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Abstract—Distributed filtering techniques have emerged as
the dominant and most prolific class of filters used in modern
monitoring and surveillance applications, such as smart grids.
As these techniques rely on information sharing among agents,
user privacy and information security have become a focus of
concern. In this manuscript, a privacy-preserving distributed
Kalman filter (PP-DKF) is derived that maintains privacy by
decomposing the information into public and private substates,
where only a perturbed version of the public substate is shared
among neighbors. The derived PP-DKF provides privacy by
restricting the amount of information exchanged with state
decomposition and conceals private information by injecting a
carefully designed perturbation sequence. A thorough analysis
is performed to characterize the privacy-accuracy trade-offs
involved in the distributed filter, with privacy defined as the
mean squared estimation error of the private information at the
honest-but-curious agent. The resulting PP-DKF improves the
overall filtering performance and privacy of all agents compared
to distributed Kalman filters employing contemporary privacy-
preserving average consensus techniques. Several simulation
examples corroborate the theoretical results.

Index Terms—Estimation, privacy, information fusion, average
consensus, distributed Kalman filtering, multiagent systems.

I. INTRODUCTION

Distributed Kalman filtering algorithms became popular
for learning and estimation in multiagent systems [1], [2]
due to their high accuracy and computational efficiency [3]–
[5]. In general, distributed Kalman filtering techniques are
based on agents of a sensor network implementing local
Kalman filtering operations using their observed data. Agents
then employ consensus techniques to fuse local and neighbor
estimates [6]–[8]. However, the local interactions between
agents in distributed filtering settings raise concerns regard-
ing privacy and demands for secure distributed filtering [9],
[10]. Although local cooperation among agents in distributed
filtering facilitates the fusion process, it causes undesirable
information disclosures [11]. This vulnerability of distributed
filters to potential adversaries has made privacy preservation
one of the most pressing subjects in many applications [12]–
[18].

The literature contains various methods to address the
privacy issues in distributed consensus operations. For exam-
ple, differential privacy techniques inject uncorrelated noise
sequences into information exchange procedures to provide
privacy for individual information [13], [14]. In addition, the
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more recent noise injection-based average consensus tech-
niques achieve an improved privacy-accuracy trade-off by
perturbing the information exchanged with noise [15]–[17].
Decomposition-based privacy-preserving techniques, on the
other hand, are based on altering the amount of information
shared with other agents [19], [20].

In particular, privacy in a system theoretic context, where
sensor measurements are transmitted to a fusion center, was
first addressed in [9]. The work therein considers the notion
of privacy characterized by differential privacy, which pro-
tects individual data streams. Subsequently, the work in [21]
presents a general approach to design a differentially private
Kalman filter in both cases of perturbation before exchanging
information with fusion center and output perturbation that
injects noise to the output of the Kalman filter. The authors in
[22] show that adequately combining the input signals before
adding the differential privacy noise can improve the Kalman
filter performance.

The privacy-aware centralized Kalman filter proposed in
[23] partitions sensor measurements into private and public
substates to maximize the estimation error of the private
portion while minimizing the estimation error of the public
substate. The works in [9], [21]–[23] mainly consider a
centralized filtering setting with external adversaries; however,
in the context of distributed filtering applications, honest-but-
curios adversaries employ local information to infer private
data. An honest-but-curious adversary is a legitimate network
agent taking part in the filtering process but is curious and
attempts to retrieve the private information of other agents.
Although considerable research has been devoted to privacy
in centralized Kalman filtering solutions, the dilemma of
privacy-preserving distributed Kalman filters against honest-
but-curious agents has not been appropriately addressed.

