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A B S T R A C T   

Balanced mechanical ventilation equipped with heat recovery has been widely adopted in cold climates to ensure 
an acceptable indoor environment in energy-efficient buildings. An acknowledged trend to achieve more energy 
savings is to increase the temperature efficiency of heat recovery. As one of the efficient heat recovery tech-
nologies extensively used in Nordic countries, the rotary non-hygroscopic heat wheel yields high-temperature 
efficiency with low frosting risk. Due to the increasing temperature efficiency to comply with the tightened 
energy performance requirements, moisture recovery in heat wheels may occur more frequently and intensively. 
Moisture transfer from the extracted air to the supply air in non-hygroscopic heat wheels is not well known and 
scarcely studied. The impact of the resulting moisture recovery in heat wheels on indoor humidity is unclear. 

This study uses machine learning algorithms to model and predict moisture recovery in a heat wheel. The 
effects of this moisture recovery on the supply and extract air, and indoor moisture levels in different rooms are 
analytically assessed for a selected single family house. The highest moisture recovery efficiency can reach 68%, 
and the yearly average value is 19% for the heat wheel in this study. For the specific studied single-family house, 
the heat wheel’s moisture recovery introduces higher peaks in the supply air, bedrooms and living room. In 
general, the presence of moisture recovery in the heat wheel has a relatively limited effect on indoor humidity 
levels for a well-insulated and airtight house with the least amount of moisture generation scheme.   

1. Introduction 

High-insulation and airtightness levels are more strictly prescribed in 
cold climates to achieve energy-efficient buildings [1]. In these pre-
mises, highly efficient heat recovery ventilation systems have been 
recommended or required to reduce ventilation energy use. For 
instance, heat recovery with temperature efficiency higher than 80% in 
practice is usually needed to comply with Norwegian building regula-
tion TEK 17 for residential buildings [1]. The increasingly tightened 
requirement on temperature efficiency for heat wheels in cold climates 
may lead to the more frequent occurrence and intensive amount of 
moisture recovery. The moisture transfer in heat wheels is, in turn, 
interrelated to indoor humidities that crucially influence indoor com-
fort, mould growth, building structure and occupants’ health [2,3]. 

Intended and unintended moisture transfer in heat recoveries can 
occur with different mechanisms. Membrane plate exchangers, which 
enable both heat and moisture recovery, have attracted more attention 

recently for cold climates [4–7]. Membrane energy exchangers can 
mitigate frost formation in the heat exchanger and improve indoor “dry 
air” conditions by transferring humidity from extract air to supply air 
[8–10]. However, moisture recovery may delay the dilution of moisture 
peaks when the indoor air is already too humid. Rotary heat exchangers 
recover heat efficiently and have a lower frosting risk than plate heat 
exchangers. Thus, they have been extensively applied in Nordic coun-
tries. Rotary heat exchangers are divided into non-hygroscopic heat 
wheels and hygroscopic energy wheels based on the matrix surface’s 
moisture sorption characteristics. Aluminium is usually used in 
non-hygroscopic heat wheel matrixes. In the non-hygroscopic heat 
wheel, the moisture transfer occurs through condensation in the extract 
air side and re-evaporation in the supply air side. When the extract air 
close to the wheel matrix surface is cooled down to the dew point, the 
condensation may form on the interior matrix surfaces, and it sequen-
tially rotates and re-evaporate to the dry supply air. For the hygroscopic 
heat wheels, the moisture will be directly absorbed in the extract airside 
and desorbed to the supply air with the continuous wheel rotation, not 

* Corresponding author. 
E-mail address: peng.liu@sintef.no (P. Liu).  

Contents lists available at ScienceDirect 

Building and Environment 

journal homepage: www.elsevier.com/locate/buildenv 

https://doi.org/10.1016/j.buildenv.2022.108971 
Received 11 February 2022; Received in revised form 3 March 2022; Accepted 7 March 2022   

mailto:peng.liu@sintef.no
www.sciencedirect.com/science/journal/03601323
https://www.elsevier.com/locate/buildenv
https://doi.org/10.1016/j.buildenv.2022.108971
https://doi.org/10.1016/j.buildenv.2022.108971
https://doi.org/10.1016/j.buildenv.2022.108971
http://crossmark.crossref.org/dialog/?doi=10.1016/j.buildenv.2022.108971&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Building and Environment 215 (2022) 108971

2

necessarily through the condensation and re-evaporation processes. The 
application of non-hygroscopic and hygroscopic wheels have been 
numerically and experimentally investigated in recent years [10–20]. 
However, the effects of moisture transfer from heat recovery especially 
for non-hygroscopic heat wheel on indoor humidity are under-explored. 
The authors have not found substantial work referring to this topic. 

