fake news detection for computational-oriented fact-
checking. In connection to these goals we have identified the following three re-
search questions:

RQ1 Can Graph Attention Networks reach state-of-the-art link predic-
tion performance on multi-relational datasets?

RQ2 Can the link prediction model from RQ1, trained on an external
knowledge graph, be used to accurately detect fake news docu-
ments?

RQ3 Can the link prediction model from RQ2 be extended by integrat-
ing a claim extraction system for automatic fake news detection?

1.4 Research Contributions

This research will contribute to the design, creation, and evaluation of a frame-
work for fact-checking the truthfulness of claims in news content. This includes a
system for extracting RDF-triples, as well as a novel link prediction model for for
predicting the validity of triples. To the best of our knowledge, Graph Attention
Networks have not been used for link prediction in knowledge graphs. Thus, this
research will contribute to the adaption and evaluation of such architecture in con-
text of fake news detection. To summarize, this thesis contributes the following:

Model The design, creation, and evaluation of an attention-based GNN
model for link prediction in knowledge graphs.

Framework The design, creation, and evaluation of a novel framework to au-
tomatically detect fake news by combining a model that extracts
triples from raw text and the said GNN model.

Dataset A manually annotated dataset for fake news detection and triple
classifcation.

Domain
Overlap

The evaluation of the importance of domain overlap when using
a LP model trained on an external KG to classify news.

Claim
Extraction

The evaluation of current state-of-the-art triple extraction in the
context of fake news detection.

Chapter 1: Introduction 5

1.5 Thesis Outline

Chapter 1 - Introduction The current chapter gives an introduction to the
problem domain and context of the thesis. This
includes its motivation, approach, goals, and a
short summary of the contributions.

Chapter 2 - Background An overview of the theoretical basis of our re-
search is presented in this chapter. This includes
relevant theories pertinent to our work on both
fake news detection and link prediction.

Chapter 3 - Related Work This chapter presents a brief case study examin-
ing related work akin to the research of this the-
sis. This includes the research used for compar-
isons and evaluation of our contributions, as well
as the research forming the basis of our approach.

Chapter 4 - Method In this chapter the models and frameworks used
to conduct the experiments of the thesis are de-
scribed.

Chapter 5 - Experiments This chapter presents the activities undertaken,
including descriptions of tools, datasets, param-
eter selection, and evaluation metrics.

Chapter 6 - Results In this chapter we present the results of the var-
ious experiments related to the goals and contri-
butions of the thesis.

Chapter 7 - Discussion This chapter discusses the results, strengths and
weaknesses, as well as exploring the potential ar-
eas of improvement.

Chapter 8 - Conclusion The final chapter concludes the motivation,
choices and contributions of this thesis’s. It pro-
vides short but concise answers, complement-
ing the findings from our experiments. Addition-
ally the potential venues still unexplored are pre-
sented.

Chapter 2

Theoretical Background

The following chapter presents some general theories pertinent to our research
inquiry. First, relevant facets related to our work on fake news detection are intro-
duced, transitioning over to the latter parts, which focus on topics related to our
link prediction model. As the work of this thesis proceeds the efforts and findings
of our previous work [1], some sections will bear close resemblance.

2.1 Fake News

Definition 1 (Fake News). Information containing false, inaccurate, or misleading
statements, which can be proven to be false, regardless of the author’s intent.

Fake news has, over recent years, grown into an all-capturing term of generally
false information. From media, the term is commonly used to describe a story
which is seen as damaging to an agency, entity, or person. Fake news has become
the de-facto expression for misleading information, especially web-related infor-
mation, which is presented as news [19]. However, in computer science, and more
specifically this thesis, fake news needs to be distilled further. Definition 1 of fake
news represents a pragmatic way to determine whether or not a text is catego-
rized as fake news based on the content of a text.

Figure 2.1: Hierarchy of types of misinformation [16]

7

8

Note from Figure 2.1 that fake news is a subcategory of misinformation, which
implies the author did not intend to mislead but simply was ill-informed on the
topic of information [20]. This is in contrast to disinformation, where the author
intentionally forged the information to mislead. While rumors are defined as a
subcategory of misinformation, it differs slightly because misinformation has pre-
viously been disproved, while rumors can turn out to be either true or false. Similar
to fake news, the spread of false rumors can cause severe damage even in a short
period.

Further dissection of the term fake news done by [21], separates fake news into
three groups; serious fabrications, large-scale hoaxes, and humorous fakes. Seri-
ous fabrications are a quintessential type of fake news, where dishonest infor-
mation written with antagonistic fashion are being spread, often through social
media. Large-scale hoaxes are usually presented as legitimate news and are rel-
atively complex and large-scale fabrications, which are meant to cause material
loss or harm to the victim [22, p. 875]. Finally, humorous fakes which encapsu-
lates satires, parodies, etc. portrayed as news. These stories can be read without
being deceitful if the reader is aware of the humorous intent.

When looping back to the pragmatic definition of fake news, one can see that
it is in close proximity to misinformation, which is why we henceforth will in-
terchange between misinformation and fake news. The definition also does not
consider whether the text is a parody or not. These terms design the task of fake
news detection to not doing the detection of disinformation, but the detection of
misinformation.

2.2 Fake News Detection

Most approaches to the detection of false information characterize the task as a
classification problem, where the aim is to associate a spectrum of labels such
as clickbait, satire, true or false with a particular document [16]. Although other
perspectives will be discussed, this is the chosen perspective of this thesis as well.
Disregarding the detection technique, results are generally better if the system is
designed to detect only a select few labels such as {t rue, f alse} for fake news.
Restricting the domain, or topic, of the documents will also greatly impact the
accuracy of the systems. General systems usually underperform compared to spe-
cialized systems that will have an increased insight within its domain. The follow-
ing subsections will present both the process of deciding what information to base
the analysis on, and the techniques available to one’s disposal.

2.2.1 Feature extraction

Different detection techniques consider different kinds of information, or features,
relevant for the analysis. At the fist level of abstraction we differentiate between

Chapter 2: Theoretical Background 9

content-based features; which are features directly extracted from a document, and
context-based features; features from auxiliary information such as user’s charac-
teristics and network propagation features. Many approaches in the literature fo-
cus on using content features for classification. On the other hand, the number
of approaches for fake news detection relying purely on context features are rare
[23]. The most common approach is to use a mixture of both content and context
features in the detection.

Figure 2.2: Types of features in fake news detection [16]

Content-Based Features

Content-based features are directly extracted from the news content. These fea-
tures include any kind of content available in the document like text, images,
video, or sound. Among non-textual content features, image analysis is one of the
most commonly used. By examining the attached images, [24] reached an accu-
racy of 72.7% in assessing the credibility of online news. Most of the work on
content-based features has been concerning the identification of linguistic cues
in texts, as is also the approach to manual fake news detection used by profes-
sional journalists. By utilizing Natural Language Processing (NLP) tools, we can
easily extract textual features such as tokens, phrase structure; parts-of-speech
tags and phrasal categories, dependency structure, etc. to obtain a structured rep-
resentation of a document to be used in the analysis. As shown in Figure 2.2, the
textual content-based features can be identified at word-level (lexical), in the way
sentences are structured (syntactic), and by analyzing the attributes of the under-
lying meaning conveyed (semantic) [25]. We now discuss the expressive elements
within each of these levels and reference some existing methods that utilize them.

Lexical features concerns the actual words, n-grams, and phrases used in the
document. [26] successfully determines the veracity of online information by an-
alyzing the use of negations, abbreviations, word complexity, and word vulgarity.

Syntactic features concern aspects such as word counts, sentence length, parts-
of-speech patterns, etc. The complexity of sentences can be utilized to indicate the

10

reliability of information [26][27] and has been used as a feature in fake news
detection [28].

Semantic features concern the underlying meaning that is being conveyed in
a piece of text. Semantic features are identified by analyzing the larger meaning
of the text (phrase, sentence, or paragraph) rather than only analyzing at word-
level [25]. Distributional semantics techniques such as word embeddings are of-
ten used to extract these features. Several machine learning and deep learning
approaches for fake news detection successfully utilize semantic feature analysis
through word embeddings [29][30].

Context-Based Features

Context-based features concern auxiliary information such as user behavior, user
network analysis, news sources, propagation structures, and news diffusion struc-
ture. As shown in Figure 2.2, we can define these features as either user-based
features or network-based features. Among the benefits of contextual-based fea-
tures is the fact that they can be applied to analysis regardless of the document
language. This is especially beneficial when dealing with languages missing larger,
cleaner, more readily available text resources, producing poor quality NLP systems
that make textual features inconvenient.

User-based features concern characteristics of the social media user who pro-
duces or shares the news content. The features analyzed include; the number of
posts, age of the account, amount of activity, number of connections or followers,
and social circles. A common issue considering user-based features is availability
[16]. This is mainly due to privacy constraints on different platforms, making in-
formation on the users and user interactions inaccessible. Further, consistency in
the presence and representation of specific information is unusual across different
online media platforms.

Network-based features concern modeling properties of the network where the
news is shared. A majority of existing studies analyzing network-based features
are limited to the use of statistics on diffusion patterns, such as the number of
retweets and propagation times [31].

2.2.2 Detection Techniques

Fake news detection approaches can coarsely be grouped into classification and
non-classification approaches. Our primary focus will be on classification, which
can be further divided into approaches based on Machine Learning (ML) and Deep
Learning (DL). We also give a brief introduction to some select non-classification
approaches. Lastly, we present a special kind of approach, namely computational-
oriented fact-checking. These approaches may utilize either ML, DL, or other tech-
niques in the detection of fake news.

Chapter 2: Theoretical Background 11

Machine Learning

Machine learning algorithms have proven to be extremely useful for solving com-
plex tasks provided real-world data. Especially supervised machine learning tech-
niques have been highly adopted in research concerning the detection of fake
news.

Among the historically most used methods for classification are Support Vector
Machines (SVMs) [32]. SVMs are discriminative classifiers formally defined by a
separating hyperplane. Given labeled training data, the algorithm outputs an op-
timal hyperplane to classify new data examples. This hyperplane is calculated by
finding the divider that minimizes the noise sensitivity by maximizing the mar-
gin of the training data. SVMs have been successfully applied to the task of fake
news detection and have been shown to outperform many other supervised ML
approaches [33].

Another proposed algorithm is the Decision Tree [34]. It adopts a divide-and-
conquer approach to classification. Decision trees are generated from data with
algorithms such as C4.5 [35]. In general, each internal node in a decision tree
represents an attribute, and the edges are marked by the condition on its parent
node. Each data attribute value is compared to these conditions as it flows down
the decision tree. The most significant attribute is detected and designated as the
root node of the tree. Further, the tree is split into multiple subsets with new deci-
sion nodes. The leaf nodes are called terminal nodes and occur when all instances
at this point have the same class. The adaption of decision tree algorithms has
shown particularly useful in the rumor analysis task [16].

Random Forests [36] are ensembles of decision tree predictors created from ran-
domly selected subsets of the training data. To decide the final class of the input
data, predictions from the different decision trees are aggregated. The aggrega-
tion of many decision trees helps reduce the effect of noise, yielding more accurate
classification. An interesting quality of regression trees is that they do not overfit,
following the Law of Large Numbers. This algorithm has shown promising results
and has been employed in a number of works on fake news detection and rumor
analysis [27][37].

Hidden Markov Models (HMMs) [38] are tools for representing probability dis-
tributions over sequences of observations. The sequence of observable variables
X is generated by a sequence of internal hidden states Z , which can not be directly
observed. The transitions between the hidden states are assumed to have the form
of a Markov chain. Three parameters can fully determine an HMM; a start proba-
bility vector Π, a transition probability matrix A, and the emission probability of
the observable variable θi , conditioned on hidden state i. HMMs are widely used
for language modeling tasks, including fake news detection [39].

12

Deep Learning

Deep learning is a subset of machine learning based on artificial neural networks.
It encapsulates all neural networks consisting of three or more layers. It removes
some of the dependency on human experts in machine learning, where hidden
representations require manually crafted features. Deep learning algorithms are
able to learn these hidden representations, automating the feature extraction pro-
cess. As most of the data preprocessing that is typically involved with machine
learning is eliminated, deep learning approaches can ingest and process unstruc-
tured data, like text and images, in its raw form. Deep learning classifiers have
seen an unprecedented rise in popularity in recent years due to promising results
in a number of research fields.

The idea of Recurrent Neural Networks (RNN) have been around since the mid-
1900s and have proven particularly effective for tasks including sequential data.
This results from their feedback connections in the recurrent layer, providing
"memory" to the network [40]. The "memory" means that the network outputs
do not rely solely on the current input given to the network but are conditional
on the recent context in the input sequence. The earliest adoption of RNNs in the
context of fake news detection, specifically rumor detection, is reported in [30].

Convolutional Neural Networks (CNN) are composed of an input layer, an output
layer, and a series of hidden layers, where a number of transforming operations
are applied to the data by means of pooling and convolution operation. These
operations are repeated over several hidden layers, with each layer learning to
identify unique features specific to the training data. Though mainly applied to
image recognition and processing [41], CNNs have recently gained traction in the
NLP community [42]. CNNs utilizing word embeddings have been proposed for
solving both stance and veracity classification of social media posts [43].

The Transformer architecture [44] has become immensely popular in the research
field and has proven to be especially effective for common NLP tasks. Transform-
ers are based solely on attention mechanisms, dispensing with recurrence and
convolutions entirely. They utilize the encoder-decoder structure; where the en-
coder maps an input sequence (

→
x1,

→
x2, ...,

→
xn) to a sequence of continuous rep-

resentations z = (
→
z1,
→
z2, ...,

→
zn). Then, one element at a time, the decoder gen-

erates an output sequence (
→
y1,

→
y2, ...,

→
ym) of symbols given the provided z. The

model is auto-regressive, consuming the previously generated symbols as addi-
tional input when generating the next. The Transformer architecture uses stacked
self-attention and point-wise, fully connected layers for both the encoder and de-
coder. Well-known transformer architectures, such as Bidirectional Encoder Repre-
sentations from Transformers (BERT) [45], have been successfully adapted to the
task of fake news detection [46] [47].

Chapter 2: Theoretical Background 13

Non-classification Techniques

Research also exists on alternative approaches to classification, which can repre-
sent valuable alternatives by possibly exploiting different characteristics of false
information. These approaches exploit models such as clustering and vector space
models in order to identify and explain the properties of fake news and rumors
[16].

The Gini Coefficient [48] is used to measure the inequality among values of a
frequency distribution. It has been used to analyze online social networks to iden-
tify metrics to infer cues of deception. One such example is [49], where they use
the Gini coefficient to evaluate the credibility of tweets by measuring disparity
in retweet behavior. First, a retweet graph is built using only credible tweets and
their retweets. Then, to compute the score of acceptability for any given tweet,
the PageRank algorithm [50] is used. The information provided by this approach
is not used in classification per se but presented to users accommodating a more
informed evaluation of the tweet.

Tensor Decomposition [51] has recently been proposed as a tool to detect fake
news. Tensors and their decompositions appeared as early as 1927 but remained
unused in computer science until the late 20th century [52]. For further explana-
tion of tensor decomposition, see subsection 2.7.2. Recently, numerous approaches
to perform unsupervised or semi-supervised fake news detection have been pro-
posed, utilizing tensor decomposition as their primary mechanism. Tensors can
be used in order to separate documents that are similar and the outliers which
may represent fake news. This approach was taken in [53], where news articles
were decomposed into tensors able to model spatial relations between terms in
a document via CANDECOMP/PARAFAC decomposition [54]. Then, co-clustering
was performed to identify latent groups of articles that fall under coherent cate-
gories of false news.

Computational-Oriented Fact-Checking

Some approaches to fake news detection rely on extracting textual content fea-
tures and comparing them to a knowledge base. These approaches are instances of
knowledge-based detection techniques and adopt a process known as computational-
oriented fact-checking [23], also referred to as automatic fact-checking [55].

Automatic fact-checking approaches aim to use external sources to fact-check the
truthfulness of the claims in news content. Fact-checking can be utilized as a tool
in both classification and non-classification approaches. As seen in Figure 2.3,
these approaches can generally be divided into two stages;

1. Identifying and extracting check-worthy claims from the document
2. Discriminating these claims based on their estimated veracity

14

Figure 2.3: Automatic news fact-checking process [55]

To identify check-worthy claims, factual claims in news content first need to be
extracted. This is a complex task consisting of many subtasks. The process of claim
extraction is further explained in section 2.5.

Several strategies have been proposed to estimate the veracity of claims. The most
widely used technique is through the exploitation of knowledge graphs. For an in-
troduction to knowledge graphs, see section 2.4. In the context of knowledge bases
and graphs, claims are often referred to as triples. Approaches vary but generally
use some algorithm in order to check claims against the knowledge graph. The
knowledge graph is used to provide the ground truth in fact-checking, i.e., it is
assumed that every existing triple in the knowledge graph represent true claims.
However, for non-existing triples, their authenticity relies on what assumption is
made. There are mainly two possible assumptions stemming from database in-
tegrity theory on completeness [56] [57]:

• Closed-world assumption: assumes a triple not observed in the graph as false.
• Open-world assumption: assumes a triple not observed in the graph as un-

known, i.e., the corresponding relationship could be either true or false.

2.3 Graph Theory

The first paper on graph theory was published in 1736 by Leonhard Euler on
the Seven Bridges of Königsberg problem[58][59]. Since then, the field has been
expanded, and there are various types of graphs, each with its distinct definition.
A general trait for graphs is that they contain a set of objects and their relations.
Typically, a graph is depicted with a diagram where dots represent objects and
lines between the circles represent relations, as shown in Figure 2.4a. In order to
reason about and specify our domain, we define the simplest form of graphs.

Definition 2 (Graph). A graph G is a set G = (V, E) where;

• V is a finite set, called vertices of G
• E is a finite set, called the edges of G
• A ∈ R|V |×|V | is an adjacency matrix, mapping nodes u ∈ V and v ∈ V as edges
(u, v) ∈ E.

In undirected graphs, A= A−1 and the presence of a edge between u and v is denoted
by A[u, v] = 1 otherwise A[u, v] = 0.

Chapter 2: Theoretical Background 15

(a) A graph with loop [60]

u
︷ ︸︸ ︷

A B C

v
︷
︸
︸
︷

A 1 1 0

B 1 0 1

C 0 1 0

(b) Corresponding adjacency matrix

Figure 2.4: Simple graph with loop and adjacency matrix

In other words, a graph is a nonempty finite set of vertices V , and a finite set E of
two-element or one-element subsets of V . Two-element subsets denote an edge
from a vertex x to a different vertex y. Single-element subsets denote an edge
from a vertex x to itself, often referred to as a self-loop. The definition above is an
undirected graph; hence all edges are bidirectional, meaning nodes have a mutual
relationship.

2.3.1 Directed Graph

A directed graph, also known as a digraph, follows the definition from undirected
graphs section 2.4, except its edges have orientations. In the field of mathematics
this is called a binary relation. A binary relation on a set V is simply a subset of V×
V [60]. This means that the adjacency matrix is no longer necessarily symmetric
and can have one-way relationships.

(a) A directed graph with loop [60]

u
︷ ︸︸ ︷

A B C

v
︷
︸
︸
︷

A 1 1 0

B 1 0 1

C 0 0 0

(b) Corresponding adjacency matrix

Figure 2.5: Directed graph with loop and adjacency matrix

In directed graphs, an arc going from vertex x to y denotes that x is the tail of
the relationship while y is the head. For example, in Figure 2.5a, one would say
that there is an arc going from the tail B to the head C .

16

2.3.2 Multi-Relational Graphs

Beyond the distinction between directed and undirected graphs, one also consid-
ers graphs with edges of different types. In these cases, we extend the edge no-
tation to include an edge or relation type τ, e.g. (u,τ, v) ∈ E, and we can define
one adjacency matrix Aτ per edge type. These graphs are called multi-relational
graphs. Since we now have multiple adjacency matrices for each relation, we or-
der them in a third dimension by an adjacency tensor A ∈ R|V |×|R|×|V |, where R is
the set of relations[61].

Graphs can be either homogeneous or heterogeneous. The graphs from the previous
subsections have been homogeneous graphs, where the vertices in V represent in-
stances of a single type, and all the edges in E represent relations of a single type.
The graphs can also be viewed as having the absence of types, as the types do not
add any structural information to the graph. An example of a homogeneous graph
is a social network where all vertices represent "authors", and all edges represent
"citations". If the social network is extended to be multi-relational, e.g., having the
two edge types "citations" and "collaborators", the graph becomes heterogeneous.
The nodes may have multiple types, also making a graph heterogeneous. This can
be formalized with graph labeling, where we define R as the set of relation types,
and E as the set of vertex types. A homogeneous graph then has R= 1 and E = 1,
while a heterogeneous graph has either R= N , E = M , or both, where N , M > 1.

(a) Depiction of a homogeneous graph (b) Depiction of a heterogeneous graph

Figure 2.6: Juxtaposition of naive illustrations of a homogeneous graph and het-
erogeneous graph

2.3.3 Multi-graph

Graphs that are permitted to have multiple edges (also called parallel edges) con-
nect vertices multiple times to other vertices. These graphs are called multi-graphs.
To avoid ambiguity, multi-graphs that allow loops are normally called pseudo-
graphs; however, we will use the term multi-graph as a synonym. Multi-graphs
allows for vertices to be connected by several types of edges, thus creating a rich
semantic network which can describe complex systems.

Chapter 2: Theoretical Background 17

Figure 2.7: A labeled directed heterogeneous multi-graph permitting loops

2.3.4 Network Graph

When applying graphs to real-world applications, one often talks about graph net-
works. A tremendous benefit of graph networks is that many real-world datasets
can be represented as graphs. Researchers have applied this technique to a wide
variety of domains, including geosciences [62], decision support systems [63],
bioinformatics [64], neuroscience [65] [66], cheminformatics [67], social net-
works [68], recommender systems [12], epidemiology [69], cybersecurity [70],
and more. The reason is that real-world objects can be represented as vertices by,
e.g., their name, and be extended through other nodes, as seen in Figure 2.8. This
is a great way to capture the interconnectivity that so many datasets possess. The
network in Figure 2.8 is a particular type of network called Knowledge Graph.

Figure 2.8: Representation of knowledge graph network [71]

2.4 Knowledge Graphs

We can represent statements about semantic data in the form of (subject, pred-
icate, object) triples, where the subject and the object are named entities that
have some predicate between them representing the relation [72]. These triples
have many names, such as semantic triple, RDF-triple, or simply triple. A set of
such triples is known as a knowledge base. They can be connected to form a multi-
graph where nodes represent the entities, and directed edges represent the re-
lations. This results in a heterogeneous semantic network, often referred to as a
knowledge graph. In this thesis we will borrow a slightly modified definition from
knowledge graphs from [11].

18

Definition 3 (Knowledge Graph). A knowledge graph is a set KG = (E ,R,G)where;

• E: a set of nodes representing entities;
• R: a set of labels representing relations;
• G ⊆ E ×R× E: a set of facts represented as edges connecting pairs of enti-

ties. Each fact is a triple 〈h, r, t〉, where h is the head (subject), r is the re-
lation(predicate), and t is the tail (object).