In this paper, a privacy-preserving distributed Kalman fil-
tering solution is derived. The derived framework draws upon
the ideas from both noise injection and decomposition-based
average consensus strategies. In this setting, agents decompose
their acquired information into public and private substates,
sharing only the perturbed version of their public substate with
their neighbors. The private substate evolves internally and
will not be shared with neighbors. This process is designed to
provide enhanced privacy, defined as the mean squared estima-
tion error of private data at the honest-but-curious agent [24].
In comparison to distributed Kalman filters employing con-
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temporary privacy-preserving average consensus techniques,
the PP-DKF derived here exhibits higher robustness against
injected noise and accomplishes the filtering process with
enhanced performance. The contribution of the work also
includes a rigorous mathematical analysis of the convergence
and performance of the derived PP-DKF, and formulating a
closed-form expression for agent privacy in the presence of
an honest-but-curious adversary.
Mathematical Notations: Scalars, column vectors, and ma-
trices are denoted by lowercase, bold lowercase, and bold
uppercase letters, while I, and 0 represent identity and zero
matrices, respectively. The transpose and statistical expectation
operators are denoted by (·)T and E{·}, while ⊗ denotes the
matrix Kronecker product. The trace operator is denoted as
tr(·), matrix diag(a) denotes diagonal matrix whose diagonals
are the elements of vector a, and the Blockdiag({Ai}Ni=1)
represents a block diagonal matrix containing Ais on the main
diagonal. A white Gaussian sequence x(k) with covariance Σ
is represented as x(k) ∼ N (0,Σ).

II. PROBLEM FORMULATION

We consider a set of N interconnected agents concerned
with a common task. The agents and their connections are
modeled as a graph G = {N , E} with node setN , representing
agents, and edge set E , representing communication links. The
neighborhood of agent i, denoted by Ni, is the set of agents
that agent i receives information from, which does not include
agent i itself. The cardinality of the set Ni is denoted by Ni.

We revisit the classical distributed Kalman filtering problem
of tracking a dynamic system state through observations from
a network of agents [3], [4], [7]. The state-space model
representing the state vector evolution and local observation
function is given by

xn = Axn−1 + vn (1)

yi,n = Hixn + wi,n (2)

where, A denotes the state transition matrix and Hi is the ith
agent observation matrix. For time instant n and agent i, yi,n
is the local observation, while wi,n and vn are observation
and process noises, respectively. The process and observation
noises are zero-mean Gaussian sequences with joint covariance
matrices given by

E
{[

vn
wi,n

] [
vT
l wT

j,l

]}
=

[
Cvn

0
0 Cwi,nδi,j

]
δn,l

where δn,l denotes the Kronecker delta function. The proposed
PP-DKF is implemented based on the distributed Kalman
filter (DKF) in [6] that requires agents to exchange local
estimates with neighbors, and through local collaboration, to
reach a network-wide consensus. Since the shared data in-
cludes private information, we propose a PP-DKF that prevents
an honest-but-curious adversaries from estimating the private
information of individual agents. An honest-but-curious agent
is a legitimate agent of the network that is curious about private
data from other agents.

III. PRIVACY-PRESERVING DISTRIBUTED KALMAN FILTER

Considering the framework established in the distributed
Kalman filtering [6], each agent implements a model update
as

x̂i,n|n−1 = Ax̂i,n−1|n−1

Mi,n|n−1 = AMi,n−1|n−1A
T + Cvn

(3)

where for agent i and time instant n, x̂i,n|n−1 and x̂i,n|n
are the respective a priori and a posteriori estimates of the
state vector. The ith agent error covariance information at
time instant n is denoted by Mi,n|n−1 which following the
centralized Kalman filter operations in [7] is updated as

M−1
i,n|n = M−1

i,n|n−1 +
∑
j∈N

HT
jC
−1
wj,n

Hj =
1

N

∑
j∈N

Γj,n. (4)

The expression in (4) can be approximated through average
consensus filters (ACFs) after a local update as

Γi,n = M−1
i,n|n−1 +NHT

iC
−1
wi,n

Hi.

The local covariance information Γi,n is not considered pri-
vate, and it can be shared among neighbors to update the a
posteriori covariance information. To this end, the covariance
information M−1

i,n|n is updated via an ACF by averaging the
local covariance information Γi,n among neighbors. The ACF
operations is represented with the following schematic [6]:

Si,n(k)←− ACF ←− {∀j ∈ Ni ∪ i : Sj,n(0)}

where Sj,n(0), j ∈ Ni ∪ i are the initial inputs to the ACF at
node i, and Si,n(k) is the output at node i after k iterations.
The iterative operation of the consensus filter is given by

Si,n(k) = qiiSi,n(k − 1) +
∑
j∈Ni

qijSj,n(k − 1)

where Q = [qij ] is a doubly stochastic consensus weight
matrix [25]. It is assumed that the conditions for convergence
of Mi,n|n for all agents are satisfied (see [6]).