In a heat wheel with a non-hygroscopic surface, the moisture transfer 
is usually only expected when condensation or frosting occurs. In 
practice, the non-hygroscopic aluminium surface may, however, 
perform with hygroscopic-like features due to changes to the surface 
characteristics during the lifetime of heat wheels. Twofold phenomena 
may cause the unintended changes in surface characteristics and the 
resulting moisture transfer in heat wheels [22]:  

1. The untreated aluminium surface in the heat wheel matrix is active 
to react with oxygen from the air. The oxidated aluminium surface 
will perform hygroscopically.  

2. Particles and dust may partially or fully foul the matrix surface. The 
accumulation of these fouling materials will also act as a hygroscopic 
coating on the heat transfer surface. 

The moisture transfer mechanisms in heat wheels involves (1) 
condensation and re-evaporation that is the intended moisture transfer, 
(2) unintended moisture transfer due to oxidated or fouled surface and 
(3) intended and unintended moisture transfers, which may co-exist and 
be coupled in practice. The moisture transfer through condensation and 
re-evaporation for heat wheels, which is referred to intended moisture 
transfer in this study, has been investigated numerically and experi-
mentally [23–25].The unintended moisture transfer in heat wheels, 
which is less known, is barely studied due to the unclear surface physics 
and the actual complexity and difficulty for modelling. To the authors’ 
knowledge, there is no published study on modelling the moisture re-
covery in a heat wheel that considers both intended and unintended 
moisture transfer. 

A schematic of a heat wheel matrix with an oxidated or fouled sur-
face and condensation water is shown in Fig. 1. The moisture transfer 
resulting from condensation and the hygroscopicity of the aged surface 
may take place independently or simultaneously depending on the 
operating conditions and matrix surface characteristics. 

Indoor air humidity is imperative for the indoor environment and 
building materials. “Dry indoor air” is a major complaint from occupants 
in residential and office buildings during winter in cold climates [2,26]. 
The common low humidity disturbance is sensory irritation in the eyes 
and upper airways [2,27]. Increasing indoor air humidity may ease these 
symptoms. On the other hand, if the relative humidity (RH) is too high, 
“too humid air” may cause mould growth and building material damage 
[28,29]. A widely acceptable and desired RH range has been a 

long-standing dispute. The Norwegian Institute of Public Health sug-
gests that for indoor climates “too high humidity” refers to RH above 
70% and “extremely low humidity” RH below 20% [30]. The use of 
humidifiers is not recommended, as they risk polluting of the indoor 
climate [30]. Moisture recovery is recognised as one of the operative 
manners to improve the dry conditions [31]. The indoor moisture loads 
and moisture generation schedules have been investigated in numerous 
research [3,32–36]. Nevertheless, the effects of moisture recovery on 
indoor RH have not been adequately studied for highly insulated and 
airtight buildings in cold climates. Smith and Svendsen [3] developed 
moisture balance equations focusing on single-room ventilation equip-
ped with a non-hygroscopic heat wheel in a temperate climate 
(Denmark). The results are compared with whole dwelling ventilation 
systems. They concluded that the rotary heat wheel recovers excessive 
moisture from kitchens and bathrooms. This leads to mould growth risk 
in tempered climates in the specified context of their study. 

In the current study, supervised machine learning algorithms are 

Nomenclature parameters 

cpSpecific heat capacity of aluminium [J/(kg∙K)]i Specific heat 
capacity of aluminium [J/(kg∙K)]iTime index 

kThermal conductivity [W/(mK)]mMass flow rate of ventilation 
air [kg/s]N Thermal conductivity [W/(mK)]mMass 
flow rate of ventilation air [kg/s]NNumber of data 

PcCondensation potential [kg/kg]tTemperature [̊C] 
V Condensation potential [kg/kg]tTemperature [◦C] 
VRoom volume [m3] 

wHumidity ratio [kg/kg]Abbreviations 
AHU Air handling unit 
GPR Gaussian process regression 
RH Relative humidity 
RMSE Root mean square error 
SVM Support vector machine 