A large amount of world knowledge has been accumulated in several publicly
available knowledge graphs, constructed in one of two ways, either manually or
automatically [73]. Knowledge graphs such as DBpedia1 or Freebase (succeeded
by WikiData2) are authored by humans, making the database have little or no
noisy facts. Automatically curated knowledge graphs such as Google KG uses ma-
chine learning tools to populate the graph, which requires much less effort from
humans, but can introduce errors such as including wrong information3. A down-
side of manual construction methods is that they do not scale well compared to
the automated approaches. Furthermore, knowledge graphs can be differentiated
on whether they employ a fixed or open lexicon of entities and relations [71].

Schema-based Schema-based knowledge graphs use globally unique
identifiers for entities and relations. Here, all valid re-
lations are predefined in a fixed vocabulary. Freebase is
an example of a schema-based, manually created knowl-
edge graph. In this knowledge graph, we might represent
the fact that Hawaii is the birthplace of Barack Obama
using the triple 〈/m/02mjmr, /people/person/born −
in, /m/03gh4〉, where /m/02mjmr is the unique id for
the named entity Barack Obama.

Schema-free Schema-free approaches use open information ex-
traction (OpenIE) techniques to identify entities
and relations. These entities and relations are rep-
resented via normalized but not disambiguated
strings. As a result, OpenIE knowledge graphs may
contain multiple triples with the same semantic
meaning, e.g., 〈Obama, born in, Hawaii〉 and
〈Barack Obama, place o f bir th, Honolulu〉. The main
disadvantage of OpenIE systems is that this representa-
tion does not clarify whether the first triple refers to the
same person as the second triple, nor whether "born in"
has the same semantic meaning as "place of birth".

1https://wiki.dbpedia.org/
2https://www.wikidata.org/wiki/Wikidata:Main_Page
3https://www.theatlantic.com/technology/archive/2019/09/

googles-knowledge-panels-are-magnifying-disinformation/598474/

https://wiki.dbpedia.org/
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.theatlantic.com/technology/archive/2019/09/googles-knowledge-panels-are-magnifying-disinformation/598474/
https://www.theatlantic.com/technology/archive/2019/09/googles-knowledge-panels-are-magnifying-disinformation/598474/

Chapter 2: Theoretical Background 19

Despite being widely used for research purposes, the Freebase is missing data on
the place of birth for over 70% of all people included, even though this is a manda-
tory property of its schema [74]. This issue is not specific to Freebase, as other
knowledge graphs are similarly incomplete. Consequently, efforts have been made
to utilize the underlying properties of networks to infer missing facts, or links be-
tween entities; also referred to as link prediction, or knowledge graph completion.
See section 2.7 for an in-depth description of the task. This procedure is neces-
sary to improve upon the quality of the knowledge graphs being built. Generally,
knowledge graphs excel due to the inherent capturing of context. They break the
standard "store and retrieve" pattern of NoSQL databases by allowing for the uti-
lization of connections in the dataset. Every time data is added to a knowledge
graph; the entire data ecosystem is enriched because the new entity or relation
is connected to everything else. In general, the more data available, the more
context.

2.5 Triple Extraction

Triple Extraction is a subset of information extraction [75], where the goal is min-
ing triples from a text, using various forms of natural language processing and
data science techniques. The triples produced follow the schema-based format
described in section 2.4. As with the construction of knowledge graphs one needs
to decide whether to employ a fixed or open lexicon for entities and relations.
Some of the tools and techniques commonly used will be highlighted below, man-
ifested in chapter 4, and finally realized in chapter 5.

Figure 2.9: Simple triple extraction pipeline

20

By using the architecture in Figure 2.9 as a baseline, one can illustrate most infor-
mation extraction pipelines. The raw text is split into an array of sentences where
each sentence is further subdivided into individual words, often called tokens [76,
Chapter 7.1]. The tokens are given part-of-speech tags in named entity recognition
(NER) which will be used in the next step, named coreference resolution. Next, po-
tentially redundant entities are identified and replaced. At the end of the pipeline,
relation extraction discovers likely relations between the newly tagged entities.

In the context of knowledge graph construction, the raw texts used as input to
the pipeline in Figure 2.9, are often gathered from online sources. The texts can
be from a single reliable source, such as Wikipedia, making it relatively efficient,
but will suffer from knowledge base incompleteness [55]. On the other hand,
there is open-source triple extraction, which aims to combine knowledge from
several distinct sources. This makes it less efficient but leads to a more complete
knowledge graph. Some knowledge graphs, such as NELL [77], uses a combina-
tion of both. The facts extracted from a single source must pass some confidence
threshold, while candidate facts found from multiple sources can pass with lower
confidence thresholds.

The following subsections present the main components and techniques of a triple
extraction framework in more detail.

2.5.1 Named Entity Recognition

The NER task consists of finding each span of document that constitutes a named
entity and then classifying the type of that entity. Named entities are singular
identifiable and separate objects; in other words, anything we can refer to with
a proper noun [78, p. 148]. Common types of entities that can be extracted are
people, organizations, and places. In addition, we extend the definition to include
temporal and numerical expressions such as dates, numbers, etc.

Figure 2.10: Named entity annotated document with entity type labels

There are several factors making the NER task challenging. First, multiple entities
extracted from the document may refer to the same real-world entity, such as "The
United States" and "U.S", or "William Shakespeare" and "He". To handle this, a pro-
cedure named coreference resolution is conducted. This procedure is explained in
the following subsection. Further, other problems occur due to ambiguity, such as
type ambiguity and segmentation ambiguity. Type ambiguity refers to the issue of
the same mention possibly referring to several different named entities. Segmen-

Chapter 2: Theoretical Background 21

tation ambiguity refers to difficulties in defining the boundaries of the span of
document that constitutes the named entity. Figure 2.11 and Figure 2.12 present
examples of segmentation and type ambiguity.

Figure 2.11: Segmentation ambiguity

Figure 2.12: Type ambiguity for the word Washington, from [78, p. 154]

NER can be formulated as a task of sequential token labeling [78, p. 148]. Much
like the task of part-of-speech tagging and chunking, the assigned label encap-
sulates both the token type and its context. Common approaches vary from the
utilization of linear statistical models to neural network models. Some examples
of approaches used to conduct NER are; Hidden Markov Models [79], Maximum
entropy Markov models [80], Conditional Random Fields [81], and Bidirectional
LSTMs [82].

2.5.2 Coreference Resolution

An imperative part of named entity recognition is the task of identifying mentions
or referring expressions and their discourse entity [78, p. 415]. If several referring
expressions refer to the same discourse entity, each of these is said to corefer. To
determine whether two mentions corefer is referred to as coreference resolution.
This is often done in two steps. First by identifying the mentions, and then by
clustering them into coreference chains, i.e., the set of corefering expressions.

Figure 2.13: Coreference chains from document, from [78, p. 416]

22

Referring expressions can be of several different types. Anaphoric references oc-
cur when a referring expression points back to a referent [78, p. 416], while cat-
aphoric references occur when a referring expression comes before their referent
[78, p. 418]. When mentions are referring to a prior mention, we call it an ante-
cendent.

Another kind of coreference task is that of event coreference, which is used to
tell whether two event mentions refer to the same event. Coreference resolution
is often done in combination with the task of mapping entities to some real-world
individual, a task called entity linking. Approaches for coreference resolution vary
from using rule-based dependency parse trees, to neural networks trained with
word embeddings and distance between mentions as features [78, Chapter 21].

2.5.3 Relation extraction

Relation extraction is the task of determining the predicate between two given en-
tities from a text to a knowledge graph [83]. For example, in the sentence "Barack
Obama was born in Honolulu, Hawaii," a relation extraction system aims to infer
the semantic relationship, "bornInCity" between the entities "Barack Obama" and
"Honolulu". The relation extraction approaches that exist today mainly rely on the
multi-instance, and distant learning paradigms [84].

Multi-instance relation extraction looks at previous occurrences of entity pairs when
given a sentence, then predicts a target relation [85]. While this method can sig-
nificantly help a relation extraction system determining suitable ties, it can also
add noise by using realistic but wrong relations and thus hurt the overall per-
formance [86]. On the other hand, sentential relation extraction [87] does not
consider previous mentions and make predictions on a sentence level, therefore
relying on local features or context. Relation extraction is the critical component
for building relational knowledge graphs, and it is of crucial significance to NLP
applications such as structured search, sentiment analysis, question answering,
and summarization [88].

2.5.4 Post extraction

There may still be some required steps after the various forms of natural lan-
guage processing and data science techniques are applied to extract triples from
the texts. A recurring issue is the varying quality of the extracted triples. Some
common issues were unveiled in [55], and presented here.

Chapter 2: Theoretical Background 23

Redundancy A triple is said to be redundant if it gives no extra in-
formation to the knowledge graph. An example of this is
having the presence of the triples (Joseph R. Biden Jr., pro-
fession, President) and (Joe Biden, profession, President) as
the heads in both triples map to the same entity. Redun-
dancy reduction is sometimes referred to as entity resolu-
tion [89], which is also known as deduplication or record
linkage [90]. Ideally, coreference resolution should com-
bat this issue, however implementations of coreference
resolution are not perfect, and therefore might produce
duplicates.

Invalidity Some triples may be dependent on temporal validity, i.e.
being valid in only some point in time. This is especially
important when working with news, which often covers
new information or change of currently available infor-
mation. The correctness of some facts might therefore be
dated at the time of extraction. For example, (USA, join,
Paris Agreement) has been the subject of temporal inva-
lidity from 2017 to 2021. A solution to this is to allow
facts to have a beginning and ending date as suggested
by [91], or one can reify current facts by adding extra
assertions to them [92].

Conflicts Triples extracted might also have conflicting knowledge.
A topical example for fake news would be (Barack
Obama, bornIn, Hawaii) and (Barack Obama, bornIn,
Kenya). In automatic triple extraction these types of con-
flicts might be resolved by multi-criteria decision-making
methods [93][94][95][96].

Unreliability The source of triple extraction is an important factor. A
triple extracted from The Onion4 a satire news organiza-
tion, will not be as reliable as triples extracted from i.e.
The New York Times5. To avoid using web sites with un-
reliable content one can use credibility tools to filter the
sources used. Expert systems such as NewsGuard or sites
as Media-rank6 highlights the credibility of websites.

4https://www.theonion.com
5https://www.nytimes.com
6https://media-rank.com

https://www.theonion.com
https://www.nytimes.com
https://media-rank.com

24

2.6 Distributional Hypothesis

"You shall know a word by the company it keeps"

— J.R. Firth (1957)

The distributional hypothesis relies on the assumption that there is a correlation
between distributional similarity and semantic similarity. This assumption implies
that we can analyze the distributional similarity of elements in the order to es-
timate their semantic similarity. The distributional hypothesis forms the basis for
statistical semantics; the statistical study of meanings of words and their frequency
and order of recurrence [97]. It has been a key contributing factor for the ad-
vancements in the NLP field. As most ML models require input to be represented
as a fixed-length feature vector, many methods of creating such representations
of words have been introduced. Vector representations are often, and will in this
thesis, be denoted using arrow oversets, e.g

→
x . Some NLP systems and techniques

disregard the notion of similarity between words by representing them as sparse,
long vectors with dimensions corresponding to the words in the vocabulary. These
models are often referred to as bag-of-word models (BOW) and have historically
had great success for some problems but rendered insufficient in most.

2.6.1 Word Embedding

The disregard of semantic similarity in BOW models has resulted in a shift towards
more advanced techniques. Among these techniques is the notion of distributed
representations of words, also called word embeddings. This technique aims to rep-
resent words through lower-dimensional, fixed-sized, dense vectors, omitting the
dimensionality problem of the previous approach. The fixed-size vector of words
are mapped to a multidimensional semantic space, where vectors closer to each
other carry more semantic similarities. This is illustrated in Figure 2.14, where
neutral, positive, and negative words are located in distinct areas of the projected
space. Research has shown that dense vectors perform better than sparse vectors
for every NLP task [78].

Figure 2.14: Two-dimensional projection of 60-dimensional embeddings trained
for sentiment analysis [78]

Chapter 2: Theoretical Background 25

The most common way of defining the similarity between two embeddings is by
calculating the cosine of the angle between their vectors projected in a multi-
dimensional space. The cosine is based on the dot product operator from linear
algebra normalized for the vector length. This is done by dividing the dot prod-
uct by the lengths of both vectors. For example, given two vectors

→
v and

→
w, their

cosine similarity metric is defined as:

cosine(
→
v ,
→
w) =

→
v ·
→
w

|
→
v ||
→
w|
=

N
∑

i=1

→
v i
→
wi

√

√

√

N
∑

i=1

→
v

2

i

√

√

√

N
∑

i=1

→
w

2

i

(2.1)

Word2Vec

A number of procedures have been proposed to encapsulate semantic similarities
of words through word embeddings. Among the most popular procedures is the
Skip-Gram with Negative Sampling (SGNS) algorithm [98], often loosely referred
to as word2vec. This procedure trains a classifier on the binary prediction task:

“Is word w likely to show up near word x?”

A sliding window size is selected, and based on this window size the algorithm at-
tempts to identify the conditional probability of observing the output word based
on the surrounding words within the window. The classifier learns statistics from
the number of times each pairing of words are observed. In lieu of keeping focus
on the prediction task, the learned classifier weights are extracted and used as
word embeddings. This model omits the need for labeled datasets as it can use
the text corpora as implicitly supervised training data for the classifier. A word
s from our corpora that occurs near the target word x acts as the label to the
classifier’s prediction task.

2.6.2 Graph Embedding

Graph embedding is an approach that is used to transform nodes, edges, or the en-
tire graph into fixed-size dense feature vectors. The aim of graph embeddings is to
efficiently encapsulate the graph’s topological properties, as well as the connectiv-
ity and attributes of nodes and edges [99]. Finding the optimal dimension for the
feature vectors is challenging. Choosing a higher dimensionality may increase the
reconstruction precision, but will also result in high time and space complexity.
Multiple approaches for graph embedding have been proposed following the idea
of distributed representation learning and the previous success of word embed-
dings. We define three categories among node embedding approaches; factoriza-
tion approaches, random walk approaches, and deep approaches. Next, we present
two of the most popular graph embedding algorithms.

26

DeepWalk

DeepWalk [100] utilizes a combination of the SGNS model and random walk pro-
cess in the graph embedding process. It uses local information obtained from trun-
cated random walks to learn latent representations by treating walks as the equiv-
alent of sentences. The procedure utilizes short random walks to omit the need
for global recomputation on small changes in the graph. The model can then be
iteratively updated with new random walks from the changed region in time sub-
linear to the entire graph.

Figure 2.15: DeepWalk used to generate a latent representation of the Karate
network [101] in R2

The DeepWalk algorithm consists of two main components; a random walk gener-
ator followed by an update procedure. The random walk Wv starts by selecting any
node v as the root of the random walk. The walk then samples a random neigh-
boring node w ∈ N(v) and repeats the process for a defined number of steps t.
For each node vi , we generate a random walk |Wvi

|= t, and then use a skip-gram
network with hierarchical softmax to approximate the probability distribution in
order to update representation vectors. A constant γ defines the number of times
this procedure is done for each node.

Node2Vec

The node2vec algorithm [102] introduces a semi-supervised approach for scalable
feature learning in graphs. The algorithm differs from the approach described in
DeepWalk by introducing Breadth-Fast-Sampling (BFS) and Depth-First-Sampling
(DFS) to control the random behavior of the walk component. In node2vec a flex-
ible neighbor sampling strategy is employed by smoothly interpolating between
BFS and DFS. The intuition is to enable modeling of the two kinds of graph sim-
ilarities: homophily and structural equivalence. This is motivated by the findings
that real-world networks exhibit both behaviors [102]. Homophily refers to the
notion that nodes that are highly interconnected and belong to similar network
clusters should be embedded closely together. Structural equivalence refers to the
notion that nodes with similar structural roles in networks should be embedded
closely together.

Chapter 2: Theoretical Background 27

Figure 2.16: BFS and DFS search strategies from node u (k = 3) [102]

The node2vec algorithm consists of three distinct phases, executed sequentially.
First, preprocessing is done to compute transition probabilities. Then, r random
walks of fixed length l starting from every node are conducted. This is done to
offset the implicit bias due to the choice of the start node u. Lastly, the objective is
optimized using stochastic gradient descent with context size k. To provide flexibil-
ity in the random behavior of the walk component, node2vec defines a 2nd order
random walk with two parameters p and q to guide it. The in-out parameter q al-
lows the search to differentiate between "inward" and "outward" nodes. Choosing
smaller values for q tends to produce random walks with DFS-like exploration be-
haviors. The return parameter p controls the likelihood of immediately revisiting
a node in the walk. Low values for p promote "local" walks close to the starting
node, while high values ensure that we are less likely to sample already visited
nodes in the next two steps.

Given a walk that just traversed edge (u, v) to get to node v, the next step is chosen
by evaluates the transition probabilities πvx on edges (v, x) leading from v. The
unnormalized transition probability is defined by πvx = αpq(t, x)·wvx , where wvx
is the static edge weights, dt x denotes the shortest path distance between nodes t
and x. Search bias αpq(t, x) is given by

αpq(t, x) =











1
p if dt x = 0

1 if dt x = 1
1
q if dt x = 2

(2.2)

2.7 Link Prediction

The Link Prediction (LP) task aims to infer missing triples by analyzing those al-
ready present in the graph [103]. For instance, in a social network, one might only
know a subset of people are friends, and some are not, and seek to predict which
other people are likely to become friends. All link prediction tasks operate un-
der the open world assumption, which does not presume that the knowledge of a
domain is complete. Hence, any triple not observed in the graph remain possible.
There are mainly two angles taken when researching this problem; graph structure
or attributes of nodes and edges [104]. The structure of a graph encapsulates its

28

topology and refers to the way nodes are interconnected. In general, the modeling
process constitutes the extraction of local or global connectivity patterns between
nodes. Prediction is carried out by utilizing these patterns to generalize the ob-
served edges between a specific node and all others [105]. The other approach
aims to utilize attribute information of nodes and edges to make link predictions.
Most existing models are designed to operate on feature vector representation of
the constituents (nodes and edges) of the graph [106].

The link prediction problem can be formalized in several ways for different prob-
lems. Liben-Nowell and Kleinberg proposed that the link prediction problem could
describe how a network changed over time [107]. The problem has later been fur-
ther divided into three different types; adding links to the graph, removing links
from the graph, or doing both. Other applications have characterize link predic-
tion as the task of predicting the correct entity that completes a triple in the graph
[11]. Subsampling real-world networks is a typical way of obtaining the graph
datasets employed in link prediction research.

For the link prediction problem, we define the graph:

Definition 4 (Graph). A graph G is a set G = (E ,R,G) where;

• E: set of nodes representing entities
• R: set of edges representing relations
• G ⊆ E ×R× E: set of triples 〈h, r, t〉

In the graph, two nodes and the edge between them collectively represent a triple.
As for most ML approaches, the set of triples G is divided into three disjoint sub-
sets: a training set Gt rain, a validation set Gval , and a test set Gtest . Given a known
node (source entity), an edge (relation), and an unknown node (target entity),
we can conduct link prediction tasks. For directed graphs, we conduct either head
〈?, r, t〉 or tail 〈h, r, ?〉 prediction. This distinction is redundant for undirected
graphs. For ML approaches, the graph needs to be embedded to enable models
to train on it. A scoring function φ is defined to estimate the plausibility of any
triple 〈h, r, t〉 using their embeddings;

φ(h, r, t) (2.3)

This scoring function can be utilized to predict the most plausible node or edge
to complete a triple in the graph:

h= ar gmax
e∈E

φ(e, r, t) (2.4)

t = ar gmax
e∈E

φ(h, r, e) (2.5)

r = ar gmax
r̂∈R

φ(h, r̂, t) (2.6)

Chapter 2: Theoretical Background 29

Over time, many approaches to LP have been proposed. For the triple completion
perspective of link prediction, [11] has proposed a simple taxonomy for separat-
ing the different approaches into three categories depending on the technique
applied. This taxonomy is illustrated in Figure 2.17. The following subsections
will describe the three categories of the proposed taxonomy. Refer to the original
paper for a more thorough review of subgroups, constraints, space complexity,
and so forth.

Figure 2.17: Proposed taxonomy for LP approaches [11]

2.7.1 Geometric Models

The geometric models are characterized by their view of graph edges as geometric
transformations in the latent space. Given a triple 〈h, r, t〉, the embedding of the
head node undergoes a spatial transformation τ that uses the values of the edge
embedding r as parameters. The distance between the resulting vector and the
tail node’s vector represents the triple score. This distance is computed using a
distance function δ. Thus, the scoring function φ is given by

φ(h, r, t) = δ(τ(
→
h ,
→
r),
→
t) (2.7)

2.7.2 Tensor Decomposition Models

Tensors are often viewed as a generalization of vectors and matrices and are gener-
ally understood as multidimensional arrays. A tensor of order N in M -dimensional
space is a mathematical object with n indices and M n components [108]. Put in
simple terms, a first-order tensor is a vector, a second-order tensor is a matrix, and
tensors of order three or higher are called higher-order tensors.

30

Figure 2.18: Third-order tensor: X =
→
a ·
→
b ·
→
c ∈ RI×J×K, where the (i, j, k)

element of X is given by x i jk = ai b jck [108]

In tensor decomposition models, graphs are considered third-order tensors, also
thought of as 3-dimensional adjacency matrices. This tensor can be decomposed
into a combination of low m-dimensional vectors representing node and edge em-
beddings. To calculating the score of a triple, one can utilize an operation such
as the bilinear product on the involved embeddings. During training of the LP
model, we optimize the scoring function φ for all triples in Gt rain. The idea is that
the learned embeddings should generalize to the structure of the graph. Hence,
the scoring function should assign high probability triples representing true state-
ments, disregarding whether they have been observed in the graph or not. Equally,
a low probability should be assigned to false triples.

2.7.3 Deep Learning Models

Deep Learning models are increasingly capable of solving predictive tasks on graphs,
including the task of link prediction. Many types of neural network architectures
have been utilized for the link prediction problem. These models learn parameters
such as weights and biases, and combine them with the input data to recognize sig-
nificant patterns. Deep networks organize parameters into separate layers, gener-
ally interspersed with non-linear activation functions. For deep learning based link
prediction models, graph embeddings are learned jointly with the layer’s weights
and biases. Though [11] names three types, we extend this taxonomy to include
a fourth: Convolutional Neural Networks, Capsule Neural Networks, Recurrent
Neural Networks, and Graph Neural Networks. In section 3.2, the different neural
network types are further explained in the context of LP. Graph Neural Networks
are explained in detail in section 2.8.

Chapter 2: Theoretical Background 31

2.8 Graph Neural Networks

The Graph Neural Network (GNN) is a general framework for defining deep neural
networks on graph data. In graphs, the connections between data make the stan-
dard assumption of datapoints being independent and identically distributed (i.i.d.)
invalid. This makes most of the standard machine learning models ineffective as
their derivations are firmly based on the assumption that each datapoint is sta-
tistically independent from all the other datapoints. Hence, the need for different
architectures for machine learning on graph-structured data with the ability to
model their structural relationships, as well as any feature information that might
be available. In general, GNN models take as input a graph G representing the
data. This representation has in advance been embedded through creating dis-
tributed vector representations for each node in the graph. The output of a GNN
model will be the same graph as the input, but for each node, the vector repre-
sentation no longer represents the node itself but how this node belongs in the
context of the graph.