The updated covariance information is employed to calcu-
late an intermediate state estimate update using the sensors
observation as

ψi,n = x̂i,n|n−1 + Gi,n

(
yi,n −Hix̂i,n|n−1

)
(5)

where M−1
i,n|n is used to formulate the update gain Gi,n =

NMi,n|nHT
iC
−1
wi,n

. To improve the state estimation, agents
share their intermediate state estimate ψi,n with their neigh-
bors to reach the average consensus. The intermediate state
estimate, ψi,n, reveals information regarding the observations
and current state vector of an agent, which is considered
private. Thus, to avoid information disclosure, the average
consensus of intermediate state estimates should be imple-
mented in a privacy-preserving manner. To this end, a privacy-
preserving average consensus mechanism is designed to pro-
tect the intermediate state estimates while having minimal
impact on the filtering process.

Before sharing the intermediate state estimate with neigh-
bors, the ith agent decomposes the initial state ψi,n(0) =

2



ψi,n into public and private substates αi,n(0) and βi,n(0),
satisfying αi,n(0) + βi,n(0) = 2ψi,n(0), [19]. The public
substate, αi,n, is shared with neighbors, while the private
substate, βi,n, evolves internally and will not be observed
by neighbors. Although the private substate remains invisible
to neighbors, it directly affects the evolution of the public
substate. To provide an additional protection layer to the
initial state of agent i, we perturb its public substate, at
the kth consensus iteration, by noise sequence ωi(k). The
perturbation-noise is a zero-mean Gaussian sequence, mutually
and temporally independent among different agents, with time-
dependent covariance such that

ωi(k) ∼ N (0, σ2
kI), ∀i = 1, 2, · · · , N. (6)

In order to guarantee the convergence of the overall PP-DKF
operations, the variance σ2

k is chosen to be exponentially
decaying with respect to the consensus iteration k [10], [15].
Thus, as the number of consensus iterations increases, the
shared data of the ith agent converges toward the average
consensus value, which is common among all agents. Hence,
regarding the perturbation sequence (6), the PP-DKF injects
noise with higher variance to the initial substates, while sub-
states approaching the average consensus value are perturbed
with less noise. The substate updates at each agent, and
consensus iteration k, are given by
αi,n(k + 1) =αi,n(k) + εUi(k)

(
βi,n(k)−αi,n(k)

)
+ ε

∑
j∈Ni

wij(k) (α̃j,n(k)−αi,n(k))

βi,n(k + 1) =βi,n(k) + εUi(k)
(
αi,n(k)− βi,n(k)

) (7)

where α̃j,n(k) = αj,n(k) + ωj(k) is the received informa-
tion from the jth neighbor, wij(k) denotes the interaction
weight between agent i and j at consensus iteration k, and
Ui(k) , diag(ui(k)) is a diagonal matrix containing the ith
agent’s coupling weight vector ui(k) ∈ Rm with independent
elements that controls the level of contribution of each substate
in the updating procedure. The consensus parameter ε resides
in the range (0, 1/(∆ + 1)] where ∆ , maxi∈N Ni. For
k = 0, all weights wij(0) and each elements of ui(0) are
allowed to be arbitrarily chosen from the set of all real
numbers, while satisfying wij(0) = wji(0), ∀i, j. For k > 0,
a scalar η ∈ (0, 1) is required, such that all non-zero wij(k)
and all elements of ui(k) reside in the range [η, 1), [19].
The operations of the proposed PP-DKF at each agent are
summarized in Algorithm 1.

