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Abstract—In this work, we present a spatio-temporal decision
fusion approach aimed at performing quickest detection of faults
within an Oil and Gas subsea production system. Specifically,
a sensor network collectively monitors the state of different
pieces of equipment and reports the collected decisions to a
fusion center. Therein, a spatial aggregation is performed and
a global decision is taken. Such decisions are then aggregated
in time by a post-processing center, which performs quickest
detection of system fault according to a Bayesian criterion which
exploits change-time statistical distributions originated by system
components’ datasheets. The performance of our approach is
analyzed in terms of both detection- and reliability-focused
metrics, with a focus on (fast & inspection-cost-limited) leak
detection in a real-world oil platform located in the Barents Sea.

Index Terms—data fusion, distributed detection, maintenance,
monitoring, reliability, wireless sensor network.

I. INTRODUCTION

THE last decade has seen the growth of Wireless Sensor
Networks (WSNs) and their use in monitoring applica-

tions. In particular, the task of event detection and localization
has received large attention, especially in relation to the
design of barriers for safety-critical systems. WSNs are usually
made of low-cost devices having the task of monitoring the
surrounding environment. In order to lower communication
and processing costs, the sensors are often designed to transmit
binary decisions to a Fusion Center (FC), which has the task to
collect the local decisions and formulate a global decision on
whether the event of interest is occurring. When an adverse
event is detected, the FC produces an alarm so that proper
actions can be taken to mitigate the event’s consequences.

This scenario particularly applies to the process, energy,
and manufacturing industry, where the failure of a piece of
equipment could compromise the safety of the workers and
the environment. Indeed, this may result in high costs as well
as missed revenues due to unplanned shutdowns [1].
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Event detection via WSNs for industrial applications has
been an object of study and many architectures have been
analyzed and proposed, lately with a focus on underwater
environments [2], [3]. One of the vital issues of the industry is
the detection of equipment failures that can lead to dangerous
losses of containment, especially in those environments where
inspections are highly costly.

Various algorithms for detection of non-cooperative targets
via distributed WSNs are presented in [4], where the Gener-
alized Likelihood Ratio Test (GLRT), the Bayesian approach,
and a hybrid GLRT/Bayesian detector are used to approach
the problem. In [5] the sub-optimal Counting Rule (CR) is
extended with an ordering-based where highly-informative
sensors have a higher priority in the transmission to the FC,
showing the same performances as the classical CR with
fewer transmissions. In [6], the CR is applied to the case
of radiation detection, while in [7], [8] the same rule is
employed for subsea oil spill detection. In [9], [10] the work is
extended including a modified version of the Chair-Varshney
Rule incorporating in the design of the WSN the positions and
the failure rates of those items susceptible to failure.

Nevertheless, no approach has been provided that suc-
cessfully incorporates information on the reliability of the
monitored system in the design of the detection algorithm.
Such information is often available and regards critical items
whose failure is to be detected exploiting their emitted signal.
Data such as positions, failure rates, and failure models con-
stitute prior information that can be embodied in a Bayesian
framework.

Accordingly, the main contributions of this work are sum-
marized as follows. We propose a spatio-temporal decision
fusion approach aimed at performing quickest detection of
faults within a critical system. More specifically, a sensor
network collectively monitors the state of different pieces of
equipment and reports their decisions to a FC. Herein, a spatial
aggregation is performed and an optimal per-sample decision
is performed. Such decisions are then aggregated in time by
a Post-Processing Center (PPC), which performs quickest de-
tection of faulty system according to a Bayesian criterion and



exploits change-time statistical distributions driven by system
components’ datasheets. The separation between the FC and
PPC allows for system modularity and implementation of the
two components via appealing edge-cloud architectures [11].
The results of the proposed approach are analyzed focusing
on a real Oil and Gas setup, namely the Goliat FPSO oil
production system. Results, both in terms of (i) detection
and (ii) reliability-focused metrics, highlight the appeal of
the proposed approach and the additional benefit of temporal
aggregation (as opposed to the sole spatial aggregation).

The rest of the manuscript is organized as follows. Sec. II
describes the system model considered, whereas Sec. III
introduces the proposed decision fusion approach for quickest
fault detection. Our approach is then numerically validated on
a real case study in Sec. IV. Finally, Sec. V ends the paper
with some pointers to future directions of research.