Several variants of Graph Neural Networks have been suggested, either focused
on differences in graph types, training methods, or method of the propagation step
[109]. Among the first CNN-based architectures that could operate on graphs was
the Message Passing Neural Network (MPNN) [67]. The author’s implementation
relied on message passing to extract valuable information from graph molecules.
[110] again proposed using MPNN, which could generalize several Graph Neural
Network and Graph Convolutional Network approaches.

The output representation from a GNN can be used in multiple tasks such as;
node classification, graph classification, and link prediction. See section 2.7 for an
in-depth description of the link prediction task. The two other tasks mentioned
are described below:

Node Classification The goal is to predict the label yu, which could be
the type, category, etc., associated with node u ∈ V ,
given a set of existing node labels [61]. We are only
given the true labels of a subset of nodes Vt rain ⊂ V ,
and the task is to predict the unlabeled nodes us-
ing this information. Solutions to node classification
tasks often rely on the exploitation of both homophily
and structural equivalence. We want to exploit these
two concepts and model the relationships between
nodes, rather than simply treating nodes as indepen-
dent datapoints.

32

Graph Classification Given a set of multiple different graphs G, instead
of making predictions over the individual nodes and
edges for a single graph, the goal is to predict the
label yg , which could be the type, category, etc., as-
sociated with the graph g ∈ G. In the graph cluster-
ing task is closely related, where the goal is to learn
an unsupervised measure of similarity between the
graphs in the provided set [61].

2.8.1 Neural Message Passing

As explained in [110], the Message Passing Neural Network (MPNN) approach aims
to capture the dependence of the graph via vector message exchange between its
nodes. This can be done by updating the hidden state hv of nodes by a vertex up-
date function Ut of the previous hidden state and the message of nodes neighbors
given by the message function Mt . For simplicity, we explain only the phases re-
lated to the undirected graphs, but the extension to directed multigraphs should
be trivial. We are given a graph G with node features

→
x v and edge features

→
e vw.

The approach is split into two phases; a message passing phase and a readout
phase.

In the message passing phase, we define a number of timesteps T . For each node

during this phase,
→
ht

v denotes the hidden state (distributed vector representation)
at timestep t. This state is updated based on messages given:

→
ht+1

v = Ut(
→
ht

v ,
→

mt+1
v) (2.8)

where
→

mt+1
v is the message at time step t + 1, given by

→
mt+1

v =
∑

w∈N(v)

Mt(
→
ht

v ,
→
ht

w,
→
e vw) (2.9)

where N(v) denotes the neighbors of node v in G. For each timestep t, the hidden
state of each node is updated simultaneously in parallel. After T timesteps have
passed, context from nodes at leas T steps away from each node will be embedded

in the hidden state
→
hT

v .

Chapter 2: Theoretical Background 33

Figure 2.19: Message passing phase

Lastly, in the readout phase, we compute a feature vector for the entire graph
using the readout function R:

→
ŷ = R({

→
hT

v |v ∈ G}) (2.10)

2.9 Attention Mechanism

The attention mechanism draws inspiration from the field of psychology, where
attention is defined as the cognitive process of selectively concentrating on a dis-
crete aspect of information while ignoring others. In ML, attention enables the
modeling of global dependencies between input and output. This is done by not
only including surrounding elements as context for the prediction, but introducing
their relative importance as well [44]. Among the key benefits of attention mech-
anisms are the enabling of variable sized inputs. The introduction of attention
mechanism has led to widespread success in many sequence-based tasks such as
machine translation, image caption generation, video clip description, and speech
recognition [44] [111].

2.9.1 Attention in graphs

Though graph-structured data has enabled the extraction of valuable knowledge
in different applications through graph mining, there are still factors that make
current approaches insufficient. Real-world graphs are often large, include many
intricate patterns, and containing lots of noise. An effective way to deal with this
issue is to incorporate attention into graph mining solutions. The attention mech-
anism helps the model make better decisions by only focusing on the graph’s task-
relevant parts.

Graph Attention Network (GAT) [112] represent a novel convolution-style neural
network that operates on graph-structured data, incorporating attention mech-
anism in the propagation step. It has quickly become the benchmark approach

34

for incorporating attention in Graph Neural Networks. This model utilizes a self-
attention strategy, computing the hidden states of each node by attending over
its neighboring nodes. In GAT, a graph attentional layer is defined, which can be
stacked to produce arbitrary Graph Attention Networks. The input to the atten-
tional layer is the F -dimensional hidden state of the N nodes in the graph G,

h= {
→
h1,

→
h2, ...,

→
hN},

→
h i ∈ RF

The layer produces a new set of node embeddings as its output. These new vector
representations can but do not need to have the same cardinality as the originals.
The output is given by;

h′ = {
→
h′1,

→
h′2, ...,

→
h′N},

→
h′ i ∈ RF ′

In order to transform the input vector representation of nodes to a higher di-
mensional vector, they apply a shared linear transformation, parametrized by a
weight matrix, W ∈ RF ′×F , to every node as an initial step. Next, they perform
self-attention through a shared attentional mechanism a : RF ′ ×RF ′ → R on the
nodes to compute attention coefficient ei j expressing the importance of node j’s
embedding to node i. This coefficient is computed as;

ei j = a(W
→
h i ,W

→
h j) (2.11)

The graph structure is injected into the mechanism by only computing ei j for nodes
j ∈ N(i), where N(i) denotes the neighbors of node i in G. This is referred to as
masked attention. Then, coefficients are normalized across all choices of j using
the softmax function. In GAT, the attention mechanism a is a single-layer FNN,
parametrized by a weight vector

→
a ∈ R2F ′ , and applying the LeakyReLU nonlin-

earity (with negative input slope = 0.2). The normalized attention coefficients
αi j of a node pair (i, j) is computed as;

αi j = so f tmax j(ei j) =
exp(LeakyReLU(

→
a

T
[W
→
h i||W

→
h j]))

∑

k∈N(i) exp(LeakyReLU(
→
a

T
[W
→
h i||W

→
hk]))

(2.12)

T represents transposition, and || is the concatenation operation. Normalized at-
tention coefficients are then used in a linear combination of the embeddings cor-
responding to them to serve as the final output h′i for every node;

→
h′ i = σ(
∑

j∈N(i)

αi jW
→
h j) (2.13)

Chapter 2: Theoretical Background 35

The implementation utilizes multi-head attention to stabilize the training process
of self-attention. K independent attention mechanisms are employed and either
concatenated or averaged to create the final output;

→
h′ i =

K
||

k=1
σ(
∑

j∈N(i)

αk
i jW

k
→
h j) (2.14)

→
h′ i = σ(

1
K

K
∑

k=1

∑

j∈N(i)

αk
i jW

k
→
h j) (2.15)

The latter equation drops the concatenation in favor of averaging, before the non-
linearity. This is used in the final layer of the network, where concatenation is no
longer sensible. The aggregation process of a multi-head graph attentional layer
is illustrated in Figure 2.20.

Figure 2.20: Visualization of multi-head attention on node 1. Three different
attention mechanisms are employed, depicted with different arrow styles and
colors [112]

Chapter 3

Related Work

This chapter presents a selection of previous works akin to the contributions of this
thesis. It contains descriptions of some of the most prominent research concerning
fake news detection and link prediction through knowledge graph embedding. All
models used in the comparisons and evaluation of our contributions are presented
in this chapter. Further, section 3.3 presents in detail the attention-based GNN
architecture that forms the basis of our proposed model. On the grounds that this
thesis proceeds the efforts and findings of our previous work [1], some sections
may bear a close resemblance. More precisely, section 3.2 will present the same
research as the referred work; in a revised format.

3.1 Fake News Detection

Following the rapid increase in attention to fake news, several approaches to au-
tomatic detection of fake news have been proposed. As described in section 2.2,
approaches can rely on either: (i) content-based, or (ii) context-based features.
Sections 3.1.1 - 3.1.3 will present some of the most common approaches within
these. Keep in mind that most approaches use a mixture of content and context
features to detect fake news. Section 3.1.3 describes some more uncommon tech-
niques related to the proposed method of this thesis.

3.1.1 Detection based on Content Features

In [28], the authors show that fake and real news articles are notably distinguish-
able by their textual features. These textual features include complexity features,
psychology features, and general stylistic features. How the features differ be-
tween the categories of news is found using one-way ANOVA and Wilcoxon rank-
sum tests. This approach successfully separated fake news and satire from real
news with an accuracy between 71% and 91%. Conclusively, the authors argue
the persuasion in fake news is achieved through heuristics rather than the strength
of arguments, which is the case for real news.

37

38

Based on a rich set of textual features, [113] propose a language-independent ap-
proach for automatic fake news detection. They utilize logistic regression for clas-
sification with L-BFGS optimization and elastic net regularization to distinguish-
ing the fake and credible news. The selected features include linguistic features
such as; n-gram counts and vocabulary richness, credibility features such as; ar-
ticle length, URLs, capitalization metrics and pronoun types, and lastly semantic
features; modeling of the semantics of the article through averaging the word2vec
embeddings of the non-stop word tokens.

HAN [114] propose a hierarchical attention network framework for fake news
classification. It is based on content features of the documents and applies two
levels of attention mechanisms, one on word-level and one on sentence-level. The
model progressively builds a document vector by aggregating important words
into sentence vectors and then aggregating important sentence vectors to docu-
ment vectors.

Rhetorical Structure Theory (RST) [115], is an analysis that captures the coher-
ence of a story in terms of functional relations among different meaningful textual
units, and describes a hierarchical structure for each story. It builds a tree struc-
ture to represent rhetorical relations among the words in the text. RST is able
to extract news style features by mapping frequencies of rhetorical relations to a
vector space.

Linguistic Inquiry and Word Count (LIWC) [116] was developed in order to pro-
vide an efficient and effective method for studying the various emotional, cogni-
tive, and structural components in textual documents. It has been widely adopted
to extract the lexicons falling into psycholinguistic categories. It relies on an in-
ternal default dictionary that defines which words should be counted in the target
text files. The internal default dictionary is used to learn a feature vector from the
psychology and deception perspective.

TextCNN1 is a simplified implementation of the described use of CNNs for sentence
classification tasks from [117]. First, the model is used to classify news contents
by capturing different granularity of text features through multiple convolution
filters. Next, they max-pool the result of the convolutional layer into a long fea-
ture vector, conduct dropout regularization, and classify the result using a softmax
layer.

Among more cutting-edge research, dEFEND [118] employs an attention-based
deep learning approach. The authors propose a sentence-comment co-attention
sub-network to jointly capture explainable top-k check-worthy sentences and user
comments for fake news detection. In addition to outperforming several state-of-
the-art approaches, it outperforms the baselines by 30.7% in precision at success-

1https://github.com/dennybritz/cnn-text-classification-tf

https://github.com/dennybritz/cnn-text-classification-tf

Chapter 3: Related Work 39

fully identifying the top-k user comments that explain why a document is fake.

3.1.2 Detection based on Context Features

By taking advantage of “wisdom of crowds”, the authors of [119] improve news
verification by mining conflicting viewpoints of users on social media. They lever-
age a topic model to identify conflicting viewpoints and build a network of these
viewpoints linked by supporting and opposing relations. Furthermore, by formu-
lating credibility propagation on their network as a graph optimization problem,
they provide an iterative optimal solution that outperformed the baselines.

User-Based

In [120], user opinions are mined from engagement hierarchies in social media.
The credibility of users and authenticity of news are calculated using a Bayesian
network model, which yields a probability of their trustworthiness. These new vari-
ables are treated as latent random variables, such that a probabilistic graphical
model can be built to capture the complete generative spectrum using a collapsed
Gibbs sampling approach. It is noteworthy that this whole process is unsupervised
and outperforms the unsupervised benchmarks.

Network-Based

The authors of [121] introduce a network-based pattern-driven model. They in-
spect how patterns of fake news spread in social networks, which include both the
spreaders of the news and the relationships among them. By integrating empiri-
cal studies and social psychological theories, they represent patterns on multiple
network levels to detect fake news. Their approach enhances the explainability of
fake news feature engineering and outperforms state-of-the-art approaches. How-
ever, as opposed to content-based methods, their model can not detect fake news
before it has been propagated on a social network.

3.1.3 Computational-Oriented Fact-Checking

Several approaches have been proposed utilizing knowledge-based information
retrieval methods to determine the veracity of news articles. As an example, [122]
presents a web-based fact-checking framework, using web queries to calculate the
trustworthiness of textual documents. This approach starts by extracting key facts,
or statements, from the document. Thereon, web search is used to estimate the
web support of these statements. Finally, the individual support for each state-
ment is aggregated to produce an overall score indicating the trustworthiness of
the document.

An alternative approach to the task of computational-oriented fact-checking was
presented in [123]. Here, the authors cast fact-checking as a link prediction task

40

in knowledge graphs. Given a knowledge graph G, and a statement S on the for-
mat 〈sub jec t, predicate, ob jec t〉. Checking statement S = 〈s, p, o〉 is equivalent

to predicting the existence of edge s
p
→ o in G. The fact-checking is extended to in-

clude alternative paths P between entities of the same type as s and o through the
knowledge graph G. By extracting discriminative paths from the KG, they validate
the truthfulness of any given statement S. This approach yielded state-of-the-art
performance on fact-checking while additionally accommodating interpretability
by providing sensible reasons for the predictions.

In [15] the task of computational oriented fact-checking is solved using a novel
approach combining the construction of knowledge graphs and use of knowledge
graph embedding models. First, three KGs are constructed from different article
bases containing; verified fake news, news from reliable news agencies, and an
independent open KG such as FB15k and DBpedia. Then, to detect whether the
news article is true or fake, TransE [105]models are utilized to build entity and re-
lation embedding in low-dimensional vector space for each KG. Next, the authors
compare the performance of single TransE models, a binary-TransE model trained
on the fake and true news corpora, and lastly, a hybrid approach combining the
feature vectors from different models. Results show that external open KGs yield
the best performance and that binary models generally outperform single models.

3.2 Link Prediction

There exists a large assortment of approaches and architectures proposed to solve
the task of LP. We will focus on a group of approaches based on KG embedding.
As previously described in section 2.6, these approaches can generally be defined
as either: (i) geometric, (ii) tensor decomposition, (iii) or deep learning based
models. The following subsections will present a handful of novel and state-of-
the-art models within these categories.

3.2.1 Geometric models

TransE [105], an LP model inspired by the word2vec algorithm, was the first of
its kind using a geometric interpretation of the embedding space. It considers the
translation operation between head and tail nodes for edges. Given a selected dis-
tance function, TransE requires that the tail embedding lies close to the sum of the
embedded head and edge. Due to the nature of translation, this model has shown
to struggle with one-to-many and many-to-one relations, as well as symmetric and
transitive relations. The observed limitation in TransE’s ability to satisfy the trans-
lational constraint resulted from the regularization technique forcing embeddings
to lie on a hypersphere. Due to this limitation, TorusE [124] was proposed. The
TorusE model works by projecting each point

→
x of the traditional open manifold

Rd into a [
→
x] point on a torus Td .

Chapter 3: Related Work 41

CrossE [125] is among the more recent geometric models proposed. It introduces
an additional edge-specific embedding cr for each edge in the graph. These em-
beddings are learned during the training of the model. Triple-specific embeddings
are produced by taking element-wise products to combine cr with the head and
edge embeddings. The triple-specific embeddings are then used in the translation
operation.

3.2.2 Tensor Decomposition models

DistMult [126] utilizes a special case of the bilinear objective used in the geomet-
ric model TransE. Whereas TransE is based on element-wise subtraction with a
bias, DistMult uses weighted element-wise dot product. Given a triple 〈h, r, t〉, the
scoring function of DistMult is defined as the bilinear product:

φ(h, r, t) =
→
h

T
·R ·

→
t

where
→
h ∈ Rd denotes the head embedding,

→
t ∈ Rd the tail embedding, and

R ∈ Rd×d is the relation embedding represented by a bidimensional matrix. The
bidimentional matrices representing relations are restricted to diagonal matrices.
As this makes the scoring function commutative, it results in the model treating
relations as symmetric φ(h, r, t) = φ(t, r, h). Despite this weakness, it has been
shown that a carefully tuned model can still reach state-of-the-art performance
[127]. This weakness was addressed in ComplEx [128]. It generalizes DistMult

by extending the embeddings in the complex space:
→
h ∈ Cd ,

→
t ∈ Cd , R ∈ Cd×d ,

and hence using Hermitian dot products to model entity edges. By replacing the

embedding
→
t by the Hermitian transposed

→
t

H
, the approach enables modeling of

asymmetric relations.

Another auspicious model based on tensor decomposition is TuckER [129]. It has
proven a great success for the LP tasks and reached state-of-the-art performance
on several benchmark datasets [11]. The model is based on the notion of Tucker
Decomposition, factorizing tensors into a set of vectors and a smaller shared core
W. TuckER allows for flexibility in the dimension size of node and edge embed-
dings

→
v ∈ Rdv ,

→
e ∈ Rde . The shared core W ∈ Rdv×de×dv is learned jointly with the

graph’s embeddings and is what enables TuckER in modeling the asymmetry of
relations.

3.2.3 Deep Learning models

Following the rapid increase in research on deep learning, lots of attention has
been put on utilizing it for link prediction. Several types of neural architectures
have been employed for the LP task, with the hope that these networks will be able
to encapsulate global topology, connectivity, and attributes of a graph’s nodes and

42

edges. This subsection will cover approaches within four architectural categories:
Convolutional, Capsule, Recurrent, and Graph Neural Networks.

CNN-based

ConvKB [130] employs a Convolutional Neural Network to enable the capturing of
global relationships and transitional characteristics of the graph. It composes the

embeddings of each triple 〈h, r, t〉 into a 3-column input matrix A = [
→
h ,
→
r ,
→
t] ∈

Rk×3, where k denotes the cardinality of the node and edge embeddings. The
input matrix is fed to a convolution layer where different feature maps are gen-

erated by applying a set Ω of filters. Then, a single feature vector
→
f representing

the input triple is generated by concatenating the feature maps. The feature vec-
tor is multiplied with a weight vector

→
w via dot product to return a triple score

representing its validity.

ConvE [131] is another CNN-based approach, characterized by a large reduc-
tion in parameters compared to other models. While yielding the same perfor-
mance as both DistMult and R-GCN, it has 8x and 17x fewer parameters, respec-
tively. The model predicts links using convolution over 2D shaped embeddings

[
→
h;
→
r] ∈ Rdm×dn . A 2D embedding is let through a convolutional layer with a set

ω of m× n filters, followed by a dense layer with d neurons and a set of weights
W. Finally, the score for triple 〈h, r, t〉 is calculated by combining the output with

the tail embedding
→
t using the dot product.

CapsNet-based

Recent efforts have been made in employing Capsule Neural Networks (CapsNet)
to the LP task. These networks seek to omit the fundamental drawbacks of CNN’s
lack of consideration of important spatial hierarchies between simple and complex
objects, as well as the issue of pooling operations leading to the loss of valuable
information. This notion was brought to light by Geoffrey Hinton, widely consid-
ered one of the founders of deep learning.

"The pooling operation used in convolutional neural networks is a big
mistake and the fact that it works so well is a disaster"

— G. Hinton [132]

Hinton was among the authors proposing the CapsNet architecture [133]. This
architecture incorporates dynamic routing algorithms to estimate features, i.e.,
position, size, orientation, of specific objects. Capsules are composed of groups of
neurons whose activity vector represents the instantiation parameters of a specific
type of object or object part. Compared to normal neurons, capsules differ in the
way they perform computations on their inputs. Where neurons produce scalar

Chapter 3: Related Work 43

quantities, capsules encode specific input features to produce a vector of highly
informative outputs. The length of the output vector of a capsule represents the
probability that the specific object it represents is present in the current input, and
its orientation represents the instantiation parameters.

CapsE [134] presents a model for LP which, much like ConvKB, represents each
triple 〈h, r, t〉 with k-dimensional embeddings as a 3-column input matrix A =

[
→
h ,
→
r ,
→
t] ∈ Rk×3. Each column vector in A represent the embedding of an element

in the triple, where we assume that different embeddings encode homologous as-
pects in the same positions. The matrix is then fed to a convolution layer where
different feature maps q = [

→
q1,

→
q2, ...,

→
qk] ∈ Rk are generated by applying a set of

filters Ω. The feature maps are reconstructed into corresponding capsules that are
then routed to another capsule, where a non-linear squashing function is used to
produce a vector output

→
e . This vector’s length is used as a score to measure the

validity of the triple 〈h, r, t〉.

RNN-based

Approaches based on Recurrent Neural Networks remove the restriction of pro-
cessing each triple individually and enables the analysis to include variable-length
sequences of triples. Despite RNN’s proficiency on various sequential data predic-
tion tasks, they introduce certain limitations when used to model relational paths.
Traditional RNN architectures treat each input as the same type of element, which
works well for tasks including words and numbers. However, the relational paths
in graphs alter between two types of elements, nodes, and edges, making RNNs
less effective in capturing semantic information in relational paths. Another issue
with RNNs for link prediction is that the model is only passed one of the previous
elements at each time step. Hence, in the tail prediction of a triple RNNs are only
passed its relation, but not the head.

Recurrent Skipping Networks (RSNs) [135] have been proposed as a solution to
RNN’s struggles in modeling relational paths. These models refine the RNN archi-
tecture by introducing a simple yet effective skipping mechanism. RSNs use a con-
ditional function to update the hidden state. Given a relational path (

→
x 1,

→
x 2, ...,

→
x T),

at any time step t, if the input is a relation, the hidden state is updated re-using
the triple head too;

→
h′ t =

(→
h t

→
x t ∈ E

S1

→
h t + S2

→
x t−1

→
x t ∈R

,

where E and R denote the sets of nodes and edges, and S1, S2 are the weight
matrices whose parameters are shared at different time steps. The output vector
and target embedding are multiplied via dot product to compute the score of a

44

triple. During training, biased random walk sampling is used to learn relation
paths built from the train triples. In evaluation, RSNs employ an optimized loss
function using a type-based noise contrastive estimation (NCE).

GNN-based

The use of Graph Neural Networks introduce a promising category of approaches
to link prediction. This is due to their inherent ability to model structural relation-
ships of graphs. For further description of the GNN architecture, please refer to
section 2.8.

Relational Graph Convolutional Network (R-GCN) [136] presents a GNN-based
model for the task of LP. The authors propose a encoder-decoder architecture,
as shown in Figure 3.1, employing the R-GCN network as encoder, and DistMult
as the decoder. For an explanation of the decoder, please see subsection 3.2.2.

Figure 3.1: LP model with an R-GCN encoder and a DistMult decoder [136]

The architecture is motivated by the MPNN architecture, but introduces relation-
specific transformations to accommodate the highly multi-relational data charac-
teristic of real-world knowledge bases. R-GCN define the following model for cal-
culating the forward-pass update of a node vi in a directed heterogeneous multi-
graph:

→
h
(l+1)

i = σ(
∑

r∈R

∑

j∈N r (i)

1
ci,r

W(l)r

→
h
(l)

j +W(l)0

→
h
(l)

i), (3.1)

where ci,r is a problem-specific normalization constant, and N r(i) denotes the
neighbouring nodes of node i under relation r. A neural network layer update
consists of evaluating equation 3.1 for every node in the graph. The update is con-
ducted for each node in parallel. The model introduces basis and block-diagonal
decomposition of weight matrices W(l)r . Basis decomposition accommodates ef-
fective weight sharing between different relation types, while block-diagonal de-
composition enforces a sparsity constraint on each W(l)r . Applying these methods
result in a large reduction of parameters needed to model multi-graphs with a
high number of relation types. Additionally, overfitting on rare relations is allevi-
ated through the shared parameter updates between both rare and more frequent
relations.