Greek letters 
η EfficiencySubscript 
amb Ambient 
ext Extract 
inf Infiltration 
out Outdoor 
sat Saturated 
sup Supply 
vent Ventilation  

Fig. 1. Schematic view of a heat wheel and oxidated or fouled matrix surface with condensation.  
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employed to model moisture recovery in a heat wheel using experi-
mental data as the model training database. The best-trained model 
predicts moisture recovery for the heat wheel. Our main contributions in 
this paper are as follows:  

1. This study models moisture recovery in a heat wheel using machine 
learning algorithms. The moisture recovery model is able to take into 

account all possible causality leading to moisture transfer for the 
heat wheel. It not only accounts for moisture transfer from conden-
sation and re-evaporation but also includes the effects of surface 
hygroscopicity changes such as oxidated and/or the fouled heat 
transfer matrix surface.  

2. The developed machine learning model considers all the physical 
parameters affecting moisture recovery in the measured case, not 
only the mass transfer due to condensation. Thus, the prediction is 
more accurate.  

3. The moisture recovery predictions are coupled with an in-house 
moisture generation and ventilation simulation tool through mois-
ture balance equations. Yearly moisture recovery efficiencies with a 
95% confidence interval and indoor RH for different rooms in a high 
(2-min) time resolution are revealed for a single-family house in 
Oslo, Norway.  

4. The effects of the moisture recovery in the heat wheel on the RH of 
supply and extract air, and RH of different rooms (refer to Fig. 6), are 
assessed by comparing the scenario with and without adding mois-
ture recovery for a single-family house. 

With these highlighted contributions, the paper attempts to using 
machine learning to investigate the moisture transfer in heat wheel 
considering condensation and matrix surface changes In addition, the 
effect of the moisture recovery on indoor humidity is assessed with 
moisture balance in ventilation. 

The structure of this paper is as follows: the machine learning model, 
moisture generation, ventilation setup and moisture balance equations 
are presented in Section 2 (Methods). Section 3 (Results and Discussion) 
assesses and tests the trained model. The predicted moisture efficiency 
for one year and indoor RH for different rooms, including and excluding 
the effects of moisture recovery, are presented in section 3. Weekly RH 
plots of week 2 and week 18 are selected to illustrate the results in the 
winter season and transition season. 

2. Methods 

In this section, the machine learning model of moisture transfer in a 
heat wheel and the indoor moisture and ventilation simulation model 
are presented. 

2.1. Machine learning models for the moisture recovery of the heat wheel 

Fig. 2 illustrates a generic workflow of the machine learning method. 
Section 2 (Methods) and section 3 (Results) briefly present the imple-
mentation of each step for this study by following this workflow. Mea-
surements of moisture and heat transfer in a heat wheel under different 
operating conditions are used to train machine learning models. This 
study tests different machine learning models to learn from the data set. 
The best model is defined as the one with the minimum root mean 
square error (RMSE). 

2.1.1. Dataset and data preparation 
The measured parameters include the temperature and relative hu-

midity at the inlets and outlets of the heat wheel, as well as the airflow 

Fig. 2. A workflow of machine learning modelling.  

Fig. 3. Test unit for the heat wheel complying with testing standard EN 308.  

Fig. 4. Condensation potential in a Mollier chart.  
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rate and pressure drop for each side and wheel’s rotational speeds. 
Temperature and moisture efficiency are calculated with the measured 
parameters provided in equations (1)–(3). The experimental measure-
ments were performed using a testing unit as shown in Fig. 3, complying 

with the heat recovery testing standard EN308 [37]. The measurement 
data, which contains 4736 observations for each measured parameter, 
are aggregated and used for the model training. One hundred mea-
surement data points extracted randomly from the database are kept 

Fig. 5. Measurement data visualisation (A) Moisture efficiency vs condensation potential (B) Moisture efficiency vs temperature efficiency.  

Fig. 6. The studied building and ventilation air movement.  
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outside the training data and used as the model verification dataset. 
The tested heat wheel is designed for a single-family house heat re-

covery ventilation. The nominal temperature efficiency is 80.9% at a 
ventilation rate of 208 m3/h. The testing conditions and geometry 

parameters of the heat wheel are summarised in Table 1. 
The moisture efficiency for balanced airflow rates, as in this case, is 

given by 

ηm =
wsup − wout

weA − wout
(1) 

The temperature efficiency for balanced heat capacities is 

ηt =
tsup − tout

text − tout
(2) 

The condensation potential is a humidity ratio difference between 
indoor warm air and saturated outdoor cold air defined by Eq. (3). The 
condensation potential indicates the maximum amount of moisture 
transfer per unit of airflow rate from the exhaust to the supply airside. 