Notation – vectors are denoted with bold letters; (·)T ,
and ‖ · ‖ denote transpose and Euclidean norm operators,
respectively; â, E{a}, and E{a|b} denote an estimate of
the random variable a, its expectation, and its conditional
expectation given the random variable b, respectively; Pr(·)
and p(·) denote probability mass functions (pmfs) and prob-
ability density functions (pdfs), while Pr(·|·) and p(·|·) their
corresponding conditional counterparts; N (µ, σ2) denotes a
Gaussian distribution with mean µ and variance σ2; Q(·) is the
complementary cumulative distribution function (ccdf) of the
standard normal distribution; Exp(λ) denotes an exponential
distribution with rate λ; Gamma(α, β) denotes a Gamma
distribution with shape α and rate β; the symbol ∼ means
“distributed as”.

II. SYSTEM MODEL

A. Failure Model

The monitored system consists of m = 1, 2, . . . ,M points,
with mth point located at position hm. These points are items
(pieces of equipment at locations of interest) and their indi-
vidual state at time t is described via the following variable:

Hm(t) =

{
0, mth item in active state at time t
1, mth item in failed state at time t

, (1)

where active means that the item is working the way it
was intended and no action should be taken, whereas failed
means that the item is in a condition requiring maintenance.
Moreover, we define the state variable for the entire system:

H(t) = 1−
M∏
m=1

(1−Hm(t))

=

{
0, system in active state at time t
1, system in failed state at time t

, (2)

meaning that the system is considered in failed state when at
least one of its items is in such state and that the failures are
independent. An item in failed state maintains its condition
until maintenance is performed. While in failed state, the item
generates a signal (any significant change in a measurable
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Fig. 1. Failure model (inspection and maintenance time are neglected).

variable caused by the failed state). Once the signal is detected,
an inspection is performed to assess the condition of the whole
system, and maintenance is eventually performed on all items
in failed state.

The failure of the mth item is modeled as a homogeneous
Poisson process with failure rate λm (see Fig. 1). Let us define
Tm,j as the time spent by the mth item between the (j− 1)th
and the jth failure, then Tm,j ∼ Exp (λm) ∀j ∈ N. In addition,
we define T ∗m,j , Tm,j + εm,j , where εm,j is the time spent
before the failed state is acknowledged by an inspection. At
time t, we can also define τ(t) as the amount of time since
the last inspection. Because of the memoryless property of the
homogeneous Poisson process, maintenance can be seen either
as component repair or substitution. As a consequence of the
failure model we can obtain its failure function:

Fm(t) = Pr(Hm(t) = 1) = 1− e−λmτ(t) . (3)

Next, we can obtain the failure function of the whole system
at a given time t:

F (t) = Pr(H(t) = 1) = 1−
M∏
m=1

(1− Fm(t)) . (4)

Moreover, for sufficiently small λm’s, we can simplify the
model:

F (t) ≈
M∑
m=1

Fm(t) . (5)

Such approximation implies disjoint failures, meaning that at
any time t, at most one item is in failed state and will be
exploited in the design of the detectors.



The exact failure rate of an item λm is typically unknown,
however, estimates (average values and their variances) are
usually available for categories of items. Therefore, the pro-
posed method will treat the failure rate of each item as a
random variable whose realization must be estimated within a
Bayesian framework during the item lifetime.

Finally, as the system monitoring is performed at constant
intervals of length ∆t (except during inspection and mainte-
nance), we generically consider the processing at nth discrete
time, where n = 1 corresponds to the first algorithm instance
since the last inspection.

B. Signal Model

When an item is in failed state, a signal is generated. Such
signal is sensed by K sensors deployed in the environment.
The model of the received signal yk[n] at the kth sensor during
the nth discrete time is the following:

yk[n] =

M∑
m=1

sm,k[n] + wk[n] , (6)

where sm,k[n] and wk[n] ∼ N (0, σ2
w,k) represent the received

signal from the mth item and the Additive White Gaussian
Noise (AWGN), respectively. sm,k[n] and wk[n] are assumed
statistically independent due to the spatial separation of the
sensors. More specifically, sm,k[n] is assumed to have the
following shape:

sm,k[n] =

{
0 if Hm[n] = 0

ξm[n] g(xk,hm) if Hm[n] = 1
, (7)

where ξm[n] ∼ N (0, σ2
ξ,m) represents the emitted signal by

the mth item in failed state at a reference length (`ref). The
values of σ2

ξ,m and σ2
w,k are assumed to be known. Finally,

g(xk,hm) represents the Amplitude Attenuation Function
(AAF), depending on the distance between the kth sensor
position (xk) and the mth item position (hm).