To investigate the convergence of the derived privacy-
preserving ACF operations to the exact average consensus
value, one can show that the sum of all substates is constant,
asymptotically [19]. The sum of all substates at the kth
iteration is defined as ζn(k) ,

∑N
i=1(αi,n(k) + βi,n(k))

where

ζn(k) = ζn(0) + ε

N∑
i=1

dii

(
k−1∑
l=1

ωi(l)

)
. (8)

Algorithm 1 Privacy-Preserving Distributed Kalman Filter
Initialization: For each agent i ∈ N

1: x̂i,0|0 = E{x0}
2: Mi,0|0 = E

{
(x0 − E{x0})(x0 − E{x0})T

}
Model update:

3: x̂i,n|n−1 = Ax̂i,n−1|n−1
4: Mi,n|n−1 = AMi,n−1|n−1A

T + Cvn

Measurement update:
5: Γi,n = M−1

i,n|n−1 +NHT
iC
−1
wi,n

Hi

6: M−1
i,n|n ←− ACF ←− {∀j ∈ Ni : Γj,n}

7: Gi,n = NMi,n|nHT
iC
−1
wi,n

8: ψi,n = x̂i,n|n−1 + Gi,n

(
yi,n −Hix̂i,n|n−1

)
9: Set ψi,n(0) = ψi,n

Privacy-Preserving Mechanism:
10: Select αi,n(0), and set βi,n(0) = 2ψi,n(0)−αi,n(0)
11: Generate {ωi(k), k = 0, 1, · · · ,K} based on (6)
12: Share α̃i,n(0) = αi,n(0) + ωi(0)
13: for k = 1 to K do
14: Receive α̃j,n(k − 1), ∀j ∈ Ni
15: Update αi,n(k) andβi,n(k), as given in (7)
16: Share α̃i,n(k) = αi,n(k) + ωi(k),
17: end for
18: x̂i,n|n = αi,n(K)

where dii is a diagonal element of matrix D ,
diag({

∑
j∈Ni

wij}Ni=1), to simplify the analysis, we assume
that the interaction weights are time-invariant. Given the zero
mean and decaying covariance properties of the designed noise
(6), ζn(k) converges to ζn(0) in the mean sense which is

lim
k→∞

E{ζn(k)− ζn(0)} = 0. (9)

Due to the connected network assumption and considering that
αi,n(0) + βi,n(0) = 2ψi,n(0), the ith agent substates, αi,n
and βi,n, converge to the desired average consensus value [19],
i.e.,

lim
k→∞

E{αi,n(k)} = lim
k→∞

E{βi,n(k)} =
1

N

N∑
i=1

ψi,n(0).

In practice, due to the finite number of consensus iterations,
the convergence in (9) is achieved with a bounded variance that
reduces the average consensus accuracy. In the next section,
we analyze the impact of this consensus error on the overall
performance and convergence conditions of the proposed PP-
DKF.

IV. PERFORMANCE EVALUATION

To provide an intuitive analysis and a proper insight into
the effects of incorporating the privacy-preserving operations,
we consider the equivalent network of 2N agents so that
each private substate corresponds to an agent only attached
to its peer in the original network with the same observation
parameters, yi,n, Hi, and Cwi

(see Fig. 1). It is assumed
that agents initialize the privacy-preserving steps with equal
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Fig. 1. A ring network topology with N = 5 nodes.

substates, so that the intermediate estimation error of agents
in the decomposed network is expressed as

εi,n =xn −αi,n(0) i = 1, · · · , N
εi,n =xn − βi−N,n(0) i = N + 1, · · · , 2N

Following the made assumption on the initial substates,
αi,n(0) = βi,n(0) = ψi,n, the intermediate estimation
error of each agent i ∈ {1, 2, · · · , 2N}, employing the local
observation in (2), is formulated as

εi,n =xn −ψi,n
=xn − x̂i,n|n−1 −NMiH

T
iC
−1
wi

(
yi,n −Hix̂i,n|n−1

)
=xn − x̂i,n|n−1 −NMiH

T
iC
−1
wi

Hi

(
xn − x̂i,n|n−1

)
−NMiH

T
iC
−1
wi

wi,n.
(10)

Substituting (1) into (10) and after some algebraic manipula-
tion, we have

εi,n =
(
I−NMiH

T
iC
−1
wi

Hi

)
Aεi,n−1|n−1

+
(
I−NMiH

T
iC
−1
wi

Hi

)
vn −MiH

T
iC
−1
wi

wi,n.
(11)

where εi,n−1|n−1 = xn−1−x̂i,n−1|n−1. Considering the block
row vectors organizing all error terms as