Pc =wext − wsat,out (3) 

An example of condensation potential in a Mollier chart is given in 
Fig. 4. 

Besides condensation potential, the high temperature efficiency of a 
heat wheel may intensify the moisture transfer as the condensation 

Table 1 
Heat wheel parameters and testing conditions.  

Heat wheel 
parameters 

Value Testing conditions Range 

Wheel depth 150 mm Ventilation rate 100 m3/h – 
250 m3/h 

Wheel diameter 400 mm Rotary speed 1 RPM – 8 
RPM 

Wall thickness 0.055 mm Warm (indoor) air 
RH 

20%–52% 

Wall material Aluminium k = 205 
W/(m∙K) 
cp = 900 J/(kg∙K) 

Cold (outdoor) air 
temperature 

− 15 ◦C – 5 ◦C 

Corrugation 
shape 

Sinusoidal 
Channel height: 1.5 
mm 
Channel period: 3.0 
mm    

Table 2 
Machine learning models used for training data in this study and RMSE.  

ID Learning models RMSE Algorithm 

1 Linear regression 0.1018 Linear 
regression 2 Interactions linear regression 0.0982 

3 Robust linear regression 0.1019 
4 Stepwise linear regression 0.0982 

5 Fine tree 0.0221 Tree 
6 Medium tree 0.0226 
7 Coarse tree 0.0268 

8 Linear Support Vector Machine (SVM) 0.1109 SVM 
9 Quadratic SVM 0.0683 
10 Cubic SVM 0.1436 
11 Fine Gaussian SVM 0.0224 
12 Medium Gaussian SVM 0.0291 
13 Coarse Gaussian SVM 0.0588 

14 Boosted trees ensemble 0.0292 Ensemble 
15 Bagged trees ensemble 0.0205 

16 Squared exponential Gaussian process 
regression (GPR) 

0.0205 GPR 

17 Matern 5/2 GPR 0.0196 
18 Exponential GPR 0.0188 
19 Rational quadratic GPR 0.0190  

Table 3 
The best-case scenario of indoor moisture release for different activities.  

Sources Room Frequency Units Production 

Cooking method Kitchen – – Electric 
Cooking load Kitchen – kg per day per 

household 
0.2 
(Breakfast) 
0.3 (Lunch) 
0.7 
(Dinner) 

Dishwasher load Kitchen Daily kg/day 0.05 
Cleaning All Weekly kg/m2 0.005 

kg/day 0.04 
Shower load Bathroom 3 showers/ 

day 
kg/shower 0.20 
kg/day 0.6 

Plants Living room – kg/day 0.06 
Awake adult 

moisture 
release 

Living 
room/ 
Kitchen 

– kg/hour/ 
person 

0.03 

Sleeping Bedroom Daily kg/hour/ 
person 

0.02  

Fig. 7. The predicted response vs true response.  

Fig. 8. Model residuals vs true response.  
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occurs more frequently on these surfaces with higher heat exchange 
rates. The training database (measured data) is visualised in Fig. 4. It can 
be seen that the moisture efficiency spreads widely against condensation 
potential and temperature efficiency. Moisture transfer cannot be well 
accounted for by mere condensation potential. The condensation po-
tential and temperature efficiency are computed and used as the pre-
dictors determining moisture recovery for heat wheels. The calculated 
moisture transfer efficiency from measured humidities at inlets and 
outlets is treated as the true response in this supervised learning. The 
moisture transfer in a heat wheel occurs when the air temperature at 
matrix surface is below the dew point due to condensation. The non-zero 
moisture efficiency for negative condensation potentials indicates that 
moisture transfer occurs even when no condensation appears in the heat 

wheel, as shown in Fig. 5 A. The authors hypothesise that these values, 
which are not associated with condensation, may infer another effect 
affecting the moisture recovery. As the heat wheel is not new (the wheel 
was manufactured in 2016 and the test was carried out in 2018), the 
hypothesis of having an oxidation or fouling layer acting as hygroscopic 
material gains weight. However, this cannot be proven with the existing 
data. The non-hygroscopic heat wheel with oxidation or a fouling layer 
performs as a hygroscopic sorption wheel. The similar trends have been 
observed for the hygroscopic wheels with moisture recovery due to 
moisture transfer through both desiccant material and condensation 
[38]. Whatever the reason behind this effect, machine learning learns 
from the measurements and can predict the increased moisture recovery 
on this heat wheel. The sorption characteristic cannot be determined 

Fig. 9. Model prediction test with 100 data points.  