Chapter 3: Related Work 45

3.3 GraphStar

GraphStar [137] is a novel and unified Graph Neural Net architecture that utilizes
a message-passing relay and attention mechanism for multiple prediction tasks,
such as; graph classification, node classification, and link prediction. The model
has been shown to achieve non-local representation without increasing the model
depth nor bearing high computational costs. According to the authors, GraphStar
outperforms several state-of-the-art models by 2% − 5% on multiple key bench-
marks. The architecture uses star nodes to learn graph-data representation. In-
spired by GAT [112], Non-local Neural Network [138], and Star-Transformer [139],
they have managed to capture the global state with fully-connected attention. The
model extends the information boundary with the help of relay nodes, which ag-
gregates global information. GraphStar creates an internal data representation via
information relay, which is trained to:

1. Perform inductive tasks on previously unseen graph data
2. Aggregate both local and long-range information, making the model glob-

ally aware, extracting high-level abstraction typically not represented in in-
dividual node features

3. The relays serve as a hierarchical representation for the graphs and can be
directly used for graph classification tasks.

The model is described in greater detail as it will be the basis of a modified version
used in our experiments. Modifications are presented in section 4.1.

3.3.1 Model Architecture

GraphStar’s architecture is divided into three steps. These steps revolve around
(i) the initializing star nodes, (ii) updating real nodes, and finally (iii) updating
the stars.

The model input is a graph G(A,F), where A ∈ RNb×Nb is an adjacency matrix
and F ∈ RNb×d is a feature matrix, where each node has d features, and Nb
being the number of nodes in the graph. Furthermore, the input to each layer
of the GraphStar model describe the graph with a set of learned features Ht =

(
→
h1,

→
h2, ...,

→
hNb
),
→
ht

i ∈ R
d ′ , where i being the index of the node, and t being the

layer number. Note that the dimensionality of d can change between layers, hence
d ′ denotes a possible change of dimensionality. The initial representation of graph

is a special case where t = 0 and d ′ = d, denoted as F= (
→
f1,
→
f2, ...,

→
fNb
),
→
fi ∈ Rd .

Step 1: Initial Representation of the Star

Let
→
F mean = mean(F0), F ∈ Rd . We have the initial star representation

→
S(0) = σ(
∑

i∈Nb

αini t,iW
ini t
V

→
f i) (3.2)

46

where

αini t,i =
exp(〈Wini t

Q

→
F mean,Wini t

K

→
f i〉)

∑

k∈Nb

exp(〈Wini t
Q

→
F mean,Wini t

K

→
f k〉)

(3.3)

〈
→
a ,
→
b〉 is the dot product of

→
a ,
→
b ,σ is the non-linear activation function and Wini t

Q ,Wini t
K ,Wini t

V
follow the standard Transformer setup [44].

Step 2: Real Node Update

For real node update, the authors use multi-head attention to conduct real node
update [112]. Inspired by R-GCN [136], GraphStar defines three internal types of
relation which control the importance of nodes under a relation in r with attention
coefficients:

1. Node-to-self, or self-loop, controlled by WV0.
2. Node-to-neighborhood controlled by WV1.
3. Node-to-star, or self-star, controlled by WVS .

Adding self-loops, also called renormalization trick [136], have been proven to ef-
fectively shirk the underlying graph spectrum. Node-to-neighborhood corresponds
to the number of relations in the graph, and node-to-star a virtual message-passing
relay.

The node update can be represented by

→
h
(t+1)

i =
NHead

‖
m
σ(
∑

r∈R

∑

j∈N r
i

αm
i jrW

m(t)
rV1

→
h
(t)

j +α
m
is,r=sW

m(t)
VS S t +αm

i0,r=0Wm(t)
V0

→
h

t

i), (3.4)

where ‖ represents the concatenation of all multi-heads, N r
i is the neighbors of

node i under relation r ∈ R. NHead is the number of heads in the multi-head atten-
tion setting. The multi-head outputs are then concatenated as the representation
of t + 1 layer. Here we define

m
∑

=
∑

r∈R

∑

j∈N r
i

exp(〈Wm(t)
Q

→
h
(t)

i ,Wm(t)
rV1

→
h
(t)

k 〉)

+exp(〈Wm(t)
Q

→
h
(t)

i ,Wm(t)
VS S(t)〉)

+exp(〈Wm(t)
Q

→
h
(t)

i ,Wm(t)
V0

→
h
(t)

i 〉),

(3.5)

and the attention coefficients can thus be represented by

Chapter 3: Related Work 47

αm
i jr =

exp(〈Wm(t)
Q

→
h
(t)

i ,Wm(t)
rV1

→
h
(t)

j 〉)
m
∑

, (3.6)

αm
is,r=s =

exp(〈Wm(t)
Q

→
h
(t)

i ,Wm(t)
VS S(t)〉)

m
∑

, (3.7)

αm
i0,r=0 =

exp(〈Wm(t)
Q

→
h
(t)

i ,Wm(t)
V0

→
h
(t)

i 〉)
m
∑

. (3.8)

It should be noted that for all relations, GraphStar adopts a parameter sharing
scheme WK∗ =WV∗.

Step 3: Star Update

After we have the real node representation at layer t + 1, one can update the star
nodes via

S(t+1) =
NHead

‖
m
σ(
∑

j∈Nb

αm
s, jW

m(t)
V

→
h
(t+1)

j +αm
s,sW

m(t)
V S t). (3.9)

We define

m
∑

s

=
∑

k∈Nb

exp(〈Wm
Q S t ,Wm

K

→
h
(t+1)

k 〉) + exp(〈Wm(t)
Q S t ,Wm

K S t〉), (3.10)

and the attention coefficients are thus

αm
s, j =

exp(〈Wm
Q S(t),Wm

K

→
h
(t+1)

j 〉)
m
∑

, (3.11)

αm
s,s =

exp(〈Wm
Q S(t),Wm

K S(t)〉)
m
∑

. (3.12)

Loss Function

The purpose of the training is to find embeddings and shared parameters that
maximize the plausibility of true triples and, at the same time, minimize the plau-
sibility of false triples. As the LP datasets contain only positive triples, these are
often corrupted to generate a set of presumably false triples during run-time. The

48

corrupted triple set, Gcor r , is included in the loss function with the goal of mini-
mizing their score. Gcor r consist of anti-patterns of the true triples, i.e., triples that
do not exist in the training set. The problem then becomes a binary classification
problem where the model uses the loss function, Binary Cross-Entropy, defined as

L= −
1
N

N
∑

i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi)) (3.13)

where N is the number of triples including the corrupted triples, yi is the label
for each triple, and p(yi) is the predicted probability of triple i being true. The
predicted probability is calculated with the help of a scoring function.

Scoring Function

In principle, the model can be adapted to rely on any scoring function, the most
straightforward being DistMult is used. DistMult is known to perform well on
standard link prediction benchmarks when it is used on its own. The drawback is
that it can not model asymmetry, which causes a triple 〈h, r, t〉 to be scored equally
as a triple 〈t, r, h〉. The scoring function is defined as

φ(h, r, t) =
→
hh

T
·Rr ·

→
ht (3.14)

where
→
hi is the embedding of entity i, and Ri being an embedding of relation i.

3.3.2 Limitations

The work of GraphStar mainly addresses many previous limitations, such as GAT’s
inability to model deep-neighborhood representation, which lessened the model’s
capability to understand the context. However, there are still significant limita-
tions to the proposed architecture. The model is based on the special case R = 1,
making it a single-type relation link prediction. The special case implies that it
is not applicable to heterogeneous graphs, i.e., knowledge graphs. Further, Dist-
Mult is utilized as the decoder of the network. As a result, GraphStar is not a fully
expressive model, treating all relations as symmetrical.

Chapter 4

Method

This chapter will introduce the models and frameworks used to conduct the exper-
iments of the thesis. The objective is to present our method clearly and concisely
and to provide enough information so that, together with chapter 5, the results of
our thesis can be replicated.

4.1 mrGraphStar

Among the objectives of this thesis was the implementation and evaluation of an
attention-based Graph Neural Network for link prediction in knowledge graphs.
At the inception of this research, no such architecture had been proposed. Con-
sequently, this implied the extension of one such architecture to incorporate edge
features in its predictions. Through a comprehensive literature review, we iden-
tified a select number of relevant studies corresponding to our inclusion criteria.
The collection of research to base our approach on was based on several factors
such as reported performance, implied difficulties in extending, and the existence
of open-source code for implementation.

This thesis proposes a new link prediction model named mrGraphStar1 (Multi-
relational GraphStar), or simply MrGS. It is based on the architecture of Graph-
Star, explained in section 3.3. Numerous architectural modifications have been
made to the original code base2 to produce our model. These modifications ul-
timately enable the incorporation of vector representation of heterogeneous di-
rected relations in the training and predictions of our model. This is done by in-
troducing a new group of attributes to the data. Additionally we have created a
procedure supporting a reproducible deterministic train, test, and validation split
of the dataset. In essence, whereas GraphStar had only a zero-one relation type
between nodes, i.e., has relation or has no relation, we have introduced a spectrum
of relation types through a combination of label encoding and relation embedding.

1https://github.com/oscarvik/multiRelational-GraphStar
2https://github.com/graph-star-team/graph_star

49

https://github.com/oscarvik/multiRelational-GraphStar
https://github.com/graph-star-team/graph_star

50

Initial node representation

Before sending the adjacency matrix and feature vectors to the model, we em-
bedded the nodes of the graph through node2vec. Each node is given a default
representation (

→
n1,

→
n2, ...,

→
nNb
),
→
ni ∈ Rd , where Nb is the number of nodes and

d is the chosen cardinality of the vector. The now embedded nodes can be in-
dexed using a simple label encoder on the original set of entities to encode the
target labels with a value between 0 and Nb−1. The embedded vector is ordered
into a matrix by the index, creating a node type lookup table. This results in a
matrix F ∈ RNb×d . The new feature matrix must be passed to the model giving
the graph G(F, R, A). The choice of providing an initial embedding is motivated
by the findings that GNN models with default node2vec embeddings outperform
pure node2vec by large margins and that the joint learning often improves the
performance of the GNN model as well [140].

Heterogeneous directed edges

Relations from FB15k and FB15k-237 follow a hierarchical structure, as shown in
Figure 4.1, where the leftmost word is the most generic and the rightmost, the
most precise. For instance, the relation medicine/drug/legalstatus shows the re-
lationship between two entities, being in the domain of medicine, more specific
drugs, and most specifically, the legal status of this drug. Motivated by the find-
ings of [141], we investigate if this hierarchy can be taken advantage of through
word embeddings which embed the meaning of each word to a vector. Their ex-
periments showed that relation embeddings could be utilized to produce better
results for baseline decoders such as DistMult.

Figure 4.1: Hierarchical structure of the relations in Freebase

Our approach to the relation embeddings is as follows. Let r be a relation in R
containing a sequence of words {w1, w2, ..., wk} and Ψ(w) be a mapping func-
tion from the alphabetic domain to the numerical domain, REb , where Eb is the
cardinality of the vector. The embedding Ψ(r) then results in the set of vectors
→
r ∈ Rk×Eb . This group of vectors can then make a composite vector that encapsu-
lates the relationship. The most trivial way to support this is by using the average

Chapter 4: Method 51

of the vectors as the mapping, resulting in the vector
→
r ∈ REb . The now embed-

ded relation can be indexed using a simple label encoder on the original set of
relations to encode the target label with a value between 0 and |R| − 1. The em-
bedded vector is ordered into a matrix by the index, creating an edge type lookup
table. Doing this for all relations R results in a matrix R ∈ RR×Eb . The new relation
matrix must be passed to the model giving the graph G(F, R, A).

Deterministic data split

When introducing heterogeneous graphs, thus multiple relation types for edges,
we also introduce a more complex train, validation, and test split of our dataset.
Whereas the original model had an absence of types, and a stochastic data split,
we introduce the attributes new train_edge_type, val_edge_type, and test_edge_type
which contains indexes of the node feature matrix R. After the train-val-test split,
3 sets of data are needed for each partition

Ft r ∈ RNt r×d , Rt r ∈ RRt r×Eb , At r ∈ RNt r×Nb (4.1)

Fva ∈ RNva×d , Rva ∈ RRva×Eb , Ava ∈ RNva×Nb (4.2)

Fte ∈ RNte×d , Rte ∈ RRte×Eb , Ate ∈ RNte×Nb (4.3)

where Nt r , Nva, Nte are partitions of the total node set, and Rt r , Rva, Rte are
partitions of the total set of relations. From this point on, training set Gt rain will
refer to Equation 4.1, validation set Gval will refer to Equation 4.2, and finally,
testing set Gtest will refer to Equation 4.3.

Loss Function

The loss function is kept from the original model Equation 3.13; however, we
corrected a flaw where positive edges, but not negative edges, were symmetrized.
As a result, each positive edge appeared with two copies, but each negative edge
with only one copy, resulting in a biased performance. The approach chosen in
the modified architecture is to symmetrize the positive edges, conduct corrupted
triple sampling, then remove the newly created symmetric edges as well as half of
the newly created corrupted triples. This process results in the dataset still being
directed, having an equal number of real and corrupted triples, and having no
corruption of randomly created real triples in the corrupted sampling set. The
loss function is now defined as

L= −
1
N

∑

〈h,r,t〉∈Gt rain,cor r

y〈h,r,t〉log(φ(h, r, t))+(1− y〈h,r,t〉)·log(1−φ(h, r, t)) (4.4)

where Gt rain,cor r denotes the set containing triples from both the original and
corrupted training set.

52

4.2 Fake News Detection

In this section, we present our design of a computational-oriented fact-checking
framework for fake news detection. The framework includes the utilization of our
proposed link prediction model mrGraphStar and the implementation of an RDF-
triple extraction framework. An illustration of the suggested fake news detection
framework is presented in Figure 4.2.

4.2.1 The Proposed Framework

Given a corpus of news articles D, each containing a sequence {w1, w2, ..., wk} of
words and a corresponding label y ∈ {0, 1}, where y = 1 indicates that the news
is fake. We construct an RDF-triple corpus DRDF by extracting each statement, or
clause, from the original corpus. The new dataset now consists of a set of triples
〈h, r, t〉 with reference to their corresponding article in D. Each triple consists of a
source entity h which is the subject in a clause, a target entity t which is an object
in a clause, and a predicate r between them.

Given a knowledge graph G(F, R, A), where F ∈ RNb×d is a feature matrix repre-
senting the embeddings of each node, R ∈ REb×r is a feature matrix representing
the embeddings of each relation type, and A ∈ RNb×Nb is an adjacency matrix de-
noting the edges between pairs of nodes. We now train a model M on the task
of link prediction. We adapt the mrGraphStar network, presented in section 4.1,
to embed the nodes of G. For each node, its embedding vector is learned from its
neighbors and their corresponding multi-type relations.

Further, the scoring function φ(h, r, t) is used on the learnt embeddings of model
M to estimate the plausibility of each triple 〈h, r, t〉 ∈ DRDF . Next, to conduct the
classification of the news articles in the original corpus D, the scoring algorithm
assigns a predicted label ŷ ∈ {0, 1} to each triple. A simple strategy for assigning
false labels to documents including at least one false triple is selected.

Figure 4.2: Flow chart of the proposed framework for fake news detection

Chapter 4: Method 53

4.2.2 Triple Extraction

The architecture of our triple extractor is a pipeline that uses raw news articles as
input and produces objects in the form of Freebase RDF triples. The triple extractor
is used to convert the original fake news dataset D into the triple extracted dataset
DRDF . The pipeline consists of an external Stanford CoreNLP server, an algorithm
utilizing NER labels for ranking and labeling, FB15k’s relations as a supporting
database, web-based lookups on several websites to reduce possible coreferences,
a component for mapping Freebase ids to all entities in the Wikidata database,
and finally an algorithm removing redundant triples. The pipeline illustrated in
Figure 4.3 consists of the following components

Text cleaning A component removing symbols and stopwords
from the raw text, improving the performance of
the external extractor.

Stanza CoreNLP A client producing triples by communicating with
a Stanford CoreNLP server.

NER filter A filter removing triples that do not meet certain
criteria.

Relation enhancement A module parsing the sentence and finds the most
likely FB15k relation for the triple.

Google lookup A component checks the search result of the en-
tity when typed into google. If the search pro-
duces an article from a reliable website, the en-
tity is replaced by the string in the article’s title.

Wikidata lookup A module crawls the Wikidata website to find the
Freebase ID of the entities in the triple.

Integrity module An algorithm to verify the integrity of the triples,
as well as removing duplicate triples.

For the task of triple extraction, we apply the Stanford CoreNLP server, which
provides coreference resolution as well as dependency parsing, and lemmatiza-
tion, to disambiguate triples. Stanza has integrated the original Stanford CoreNLP
codebase to a python library, which initializes a Java server. This server then com-
municates with the python code through HTTP requests and ultimately produces
triples.

54

Figure 4.3: Triple extraction pipeline

The triples received from the server can have a varying degree of validity. To af-
firm fair evaluation, only the triples that give useful information from the text, i.e.,
could fit in a knowledge graph, should be considered. To support this, we apply
a filter of semantic cleaning, where triples are assessed with regards to NER label
priority, self-loops, and validity of NER labels. The relation enhancement uses a
matrix of strings to find the most probable relation. The algorithm also computes a
score for the proposed relation and removes triples not passing a threshold score.
The lookup process is used to assure that the entities are atomic, as well as using
the most common version of an entity’s name. At the end of this process, the enti-
ties are sent through a Wikidata lookup function that obtains the entities’ freebase
id.

We assume that duplicates in the dataset are caused by sentences with redun-
dant information found in the text. Therefore, it would not be wrong to keep
these triples since they are real data coincidentally with identical values. How-
ever, we choose to look at the extracted triples as a knowledge graph of the text
and remove duplicate triples as they do not bring any additional information.

Chapter 5

Experiments

In this chapter, we introduce the overarching strategy, rationale, and experimental
setup of our research. Differing from chapter 4, it explains the implementation as-
pects in detail. The experimental setup includes description of tools, datasets, and
hyperparameter selection for the LP model. Additionally, we present the various
evaluation metrics selected for measuring the LP model’s and fake news detection
framework’s performance.

5.1 Tools and libraries

Presented below is a list of the most important Python libraries used for the im-
plementation of our model. We include a brief description of what each library
was used for.

Pandas1 Pandas is an open-source data analysis and manipulation
tool. Pandas is used in a wide variety of fields, including
academia, finance, economics, statistics, analytics, etc.
We have used pandas both in the analysis of the prob-
lem, i.e., visualization and rapid prototyping, as well as
in the model for data loading and data manipulation.

Scikit-learn2 Sklearn is an open-source library for machine learning
via a consistence interface in Python. It is built upon
the SciPy (Scientific Python) language. Sklearn provides
a selection of tools for machine learning and statistical
modeling. This includes tools for classification, regres-
sion, clustering, and dimensionality reduction. We only
utilized Sklearn’s metric methods in our implementation.

1https://pandas.pydata.org/
2https://scikit-learn.org/stable/index.html

55

https://pandas.pydata.org/
https://scikit-learn.org/stable/index.html

56

PyTorch3 Pytorch is an open-source machine learning framework
for Python. This framework provides two main high-level
features; tensor computing with strong GPU acceleration
and the ability to build deep neural networks on tape-
based autograd systems. We used various libraries from
Pytorch ranging from storing data structures to computa-
tional heavy lifting.

Torch Geometric4 Torch Geometric is a geometric deep learning exten-
sion library built on top of PyTorch. It is also seen as
a framework for Graph Neural Networks comes with a
collection of well-implemented GNN models illustrated
in various papers. The main benefit of this library is its
speed, reporting performance several times faster than
the most well-known GNN framework, DGL5. We have
implemented our model using MessagePassing modules
and use several utility libraries from softmax functions to
graph self-loop methods.

Stanza6 The Stanza library is an NLP a collection of tools
for extracting textual content based features in many
languages. Most notably, Stanza provides the Stanford
CoreNLP client, which supports syntactic analysis and en-
tity recognition, making it easy to convert raw text to
machine-interpretable features. We have used the Stan-
ford CoreNLP client in the construction of our triple ex-
tracted dataset.

Gensim7 Gensim is an open-source Python library providing tools
to represent textual documents as semantic vectors. The
library gives access to well known unsupervised embed-
ding algorithms such as word2vec. We have used Gensim
to create initial vector representations for entities and re-
lations.

3https://pytorch.org/
4https://pytorch-geometric.readthedocs.io/en/latest/
5https://www.dgl.ai/
6https://stanfordnlp.github.io/stanza/
7https://radimrehurek.com/gensim/

https://pytorch.org/
https://pytorch-geometric.readthedocs.io/en/latest/
https://www.dgl.ai/
https://stanfordnlp.github.io/stanza/
https://radimrehurek.com/gensim/

Chapter 5: Experiments 57

5.2 Datasets

This section presents the characteristics and motivation behind our selected datasets.

5.2.1 Link Prediction

The datasets used in this implementation are FB15k and FB15k-237. They are se-
lected as they have been used extensively in prior work on LP. To this date, FB15k
is one of the most commonly used benchmarks for LP [11]. This enables easy and
comprehensive comparisons between our model and previous work. FB15k-237
promises a more realistic dataset, where simple observed features model can no
longer substantially outperform latent feature models [142]. The characteristics
of the chosen datasets are described below.

FB15k is a subset of the Freebase database containing roughly 15k entities, 1,345
different relations, yielding about 592k unique triples. The dataset was built by
an open group of volunteers manually creating triples. It follows a schema-based
approach using globally unique ids for entities and relations, where the relations
are grouped hierarchically, e.g., /medicine/medical_treatment/used_to_treat. Pre-
vious work has noted test leakage flaws in FB15k. This is due to the fact that
near-identical and inverse relations from the Gt rain may be included in the Gtest .

FB15k-237 [142], a subset of FB15k, was built to omit the current issue of test
leakage. This issue resulted in simple models based on observable features being
able to reach state-of-the-art performance on FB15k. To build FB15k-237, the au-
thors filtered the set of relations to keep only one of a set of inverse or duplicate
relations, resulting in 237 relations. The training, validation, and testing sets were
then limited to the set triples with these relations. Additionally, they ensured that
none of the entities connected in training set Gt rain were also directly linked in
Gval and Gtest .

Table 5.1: General properties of LP datasets used in our implementation

Dataset FB15k FB15k-237

Entities 14951 14541
Relations 1345 237
Train Triples 483142 272115
Val Triples 50000 17535
Test Triples 59071 20466

Test Leakage Yes No

58

5.2.2 Fake News Detection

The fake news dataset used in this implementation is the FakeNewsNet [143]. This
dataset was constructed as a result of lacking qualities in other well-researched
datasets, such as BuzzFeedNews8, LIAR9, and CREDBANK10. It has been selected
due to having reliable labels annotated by journalists and domain experts with
extensive multi-dimension information from news content, social context, and
spatiotemporal information, enabling a variety of approaches to the fake news
detection task. The dataset has been utilized as the basis for constructing both an
automatically and manually annotated triple extracted version.