It is worth noticing that the considered model can be
reduced to a binary hypothesis as a consequence of the sim-
plification introduced in Eq. (5) which excludes the possibility
of more than one item to be in failed state at a given moment.
Accordingly, it holds:{

H[n] = 0 : yk[n] = wk[n]

H[n] = 1 : yk[n] = ξm[n] g(xk,hm) + wk[n]
. (8)

Consequently, we can write the statistics of the signal:yk|H = 0 ∼ N
(

0, σ2
w,k

)
yk|H = 1 ∼ N

(
0, σ2

ξ,m g
2(xk,hm) + σ2

w,k

) . (9)

In both Eqs. (8) and (9), only the failure of the generic mth
item can be the cause of the system being in failed state.
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Fig. 2. Distributed Wireless Sensor Network.

C. Wireless Sensor Network Model

The proposed distributed WSN architecture (see Fig. 2)
is made of K sensors, one FC, and a PPC. The sensors
sense the environment at fixed time intervals of length ∆t
to detect whether the system is in active (H[n] = 0) or failed
(H[n] = 1) state1. The kth sensor measures the signal yk[n]
and individually computes a (time-dependent) decision statistic
Λk,n(yk[n]), which is then compared to a threshold γk[n]. The
sensor takes a local decision dk[n] = i ∈ {0, 1} if H[n] = i
is declared.

The vector of local decisions d[n] =
[
d1[n] · · · dK [n]

]T
is collected and processed at the FC for a global decision
D[n] = i ∈ {0, 1} if H[n] = i is declared. In addition to being
spectrally efficient, as only 1-bit communication is required on
the reporting channel between the sensor and the FC, such a
system is highly energy-efficient when On-Off Keying (OOK)
is employed for communicating the local decisions.

Both sensors and the FC perform a Maximum Likelihood
(ML) Detection on the simplified binary hypothesis of Eq. (8),
assuming no prior knowledge on the probability of the events
H[n] = 0 and H[n] = 1, and considering every measurement
statistically independent.

The PPC collects D[1], . . . ,D[n] and integrates the knowl-
edge of the failure model accounting for the signal model
of Eq. (6) and (7), and takes a final decision Ĥ[n] through
a Maximum A-Posteriori (MAP) Detection, with Ĥ[n] = 1
triggering inspection operations. The PPC has also the task to
continuously communicate to the sensors an updated value of
their respective γk and a list of parameters necessary for the
FC to perform the global detection task. Moreover, at each
confirmed failure of the mth item, the PPC will generate a
new estimate of λm for all m = 1, . . . ,M .

III. PROPOSED RELIABILITY-BASED FUSION APPROACH

This section describes the three functional blocks constitut-
ing the proposed approach. Specifically, Sec. III-A provides
details for the local detection approach at each sensor, while
Sec. III-B describes the fusion rule implemented at the FC,

1The analysis related to the sampling frequency is not considered in the
present work.



implementing spatial processing. Finally, Sec. III-C describes
the (a) temporal integration of FC decisions and (b) online
item failure rate estimation made by the PPC.