En =[εT
1,n, · · · , εT

2N,n]T

En−1|n−1 =[εT
1,n−1|n−1, · · · , ε

T
2N,n−1|n−1]T

the network-wide state vector estimation error of the state-
decomposed network, En|n, which is the stacked error after the
privacy-preserving average consensus operations in (7) with k
consensus iterations, is expressed by

En|n = GkEn +

k∑
s=1

Gs−1Bω(k − s). (12)

The stacked perturbation sequences is denoted by ω(k) =[
ωT

1(k), · · · ,ωT
N (k)

]T
, while B = [εW,0]T ⊗ I, and G is a

doubly stochastic matrix given by

G =

[
M εU
εU I− εU

]
with M , (I− ε(D−W)) ⊗ I − εU. The interaction and
coupling weight matrices for the entire network are denoted
by W(k) , [wij(k)] and U(k) = Blockdiag({Ui(k)}Ni=1),
respectively. To simplify the state vector error analysis, we

assume that the interaction and coupling weight matrices are
time-invariant. Alternatively, (12) can be expressed as

En|n =PEn−1|n−1 + QΥn −Ωn

+

k∑
s=1

Gs−1Bω(k − s)
(13)

where
P = GkBlockdiag({PiA}2Ni=1)

Q = GkBlockdiag({Pi}2Ni=1)

Υn = [vT
n,v

T
n, · · · ,vT

n]T

Ωn = GkBlockdiag({Qi}2Ni=1)[wT
1,n,w

T
2,n, · · · ,wT

2N,n]T

with Pi = I − NMiH
T
iC
−1
wi

Hi and Qi = MiH
T
iC
−1
wi

.
Following the definition, Pi is stable and since G is doubly
stochastic, the block matrix P is stable; therefore, the statis-
tical expectation of any vector norm for En|n converges to a
stabilizing value as n→∞. Taking the statistical expectation
of (12) yields

E{En|n} = PE{En−1|n−1} = PnE{E0|0}.

Once again, since P is stable, we have limn→∞ E{En|n} = 0

that indicates the steady-state estimates are unbiased regardless
of their initializing values or perturbation sequences.

The recursive expression of the state vector estimation error
in (13), is used to formulate the second-order statistics of all
agents, denoted by Σn = E{En|nET

n|n}, as

Σn = PΣn−1PT + QCΥQT + CΩ + T (14)

where CΥ = E{ΥnΥT
n}, CΩ = E{ΩnΩT

n}, and with respect to
the noise sequence (6), we have

T =

k∑
s=1

σ2
k−sG

s−1BBT (Gs−1)T
.

Since G is doubly stochastic and P is stable, Σn → Σ as
n→∞, where Σ is the solution of the discrete-time Lyapunov
equation in (14). The effect of injected noise is manifested in
terms of T , which increases the steady-state mean squared
error (MSE) of Algorithm 1 compared to the non-private
approach. In the next section, we analyze the performance
of the derived framework to preserve agent privacy.

V. PRIVACY ANALYSIS

We consider an honest-but-curious agent that can access the
interaction weights and information shared by its neighbors. To
benchmark the privacy of the derived PP-DKF, we consider the
MSE associated with the estimates of the initial states ψi,n(0)
at the honest-but-curious agent, as privacy measure. Without
loss of generality, it is assumed that the N th agent is an
honest-but-curious agent that employs a maximum likelihood
(ML) estimator to estimate the initial states of all agents,
ψn(0) = [ψT

1,n, · · · ,ψT
N,n]

T, at time instant n. The honest-but-
curious agent has access to the following information set at
consensus iteration k
I(k) = {αN,n(k),βN,n(k),ωN (k), uN (k),

wNj(k), α̃j,n(k) : ∀j ∈ NN}.
(15)
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Proposition 1. Suppose an honest-but-curious agent has ac-
cess to messages shared by its neighbors and their correspond-
ing interaction weights. If every agent has at least one regular
agent in the neighborhood, an honest-but-curious agent cannot
infer private information of any other agent in the network.