FakeNewsNet

FakeNewsNet [143] is a comprehensive dataset containing information from news
articles, social context, and spatiotemporal information. The news articles are
sourced from fact-checking websites such as PolitiFact11 and GossipCop12 and are
labeled as either true or fake by journalists and domain experts. Since we have
a purely content-based approach to fake news detection, we disregard the social
context and spatiotemporal information. A known issue with the FakeNewsNet
dataset is that it is highly imbalanced. Of the documents included, 75% belong to
the " real" class, while only 25% belong to the "fake" class.

Figure 5.1: Textual content word-cloud for fake and real news from FakeNewsNet
[143]

8https://github.com/BuzzFeedNews/2016-10-facebook-fact-check/tree/master/data
9https://www.aclweb.org/anthology/P17-2067/

10http://compsocial.github.io/CREDBANK-data/
11https://www.politifact.com/
12https://www.gossipcop.com/

https://github.com/BuzzFeedNews/2016-10-facebook-fact-check/tree/master/data
https://www.aclweb.org/anthology/P17-2067/
http://compsocial.github.io/CREDBANK-data/
https://www.politifact.com/
https://www.gossipcop.com/

Chapter 5: Experiments 59

Figure 5.1 presents an analysis of the topic distribution in fake and real news
articles between the two sources. We observe from subfigures (a) and (b) that
the fake and real news of the PolitiFact dataset is mostly related to the political
campaign. From subfigures (c) and (d), the GossipCop dataset, we observe that
the articles are mostly related to topics about relationships among celebrities. In
Figure 5.2, one can see that the corpus, as whole, is heavily dominated by Ameri-
can politics. The most salient13 one is Donald Trump, which is followed up by the
2016 presidential election contender Hillary Clinton.

Figure 5.2: Top 25 most salient terms from FakeNewsNet

Triple Extracted FakeNewsNet

We produce both automatic and manually triple extracted versions of a subset of
the FakeNewsNet dataset. This is done due to the time consumption of the triple
extraction pipeline. To deal with the original imbalance issue, we construct triples
from 200 real and 200 fake documents. From here on, the automatically gener-
ated dataset is referred to as FNNAuto, while the manually constructed dataset
FNNManual .

13saliency(term w) = frequency(w) * [sumt p(t|w) ∗ log(p(t|w)/p(t))] for topics t

60

The construction of FNNAuto follows an iterative process, with the following steps:

1. Clean text Component removing symbols not fitting into Latin-114, as well
as removing non-alphanumerical characters.

2. Stanford CoreNLP The CoreNLPClient was configured to extract triples only
if they consume the entire fragment. Thus ensuring that only logically war-
ranted triples are extracted. It was also configured to resolve co-references,
use 8GB of RAM, and time out at 1.5 minutes of run time.

3. NER tag validation By using a blacklist of NER tags that we are not inter-
ested in, such as DATE or PERCENT, we render triples as "invalid" if either
the subject or object is entirely made up of tags in this blacklist.

4. FB15K relation extraction Using the FB15K relations as a source of rela-
tions, we use both the ner tags and the textual value of the subject, relation,
and object to find the closest relation from the source. The relation with
the highest similarity score, and surpassing a threshold, is selected as a new
relation.

5. Google lookup By leveraging the fact that we now mostly have nouns as
subject and object and that the dataset is heavily political, we do a google
search or the textual value to see if we can find a Wikipedia or Ballotpedia
article. If found, we cut the name from the article, and else we keep the
former value.

6. Wikidata lookup In a similar fashion to the previous step, we send requests
to Wikidata and scrape the Freebase id of the entities. If not found this, we
insert a nil value and leave it to manual inspection.

7. Manual inspection To affirm that the dataset is fair and not lacking and
values, we remove data that is wrong and fill in freebase ids (if possible).

Figure 5.3: Content metrics of FakeNewsNet

14https://www.iso.org/standard/28245.html

https://www.iso.org/standard/28245.html

Chapter 5: Experiments 61

Automatic vs Manual Triple Extraction

When inspecting the automatically extracted triples, a pattern emerges. Typically,
a triple extracted contains a person and some organization, in which the relation
between them is either a title or some position. From Figure 5.4, we can see that
roughly 92 percent of the total relation set consists of two relation types, namely
/people/.../employment_tenure/title and /organization/.../leadership/person. This
is an indication that the triple extraction pipeline struggles with more complex re-
lations and only extracts obvious ones. An ideal dataset would have a more even
distribution of relations and relations that could be more useful in a fact-checking
setting.

Figure 5.4: Distribution of relations in FNNAuto

The manually annotated dataset FNNManual aims to contain triples that have a
wide range of entities and relations and a high triple count per document. The
dataset is created from the same source as the automatically extracted dataset
and the motivation that it should be as close to an automatic triple extraction
process as possible. The implication of this is that the raw text of the document
is the only material eligible for entities and relations, i.e., no reading between
the lines. It is also assumed that satirical texts should be interpreted in a literally
sense. Manual co-reference resolution is not bound by the content of the text, e.g.,
GOP can be replaced with The Republican Party. Due to the time constraint of this
thesis, the manually created dataset is significantly smaller than the automatically
extracted dataset. Table 5.2 demonstrates the differences of the two datasets.

62

Table 5.2: General properties of automatically extracted triples vs manual

Dataset FNNAuto FNNManual

Unique Entities 706 114
Unique Relations 9 60
No. Articles 280 20

Real Articles 149 (53.21%) 10 (50%)
Fake Articles 131 (46.79%) 10 (50%)

No. Triples 850 112
From Real Articles 519 (61.06%) 53 (47.32%)
From Fake Articles 331 (38.94%) 59 (52.68%)
Per article 3.04 5.6

The manually annotated dataset has substantially more even distribution of re-
lations types with 36 relations in their top 92 percent, Figure 5.5, whereas the
automatic only had two. The top two relations of the new dataset covers 21 per-
cent of all relations, which is still somewhat high considering each relations should
ideally be present in 3 percent of the triples, however this is a great improvement
on the prior dataset.

Figure 5.5: Distribution of relations in FNNManual

5.2.3 Link Prediction vs Fake News Detection

Due to the nature of this task, different datasets are used in training the link pre-
diction model and in evaluating its performance in fake news detection. FB15k,
chosen as the source of knowledge for our model, was created in 2013 [105]. On
the other hand, FakeNewsNet is from 2018, with most of the articles being from
2016. While there is a good amount of overlapping domain knowledge, there are
obvious limitations with this approach. Hence, we present a brief analysis of the
overlap, or lack thereof, between these datasets. Although most entities extracted
through the triple extraction framework are given a Freebase id, these entities

Chapter 5: Experiments 63

may not be present in FB15k. Entities present in FB15k will from here on be re-
ferred to as in-domain entities, while the entities extracted from FakeNewsNet not
present are referred to as out-of-domain entities.

As shown in Table 5.3, our model has only previously observed 20.52% of the
entities in FNNAuto, and 41.12% of entities in FNNManual . We will continue to
investigate the effect of this discrepancy on the model’s predictive abilities.

Table 5.3: Comparison and overlap of entities in the employed datasets

Dataset Entities

FB15k 14951
FNNAuto 682
FNNManual 107
FB15k ∩ FNNAuto 140
FB15k ∩ FNNManual 44

5.3 Hyperparameter tuning

Hyperparameter tuning is very important in link prediction models [127], and is
often needed for each individual dataset. This section will present the approach
for hyperparameter tuning of the modified model through a grid search on hidden
layer count, number of neurons per layer, learning rate, and number of epochs. The
grid search is somewhat restrained as the model needs to train on a fairly large
dataset, with shared resources on the Idun cluster. This causes the grid search to
be limited in spectrum, and conducted in a greedy manner. The following values
is showing in Table 5.4.

Table 5.4: Spectrum of grid search

Parameter Values

Number of hidden layers [1, 2, 3, 4, 5]
Number of neurons [64, 128, 256, 512, 1024]
Epochs [100, 200, 400, 800]
Learning rate [0.0001, 0.001, 0.01, 0.1]

The grid search is conducted in an iterative fashion, where the first attributes
are the hidden layers and corresponding neurons. The other attributes are set as
default from the original model. The second iteration uses the permutation of
epochs and learning rate, as well as the best optimum hidden size and neurons
combination from the first iteration.

64

Neurons and Layers

As shown in Table 5.4, the model had five different configurations for number of
neurons, and five configurations for number of layers. Hidden layer size dictates
the depth of the GNN, while number of neurons dictate the width. Each play the
part of memorization vs generalization. Aside from the fact that width can cause
overfitting, increasing the width also means longer training time. To find the op-
timum configuration all permutations are trained for 100 epochs, with otherwise
default settings.

Epochs and Learning Rate

Iteration two is done in the same fashion as iteration one, with four different con-
figurations for learning rate, and four epoch checkpoints during training. Learning
rate is a parameter for how much the embeddings should be updated each pass,
and epochs is a parameter for how many passes the training process should do.
The optimum parameters from the previous step is used, otherwise default set-
tings.

5.3.1 Link Prediction Preprocessing

In order to train our LP model on the selected datasets, several preprocessing steps
are required. As both datasets are subsets of Freebase, with the same schema, their
preprocessing steps are nearly identical. The main task is to create vector repre-
sentations for all nodes and relations. This is done by first label encoding the
unique ids of nodes and relations, as well as creating an updated edge-index ma-
trix. This is used to create a Torch Geometric data-object, which is then converted
into a networkx graph. The following step consists of embedding the nodes and
relations of the graph using the node2vec and word2vec algorithm respectively.

Node embedding

All nodes, with triples from Gt rain and Gval where embedded using node2vec,
as described in section 2.6.2. Table 5.5 lists the selected parameters used in the
implementation.

Table 5.5: Parameter selection of node2vec implementation

Parameter Value
Embedding dimension e ∈ R64

Random walk length l = 20
Number of walks r = 50
Return hyper parameter p = 1
In-out parameter q = 1
Context size k = 10

Chapter 5: Experiments 65

Relation embedding

All valid relations present in the FB15k dataset where embedded using the word2vec
algorithm. Each word in the hierarchical structure of a relation is embedded, and
then averaged to create the embedding for the relation as a whole, as described in
section 4.1. We have chosen embedding dimension

→
r ∈ R64 and set the minimum

occurrence of words to 1, meaning we do not ignore any word in the relations.

5.4 Evaluation Metrics

This section presents the metrics used to evaluate the performance of our link
prediction model and fake news detection framework. These metrics are selected
as they provide various valuable insights into the strengths and weaknesses of
the model. Additionally, the state-of-the-art models selected to provide a basis of
comparison all provide these metrics in evaluation.

5.4.1 Link Prediction

Evaluation of the LP model is done by performing head and tail predictions on
all triples in the test set Gtest . The model can be evaluated using multiple differ-
ent metrics, some based on ranking while others on the binary task of deciding
whether there should exist a link or not.

LP classification metrics

During training, LP performance is reported as the combined average of Area Un-
der the ROC Curve and Average Precision scores. These metrics report on the sim-
ple task of determining whether there should be a link between two nodes in the
graph or not. We define the metrics as:

AP Average Precision (AP) summarizes a precision-recall
curve as the weighted mean of precisions achieved at
each threshold, with the increase in recall from the previ-
ous threshold used as the weight. The metric is computed
as

AP =
∑

n

(Rn − Rn−1)Pn

where Pn and Rn are the precision and recall at the nth
threshold.

66

AUC Area under the ROC Curve (AUC) measures the entire
two-dimensional area underneath the entire ROC curve.
The ROC curve plots true positive rate vs. false positive
rate at different classification thresholds. The AUC metric
provides an aggregate measure of performance across all
possible classification thresholds.

Rank Metrics

In rank metrics, for each prediction, we compute how the target entity ranks
against all other entities. The goal is that the actual target entity yields the high-
est score. We differentiate between raw ranks and filtered ranks when considering
rank computations [11]. These types differ in the way they view predictions that
outscore the target entity. This is a consequence of one simple observation; a triple
prediction may have several valid answers. A triple is considered valid as long as
it is observed in G = Gt rain ∪ Gvalid . Given that our model tries to predict the
tail of 〈The Beatles, Member, John Lennon〉, it may associate a higher score to
Paul McCar tne y than John Lennon. The two different scenarios of rank com-
putations are defined as:

Raw scenario In the raw scenario, we regard predicted entities not
equal to the target as mistakes regardless if they are valid
or not. The raw rank rt of the target t in a tail prediction
of triple 〈h, r, t〉 ∈ Gtest is given by

rt = |{e ∈ E {t} : φ(h, r, e)> φ(h, r, t)}|+ 1

Filtered Scenario In the filtered scenario, prediction of valid entities
outscoring the target one are not considered as mistakes.
Thus, they are skipped when computing the rank. The fil-
tered rank rt of the target t in a tail prediction of triple
〈h, r, t〉 ∈ Gtest is given by

rt = |{e ∈ E {t} : φ(h, r, e)> φ(h, r, t)∧ 〈h, r, e〉 /∈ G}|+ 1

We apply the filtered rank scenario in our implementation. To handle a prediction
tie, i.e., when two or more predictions are associated with the same score, we use
the min-policy. In this policy, the target is given the best (lowest) rank among the
entities in the tie. We can use the list of ranks Q obtained from prediction to cal-
culate our model’s standard global metrics. Below, we describe the most common
global rank-based metrics used for LP models.

Chapter 5: Experiments 67

MR Mean Rank (MR) denotes the arithmetic average of the
positions of elements in the list of ranks Q. The metric is
computed as:

MR=
1
|Q|

∑

q∈Q
q

MRR The reciprocal rank is the multiplicative inverse of the ob-
tained ranks. The mean reciprocal rank (MRR) is the aver-
age of the reciprocal ranks in Q. The metric is computed
as:

MRR=
1
|Q|

∑

q∈Q

1
q

Hits@K Hits@K reports the rate of correctly predicted entities in
the top K entries for each instance list. Common values
for K are 1, 3, 5, 10. This metric may exceed Hits@K =
1.0 if the average K-truncated list contains more than one
true entity. The metric is computed as:

Hits@K =
|{q ∈Q : q ≤ K}|

|Q|

5.4.2 Fake News Detection

As we characterize the task of fake news detection as a classification problem,
where the aim is to associate the labels fake or true to a document, we intro-
duce metrics common to the classification task. For any given class ci , we define
four categories of predictions. True positives (tp) is the group of correctly classi-
fied predictions as belonging to class ci . False positives (fp) are the examples that
are wrongly classified as belonging to the class ci . True negatives (tn) are predic-
tions that correctly classified as not belonging to ci . Lastly, false negatives (fn) are
the group of predictions classified as not belonging to the ci when they actually do.

Classification models use a variety of metrics in evaluation, and different metrics
generally give a slightly different insight of the model’s performance. For classifi-
cation of fake news, we have chosen to report on the four most common metrics
in classification tasks; accuracy, precision, recall, and F1 score.

68

Accuracy Accuracy is the fraction of total correct predictions to the
sum of all predictions. This metric is known to be mis-
leading if used with imbalanced datasets. The metric is
computed as:

A(ci) =
t p+ tn

tp+ f p+ tn+ f n

Precision Precision is a measure of the proportion of true positives
against the sum of true positives and predicted false pos-
itives. This metric is considered particularly useful when
the cost of false positives is high. The metric is computed
as:

P(ci) =
t p

tp+ f p

Recall The recall metric, also known as true positive rate, cal-
culates the amount of actual examples in ci our model
predict as being in ci . The metric is computed as:

R(ci) =
t p

tp+ f n

F1 score The Fβ score combines recall and precision into a single
metric. It is commonly used as it provides better metrics
of incorrectly classified classes than the accuracy metric.
The general case of this metric is computed as:

Fβ =
(β2 + 1)× P × R
β2 × P + R

where β controls the balance between precision and re-
call in their impact on the metric. We commonly select
β = 1 yielding the F1 metric. This measure is termed as
a harmonic mean of precision and recall, given by:

F1 =
2× P × R

P + R

Chapter 6

Results

This chapter will present the results gathered from the experiments preformed.
The dataset, experiments and evaluation metrics used are detailed in chapter 5.

6.1 Link Prediction

In Table 6.1, we evaluate mrGraphStar on the test set of FB15k and FB15k-237
and compare the results with other common LP models. If not explicitly cited, the
evaluation metrics are taken from [11]. We provide results using three commonly
used evaluation metrics: MR, MRR, and Hits@K . Plots for training and validation
performance is reported using the combined average of AUC and AP scores.

Table 6.1: Best experimental results on FB15k and FB15k-237 test set

FB15k FB15k− 237

Hits@K Hits@K

MR MRR @1 @10 MR MRR @1 @10

TransE 45 0.628 0.494 0.847 209 0.310 0.217 0.497
TorusE 143 0.746 0.689 0.839 211 0.281 0.196 0.447
CrossE 136 0.702 0.601 0.862 227 0.298 0.212 0.471

DistMult 173 0.784 0.736 0.863 199 0.313 0.224 0.490
ComplEx 34 0.848 0.816 0.905 202 0.349 0.257 0.529
TuckER 39 0.788 0.729 0.889 162 0.352 0.259 0.536

ConvE 51 0.688 0.595 0.849 281 0.305 0.219 0.476
ConvKB 324 0.211 0.114 0.408 309 0.230 0.139 0.415
CapsE 610 0.087 0.019 0.219 405 0.160 0.073 0.356
RSN 51 0.777 0.723 0.870 248 0.280 0.198 0.444
R-GCN [136] * 0.651 0.541 0.825 * 0.248 0.153 0.414

MrGS 245 0.787 0.773 0.811 214 0.345 0.329 0.381

69

70

Graphstar Comparison

Unfortunately, investigating the relationships of the performance of our model
and Graphstar is challenging. This is due to the inherent difference between the
task of predicting zero-one relation types, versus a spectrum of different relation
types through label encoding. We can however present the same metrics as in the
original paper. Table 6.2 shows the combined average AUP and AP scores on Gtest .

Table 6.2: Combined average of AUC and AP scores. C PC denotes the average
performance on the three datasets; Cora, Pubmed, and Citseer [137]

CPC FB15k FB15k-237

GraphStar 0.969

MrGS 0.996 0.997

6.1.1 Hyperparameter tuning

This section will present the results of the hyperparameter tuning presented in
section 5.3. The grid search is split into two sections, before the final settings are
presented.

Number of Neurons and Layers

The performance of all permutations of iteration one on the link prediction task
can be seen in Figure 6.1a and their corresponding runtimes in Figure 6.1b. The
hardware used limits the size of the model to have an upper ceiling of 4 layers
with 1024 neurons each.

(a) Performance of test set in average precision (b) Runtime in hours of training

Figure 6.1: Heatmaps of the performance and runtime by neurons and layers

Chapter 6: Results 71

The performance of the link prediction task should be a good indicator of which
model to choose, however, for fake news detection other metrics play an impor-
tant part. In Table 6.3 the model achieving the best rank metrics has 512 neurons
and 4 layers.

Table 6.3: Metrics of grid search iteration 1.
The best scores are in bold and the second best scores are underlined

Neurons Layers Time (hh:mm:ss) MRR Hits@1 Hits@10

64 1 01:45:16 0.197 0.172 0.238
2 02:17:35 0.274 0.250 0.313
3 02:53:06 0.161 0.130 0.210
4 03:23:48 0.174 0.149 0.214
5 04:02:44 0.172 0.144 0.219

128 1 02:54:46 0.377 0.352 0.416
2 02:48:34 0.343 0.316 0.389
3 05:07:09 0.357 0.334 0.394
4 03:59:00 0.339 0.308 0.393
5 07:08:38 0.395 0.369 0.439

256 1 02:21:47 0.543 0.523 0.576
2 05:26:51 0.366 0.339 0.413
3 04:28:57 0.401 0.374 0.448
4 09:13:13 0.456 0.430 0.501
5 06:55:42 0.401 0.380 0.435

512 1 13:46:18 0.624 0.607 0.651
2 04:02:09 0.554 0.539 0.581
3 08:42:41 0.557 0.544 0.580
4 10:23:08 0.787 0.773 0.811
5 11:07:59 0.522 0.505 0.549

1024 1 05:01:33 0.604 0.589 0.628
2 08:02:24 0.428 0.408 0.464
3 11:37:57 0.326 0.302 0.366
4 14:47:18 0.537 0.522 0.560

72

Epochs and Learning rate

The performance of all permutations of iteration one on the link prediction task
can be seen in Figure 6.2a and their corresponding runtimes in Figure 6.2b. The
upper bound of epochs is set to 800.

(a) Performance of test set in average precision (b) Runtime in hours of training

Figure 6.2: Heatmaps of the performance and runtime by epochs and learning
rate

In Table 6.3 the model achieving the best rank metrics has 0.0001 learning rate
at the 100th epoch mark.

Table 6.4: Metrics of grid search iteration 2

Epochs Learning rate Time (hh:mm:ss) MRR HIT@1 HIT@10

100 0.0001 07:51:39 0.787 0.773 0.811
0.0010 06:19:01 0.771 0.763 0.784
0.0100 08:23:36 0.077 0.037 0.146
0.1000 09:23:13 0.061 0.053 0.077

200 0.0001 17:05:42 0.779 0.760 0.802
0.0010 16:02:29 0.753 0.745 0.767
0.0100 17:49:56 0.085 0.046 0.156
0.1000 15:08:00 0.054 0.045 0.072

400 0.0001 28:59:08 0.725 0.701 0.742
0.0010 25:02:53 0.708 0.699 0.723
0.0100 24:55:50 0.096 0.061 0.161
0.1000 28:05:29 0.126 0.124 0.128

800 0.0001 58:55:44 0.712 0.697 0.728
0.0010 54:14:02 0.691 0.679 0.708
0.0100 59:33:40 0.083 0.051 0.139
0.1000 52:35:49 0.053 0.044 0.068

Chapter 6: Results 73

Model Parameters

The final settings of the best performing model were applied on both link predic-
tion datasets. The number of attention head Nhead = 4, the number of layers is
4, the initial learning rate is 0.0001, and the L2 regularization setting is 0.0005.
The attention coefficient dropout is 0, and the hidden layer dropout rate is 0. The
number of neurons per layer is 512, and finally the number of epochs is set to
100.

6.1.2 Training

In Figure 6.3, Figure 6.4, we report on the optimization and performance learning
curves on both the training set Gt rain and test set Gtest .

(a) Loss during training (b) Average precision during training

Figure 6.3: Train loss and average precision curves over 100 epochs

(a) Loss during testing (b) Average precision during testing

Figure 6.4: Test loss and average precision curves over 100 epochs

74

The calculation of rank metrics is much more computationally costly than LP clas-
sification metrics, therefore we inspected a single run where rank metrcis where
computed every 10 epoch.

Figure 6.5: Rank metrics computed in 10 epoch interval with optimum settings

6.1.3 Loss Function

We also analyze the effect of our proposed way of generating corrupted triples
for models using scoring functions only supporting symmetric triples. Figure 6.6
presents a comparison of the original and newly proposed modification.

Figure 6.6: Effect of corrupted triple generation on LP performance

Chapter 6: Results 75

6.1.4 Preprocessing

To illustrate the result of our preprocessing of nodes, Table 6.5 present the most
similar nodes to a specified node based on their embeddings. We validate the ef-
ficiency of the node-embedding by analyzing cosine similarity.