A. Local Detection

At local and sample level, the optimal test is a Likelihood
Ratio Test (LRT) associated with the binary hypothesis of
Eq. (8) and based on yk[n], where the position of the failed
item is marginalized by using its prior distribution. Specifi-
cally, for kth sensor at time n, it holds:

Λk,n(yk[n]) =
p(yk[n] |H[n] = 1)

p(yk[n] |H[n] = 0)
(10)

=

M∑
m=1

p(yk[n]|Hm[n] = 1) Pr(Hm[n] = 1 |H[n] = 1)

p(yk[n] |H[n] = 0)
,

where Pr(Hm[n] = 1|H[n] = 1) is estimated exploiting the
approximation in Eq. (5). Such estimate is denoted as ϕm[n]:

ϕm[n] , Pr(Hm[n] = 1|H[n] = 1)

=
Pr(Hm[n] = 1)

Pr(H[n] = 1)
≈ 1− e−λ̂m[n]τ [n]

M −
M∑
m=1

e−λ̂m[n]τ [n]

, (11)

where λ̂m[n] denotes the latest available estimate of λm at
the nth instant. Therefore, exploiting Eq. (9), we obtain the
following ML Detector:

Λk,n(yk[n]) =

M∑
m=1

(
ϕm[n] am,k e

bm,k y
2
k[n]
) dk[n]=1

≷
dk[n]=0

1 , (12)

where

am,k =

√
σ2
w,k

σ2
ξ,m g

2(xk,hm) + σ2
w,k

, (13)

bm,k =
1

2

(
1

σ2
w,k

− 1

σ2
ξ,m g

2(xk,hm) + σ2
w,k

)
. (14)

Since Λk,n(yk[n]) in Eq. (12) is monotonically increasing in
the variable y2

k[n], there exists a unique value γk[n] such that:

Λk,n

(√
γk[n]

)
= 1 . (15)

As a consequence, by the Karlin-Rubin Theorem, the test
in Eq. (12) can be substituted with the following equivalent
energy test [12]:

y2
k[n]

dk[n]=1

≷
dk[n]=0

γk[n] . (16)

The task of numerically finding the value of γk[n] that
satisfies Eq. (15) is carried out by the PPC that continuously
communicates the value of γk[n] to the sensors.

For the kth sensor, the probability of detection (PD,k,m[n])
when the mth item is in failed state and probability of false
alarm (PF,k[n]) with respect to the energy test in Eq. (16),

at the nth instant, can be easily found as a consequence of
Eq. (9) and are the following [13]:

PD,k,m[n] , Pr(dk[n] = 1|Hm[n] = 1) (17)

= 2Q

(√
γk[n]

/ [
σ2
ξ,m g

2(xk,hm) + σ2
w,k

])
,

PF,k[n] , Pr(dk[n] = 1|H[n] = 0) (18)

= 2Q
(√

γk[n] / σ2
w,k

)
.

B. Fusion Center Detection

The FC, at the nth instant, receives d[n] and, similarly to
all sensors, performs a ML Detection as a consequence of the
LRT based on Eqs. (8) and (9) [4]:

ΛFC

n (d[n]) =
Pr(d[n] |H[n] = 1)

Pr(d[n] |H[n] = 0)

=
M∑
m=1

{
ϕm[n]

K∏
k=1

[(
PD,k,m[n]

PF,k[n]

)dk[n]

×

(
1− PD,k,m[n]

1− PF,k[n]

)1−dk[n]
]}

D[n]=1

≷
D[n]=0

1 , (19)

where the values of ϕm[n], PD,k,m[n]’s, and PF,k[n]’s are
transmitted to the FC by the PPC.

Also for the FC it is possible to obtain the (FC) probability
of detection (QD,m[n]) when the mth item is in failed state
and the probability of false alarm (QF [n]) at the nth instant:

QD,m[n] , Pr(D[n] = 1|Hm[n] = 1) (20)

=
∑

d :ΛFC
n (d)≥1

{
K∏
k=1

[
PD,k,m[n]dk (1− PD,k,m[n])

1−dk
]}

,

QF [n] , Pr(D[n] = 1|H[n] = 0) (21)

=
∑

d: ΛFC
n (d)≥1

{
K∏
k=1

[
PF,k[n]dk (1− PF,k[n])

1−dk
]}

.