Proof: The proof follows from Theorem 2 in [19] by
showing that an arbitrary change in the initial information of
the jth agent, ψj,n to ψ̄j,n, remains indistinguishable from
the honest-but-curious agent.

In the worst case, the honest-but-curious agent also accesses
the interaction and coupling weights of the entire network,
thereafter it can construct an ML estimator to estimate the
private information of the other agents. To construct an ML
estimator, we introduce the observation vector yn(k) that
includes the accessible information transferred from the neigh-
bors to the honest-but-curious agent at each iteration k as

yn(k) = Czn(k) + Cαω(k)

where C , [Cα,Cβ ] with Cβ = [0, eN ]
T ⊗ I and

Cα =
[
ei1 , ei2 , · · · , eiNN

, eN

]T
⊗ I.

The canonical basis ei is a vector with 1 in the ith entry
and zeros elsewhere, while zn(k) , [αT

n(k),βT
n(k)]T with the

network-wide agent substate vectors given as

αn(k) , [αT
1,n(k), · · · ,αT

N,n(k)]T

βn(k) , [βT
1,n(k), · · · ,βT

N,n(k)]T.

The estimated value of zn(0) , [αT
n(0),βT

n(0)]T is employed
to estimate agent initial states as ψ̂n(0) = 1

2 (α̂n(0)+ β̂n(0)).
Since the information of the N th agent is already known

to the honest-but-curious agent, we reduce the state space
dimension by removing all entries belonging to the N th
agent form the defined variables and find the estimation error
covariance P̃(k) instead of P(k) as it satisfies

P(k) =

[
P̃(k) 0
0T 0

]
.

Accordingly, the reduced version of C and the observation
vector yn(k) can be expressed as C̃ = [C̃α, 0̃] and

ỹn(k) = C̃z̃n(k) + C̃αω̃(k) (16)

where
z̃n(k) = [α̃T

n(k), β̃
T
n(k)]T

C̃α = [ẽj1 , ẽj2 , · · · , ẽjNN
]T.

Substituting the network-wide state update equations (7) in
(16), gives

ỹn(k) = C̃G̃kz̃n(0) + C̃α

(
k−1∑
t=0

Ck−1−tB̃ω̃(t) + ω̃(k)

)
(17)

where B̃ = εW̃ ⊗ I, Ck =
[
I 0

]
G̃k
[
I 0

]T
, and

G̃ =

[
M̃ εŨ

εŨ I− εŨ

]
.

We can simplify the accumulated observation set of the honest-
but-curious agent, up to consensus iteration k, as

ỹn(0)
ỹn(1)

...
ỹn(k)

 = H(k)z̃n(0) + F(k)


ω̃(0)
ω̃(1)

...
ω̃(k)

 (18)

where H(k) , [(C̃)T, (C̃G̃)T, · · · , (C̃G̃k)T]T and

F(k) =


C̃α 0 · · · 0

C̃αC0B̃ C̃α · · · 0
...

...
. . .

...
C̃αCk−1B̃ C̃αCk−2B̃ · · · C̃α

 . (19)

Subsequently, the error covariance of the ML estimator [26], to
estimate z̃n(0), with independent noise sequences is obtained
by

P̃(k) =

(
HT(k)

(
F(k)Γ̃(k)FT(k)

)−1
H(k)

)−1
(20)

where Γ̃(k) = diag
({
σ2
t I
}k
t=0

)
contains the perturbation

sequence covariances up to consensus iteration k. Since the
accessible information of the honest-but-curious agent is ex-
panding, the error covariance P̃(k) is monotonically non-
increasing, i.e., for k1 ≤ k2, we have P̃(k2) ≤ P̃(k1).
This implies that error covariance matrix P̃(k) converges to a
constant matrix P̃ = limk→∞ P̃(k). Let us assume

P̃ =

[
P̃1 P̃12

P̃21 P̃22

]
,

then, the error covariance of the ML estimator to estimate
ψ̃n(0) is given by

P̄ =
1

4

(
P̃1 + P̃12 + P̃21 + P̃22

)
.