Table 6.5: node2vec; cosine similarity predictions to: Blood Diamond

Nodes Cosine Similarity

1. Collateral 0.755
2. The Last Samurai 0.728
3. Rules of Engagement 0.690
4. A Simple Plan 0.668
5. J. Edgar 0.664
6. Water for Elephants 0.664
7. Master and Commander: 0.639

The Far Side of the World
8. Road to Perdition 0.629

As with the nodes of the graph, we can validate the efficiency of the relations
embeddings by analyzing relation similarity. Table 6.6 presents one such example
listing embedings most similar to the relation /people/person/ethnici t y .

Table 6.6: Relation cosine similarity predictions to: /people/person/ethnicity

Relations Cosine Similarity

1. /people/person/place_of_birth 0.991
2. /people/person/nationality 0.978
3. /people/person/profession 0.975
4. /people/person/gender 0.967
5. /people/person/spouse_s/../spouse 0.961
6. /people/person/religion 0.958
7. /people/person/places_lived/../location 0.956
8. /people/person/spouse_s/../location_of_ceremony 0.954

Next, we analyze the effect of the preprocessing steps on the link prediction per-
formance. Figure 6.7 presents a comparison of four different configurations; using
only label encoded values, using only node embedding, only relation embedding,
or both embedding approaches.

76

Figure 6.7: Preprocessing effect on LP performance

6.1.5 LP Examples

We use an example from the testing set (Jack Bruce,/music/ar t ist/genre, hard rock)
to inspect our models predictive abilities. We do both head and tail prediction on
this triple, rank the head and tail probabilities, and show the top 10 heads and
tails.

top 10
e∈E

φ(e, music genre, hard rock)

1. Alan Parsons
2. Gregg Allman
3. Roger Waters
4. Jeff Lynne
5. Jack Bruce
6. Steve Howe
7. John Cale
8. Maurice Gibb
9. Steve Hackett
10. Rick Wakeman

top 10
e∈E

φ(Jack Bruce, music genre, e)

1. blues rock
2. experimental rock
3. art rock
4. baroque pop
5. power pop
6. latin pop
7. funk rock
8. jazz fusion
9. heartland rock
10. post-grunge

Table 6.7: Head and tail predictions of the triple (Jack Bruce, /music/artist/genre,
hard rock).

Chapter 6: Results 77

6.2 Fake News Detection

The mrGraphStar model, trained on the FB15k dataset, has been utilized to clas-
sify the veracity of the FakeNewsNet dataset. We present both the results on the
automatically extracted triples from the entire dataset FNNAuto, and the manu-
ally annotated subset FNNManual . The results of our model will be discussed in
section 7.2. The classification performance is measured through various metrics,
such as; accuracy, precision, recall, and F1 score. While we have not utilized the
FakeNewsNet dataset like other algorithms to train the classification model, we
still present a performance comparison to state-of-the-art models. The results of
the compared models are gathered from [118].

Table 6.8: Experimental results on FakeNewsNet

PolitiFact GossipCop

A(ci) P(ci) R(ci) F1 A(ci) P(ci) R(ci) F1

RST 0.607 0.625 0.523 0.569 0.531 0.534 0.492 0.512
LIWC 0.769 0.843 0.794 0.818 0.736 0.756 0.461 0.572
TextCNN 0.653 0.678 0.863 0.760 0.739 0.707 0.477 0.569
HAN 0.837 0.824 0.896 0.860 0.742 0.655 0.689 0.672
dFEND 0.904 0.902 0.956 0.928 0.808 0.729 0.782 0.755

MrGS 0.410 0.443 0.846 0.581 0.471 0.456 0.981 0.623

Due to the lack of quality in triples extracted from FakeNewsNet in FNNAuto, we
also compare the performance on the manually annotated subeset FNNManual .
The results are presented in Table 6.9.

Table 6.9: Comparison of experimental classification results on triple datasets

FNNAuto FNNManual

Accuracy 0.436 0.500
Precision 0.449 0.506
Recall 0.901 1.000
F1 0.599 0.667

In-domain vs out-of-domain entities

We suspect issues to arise due to the lack of overlap in entities extracted from the
fake news dataset and the entities the LP model has been trained on. The effect
of this finding on fake news detection performance is presented in Table 6.10.

78

Table 6.10: Experimental classification results on in-domain vs out-of-domain
entities from FNNManual

In-domain Out-of-domain

Accuracy 0.667 0.385
Precision 0.714 0.385
Recall 0.714 1.000
F1 0.714 0.556

6.2.1 Triple classification

In addition to evaluating the performance of our fake news detection classifier, we
also tested mrGraphStar’s ability to predict whether a triple is true or not. Thus,
a label indicating the veracity of each triple 〈h, r, t〉 ∈ FNNManual was added. The
triple classification performance is reported in Table 6.11.

Table 6.11: Experimental triple classification results

FNNManual

Accuracy 0.505
Precision 0.923
Recall 0.316
F1 0.471

In-domain vs out-of-domain entities

We suspect issues to arise due to the lack of overlap in entities extracted from the
fake news dataset and the entities the LP model has been trained on. The effect
on in-domain vs out-of-domain entities on the model’s ability to predict whether
a triple is true or not is shown in Table 6.12.

Table 6.12: Experimental triple classification results on in-domain vs out-of-
domain entities from FNNManual

In-domain Out-of-domain

Accuracy 0.931 0.182
Precision 0.895 0.333
Recall 1.000 0.059
F1 0.944 0.100

Chapter 7

Discussion

In this chapter we present insight as to what has been learnt in this research.
The chapter will present a discussion of the results presented in chapter 6, with
the aim of reasoning about the lacks and strengths of the presented approach,
explaining the underlying difficulties of the task. Results of the link prediction
model and fake news detection framework are discussed separately in section 7.1
and section 7.2, respectively. Lastly, section 7.3 presents a discussion regarding the
manner in which we conducted the research, including research strategy, choice
of datasets, and technical challenges.

7.1 Link Prediction

Though based on an architecture showing advancements in state-of-the-art per-
formance on many graph-related tasks, mrGraphStar does currently not pose a
threat to the best performing link prediction models. However, with regards to the
LP classification and the rank metrics, our model shows results in close proxim-
ity, and further development might enable mrGraphStar to surpass the compared
models. Referring to Table 6.1, out of the ten most probable entities in a head or
tail prediction, about 81% of the predicted entities are correct. Furthermore, the
correct entity is predicted as most probable in about 77% of the cases. The po-
tential reasoning for these numbers will be further investigated in the following
subsections.

7.1.1 Scoring Function

The strong result of ComplEx and TuckER highlights the contribution of inverse
relation pairs to the performance of solutions on FB15k. We suspect this is due to
the fact that they are the only models to explicitly model asymmetry in relations.
Like most models, mrGraphStar is not fully expressive. This is a consequence of the
utilization of DistMult as its decoder. When comparing to FB15k-237, where in-
verse relation pairs have been removed, we see that the same models still perform
best, but there is a significantly more even distribution. While we only investigate

79

80

latent feature models for LP, it has been shown that observed feature models do
not perform well on this new dataset in contrast to the original FB15k dataset,
explaining the low performance despite the significant drop in relations to model.

A notable difference in our model compared to the others in Table 6.1 is that
the Hits@K metrics are very close. There is a discrepancy of about 10% to 20%
for most models, while only about 4% in mrGraphStar. We suspect that the model
might be scoring triples very close to each other, pushing triples to either end of
the probability space. By inspecting the scores given to the triples, we discover
that many triples are given the same score, thus achieving high Hits@1, but only
barely better performance at Hits@10. With min-policy used to determine ranks
might therefore give an artificially high score on the rank metrics. This might ex-
plain the reason we achieve the leading Hits@1 metric on the FB15k-237 dataset
while simultaneously being second to last in Hits@10.

7.1.2 Loss Function

As LP models work under the Open World Assumption, any unseen triples, even
the ones obtained with corruption, cannot be considered false with certainty. In-
creasing the number of generated corrupted triples per triple in the training set
has shown a positive correlation with LP models’ performance on FB15k [128].
As a result, we balance the benefits of increasing this number with the risk of in-
cluding true triples in the corrupted triples set. Since our dataset includes asym-
metric relations, the construction of corrupted triples could mean that a corrupted
triple can be the same as a true triple, with the head and tail switched. This has
a negative effect on our scoring function, DistMult, as it only supports symmet-
ric relations and will give both triples the same score. To alleviate this problem,
we make the conscious choice of producing an intermittent symmetric dataset.
This dataset reduces the chance of having randomly generated positives in the
corrupted sampling set. Before training, the newly created symmetric edges are
removed. In addition, half of the newly created corrupted triples are removed to
have an equal number of triples in both sets. The results of our proposed gener-
ation of corrupted samples are illustrated in Figure 6.6, showing that the model
benefits from this approach.

The mrGraphStar model uses the same loss function as the original architecture;
Binary Cross-Entropy. Even though this loss function, a version of logistic losses,
has been shown to work best for scoring functions based on tensor decomposi-
tion such as DistMult [128], a downside is that it is based on the binary task of
prediction. This means that the loss function forces the model to predict values
very close to either 0 or 1 and could therefore be one reason our model produces
similar prediction scores for triples. Thus, an interesting comparison would be to
investigate the effect of adopting a rank-sensitive loss function. One such example

Chapter 7: Discussion 81

is the Pairwise Ranking loss, defined as;

L=
∑

〈h,r,t〉∈Gt rain

∑

〈h′,r,t ′〉∈Gcor r
t rain[〈h,r,t〉]

[λ−φ(h, r, t) +φ(h′, r, t ′)]+ (7.1)

where λ is a margin hyperparameter, Gcor r
t rain[〈h, r, t〉] is the set of constructed cor-

rupted triples of 〈h, r, t〉, and [x]+ = max(0, x). Instead of forcing corrupted
triples to be assigned the value 0, this loss just enforces negative samples to have
lesser scores than positive ones. As noted by [144], this, in turn, will better adhere
to the Open World Assumption.

7.1.3 Training

The model hyperparameters were inspected through grid search to find the opti-
mum settings. The lower and upper bounds for each component in the grid search
were selected based on commonly used values and promising values used during
the creation of the model. Deciding on the number of epochs was a little more
complicated as we experienced declining rank metrics, but increasing LP classifi-
cation metrics. We chose to prioritize rank metrics as it reflects the performance of
our task best, thus setting the epochs to 100. This decision is backed by the curves
shown in Figure 6.5, where rank metrics seem to plateau at about 100 epochs.

The shape and dynamics of a learning curve can be used to diagnose our LP
model’s behavior and perhaps suggest the type of configuration changes that may
be made to improve learning, performance, or both. As shown in Figure 6.3 and
Figure 6.4, we achieve higher AP scores on Gtest compared to Gt rain, indicating
our model is generalizing well. This implies that our model would yield accu-
rate estimates on new observations that were not part of the original training
dataset. On the other hand, there are reasons to suspect the model is trained for
too long, which again could lead to the issue of overfitting. This may be supported
by looking at the plot of training loss, which is not stabilizing but continuing to
decrease slightly with experience. The justification for the high choice of epochs,
even though the model is only barely improving on the AP training objective,
comes from, as mentioned above, the finding that rank metric scores continue to
increase.

The runtime displays a somewhat stochastic depiction of the training, both in
time and performance, as shown in Table 6.3. The reasons for this randomness
might be caused by the method used in the corrupted sampling, which creates an
arbitrary set of corrupted triples each time. Another reason might be the runtime
environment as the Idun cluster assigns GPUs of varying type for each job. The
inherent randomness in the model might also contribute to the somewhat unintu-
itive results. Furthermore, the runtime and performance was somewhat stochastic
as the Idun cluster assigns GPUs of varying type for each job. It should therefore

82

have been conducted multiple identical grid searches, where the average of the
values would give a more accurate result.

7.1.4 Preprocessing

The findings of our experiments would seem to demonstrate that the embeddings
produced by node2vec have successfully encapsulated the topological properties
of the graph, as well as the connectivity and attributes of nodes and edges. From
Table 6.5, we observe that the cosine measure of the node embedding of Blood
Diamond is closest to nodes all representing movies. All of the predictions are in
the same movie genre Drama with language English. There are also other simi-
larities such as; two of the top eight predictions where also released by Warner
Bros, Leonardo DiCaprio also stars in two of the predictions, three predictions also
have music by James Newton Howard. The quality of the preproccesing embed-
dings lead us to believe we can attain the benefit of joint learning in GNN models
[140], yielding better results for our LP model. Figure 6.7 clearly demonstrates
this. We observe a significant increase in performance on the models trained with
optimal parameters for 100 epochs.

As the relation embeddings are not updated during the training of the GNN,
we anticipated that providing vector representation encapsulating their seman-
tic meaning would enable the network to better model the topology of the graph
during training. As shown in [141], the hierarchical relation structure of relations,
such as in FB15k, can be utilized to produce better results. Our experiments do,
however, not support this finding. The relation embedding shows little to no effect
and actually seems to result in slightly worse rank metrics.

7.1.5 Concluding Remarks

Our LP model represents a successful implementation of an attention-based GNN
model to conduct link prediction in knowledge graphs. The extension of the Graph-
Star architecture to incorporate edge features in prediction has shown ability to
reach performance in close proximity to that of state-of-the-art models, on both
FB15k and FB15k-237. Examples shown in Table 6.7 seems to reassure the capa-
bilities of the model by providing solid head and tail predictions. However, some
issues remain, and concerns about the inability to model asymmetric relations,
similar prediction scores, and thus the choice of loss function.

7.2 Fake News Detection

As shown in Table 6.8, our framework underperforms compared to state-of-the-
art classification models. While it achieves a high recall, accuracy and precision
scores are low due to the fact of predicting a large number of false positives.
Although the classification results may be discouraging, the results on in-domain

Chapter 7: Discussion 83

triple classification in Table 6.12 indicate promising potential of the framework.
The following subsections will discuss these classification results, as well as the
strengths and weaknesses of the proposed detection framework.

7.2.1 The Proposed Framework

Our approach differs from other fact-checking frameworks in that the knowledge
of the model is solely based on an external source. This is done as we ultimately
want the model’s knowledge to be based on knowledge graphs authored by hu-
mans, making the database have little or no noisy facts. Further, most other ap-
proaches utilize the dataset tested as either the primary or additional training
data. In [123], the model is not tested on actual news corpora but tested exclu-
sively on the LP performance on the knowledge graphs used for training. In [15],
the authors try multiple strategies of training the LP model on a combination of
triple extracted news corpora and an external knowledge graph. Due to the low
quality of state-of-the-art triple extraction frameworks, we decide to avoid this.
As we cannot guarantee the veracity of automatically extracted claims, we do not
want to use this as training data for our model. Additionally, [15] only uses the
titles and the first two sentences of each article to produce the summaries used
for triple extraction. This is a considerable weakness as it overlooks most of the
content of the text, which may contain false claims. Our framework makes a point
out of extracting claims from the entirety of the text.

There are, nevertheless, some issues with our framework and knowledge-based
approaches in general. These approaches only consider the features of knowledge
graphs, omitting global semantic features of news, which also provide critical in-
formation for fake news detection. They exclusively consider features from the
text, ignoring all non-textual content features as well as contextual features. These
approaches only detect false claims revolving around two entities and the relation
between them. This may be an issue, as documents contain many claims involving
the assignment of attributes of an entity, e.g., "The earth is flat" or "Barack Obama
is 4 years old".

Another underlying issue in utilizing an LP model for fake news detection is the
discrepancy between its and a human’s view of semantic similarity. While the dis-
tinction between, e.g., ’Islam’ and ’Protestantism’ is substantial to a reader, our LP
model will assign a relatively high probability to any head representing a person,
and the predicate /people/person/rel i gion.

As a last note on the framework in itself, reducing the rate of false positives can
be done by deciding a higher confidence requirement, or threshold, to call a triple
fake. We have decided not to attempt this strategy, and the reason for it is twofold.
Firstly, this decision will change the fundamental objective of the LP model, which
in itself should be able to decide whether a triple is true or not. Further, due to

84

the strong results of in-domain triple classification, we argue the issue does not
lie with the threshold but rather with the dataset domain.

7.2.2 Domain overlap

One of the main takeaways from analyzing the effect of domain overlap is that our
framework is deficient when the entities or relations extracted do not exist in a
knowledge base. Although we made the conscious choice of including these enti-
ties as input to the model, their embeddings are not updated during the message
passing as they are not connected to the graph. Consequently, triples including
entities not originally a part of the knowledge graph are exceedingly likely to be
predicted as false. As a large number of entities extracted from the fake news
dataset are not present in FB15k, this, in turn, leads to poor classification perfor-
mance.

Throughout the experimental results, we notice a significant increase in perfor-
mance on triples that include in-domain entities. While the fake news classification
performance is still low, we argue this to be a fact of the triples containing the false
information possibly being filtered out. The large discrepancy in triple classifica-
tion performance further supports this intuition. Yielding an F1 score of 0.944 on
in-domain triples indicates that given a more extensive domain overlap, classifi-
cation results would improve significantly. One possible solution to this problem,
suggested in R-GCN, is to adopt an entity encoder in the link prediction model.
Whereas our approach use a single, real-valued vector

→
e i for every node vi ∈ V,

they compute representations through an R-GCN encoder with
→
e i =

→
h
(L)

i . This
could enable our framework to better predict out-of-domain triples.

Further, an issue that remains is the temporal aspect of the model’s knowledge.
For such a system to be successful in real-world applications, one would need to
maintain the knowledge graph and model continuously. As noted in [118], re-
search that attempted to use external sources to fact-check the claims in news
articles may not be able to check newly emerging events.

7.2.3 Triple Extraction

Among the most obvious limitations of our framework is the triple extraction
framework’s inability to reliably model the content of a text. In addition to ex-
tracting only a few of the stated claims of a text, the quality of the ones extracted
is mediocre. As shown in Figure 5.4, one of the issues is that a few select relations
dominate the constructed dataset FNNAuto. The steps of coreference resolution
and entity linking are also lacking, further explaining the reason for the low num-
ber of triples. Moreover, the framework is unable to adequately model negations.
Quotes and irony also represent an issue, where the model disregards these no-
tions and treat every word in the document literally.

Chapter 7: Discussion 85

If given satisfactory performance from the triple extraction framework, there will
still be some underlying issues remaining. Triples extracted from fake documents
may only include true triples. The fake claim in a document may not be extracted,
either because of the lacking performance of state-of-the-art models or simply be-
cause the false information is not in the form of a claim about a relation between
two entities. Lastly, there are issues related to the time consumption of the triple
extraction framework. The extraction process takes about one minute per docu-
ment. While not a big issue when testing in a research setting, this could prove a
problem when applied in a real-world scenario.

7.2.4 Interpretability

Over time, the complexity of applications using ML systems has skyrocketed, shift-
ing the interest from not only the task performance of a system but also the other
essential criteria such as interpretability of a system’s decisions. However, unlike
performance measures such as accuracy, interpretability often cannot be com-
pletely quantified, hence the need for discussion.

Black boxes typically outperform standard approaches for creating interpretable
models, creating a tradeoff between model performance and interpretability. In
our case, the suggested fake news detection framework is capable to justify its
reasoning by pointing out which claims are deemed false. Thus, having the po-
tential of enabling the users of the framework to verify whether that reasoning
is sound or not. In this setting, the link prediction model works as a black box,
while the fake news detection system utilizing it accommodates interpretable pre-
dictions.

Our framework is utilized in a classification setting, so the information of why
documents are deemed false might be hidden to a potential end-user. A poten-
tial solution is to adopt the model in a non-classification setting, highlighting the
claims in a text predicted to be false. This will ultimately create a tool to which
empowers the user to make their own conclusion about the content of the text.

7.2.5 Concluding Remarks

While the efforts of adopting mrGraphStar in a fake news detection framework did
not yield state-of-the-art classification performance, we have identified multiple
reasons explaining why the approach could still bear fruitful results. The proposed
framework is strongly reliant on advancements in state-of-the-art triple extraction
performance. Additionally, while challenging to ensure, the proposed framework
depends heavily on overlapping domains between the knowledge graph and the
tested news articles. We argue that a sufficient domain overlap would lead to
a significant increase in classification performance. Although tested on a small
dataset, we have shown our model’s ability to perform triple prediction, reaching

86

an F1 score of 0.94. Currently, the introduction of out-of-domain entities has led to
the frequent occurrence of false positives. This is unfortunate as we contemplate
that the cost of false positives is high for fake news detection systems. Further, as
interpretability is one of the criteria motivating our research, we also see poten-
tial in using our link prediction model in a non-classification setting. As a final
thought, with all knowledge-based solutions, the trustworthiness and reliability
of the external knowledge remain an issue. One cannot ensure the users of the
framework will trust the information contained in the selected knowledge graph.

7.3 Work Practice

This section will discuss the different aspects surrounding the conduction of our
research. Although most of the choices made have been explained in the previous
sections and chapters, this section will serve as a supplement by further explaining
our thought process and reasons for the final decisions. Additionally, we include
some discussion and ideas around aspects of this research that could have been
done differently.

7.3.1 LP Model

Given the perspective of a fake news detection framework, one could argue that
this thesis has put too much focus on the creation of a novel architecture for link
prediction in heterogeneous graphs. By choosing to utilize a preexisting model,
a significant increase in focus could be put on investigating the potential of our
proposed fake news framework. However, on the grounds that this thesis proceeds
the efforts and findings of our previous work [1], and that other research exists
on similar tasks, we decided the creation and evaluation of an attention-based
GNN model for this purpose would serve as a valuable contribution to the field of
study. In hindsight, we might have underestimated the time and effort required
to ensure our link prediction model achieved satisfactory performance.

7.3.2 Domain and Dataset

There were undoubtedly difficulties in selecting the proper datasets to use in this
research. While we wanted to select datasets accommodating comparison within
the specific tasks, cross-domain performance was also an essential factor. In or-
der to utilize our model for fake news detection, we researched the existence of
preexisting triple extracted datasets, but none were found. As a consequence, we
were forced to include the task of constructing such dataset, introducing a new
significant source of error. Due to the difficulties in extending the link prediction
model, this work was started later than desired. As a result, after investigating the
quality of automatic triple extraction, our manually annotated dataset is signifi-
cantly smaller than we would have liked. A larger manually constructed dataset

Chapter 7: Discussion 87

would have led to more representative results, making it easier to draw conclu-
sions. One weakness that should have been addressed, but was not due to time
constraints, is testing multiple external knowledge graphs. Testing on WN18 or
DBpedia could have yielded interesting results, both on link prediction and fake
news detection performance.

7.3.3 Technical Challenges

We encountered many technical difficulties while conducting the work of this the-
sis. First and foremost, the field of semantic networks, GNNs and link prediction
proved to be a new and challenging domain of research. Lots of time went into
gathering a sufficient overview of these research fields. Another challenge arose
due to the inherent difficulties of adapting a preexisting codebase. While the au-
thors provided some documentation and basic functionality for LP in undirected
single-relation datasets, a lot of changes in the original codebase had to be made.
In addition to functional changes, a multitude of third party dependencies where
outdated, and needed to be updated in order to support our new needs.

Early efforts in utilizing larger knowledge graphs quickly illuminated the issue
of space complexity in LP models. In the current implementation, where we use
full-batch gradient descent, memory requirement grows linearly in the size of the
dataset. This forced us to adopt smaller datasets in the training evaluation of our
model.