C. Post-Processing Center Elaboration

1) Post-Processing Detection: The PPC has the main task
of collecting D[n] and establishing whether an alarm should
be raised. Unlike the local and global detection, the PPC
integrates the knowledge of the failure model. Moreover, it
takes advantage of all the values of D[j] where j = 1, . . . , n
(with j = 1 is the first algorithm instance after the last
inspection) to implement an effective quickest fault detec-
tion approach. For compactness, we define the (accumulated)
vector D[n] ,

[
D[1] · · · D[n]

]T
. In this case, the PPC

performs a test equivalent to the following MAP Detector:

ΛPPC

n (D[n]) ,
Pr(D[n]|H[n] = 1)

Pr(D[n]|H[n] = 0)

Ĥ[n]=1

≷
Ĥ[n]=0

Pr(H[n] = 0)

Pr(H[n] = 1)
,

(22)



which is equivalent to the following test:

R[n] ,Pr(H[n] = 1|D[n]) =

M∑
m=1

Pr(Hm[n] = 1|D[n])

=

M∑
m=1

Rm[n]
Ĥ[n]=1

≷
Ĥ[n]=0

1

2
, (23)

where we exploited Eq. (5). By looking at the test in Eq. (23),
it can be recognized that our approach is optimal from a
Bayesian viewpoint (i.e. assuming the change point is a
random variable, whose pdf originates from the reliability as-
sumptions made in Sec. II-A) and corresponds to the Shiryaev
decision statistic [14] with a threshold (1/2) ensuring the
minimization of a uniform Bayesian risk.

In the following, we detail how the expression of Rm[n]
(for each m) can be updated in a recursive form based on the
previous value Rm[n− 1]. First, capitalizing Bayes’ Theorem
and the conditional (i.e. given Hm[n] = 1) independence of
FC decisions’ D[1], . . . ,D[n] in time, we obtain Eq. (27) for
the mth item at the bottom of the page.

The latter expression depends on (i) the FC decision like-
lihood at time n (Pr(D[n]|Hm[n] = 1)) and (ii) the one-
step prediction of the mth fault probability (Pr(Hm[n] =
1|D[n− 1])). The former likelihood is obtained as follows:

Pr(D[n] |Hm[n] = 1) =QD,m[n]D[n] (1−QD,m[n])
(1−D[n])

(24)

Pr(D[n] |Hm[n] = 0) =QF [n]D[n] (1−QF [n])
(1−D[n])

(25)

Conversely, the term Pr(Hm[n] = 1|D[n−1]) can be rewritten
as Eq. (28) at the bottom of the page. Such expression is
obtained leveraging: (i) the independence of Hm[n] from
D[n−1] given Hm[n−1], and (ii) the inability of an item to
self-repair (i.e. Pr(Hm[n] = 1|Hm[n− 1] = 1) = 1). Further-
more, in Eq. (28) the term Pr(Hm[n] = 1|Hm[n − 1] = 0)
can be estimated explicitly using Eq. (3):

Pr(Hm[n] = 1|Hm[n− 1] = 0) = 1− e−λ̂m[n]∆t . (26)

Combining the previous results, we obtain Eq. (29) at the
bottom of the page as the final expression for Rm[n]. Eq. (29)
has been obtained in sequential form so that the PPC, at the nth
instant, needs to store only the M values of Rm[n−1] and the

value of D[n], instead of the n values present in D[n]. Eq. (29)
requires initialization: still, it can be easily demonstrated that
Rm[0] = 0.

2) Failure Rate Estimation: The exact failure rate of the
generic mth item is unknown, however, literature can often
provide an unbiased estimate (λm,0), as well as the corre-
sponding variance (νm). However, literature data is typically
obtained with a finite number of experiments on items that
are not necessarily equal to those present in the system (or in
the same operating conditions). Therefore, each λm is treated
herein by the PPC as a random variable.

In detail, when an alarm is raised by the PPC, the system
is shut down and an inspection is carried out to verify the
condition of the system. If the mth item’s ith failure is
acknowledged, it is possible to compute an updated estimate
of λm using Tm,i. As Tm,i is not directly available, the as-
sumption here is that Tm,j ≈ T ∗m,j , which holds if εm,j � λm
for all j = 1, . . . , i (i.e. the expected item lifetime is much
higher than the delay accumulated by the system to detect the
fault). By defining the vector Tm[i] ,

[
Tm,1 · · · Tm,i

]T
,

the PPC computes the following Minimum Mean Square Error
Estimator (MMSE) for the mth item:

λ̂m,i = E{λm|Tm[i]} . (30)