Thus, the privacy metric of the ith agent, related to estimate
its initial state ψi,n(0) by the honest-but-curious agent N is
defined as

Ei , tr
(
(ẽT
i ⊗ I)P̄(ẽi ⊗ I)

)
. (21)

The derived privacy metric represents the ability of the
privacy-preserving strategy to conceal the initial states from
being estimated by the honest-but-curious agent. Several sim-
ulations verify the privacy performance of the proposed PP-
DKF in the next section.

VI. NUMERICAL RESULTS

We consider a ring network topology with N = 5 agents
shown in Fig. 1. The proposed PP-DKF is considered in
a collaborative target tracking application. The state-space
model is following the distributed Kalman filter in [6], where
the state vector xn = [Xn, Yn, Ẋn, Ẏn]T consists of the
positions {Xn, Yn} and velocities {Ẋn, Ẏn} in the horizontal
and vertical directions, respectively. For comparison purposes,
we implement a pure noise-injection based privacy-preserving
DKF (NIP-DKF), wherein the noise sequence in (6) perturbs
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Fig. 2. Tracking performance of the derived PP-DKF with K = 40 consensus iterations and noise variance σ2 = 0.5.
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Fig. 3. Average filtering MSE versus injected noise variance σ2.

the shared messages of the conventional DKF [6]. Regarding
the perturbation sequence assumptions in (6), we assume
σ2
k = φ2k

N(k+1)σ
2 at each consensus iteration, where φ = 0.9,

and σ2 is noise variance that controls the amount of the
injected noise.

Fig. 2 shows the performance of the proposed PP-DKF to
track the system state compared to the NIP-DKF and non-
private distributed Kalman filter (DKF). The proposed PP-
DKF performs as well as the non-private distributed Kalman
filter and outperforms the NIP-DKF. This means that the
estimate produced by PP-DKF is closer to the actual position
and speed of the target compared to NIP-DKF. The higher
accuracy of PP-DKF to track the position and speed of
the target, verifying its robustness to the perturbation noise
sequences.

Fig. 3 shows the average MSE of the distributed Kalman
filter versus the noise variance parameter σ2 with K = 40
consensus iterations. We see that the perturbation sequence de-
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Fig. 4. Privacy metric Ei versus injected noise variance σ2.

grades the performance of the privacy-preserving approaches,
PP-DKF and NIP-DKF, compared to the conventional DKF
[6]. We also see that the proposed PP-DKF significantly
outperforms the NIP-DKF method by achieving lower MSE
for a broad range of injected noise variances, indicating lower
sensitivity of the PP-DKF to the noise variance than the
NIP-DKF. This is because the proposed PP-DKF operates
by partially obfuscating shared substates. At the same time,
the NIP-DKF solution perturbs the entire state before sharing
among neighbors, which was the motivation behind the design
of our consensus framework.

Fig. 4 shows the privacy metric (21) for K = 30 consensus
iterations versus the noise variance parameter σ2, for all
agents. We see that injecting a higher amount of noise results
in higher privacy, where the privacy level of all agents is
significantly improved under the proposed PP-DKF compared
to the NIP-DKF. Due to the ring topology, agents 3 and 4
achieve the same privacy level as agents 2 and 1. The improved

6



privacy-accuracy trade-off under the PP-DKF is manifested
by achieving lower MSE and higher privacy Ei for all agents
compared to NIP-DKF.

VII. CONCLUSION

This paper proposed a privacy-preserving distributed
Kalman filter that utilizes both decomposition-based and
noise injection-based privacy-preserving average consensus
techniques to protect network agents disclosing their private
information. It provides a private distributed Kalman filter
by restricting the amount of information exchanged with
decomposition and concealing the private data from being es-
timated by adversaries with perturbation. The convergence and
performance of the derived PP-DKF have been analyzed. The
achieved privacy level of all agents, defined as the uncertainty
of the honest-but-curious agent to estimate the initial state
of other agents, has been characterized in the presence of an
honest-but-curious agent. It has been shown that the proposed
PP-DKF solution improves privacy and performance of the
Kalman filtering operations compared to the DKF employing
contemporary privacy-preserving techniques. Lastly, several
simulations verified the obtained theoretical results.
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