Grid searching on a shared cluster with multiple different GPU’s proved to be
a challenge as well. Sometimes the GPU could handle bigger model sizes, and
other times it would just crash. When conducting a grid search across several hy-
perparameter settings, with runtimes up to six days, it became time consuming
to verify which setup was most successful. The grid search had to be restarted
three times, before the setup was changed to run on separate instances, leaving
an unorganized folder of finished runs. Luckily the runs could be formatted and
ordered in python code to give a more readable overview.

Chapter 8

Conclusion

As deliberately designated by the title, the overall topic of this thesis is to lever-
age attention-based GNNs and knowledge graphs to detect fake news. Like several
others before us, we have cast computational-oriented fact-checking as a link pre-
diction task in knowledge graphs. The decision to utilize fact-checking to detect
fake news was motivated by the finding that, even though recent advancements in
detection techniques have been profound, most approaches do not accommodate
interpretability in their predictions. Furthermore, the graph attention network ar-
chitecture was selected as it currently serves as the most cutting-edge approach
for many graph-related tasks. If able to surmount the many barriers present in this
task, automatic fact-checking systems built on external knowledge graphs could
help mitigate the spread of news content having no significant third-party filter-
ing, fact-checking, or editorial judgment.

Throughout this thesis, we have presented the study, creation and implementa-
tion of a novel link prediction model and a framework to automatically extract and
verify claims in order to classify news documents. The proposed process enables
the model to explain its reasoning by highlighting what claims are deemed false.
Users of the framework can therefore verify whether the reasoning is sound or not.
The aim of our thesis has three parts: (i) explore the potential for attention-based
Graph Neural Networks to reach state-of-the-art link prediction performance in
knowledge graphs; (ii) investigate this model’s ability to achieve state-of-the-art
fake news detection performance; and (iii) evaluate the effectiveness of claim ex-
traction in the context of fact-checking.

The remainder of this chapter will present the conclusion and summarization of
contributions in section 8.1. Further, the several compelling venues for further
work will be concluded in section 8.2.

89

90

8.1 Summary of Contributions

After exploring and gaining a considerable amount of both theoretical and practi-
cal knowledge on the domain of fake news, knowledge graphs, and Graph Neural
Networks, it is time to look at the results with regards to the research questions.
This section will attempt to provide short but concise answers, complementing
the findings of this thesis.

RQ1 Can Graph Attention Networks reach state-of-the-art link prediction per-
formance on multi-relational datasets?

We have introduced a successful extension of a Graph Attention Network to con-
duct link prediction in multi-relational knowledge graphs. After a literature review
of relevant studies corresponding to our inclusion criteria, the choice was made
to base our implementation on the architecture GraphStar. Our experiments have
shown the models ability to reach performance in close proximity to that of state-
of-the-art models, on both FB15k and FB15k-237. We argue, utilizing a more suit-
able loss function and decoder, graph attention networks may overtake the cur-
rently best performing link prediction models.

RQ2 Can the link prediction model from RQ1, trained on an external knowl-
edge graph, be used to accurately detect fake news documents?

The link prediction model, used as part of our framework, is currently under-
performing compared to state-of-the-art classification models. Despite achieving
a high recall score, the accuracy and precision scores are low due to predicting a
high number of false positives. Through investigation we have found the main is-
sues to stem from lacking domain overlap between the external knowledge graph
and fake news dataset. Although the classification results may be discouraging, the
results of in-domain triple classification indicate promising potential. By creating
a manually annotated dataset for fake news detection and triple classification,
we have revealed the importance of domain overlap. We argue that a sufficient
domain overlap would lead to a significant increase in document classification
performance. Although tested on a small dataset, have shown our models ability
to perform triple prediction, reaching an F1 score of 0.94.

RQ3 Can the link prediction model from RQ2 be extended by integrating a
claim extraction system for automatic fake news detection?

We have proposed a framework combining an information extraction pipeline,
which uses a textual input to produce triples, and an adaption of a Graph Atten-
tion Network for link prediction in knowledge graphs. Though not extensively
tested, the utilization of several state-of-the-art models in our triple extraction
pipeline displayed an evident inability to reliably model the content of a text.

Chapter 8: Conclusion 91

Both the amount, quality, and variety of triples are severely lacking. In addition,
the pipeline is ineffective due to high time consumption, which may deem the
frameworks using it nonviable in real-world applications. Hence, any system that
plan on both extracting and verifying statements from text depend strongly on
advancements in state-of-the-art triple extraction performance.

8.2 Future Work

We have identified and will now account for several interesting venues for further
work on our proposed solutions. This section will attempt to conclude the findings,
previously discussed in chapter 7, briefly and concisely.

8.2.1 Link Prediction

There are mainly three venues left unexplored in our current implementation, mr-
GraphStar. Firstly, the choice of decoder, or scoring function, makes our model not
fully expressive. This entails that it is incapable of modelling asymmetric relations.
There are many possible solutions, such as implementing the approach described
in ComplEx. This algorithm is able to model asymmetry by utilizing the hermitian
product. This would be a good substitution for the current scoring function, al-
beit introducing the complex plane. Further, the evaluation of a rank-sensitive loss
function could yield interesting results. By omitting the current downside of forc-
ing predictions very close to either 0 or 1, we might alleviate the issue of similar
triple scores and artificially high Hits@1 metrics. Lastly, a particularly interesting
research direction would be to analyze the learned attentional weights to perform
a thorough analysis of the model interpretability.

As a closing remark, there is room for more exploration in the evaluation of our
current implementation. As of now, it has only been tested on a single dataset. By
evaluating the model on several other benchmark datasets, one may discover cur-
rently hidden strengths or weaknesses. Some datasets to consider include; YAGO3-
101, WN182, and WN18RR20.

8.2.2 Fake News Detection

The current state of the art triple extraction systems does not produce triples of
sufficient quality, leading to a "garbage in, garbage out" scenario. We have shown
that the triples extracted also needs to have a acceptable overlap with the exter-
nal knowledge graph, although our framework has only been tested after training
on a single KG. An interesting next step would be to test the performance of the
model on different domains outside of the political spectrum, e.g., society in the

1https://yago-knowledge.org
2https://github.com/villmow/datasets_knowledge_embedding

https://yago-knowledge.org
https://github.com/villmow/datasets_knowledge_embedding

92

Fakeddit dataset3 or health in the CoAID dataset4. Ideally we would also have
liked to test the framework using a link prediction model trained on a more ex-
tensive knowledge graph.

Due to the lack of a dataset containing text and triples we had to manually create
our own. This dataset is small and a more extensive manually annotated dataset
could be of great benefit. Furthermore, the naive approach of classifying docu-
ments as fake when containing at least one false claim might not be the best ap-
proach, testing a more sophisticated scoring algorithm would be of great interest.
Finally, a qualitative analysis of the system in a non-classification setting as a tool
for supporting fact-checkers could give great insight in both the value of such a
system, and the possible limitations it may have.

3https://github.com/entitize/fakeddit
4https://github.com/cuilimeng/CoAID

https://github.com/entitize/fakeddit
https://github.com/cuilimeng/CoAID

Bibliography

[1] O. G. Aspaas and O. C. Vik, “Knowledge Graph Completion through attention-
based GNNs,” 2020.

[2] K. Rodgers and N. Massac, “Misinformation: A threat to the public’s health
and the public health system,” Journal of Public Health Management and
Practice, vol. 26, pp. 294–296, May 2020. DOI: 10.1097/PHH.0000000000001163.

[3] J. Chen, D. Liu, L. Liu, P. Liu, Q. Xu, L. Xia, Y. Ling, D. Huang, S. Song,
D. Zhang, et al., “A pilot study of hydroxychloroquine in treatment of pa-
tients with common coronavirus disease-19 (covid-19),” Journal of Zhe-
jiang University (Medical Science), vol. 49, no. 1, pp. 0–0, 2020.

[4] E. Shearer and A. Mitchell. (2020). “News use across social media plat-
forms in 2020,” [Online]. Available: https://www.journalism.org/
2021/01/12/news-use-across-social-media-platforms-in-2020/
(visited on 04/08/2020).

[5] S. Vosoughi, D. Roy, and S. Aral, “The spread of true and false news on-
line,” Science, vol. 359, no. 6380, pp. 1146–1151, 2018, ISSN: 0036-8075.
DOI: 10.1126/science.aap9559. eprint: https://science.sciencemag.
org/content/359/6380/1146.full.pdf. [Online]. Available: https:
//science.sciencemag.org/content/359/6380/1146.

[6] V. Carrieri, L. Madio, and F. Principe, “Vaccine hesitancy and (fake) news:
Quasi-experimental evidence from italy,” Health Economics, vol. 28, Aug.
2019. DOI: 10.1002/hec.3937.

[7] N. Johnson, N. Velasquez, N. Restrepo, R. Leahy, N. Gabriel, S. Oud, M.
Zheng, P. Manrique, S. Wuchty, and Y. Lupu, “The online competition be-
tween pro- and anti-vaccination views,” Nature, vol. 582, Jun. 2020. DOI:
10.1038/s41586-020-2281-1.

[8] T. S. Ulen, “Democracy and the internet: Cass r. sunstein, republic. com.
princeton, nj. princeton university press. pp. 224. 2001,” 2001.

[9] J. Piacenza. (). “News media credibility rating falls to a new low,” [On-
line]. Available: https://morningconsult.com/2020/04/22/media-
credibility-cable-news-poll/ (visited on 03/21/2021).

93

https://doi.org/10.1097/PHH.0000000000001163
https://www.journalism.org/2021/01/12/news-use-across-social-media-platforms-in-2020/
https://www.journalism.org/2021/01/12/news-use-across-social-media-platforms-in-2020/
https://doi.org/10.1126/science.aap9559
https://science.sciencemag.org/content/359/6380/1146.full.pdf
https://science.sciencemag.org/content/359/6380/1146.full.pdf
https://science.sciencemag.org/content/359/6380/1146
https://science.sciencemag.org/content/359/6380/1146
https://doi.org/10.1002/hec.3937
https://doi.org/10.1038/s41586-020-2281-1
https://morningconsult.com/2020/04/22/media-credibility-cable-news-poll/
https://morningconsult.com/2020/04/22/media-credibility-cable-news-poll/

94

[10] Cisco. (). “Cisco annual internet report (2018–2023),” [Online]. Avail-
able: https://www.cisco.com/c/en/us/solutions/collateral/
executive- perspectives/annual- internet- report/white- paper-
c11-741490.pdf (visited on 11/25/2020).

[11] A. Rossi, D. Barbosa, D. Firmani, A. Matinata, and P. Merialdo, “Knowl-
edge graph embedding for link prediction: A comparative analysis,” ACM
Transactions on Knowledge Discovery from Data (TKDD), vol. 15, no. 2,
pp. 1–49, 2021.

[12] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec,
“Graph convolutional neural networks for web-scale recommender sys-
tems,” in Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery amp; Data Mining, ser. KDD ’18, London, United
Kingdom: Association for Computing Machinery, 2018, pp. 974–983, ISBN:
9781450355520. DOI: 10.1145/3219819.3219890. [Online]. Available:
https://doi.org/10.1145/3219819.3219890.

[13] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning combinato-
rial optimization algorithms over graphs,” in Advances in Neural Informa-
tion Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R.
Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30, Curran Associates,
Inc., 2017, pp. 6348–6358. [Online]. Available: https://proceedings.
neurips.cc/paper/2017/file/d9896106ca98d3d05b8cbdf4fd8b13a1-
Paper.pdf.

[14] Y. Han, S. Karunasekera, and C. Leckie, Graph neural networks with contin-
ual learning for fake news detection from social media, 2020. arXiv: 2007.
03316 [cs.SI].

[15] J. Pan, S. Pavlova, C. Li, N. Li, Y. Li, and J. Liu, “Content based fake news
detection using knowledge graphs: 17th international semantic web con-
ference, monterey, ca, usa, october 8–12, 2018, proceedings, part i,” in.
Jan. 2018, pp. 669–683, ISBN: 978-3-030-00670-9. DOI: 10.1007/978-3-
030-00671-6_39.

[16] A. Bondielli and F. Marcelloni, “A survey on fake news and rumour detec-
tion techniques,” Information Sciences, vol. 497, pp. 38–55, 2019, ISSN:
0020-0255. DOI: https://doi.org/10.1016/j.ins.2019.05.035. [On-
line]. Available: https://www.sciencedirect.com/science/article/
pii/S0020025519304372.

[17] F. Doshi-Velez and B. Kim, “Towards a rigorous science of interpretable
machine learning,” arXiv preprint arXiv:1702.08608, 2017.

[18] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M.
Sun, “Graph neural networks: A review of methods and applications,” AI
Open, vol. 1, pp. 57–81, 2020.

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://doi.org/10.1145/3219819.3219890
https://doi.org/10.1145/3219819.3219890
https://proceedings.neurips.cc/paper/2017/file/d9896106ca98d3d05b8cbdf4fd8b13a1-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/d9896106ca98d3d05b8cbdf4fd8b13a1-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/d9896106ca98d3d05b8cbdf4fd8b13a1-Paper.pdf
https://arxiv.org/abs/2007.03316
https://arxiv.org/abs/2007.03316
https://doi.org/10.1007/978-3-030-00671-6_39
https://doi.org/10.1007/978-3-030-00671-6_39
https://doi.org/https://doi.org/10.1016/j.ins.2019.05.035
https://www.sciencedirect.com/science/article/pii/S0020025519304372
https://www.sciencedirect.com/science/article/pii/S0020025519304372

Bibliography 95

[19] N. Higdon, The Anatomy of Fake News: A Critical News Literacy Education,
1st ed. University of California Press, 2020, ISBN: 9780520347878. [On-
line]. Available: http://www.jstor.org/stable/j.ctv1503gc8.

[20] Misinformation, n. In OED Online, Oxford University Press, Jun. 2020.
[Online]. Available: https://www.oed.com/view/Entry/119699?redirectedFrom=
misinformation (visited on 04/22/2021).

[21] V. L. Rubin, Y. Chen, and N. K. Conroy, “Deception detection for news:
Three types of fakes,” Proceedings of the Association for Information Science
and Technology, vol. 52, no. 1, pp. 1–4, 2015.

[22] J. H. Brunvand, American folklore: An encyclopedia. Routledge, 2006, vol. 1551.

[23] K. Shu, A. Sliva, S. Wang, J. Tang, and H. Liu, “Fake news detection on so-
cial media: A data mining perspective,” ACM SIGKDD explorations newslet-
ter, vol. 19, no. 1, pp. 22–36, 2017.

[24] S. Elkasrawi, A. Dengel, A. Abdelsamad, and S. S. Bukhari, “What you see
is what you get? automatic image verification for online news content,”
in 2016 12th IAPR Workshop on Document Analysis Systems (DAS), IEEE,
2016, pp. 114–119.

[25] G. Verma and B. V. Srinivasan, “A lexical, syntactic, and semantic per-
spective for understanding style in text,” arXiv preprint arXiv:1909.08349,
2019.

[26] S. Vosoughi, M. N. Mohsenvand, and D. Roy, “Rumor gauge: Predicting
the veracity of rumors on twitter,” ACM transactions on knowledge discov-
ery from data (TKDD), vol. 11, no. 4, pp. 1–36, 2017.

[27] E. J. Briscoe, D. S. Appling, and H. Hayes, “Cues to deception in social
media communications,” in 2014 47th Hawaii international conference on
system sciences, IEEE, 2014, pp. 1435–1443.

[28] B. Horne and S. Adali, “This just in: Fake news packs a lot in title, uses
simpler, repetitive content in text body, more similar to satire than real
news,” in Proceedings of the International AAAI Conference on Web and So-
cial Media, vol. 11, 2017.

[29] N. Ruchansky, S. Seo, and Y. Liu, “Csi: A hybrid deep model for fake news
detection,” in Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management, 2017, pp. 797–806.

[30] J. Ma, W. Gao, P. Mitra, S. Kwon, B. J. Jansen, K.-F. Wong, and M. Cha, “De-
tecting rumors from microblogs with recurrent neural networks,” 2016.

[31] J. Ma, W. Gao, and K.-F. Wong, “Detect rumors in microblog posts using
propagation structure via kernel learning,” Association for Computational
Linguistics, 2017.

[32] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

http://www.jstor.org/stable/j.ctv1503gc8
https://www.oed.com/view/Entry/119699?redirectedFrom=misinformation
https://www.oed.com/view/Entry/119699?redirectedFrom=misinformation

96

[33] H. Zhang, Z. Fan, J. Zheng, and Q. Liu, “An improving deception detec-
tion method in computer-mediated communication,” Journal of Networks,
vol. 7, no. 11, p. 1811, 2012.

[34] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and
regression trees. CRC press, 1984.

[35] J. R. Quinlan, C4. 5: programs for machine learning. Elsevier, 2014.

[36] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32,
2001.

[37] L. Zeng, K. Starbird, and E. Spiro, “# unconfirmed: Classifying rumor
stance in crisis-related social media messages,” in Proceedings of the In-
ternational AAAI Conference on Web and Social Media, vol. 10, 2016.

[38] L. R. Rabiner, “A tutorial on hidden markov models and selected appli-
cations in speech recognition,” Proceedings of the IEEE, vol. 77, no. 2,
pp. 257–286, 1989.

[39] S. Dungs, A. Aker, N. Fuhr, and K. Bontcheva, “Can rumour stance alone
predict veracity?” In Proceedings of the 27th International Conference on
Computational Linguistics, 2018, pp. 3360–3370.

[40] N. K. Manaswi, “Rnn and lstm,” in Deep Learning with Applications Using
Python : Chatbots and Face, Object, and Speech Recognition With Tensor-
Flow and Keras. Berkeley, CA: Apress, 2018, pp. 115–126, ISBN: 978-1-
4842-3516-4. DOI: 10.1007/978-1-4842-3516-4_9. [Online]. Available:
https://doi.org/10.1007/978-1-4842-3516-4_9.

[41] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks and
applications in vision,” in Proceedings of 2010 IEEE international sympo-
sium on circuits and systems, IEEE, 2010, pp. 253–256.

[42] A. Jacovi, O. S. Shalom, and Y. Goldberg, “Understanding convolutional
neural networks for text classification,” arXiv preprint arXiv:1809.08037,
2018.

[43] Y.-C. Chen, Z.-Y. Liu, and H.-Y. Kao, “Ikm at semeval-2017 task 8: Con-
volutional neural networks for stance detection and rumor verification,”
in Proceedings of the 11th international workshop on semantic evaluation
(SemEval-2017), 2017, pp. 465–469.

[44] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” arXiv preprint
arXiv:1706.03762, 2017.

[45] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

https://doi.org/10.1007/978-1-4842-3516-4_9
https://doi.org/10.1007/978-1-4842-3516-4_9

Bibliography 97

[46] H. Jwa, D. Oh, K. Park, J. M. Kang, and H. Lim, “Exbake: Automatic
fake news detection model based on bidirectional encoder representa-
tions from transformers (bert),” Applied Sciences, vol. 9, no. 19, p. 4062,
2019.

[47] C. Liu, X. Wu, M. Yu, G. Li, J. Jiang, W. Huang, and X. Lu, “A two-stage
model based on bert for short fake news detection,” in International Con-
ference on Knowledge Science, Engineering and Management, Springer, 2019,
pp. 172–183.

[48] J. Morgan, “The anatomy of income distribution,” The review of economics
and statistics, pp. 270–283, 1962.

[49] K. K. Kumar and G. Geethakumari, “Detecting misinformation in online
social networks using cognitive psychology,” Human-centric Computing
and Information Sciences, vol. 4, no. 1, pp. 1–22, 2014.

[50] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.,” Stanford InfoLab, Tech. Rep., 1999.

[51] F. L. Hitchcock, “The expression of a tensor or a polyadic as a sum of
products,” Journal of Mathematics and Physics, vol. 6, no. 1-4, pp. 164–
189, 1927.

[52] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis,
and C. Faloutsos, “Tensor decomposition for signal processing and ma-
chine learning,” IEEE Transactions on Signal Processing, vol. 65, no. 13,
pp. 3551–3582, 2017.

[53] S. Hosseinimotlagh and E. E. Papalexakis, “Unsupervised content-based
identification of fake news articles with tensor decomposition ensembles,”
in Proceedings of the Workshop on Misinformation and Misbehavior Mining
on the Web (MIS2), 2018.

[54] R. A. Harshman et al., “Foundations of the parafac procedure: Models and
conditions for an" explanatory" multimodal factor analysis,” 1970.

[55] X. Zhou and R. Zafarani, “A survey of fake news: Fundamental theories,
detection methods, and opportunities,” ACM Computing Surveys (CSUR),
vol. 53, no. 5, pp. 1–40, 2020.

[56] A. Motro, “Integrity= validity+ completeness,” ACM Transactions on Database
Systems (TODS), vol. 14, no. 4, pp. 480–502, 1989.

[57] R. Reiter, “On closed world data bases,” in Logic and Data Bases, 1978,
pp. 55–76.

[58] N. L. Biggs, E. K. Lloyd, and R. J. Wilson, Graph theory 1736-1936, En-
glish, London: Clarendon Press; Oxford University Press. X, 239 p. £9.50
(1976). 1976.

98

[59] B. Hopkins and R. J. Wilson, “The truth about königsberg,” The College
Mathematics Journal, vol. 35, no. 3, pp. 198–207, 2004. DOI: 10.1080/
07468342.2004.11922073. eprint: https://doi.org/10.1080/07468342.
2004.11922073. [Online]. Available: https://doi.org/10.1080/07468342.
2004.11922073.

[60] E. Williamson, Lists, Decisions and Graphs. S. Gill Williamson. [Online].
Available: https://books.google.no/books?id=vaXv%5C_yhefG8C.

[61] W. L. Hamilton, “Graph representation learning,” Synthesis Lectures on Ar-
tifical Intelligence and Machine Learning, vol. 14, no. 3, pp. 1–159, 2020.

[62] J. D. Phillips, W. Schwanghart, and T. Heckmann, “Graph theory in the
geosciences,” Earth-Science Reviews, vol. 143, pp. 147–160, 2015, ISSN:
0012-8252. DOI: https://doi.org/10.1016/j.earscirev.2015.02.
002. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0012825215000239.

[63] C. T. Arsene, B. Gabrys, and D. Al-Dabass, “Decision support system for
water distribution systems based on neural networks and graphs theory
for leakage detection,” Expert Systems with Applications, vol. 39, no. 18,
pp. 13 214–13 224, 2012, ISSN: 0957-4174. DOI: https : / / doi . org /
10 . 1016 / j . eswa . 2012 . 05 . 080. [Online]. Available: http : / / www .
sciencedirect.com/science/article/pii/S0957417412007968.

[64] M. Tsubaki, K. Tomii, and J. Sese, “Compound–protein interaction pre-
diction with end-to-end learning of neural networks for graphs and se-
quences,” Bioinformatics, vol. 35, no. 2, pp. 309–318, Jul. 2018, ISSN:
1367-4803. DOI: 10.1093/bioinformatics/bty535. eprint: https://
academic.oup.com/bioinformatics/article-pdf/35/2/309/27497010/
bty535.pdf. [Online]. Available: https://doi.org/10.1093/bioinformatics/
bty535.

[65] R. Anirudh and J. J. Thiagarajan, “Bootstrapping graph convolutional
neural networks for autism spectrum disorder classification,” in ICASSP
2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2019, pp. 3197–3201. DOI: 10.1109/ICASSP.2019.
8683547.