Fig. 10. Annual moisture efficiency prediction with a 95% confidence interval using the GPR model.  
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quantitively with the existing measures. Further studies using other heat 
wheels are needed to extend these conclusions to other wheels. 

2.1.2. Moisture recovery modelling using machine learning 
This study uses nineteen different machine learning models built into 

the Regression Learning Toolbox in MATLAB. The models can be cat-
egorised into five supervised learning algorithms, as shown in Table 2. 

The study activated 5-fold cross-validation to prevent model overfitting. 
The Root Mean Square Error (RMSE), defined in Equation (4), is used to 
evaluate the fitted models’ accuracy. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(Predictedi − Acturali)

2

N

√
√
√
√
√

(4) 

Fig. 11. Week 2 and week 18 plots for (A) moisture efficiency, (B) temperature efficiency, (C) outdoor air temperature and (D) condensation potential.  
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RMSE measures how well the predicted data using one model fits the 
real (measured) data points. The RMSE results for the tested models are 
given in Table 2. The Exponential Gaussian Process Regression (GPR) 
model presents the minimum RMSE. Thus, the Exponential GPR is 
selected as the best learning algorithm and will be further used in this 
study to predict yearly moisture efficiency. GPR is a non-parametric 
Bayesian approach to regression problems. “A Gaussian process is a 
collection of random variables, any finite number of which have a joint 
Gaussian distribution.” [39] A Gaussian process is implemented by the 
mean function and covariance function. The mean function m(x) and 
covariance function k(x, x′

) of a real process are defined as [39], 

m(x)= E[f (x)] (5)  

k(x, x′

) =E[(f (x) − m(x))(f (x
′

) − m(x
′

))] (6) 

The mean function gives the expected value at input x. The covari-
ance function yields the association between the function values at 
different inputs x and x′ . GPR is able to define the predictive distribution 
for the predicted results, which means a confidence interval can be 
obtained together with the predicted values. 

2.2. Indoor moisture and ventilation system for a single-family house 

The developed machine learning model of the tested heat wheel is 
coupled with a single-family house’s ventilation and moisture produc-
tion model. The combined models are used to investigate the influence 
of the heat wheel’s moisture transfer on the indoor moisture levels. This 
section describes the building and the moisture generation and venti-
lation setup used to simulate a single-family house located in Oslo. 

2.2.1. Building description 
The modelled 100 m2 single-family house has a volume of 240 m3. 

The building envelope and airtightness complies with the Norwegian 

building regulation TEK 17 [1]. The house has eight rooms, split into wet 
rooms - two bathrooms, one laundry room and one kitchen - and dry 
rooms - three bedrooms and one living room. The floor areas of these 
different rooms are given in Fig. 6. Two adults and one child spend 13 h 
per day indoors. A schematic view of the air loop and the air handling 
unit is shown in Fig. 5. 

2.2.2. Ventilation 
The ventilation rate is always 208 m3/h supplied to the dry rooms 

flowing in cascade to the wet rooms where it is extracted. The air from 
the dry rooms is fully mixed before entering wet rooms, as indicated in 
Fig. 6. The supply air temperature is 18 ◦C. The room temperature for all 
rooms is 21 ◦C except for the bathroom, where the air temperature is 
23 ◦C. The air handling unit is equipped with a rotary heat exchanger, 
with a temperature efficiency of 81.2% at a ventilation rate of 208 m3/h. 
The heat wheel’s temperature efficiency is controlled, adjusting the 
rotational speed to avoid the supply air temperature exceeding 18 ◦C 
and exhaust air temperature lower than − 5 ◦C for frost protection. The 
heat recovery is stopped during summer (from June 1st to September 
15th) to prevent overheating the supply air. 