In order to evaluate such expectation, the PPC needs to com-
pute the (posterior) pdf of λm |Tm[i]. Since Tm,j ∼ Exp(λm)
for all j = 1, . . . , i, we embody the prior knowledge about
the mth item lifetime via λm ∼ Gamma(αm,0, βm,0), where
αm,0 , (λ2

m,0 / νm) and βm,0 , (λm.0 / νm) are obtained
based on the available literature values. Our choice leverages
the Gamma pdf since it is known to be the conjugate prior of
the Exponential pdf [15]. Capitalizing the advantages of using
a conjugate prior, it is not difficult to show that λm |Tm[i] ∼
Gamma(αm,i, βm,i), where the Gamma parameters can be
computed recursively by the PPC as αm,i = (αm,i−1 + 1)
and βm,i = (βm,i−1 + Tm,i), respectively.

Once the (Gamma) posterior pdf of λm |Tm[i] is calculated,
the corresponding MMSE estimator after ith failure is obtained
by exploiting standard properties of Gamma distribution:

λ̂m,i = αm,i / βm,i (31)

Clearly, at generic time n, the latest available estimate of λm
is obtained as λ̂m,Sm → λ̂m[n], assuming Sm failures for mth
item have been reported up to time (n− 1).

Rm[n] =
Pr(D[n]|Hm[n] = 1) Pr(Hm[n] = 1|D[n− 1])

Pr(D[n]|Hm[n] = 1) Pr(Hm[n] = 1|D[n− 1]) + Pr(D[n]|Hm[n] = 0) [1− Pr(Hm[n] = 1|D[n− 1])]
(27)

Pr(Hm[n] = 1|D[n− 1]) = Rm[n− 1] + Pr(Hm[n] = 1|Hm[n− 1] = 0)(1−Rm[n− 1]) (28)

Rm[n] =
Pr(D[n]|Hm[n] = 1)

[
1− e−λ̂m[n]∆t(1−Rm[n− 1])

]
Pr(D[n]|Hm[n] = 1)

[
1− e−λ̂m[n]∆t(1−Rm[n− 1])

]
+ Pr(D[n]|Hm[n] = 0)

[
e−λ̂m[n]∆t(1−Rm[n− 1])

]
(29)



3) Parameters Calculation and Communication: At the
beginning of a next (n+ 1) step, the PPC updates (if needed)
the estimates of the failure rates of the appropriate items to
obtain λ̂m[n+1], and then calculates the values of ϕm[n+1]’s
via Eq. (11). Next, it computes and transmits the values of
γk[n + 1]’s to the respective sensors to be used for the next
energy test (see Eq. (16)). This consists of finding the γk[n+1]
that solves Eq. (15) for the (n+ 1)th instant for all sensors:

M∑
m=1

(
ϕm[n+ 1] am,k e

bm,k γk[n+1]
)

= 1 . (32)

The left-hand side of Eq. (32) is a smooth, convex, and increas-
ing function in the variable γk[n+1], therefore convergence is
guaranteed from any starting point γk[n+ 1](0) when solving
it using the Newton-Raphson method [16]:

γk[n+ 1](q+1) (33)

= γk[n+ 1](q) −

M∑
m=1

(
ϕm[n+ 1] am,k e

bm,k γk[n+1](q)
)
− 1

M∑
m=1

(
ϕm[n+ 1] am,k bm,k ebm,k γk[n+1](q)

) ,
where q denotes the iteration index.

Once obtained the thresholds, the PPC computes the values
of PD,k,m[n + 1]’s and PF,k[n + 1]’s via Eqs. (17) and (18)
and transmits them to the FC together with the values of
ϕm[n + 1]’s. This allows the FC to evaluate ΛFC

n+1(d[n + 1])
via Eq. (19). As a last step, the PPC computes the values
of QD,m[n + 1]’s and QF [n + 1] via Eqs. (20) and (21)
to be used by the PPC itself in the (recursive) computa-
tion of ΛPPC

n+1(D[n + 1]) via Eqs. (24) and (25). Note that
Eqs. (20) and (21) can be calculated exactly with a finite
number of operations since the number of possible outcomes
of ΛFC

n (d) is 2K .