[66] O. Sporns, “From simple graphs to the connectome: Networks in neu-
roimaging,” NeuroImage, vol. 62, no. 2, pp. 881–886, 2012, 20 YEARS OF
fMRI, ISSN: 1053-8119. DOI: https://doi.org/10.1016/j.neuroimage.
2011.08.085. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1053811911010172.

[67] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel,
A. Aspuru-Guzik, and R. P. Adams, “Convolutional networks on graphs
for learning molecular fingerprints,” in Advances in Neural Information
Processing Systems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R.

https://doi.org/10.1080/07468342.2004.11922073
https://doi.org/10.1080/07468342.2004.11922073
https://doi.org/10.1080/07468342.2004.11922073
https://doi.org/10.1080/07468342.2004.11922073
https://doi.org/10.1080/07468342.2004.11922073
https://doi.org/10.1080/07468342.2004.11922073
https://books.google.no/books?id=vaXv%5C_yhefG8C
https://doi.org/https://doi.org/10.1016/j.earscirev.2015.02.002
https://doi.org/https://doi.org/10.1016/j.earscirev.2015.02.002
http://www.sciencedirect.com/science/article/pii/S0012825215000239
http://www.sciencedirect.com/science/article/pii/S0012825215000239
https://doi.org/https://doi.org/10.1016/j.eswa.2012.05.080
https://doi.org/https://doi.org/10.1016/j.eswa.2012.05.080
http://www.sciencedirect.com/science/article/pii/S0957417412007968
http://www.sciencedirect.com/science/article/pii/S0957417412007968
https://doi.org/10.1093/bioinformatics/bty535
https://academic.oup.com/bioinformatics/article-pdf/35/2/309/27497010/bty535.pdf
https://academic.oup.com/bioinformatics/article-pdf/35/2/309/27497010/bty535.pdf
https://academic.oup.com/bioinformatics/article-pdf/35/2/309/27497010/bty535.pdf
https://doi.org/10.1093/bioinformatics/bty535
https://doi.org/10.1093/bioinformatics/bty535
https://doi.org/10.1109/ICASSP.2019.8683547
https://doi.org/10.1109/ICASSP.2019.8683547
https://doi.org/https://doi.org/10.1016/j.neuroimage.2011.08.085
https://doi.org/https://doi.org/10.1016/j.neuroimage.2011.08.085
http://www.sciencedirect.com/science/article/pii/S1053811911010172
http://www.sciencedirect.com/science/article/pii/S1053811911010172

Bibliography 99

Garnett, Eds., vol. 28, Curran Associates, Inc., 2015, pp. 2224–2232. [On-
line]. Available: https://proceedings.neurips.cc/paper/2015/file/
f9be311e65d81a9ad8150a60844bb94c-Paper.pdf.

[68] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattachar-
jee, “Measurement and analysis of online social networks,” ser. IMC ’07,
San Diego, California, USA: Association for Computing Machinery, 2007,
pp. 29–42, ISBN: 9781595939081. DOI: 10.1145/1298306.1298311. [On-
line]. Available: https://doi.org/10.1145/1298306.1298311.

[69] A. Kapoor, X. Ben, L. Liu, B. Perozzi, M. Barnes, M. Blais, and S. O’Banion,
Examining covid-19 forecasting using spatio-temporal graph neural networks,
2020. arXiv: 2007.03113 [cs.LG].

[70] D. Zügner, A. Akbarnejad, and S. Günnemann, “Adversarial attacks on
neural networks for graph data,” ser. KDD ’18, London, United Kingdom:
Association for Computing Machinery, 2018, pp. 2847–2856, ISBN: 9781450355520.
DOI: 10.1145/3219819.3220078. [Online]. Available: https://doi.org/
10.1145/3219819.3220078.

[71] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich, “A review of relational
machine learning for knowledge graphs,” Proceedings of the IEEE, vol. 104,
no. 1, pp. 11–33, 2015.

[72] O. Lassila, R. R. Swick, et al., “Resource description framework (rdf) model
and syntax specification,” 1998.

[73] N. Aggarwal, S. Shekarpour, S. Bhatia, and A. Sheth, “Knowledge graphs:
In theory and practice,” in Conference on Information and Knowledge Man-
agement, vol. 17, 2017.

[74] R. West, E. Gabrilovich, K. Murphy, S. Sun, R. Gupta, and D. Lin, “Knowl-
edge base completion via search-based question answering,” in Proceed-
ings of the 23rd international conference on World wide web, 2014, pp. 515–
526.

[75] H. Cunningham, “Information extraction, automatic,” Encyclopedia of lan-
guage and linguistics,, vol. 3, no. 8, p. 10, 2005.

[76] S. Bird, E. Klein, and E. Loper, Natural Language Processing with Python,
1st. O’Reilly Media, Inc., 2009, ISBN: 0596516495.

[77] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. Hruschka, and T. Mitchell,
“Toward an architecture for never-ending language learning,” in Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol. 24, 2010.

[78] D. Jurafsky and J. H. Martin, Speech and Language Processing: An Introduc-
tion to Natural Language Processing, Computational Linguistics, and Speech
Recognition. Oct. 2019, vol. 3.

[79] G. Zhou and J. Su, “Named entity recognition using an hmm-based chunk
tagger,” in Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics, 2002, pp. 473–480.

https://proceedings.neurips.cc/paper/2015/file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf
https://doi.org/10.1145/1298306.1298311
https://doi.org/10.1145/1298306.1298311
https://arxiv.org/abs/2007.03113
https://doi.org/10.1145/3219819.3220078
https://doi.org/10.1145/3219819.3220078
https://doi.org/10.1145/3219819.3220078

100

[80] F. P. Andrew McCallum Dayne Freitag, “Maximum entropy markov models
for information extraction and segmentation,” 2000. [Online]. Available:
http://www.ai.mit.edu/courses/6.891-nlp/READINGS/maxent.pdf.

[81] A. McCallum and W. Li, “Early results for named entity recognition with
conditional random fields, feature induction and web-enhanced lexicons,”
2003.

[82] K. Y. Zhiheng Huang Wei Xu. (2015). “Bidirectional lstm-crf models for
sequence tagging,” [Online]. Available: https://arxiv.org/pdf/1508.
01991.pdf (visited on 11/15/2020).

[83] S. Wu, K. Fan, and Q. Zhang, “Improving distantly supervised relation
extraction with neural noise converter and conditional optimal selector,”
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01,
pp. 7273–7280, Jul. 2019. DOI: 10.1609/aaai.v33i01.33017273. [On-
line]. Available: https://ojs.aaai.org/index.php/AAAI/article/
view/4713.

[84] A. Smirnova and P. Cudré-Mauroux, “Relation extraction using distant su-
pervision: A survey,” ACM Comput. Surv., vol. 51, no. 5, Nov. 2018, ISSN:
0360-0300. DOI: 10.1145/3241741. [Online]. Available: https://doi.
org/10.1145/3241741.

[85] S. Vashishth, R. Joshi, S. S. Prayaga, C. Bhattacharyya, and P. Talukdar,
Reside: Improving distantly-supervised neural relation extraction using side
information, 2019. arXiv: 1812.04361 [cs.CL].

[86] T. Liu, K. Wang, B. Chang, and Z. Sui, “A soft-label method for noise-
tolerant distantly supervised relation extraction,” in Proceedings of the
2017 Conference on Empirical Methods in Natural Language Processing,
Copenhagen, Denmark: Association for Computational Linguistics, Sep.
2017, pp. 1790–1795. DOI: 10.18653/v1/D17-1189. [Online]. Available:
https://www.aclweb.org/anthology/D17-1189.

[87] D. Sorokin and I. Gurevych, “Context-aware representations for knowl-
edge base relation extraction,” in Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, Copenhagen, Denmark:
Association for Computational Linguistics, Sep. 2017, pp. 1784–1789.
DOI: 10.18653/v1/D17-1188. [Online]. Available: https://www.aclweb.
org/anthology/D17-1188.

[88] Y. Y. Huang and W. Y. Wang, Deep residual learning for weakly-supervised
relation extraction, 2017. arXiv: 1707.08866 [cs.CL].

[89] L. Getoor and A. Machanavajjhala, “Entity resolution: Theory, practice
amp; open challenges,” Proc. VLDB Endow., vol. 5, no. 12, pp. 2018–2019,
Aug. 2012, ISSN: 2150-8097. DOI: 10.14778/2367502.2367564. [Online].
Available: https://doi.org/10.14778/2367502.2367564.

http://www.ai.mit.edu/courses/6.891-nlp/READINGS/maxent.pdf
https://arxiv.org/pdf/1508.01991.pdf
https://arxiv.org/pdf/1508.01991.pdf
https://doi.org/10.1609/aaai.v33i01.33017273
https://ojs.aaai.org/index.php/AAAI/article/view/4713
https://ojs.aaai.org/index.php/AAAI/article/view/4713
https://doi.org/10.1145/3241741
https://doi.org/10.1145/3241741
https://doi.org/10.1145/3241741
https://arxiv.org/abs/1812.04361
https://doi.org/10.18653/v1/D17-1189
https://www.aclweb.org/anthology/D17-1189
https://doi.org/10.18653/v1/D17-1188
https://www.aclweb.org/anthology/D17-1188
https://www.aclweb.org/anthology/D17-1188
https://arxiv.org/abs/1707.08866
https://doi.org/10.14778/2367502.2367564
https://doi.org/10.14778/2367502.2367564

Bibliography 101

[90] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich, “A review of relational
machine learning for knowledge graphs,” Proceedings of the IEEE, vol. 104,
no. 1, pp. 11–33, Jan. 2016, ISSN: 1558-2256. DOI: 10.1109/jproc.2015.
2483592. [Online]. Available: http://dx.doi.org/10.1109/JPROC.
2015.2483592.

[91] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Freebase: A col-
laboratively created graph database for structuring human knowledge,”
in Proceedings of the 2008 ACM SIGMOD International Conference on Man-
agement of Data, ser. SIGMOD ’08, Vancouver, Canada: Association for
Computing Machinery, 2008, pp. 1247–1250, ISBN: 9781605581026. DOI:
10.1145/1376616.1376746. [Online]. Available: https://doi.org/10.
1145/1376616.1376746.

[92] J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum, “Yago2: A spa-
tially and temporally enhanced knowledge base from wikipedia,” Artificial
Intelligence, vol. 194, pp. 28–61, 2013, Artificial Intelligence, Wikipedia
and Semi-Structured Resources, ISSN: 0004-3702. DOI: https://doi.
org/10.1016/j.artint.2012.06.001. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0004370212000719.

[93] Y. Deng, “Generalized evidence theory,” Applied Intelligence, vol. 43, no. 3,
pp. 530–543, 2015.

[94] B. Kang and Y. Deng, “The maximum deng entropy,” IEEE Access, vol. 7,
pp. 120 758–120 765, 2019.

[95] G. Pasi, M. Viviani, and A. Carton, “A multi-criteria decision making ap-
proach based on the choquet integral for assessing the credibility of user-
generated content,” Information Sciences, vol. 503, pp. 574–588, 2019.

[96] M. Viviani and G. Pasi, “A multi-criteria decision making approach for the
assessment of information credibility in social media,” in International
Workshop on Fuzzy Logic and Applications, Springer, 2016, pp. 197–207.

[97] E. Delavenay and K. M. Delavenay, An introduction to machine translation.
Thames and Hudson London, 1960.

[98] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word
representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[99] P. Goyal and E. Ferrara, “Graph embedding techniques, applications, and
performance: A survey,” Knowledge-Based Systems, vol. 151, pp. 78–94,
2018.

[100] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social
representations,” in Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2014, pp. 701–710.

[101] W. W. Zachary, “An information flow model for conflict and fission in small
groups,” Journal of anthropological research, vol. 33, no. 4, pp. 452–473,
1977.

https://doi.org/10.1109/jproc.2015.2483592
https://doi.org/10.1109/jproc.2015.2483592
http://dx.doi.org/10.1109/JPROC.2015.2483592
http://dx.doi.org/10.1109/JPROC.2015.2483592
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/https://doi.org/10.1016/j.artint.2012.06.001
https://doi.org/https://doi.org/10.1016/j.artint.2012.06.001
https://www.sciencedirect.com/science/article/pii/S0004370212000719
https://www.sciencedirect.com/science/article/pii/S0004370212000719

102

[102] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for net-
works,” in Proceedings of the 22nd ACM SIGKDD international conference
on Knowledge discovery and data mining, 2016, pp. 855–864.

[103] K. Miller, M. Jordan, and T. Griffiths, “Nonparametric latent feature mod-
els for link prediction,” Advances in neural information processing systems,
vol. 22, pp. 1276–1284, 2009.

[104] F. Gao, K. Musial, C. Cooper, and S. Tsoka, “Link prediction methods and
their accuracy for different social networks and network metrics,” Scien-
tific programming, vol. 2015, 2015.

[105] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko,
“Translating embeddings for modeling multi-relational data,” in Neural
Information Processing Systems (NIPS), 2013, pp. 1–9.

[106] R. Jenatton, N. Le Roux, A. Bordes, and G. Obozinski, “A latent factor
model for highly multi-relational data,” in Advances in Neural Information
Processing Systems 25 (NIPS 2012), 2012, pp. 3176–3184.

[107] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for so-
cial networks,” Journal of the American society for information science and
technology, vol. 58, no. 7, pp. 1019–1031, 2007.

[108] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[109] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun,
“Graph neural networks: A review of methods and applications,” arXiv
preprint arXiv:1812.08434, 2018.

[110] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural
message passing for quantum chemistry,” arXiv preprint arXiv:1704.01212,
2017.

[111] K. Cho, A. Courville, and Y. Bengio, “Describing multimedia content using
attention-based encoder-decoder networks,” IEEE Transactions on Multi-
media, vol. 17, no. 11, pp. 1875–1886, 2015.

[112] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio,
“Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[113] M. Hardalov, I. Koychev, and P. Nakov, “In search of credible news,” in In-
ternational conference on Artificial intelligence: methodology, systems, and
applications, Springer, 2016, pp. 172–180.

[114] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, “Hierarchical at-
tention networks for document classification,” in Proceedings of the 2016
conference of the North American chapter of the association for computa-
tional linguistics: human language technologies, 2016, pp. 1480–1489.

[115] W. C. Mann and S. A. Thompson, “Rhetorical structure theory: Toward a
functional theory of text organization,” Text, vol. 8, no. 3, pp. 243–281,
1988.

Bibliography 103

[116] J. W. Pennebaker, R. L. Boyd, K. Jordan, and K. Blackburn, “The develop-
ment and psychometric properties of liwc2015,” Tech. Rep., 2015.

[117] Y. Zhang and B. Wallace, “A sensitivity analysis of (and practitioners’
guide to) convolutional neural networks for sentence classification,” arXiv
preprint arXiv:1510.03820, 2015.

[118] K. Shu, L. Cui, S. Wang, D. Lee, and H. Liu, “Defend: Explainable fake
news detection,” in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2019, pp. 395–405.

[119] Z. Jin, J. Cao, Y. Zhang, and J. Luo, “News verification by exploiting con-
flicting social viewpoints in microblogs,” in Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, ser. AAAI’16, Phoenix, Arizona:
AAAI Press, 2016, pp. 2972–2978.

[120] S. Yang, K. Shu, S. Wang, R. Gu, F. Wu, and H. Liu, “Unsupervised fake
news detection on social media: A generative approach,” Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 5644–5651,
Jul. 2019. DOI: 10.1609/aaai.v33i01.33015644. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/4508.

[121] X. Zhou and R. Zafarani, “Network-based fake news detection: A pattern-
driven approach,” CoRR, vol. abs/1906.04210, 2019. arXiv: 1906.04210.
[Online]. Available: http://arxiv.org/abs/1906.04210.

[122] A. Magdy and N. Wanas, “Web-based statistical fact checking of textual
documents,” in Proceedings of the 2nd international workshop on Search
and mining user-generated contents, 2010, pp. 103–110.

[123] B. Shi and T. Weninger, “Fact checking in heterogeneous information net-
works,” in Proceedings of the 25th International Conference Companion on
World Wide Web, 2016, pp. 101–102.

[124] T. Ebisu and R. Ichise, “Toruse: Knowledge graph embedding on a lie
group,” arXiv preprint arXiv:1711.05435, 2017.

[125] W. Zhang, B. Paudel, W. Zhang, A. Bernstein, and H. Chen, “Interaction
embeddings for prediction and explanation in knowledge graphs,” in Pro-
ceedings of the Twelfth ACM International Conference on Web Search and
Data Mining, 2019, pp. 96–104.

[126] B. Yang, W.-t. Yih, X. He, J. Gao, and L. Deng, “Embedding entities and
relations for learning and inference in knowledge bases,” arXiv preprint
arXiv:1412.6575, 2014.

[127] R. Kadlec, O. Bajgar, and J. Kleindienst, “Knowledge base completion:
Baselines strike back,” arXiv preprint arXiv:1705.10744, 2017.

[128] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard, “Complex
embeddings for simple link prediction,” International Conference on Ma-
chine Learning (ICML), 2016.

https://doi.org/10.1609/aaai.v33i01.33015644
https://ojs.aaai.org/index.php/AAAI/article/view/4508
https://arxiv.org/abs/1906.04210
http://arxiv.org/abs/1906.04210

104

[129] I. Balažević, C. Allen, and T. M. Hospedales, “Tucker: Tensor factorization
for knowledge graph completion,” arXiv preprint arXiv:1901.09590, 2019.

[130] D. Q. Nguyen, T. D. Nguyen, D. Q. Nguyen, and D. Phung, “A novel em-
bedding model for knowledge base completion based on convolutional
neural network,” arXiv preprint arXiv:1712.02121, 2017.

[131] T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel, “Convolutional 2d
knowledge graph embeddings,” arXiv preprint arXiv:1707.01476, 2017.

[132] G. Hinton. (2014). “Ama geoffrey hinton,” [Online]. Available: https://
www.reddit.com/r/MachineLearning/comments/2lmo0l/ama_geoffrey_
hinton/clyj4jv/ (visited on 12/02/2010).

[133] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between cap-
sules,” in Advances in neural information processing systems, 2017, pp. 3856–
3866.

[134] T. Vu, T. D. Nguyen, D. Q. Nguyen, D. Phung, et al., “A capsule network-
based embedding model for knowledge graph completion and search per-
sonalization,” in Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), 2019, pp. 2180–2189.

[135] L. Guo, Z. Sun, and W. Hu, “Learning to exploit long-term relational de-
pendencies in knowledge graphs,” arXiv preprint arXiv:1905.04914, 2019.

[136] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov, and M.
Welling, “Modeling relational data with graph convolutional networks,”
in European Semantic Web Conference, Springer, 2018, pp. 593–607.

[137] L. Haonan, S. H. Huang, T. Ye, and G. Xiuyan, “Graph star net for gener-
alized multi-task learning,” arXiv preprint arXiv:1906.12330, 2019.

[138] X. Wang, R. Girshick, A. Gupta, and K. He, Non-local neural networks,
2018. arXiv: 1711.07971 [cs.CV].

[139] Q. Guo, X. Qiu, P. Liu, Y. Shao, X. Xue, and Z. Zhang, Star-transformer,
2019. arXiv: 1902.09113 [cs.CL].

[140] M. Zhang and Y. Chen, “Link prediction based on graph neural networks,”
Advances in Neural Information Processing Systems, vol. 31, pp. 5165–
5175, 2018.

[141] Z. Zhang, F. Zhuang, M. Qu, F. Lin, and Q. He, “Knowledge graph em-
bedding with hierarchical relation structure,” in Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, 2018,
pp. 3198–3207.

[142] K. Toutanova and D. Chen, “Observed versus latent features for knowl-
edge base and text inference,” in Proceedings of the 3rd Workshop on Con-
tinuous Vector Space Models and their Compositionality, 2015, pp. 57–66.

https://www.reddit.com/r/MachineLearning/comments/2lmo0l/ama_geoffrey_hinton/clyj4jv/
https://www.reddit.com/r/MachineLearning/comments/2lmo0l/ama_geoffrey_hinton/clyj4jv/
https://www.reddit.com/r/MachineLearning/comments/2lmo0l/ama_geoffrey_hinton/clyj4jv/
https://arxiv.org/abs/1711.07971
https://arxiv.org/abs/1902.09113

Bibliography 105

[143] K. Shu, D. Mahudeswaran, S. Wang, D. Lee, and H. Liu, “Fakenewsnet:
A data repository with news content, social context, and spatiotemporal
information for studying fake news on social media,” Big Data, vol. 8,
no. 3, pp. 171–188, 2020.

[144] Q. Wang, Z. Mao, B. Wang, and L. Guo, “Knowledge graph embedding: A
survey of approaches and applications,” IEEE Transactions on Knowledge
and Data Engineering, vol. 29, no. 12, pp. 2724–2743, 2017.

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

O
.G

. Aspaas &
 O

.C. Vik
Leveraging G

raph Attention N
etw

orks and Know
ledge G

raphs for Fake N
ew

s D
etection

Odd Gunnar Aspaas & Oscar Carl Vik

Leveraging Graph Attention
Networks and Knowledge Graphs for
Fake News Detection

Casting Fact-Checking as a Link Prediction task

Master’s thesis in Computer Science
Supervisor: Özlem Özgöbek

June 2021

M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Introduction
	Background and motivation
	Problem Outline
	Research Goals and Questions
	Research Contributions
	Thesis Outline

	Theoretical Background
	Fake News
	Fake News Detection
	Feature extraction
	Detection Techniques

	Graph Theory
	Directed Graph
	Multi-Relational Graphs
	Multi-graph
	Network Graph

	Knowledge Graphs
	Triple Extraction
	Named Entity Recognition
	Coreference Resolution
	Relation extraction
	Post extraction

	Distributional Hypothesis
	Word Embedding
	Graph Embedding

	Link Prediction
	Geometric Models
	Tensor Decomposition Models
	Deep Learning Models

	Graph Neural Networks
	Neural Message Passing

	Attention Mechanism
	Attention in graphs

	Related Work
	Fake News Detection
	Detection based on Content Features
	Detection based on Context Features
	Computational-Oriented Fact-Checking

	Link Prediction
	Geometric models
	Tensor Decomposition models
	Deep Learning models

	GraphStar
	Model Architecture
	Limitations

	Method
	mrGraphStar
	Fake News Detection
	The Proposed Framework
	Triple Extraction

	Experiments
	Tools and libraries
	Datasets
	Link Prediction
	Fake News Detection
	Link Prediction vs Fake News Detection

	Hyperparameter tuning
	Link Prediction Preprocessing

	Evaluation Metrics
	Link Prediction
	Fake News Detection

	Results
	Link Prediction
	Hyperparameter tuning
	Training
	Loss Function
	Preprocessing
	LP Examples

	Fake News Detection
	Triple classification

	Discussion
	Link Prediction
	Scoring Function
	Loss Function
	Training
	Preprocessing
	Concluding Remarks

	Fake News Detection
	The Proposed Framework
	Domain overlap
	Triple Extraction
	Interpretability
	Concluding Remarks

	Work Practice
	LP Model
	Domain and Dataset
	Technical Challenges

	Conclusion
	Summary of Contributions
	Future Work
	Link Prediction
	Fake News Detection

	Bibliography