IV. CASE STUDY – GOLIAT FPSO

The Goliat FPSO is an oil production platform located in
the Barents Sea. Such platform relies on a Subsea Production
System made of eight templates installed on the seabed2. As
a consequence, oil leaks happen in deep waters making the
detection even more challenging. Moreover, because of the
high depths, the inspections must be performed by remotely
operated vehicles with high costs making the reduction of
false alarms of great importance [18]. On the other hand,
strict environmental regulations are enforced on companies
operating offshore, asking for quick detection of the spills
[19]. A characteristic of oil leaks is their related acoustic
signal that can be sensed via passive acoustic sensors [20],
[21]. Therefore, each template has its manifold monitored by
K = 3 passive acoustic sensors measuring the sound pressure
as part of the leak detection system [22], [23]. An analysis
recognized M = 20 critical items assumed to be at the same
height as the sensors, as shown in Fig. 3. The previously
described algorithm is assumed to be implemented over the

2For further details on subsea production systems, please see [17].

TABLE I
PARAMETERS USED FOR THE SIMULATION

Parameter Value Note / Reference

Ref. Frequency 2.5 kHz [27]
Temperature 3.8 °C [28]

Salinity 35 ‰ [28]
Depth 350 m [22]

pH 8 [29]
ksc 1.5 [30]
`ref 1 m –

Simulated time 15 yr [31]
∆t 15 min –

SNRm,k 10/15/20/25 dB ∀m, k

1 2

3
5 m

Fig. 3. Goliat’s subsea template: the gray elements are the structure, the blue
lines are the manifold, the green dots are the passive acoustic sensors, the red
dots are the valves, and the orange dots are the connectors.

system in place to verify the performance. The AAF used for
this case study is the following:

g(xk,θ) =

√(
`ref

‖xk − θ‖

)ksc

10(`ref−‖xk−θ‖)α10−4 , (34)

where `ref and ‖sk−θ‖ are in meters, the seawater absorption
coefficient α is in [dB/km], and ksc is the spreading coefficient.
The value of α has been computed using Francois & Garrison
equation [24], [25], with the underwater speed of sound
obtained via the Chen & Millero equation [26] with parameters
in Tab. I.

The proposed algorithm is compared with a WSN without
the PPC, meaning that the sensors will perform the energy test
in Eq. (16), and the FC, after collecting d[n], will provide the
final decision on whether an oil spill is occurring at time n
via Eq. (19), i.e. without exploiting the temporal dimension. It
can be shown that the latter approach corresponds to a quickest
oil spill detection based on the classical Shewhart chart [14].
However, the absence of a PPC removes the possibility to
update parameters and transmit them to the sensors and the
FC. Therefore, the values of ϕm’s are taken as constants:

ϕm = Pr(Hm = 1|H = 1) ≈ λm,0
/ M∑

m=1

λm,0 , (35)



TABLE II
LITERATURE VALUES OF FAILURE RATES OF SUBSEA ITEMS

Item Category λm,0 [yr−1] νm [yr−2]

Valve, process isolation (manifold) 7.3000× 10−3 7.0715× 10−5

Connector (manifold) 9.5812× 10−4 2.4649× 10−6

where the literature values of the failure rates λm,0’s are used
as parameter estimates. Eq. (35) was obtained exploiting the
properties of a merged Poisson process. The time-independent
property of the values of ϕm’s also reflects on the values of
γk’s, PD,k,m’s, and PF,k’s which no longer need to be updated.

Numerical results have been obtained via simulations with
200 Monte Carlo runs using the software MATLAB. In detail,
each run simulates the life of the Goliat FPSO (assuming
negligible inspection time and not accounting for maintenance
time). The simulated time, the value of ∆t, and the different
values of SNRm,k , σ2

ξ,m/σ
2
w,k are in Tab. I. At each run,

for each item, a new realization of the M Poisson processes
and their corresponding failure rates is generated, where the
λm’s are originated from a Gamma distribution with moments
from Tab. II which reports the literature values retrieved from
OREDA Handbook [32].

The main results are in Tab. III where the aggregated
average of the values of εm,j (and the corresponding number
of collected samples), the Fault Rate P1 = Pr (H[n] = 1), and
the False Positive Rate P10 = Pr

(
Ĥ[n] = 1|H[n] = 0

)
are

displayed. Also, the True Positive Rate is defined as P (N)
11 =

Pr
(⋃N−1

j=0

{
Ĥ[n+ j] = 1

}
|H[n] = 1

)
, where (N − 1)∆t

is the allowed detection delay, with N ≥ 1 as the number
of collected samples. Fig. 4 shows the True Positive Rate
as a function of N for different relevant SNR spill values.
Moreover, the Error Rate (Pe) as a function of N is reported
in Fig. 5 and is calculated as follows:

P (N)
e = P10(1− P1) +

(
1− P (N)

11

)
P1 . (36)

From Tab. III we notice the significant difference in be-
havior between the two architectures. When the Reliability-
Based Fusion is implemented, the WSN performs a temporal
integration with a consequent higher number of measurements
needed by the PPC to declare the presence of a leak as it can
be seen from the values of εm,j which, on average, are higher
when the PPC is implemented. This originates two opposing
effects: on one hand, without the PPC, the WSN reaches a
higher value of True Positive Rate for a given value of N as
shown in Fig. 4, on the other hand, the temporal integration of
the PPC allows the WSN to dramatically decrease the value
of False Positive Rate of five orders of magnitude. It is also
important to notice that Fault Rate will be higher in case the
PPC is implemented as a consequence of the tendency of
showing higher values of εm,j . Thus, it is evident the need
to use the Error Rate as a metric in order to better evaluate

TABLE III
SIMULATION RESULTS

SNRm,k

[dB]
With PPC Without PPC

Average – 1.5350 1.5350no. failures

Average εm,j

(no. samples)

10 32 hr 23 min (130.56) 5 min 46 s (1.38)
15 11 hr 40 min (47.69) 4 min 50 s (1.32)
20 5 hr 13 min (21.85) 2 min 59 s (1.20)
25 2 hr 30 min (11) 4 min 3 s (1.27)

Fault Rate

10 3.8104× 10−4 4.0402× 10−6

15 1.3918× 10−4 3.8596× 10−6

20 6.3779× 10−5 3.4984× 10−6

25 3.2103× 10−5 3.7075× 10−6

False Positive
Rate

10 5.0405× 10−6 5.4641× 10−1

15 4.9821× 10−6 4.4817× 10−1

20 3.3560× 10−6 3.3096× 10−1

25 2.1866× 10−6 1.4331× 10−1

Fig. 4. True Positive Rate as a function of the number of collected samples N .

the trade-off between quick detection (fast spill detection) and
a high number of false alarms (high inspection costs).

Finally, Fig. 5 shows the Error Rate versus N . In absence
of PPC, the Error Rate is found to be greater than 0.1 without
significant changes with N , whereas such value decreases as
SNRm,k increases. Indeed, a fault detection mechanism not
capitalizing time integration incurs in a high False Positive
Rate (see Tab. III), which represents the dominating term in
Eq. (36). On the contrary, when the PPC is implemented, the
Error Rate starts from a value ∈ [10−5, 10−3] and, as N
increases, decreases by settling around a value ∈ [10−6, 10−5].
Such decrease in the Error Rate with N (when the PPC is
present) is due to the corresponding increase of True Positive
Rate made possible by the temporal integration performed by
the PPC. Clearly, a higher value of SNRm,k lowers the Error
Rate regardless of the employed architecture. Hence, using the



Fig. 5. Error Rate as a function of the number of collected samples N .

Error Rate as a metric, our Reliability-Based Fusion algorithm
evidently outperforms the same architecture lacking the PPC.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we tackled quickest detection of faults within
an Oil and Gas subsea production system, by means of
spatio-temporal decision fusion approach. The sensor network
collectively monitors the state of different pieces of equipment
and reports their decisions to a FC based on individual LRTs.
Herein, a spatial aggregation is performed, based on a global
(per-sample) LRT and a global decision is performed. Such
decisions are then aggregated in time by a PPC, which
performs quickest detection of the system state according
to a Bayesian criterion and exploits statistical distributions
about the change time driven by datasheet reliability metrics.
Results have highlighted the benefit in terms of Error Rate of a
reliability-based algorithm with respect to an architecture that
does not include the knowledge of the reliability features of the
monitored system in its design. Future directions of research
will include: (a) reliability-aided quickest fault detection in the
presence of unknown parameters, (b) lossy reporting channels
and (c) considering more complex reliability models.
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