2.2.3. Moisture generation and moisture balance 
The moisture generation schemes and simulation background for the 

whole-dwelling ventilation are derived based on [3,40]. The updated 
model is connected to the developed moisture recovery machine 
learning algorithm. The initial relative humidity in all rooms at the 
beginning of the simulation is 50%. The indoor moisture buffering effect 
from building materials and furniture is not considered in the model. 

Equation (7) shows the moisture balance equation to calculate the 
indoor moisture. The balance is done every 2 min to capture rapid 
fluctuations of indoor humidity related to the activities. 

m
dw
dt

=Gsources(t) + Gin(t) − Gout(t) (7) 

Fig. 12. Annual RH of extract and supply air including and excluding moisture recovery in the heat wheel.  
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Fig. 13. Week 2 and week 18 plots for (A) extract air RH, (B) supply air RH, (C) moisture efficiency and (D) outdoor air temperature.  

Table 4 
Per cent of time duration for the reference year in different rooms.  

Rooms RH < 20% RH 20%–60% RH > 60% 

Added moisture recovery No moisture recovery Added moisture recovery No moisture recovery Added moisture recovery No moisture recovery 

Kitchen 14.5% 16.4% 72.7% 71.1% 12.8% 12.5% 
Bathroom 25.0% 27.6% 68.0% 65.7% 7.0% 6.7% 
Living room 17.5% 20.2% 74.6% 72.1% 7.9% 7.7% 
Bedroom 20.4% 23.1% 72.4% 69.8% 7.2% 7.1%  
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For dry rooms, the study uses the following iteration to compute the 
room air’s humidity ratio.   

The moisture ratio in the supply air wsup,room,i is the minimum of the 
sum of the outdoor air moisture ratio and the recovered moisture in the 
heat wheel or the saturated supply humidity ratio. 

wsup,room,i =min
{[

wamb,i + ηm,i
(
wext,i − wamb,i

)]
, wsup,sat

}
(9) 

wext,i, the moisture ratio of the air in the extract duct and the mixture 
of the extract air from the wet rooms, is calculated by Eq. (10). 

wext,i =

∑(
Vwet,roomwwet, room,i

)

∑
Vwet,room

(10) 

The moisture efficiency ηm,i is the one predicted by the machine 
learning model developed in section 2.1. 

The mixed air leaving all the dry rooms is supplied to the wet rooms. 
The moisture ratio of the mixed air from dry rooms is calculated from Eq. 

(11). 

wdry,mixed,i =

∑(
Vdry,roomwdry, room,i

)

∑
Vdry,room

(11) 

In the wet rooms, the moisture ratio is determined similarly to in the 
dry rooms.   

Oslo’s hourly weather data reference year, including outdoor air 
temperature, relative humidity, and wind speed, is duplicated to 2-min 
data and applied in the simulation. The moisture sources simulated are 
the lowest found in the literature for humans, animals, cooking, dish-
washing, cleaning, showering, washing and drying clothes. The selected 
significant moisture sources are presented in Table 3. 

Fig. 14. Distribution of RH values for different rooms including and excluding moisture recovery.  

wdry, room,i+1 =wdry, room,i +
Groom,i

(ρV)room
− Ninf ,room

[
min

(
wsat,room,wroom,i

)
− wamb,i

]
− Nvent,room

[
min

(
wsat,room,wroom,i

)
− wsup,room,i

]
(8)   

wwet, room,i+1 =wwet, room,i +
Groom,i

(ρV)room
− Ninf ,room

[
min

(
wsat,room,wroom,i

)
− wamb,i

]
− Nvent,room

[
min

(
wsat,room,wroom,i

)
− wdry,mixed,i

]
(12)   
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3. Results and discussion 

3.1. Model training 

As explained in the method section, the temperature efficiency and 
condensation potential are extracted as features. The moisture efficiency 
is derived from the measured temperature and relative humidity at the 
heat wheel’s inlet and outlet. The exponential Gaussian Process 
Regression, which has a minimum RMSE value, is selected as the best 
machine learning model in this study. The exponential GPR model’s 

predicted response is plotted against the true response in Fig. 7. 
The residuals plot in Fig. 8 indicates a good performance of the 

machine learning model. It can be seen from Fig. 8 that the residuals are 
scattered roughly symmetrically around zero and have no clear patterns 
in the residuals. 

3.2. Validation of the machine learning model 

The hundred data points randomly extracted and unseen by the 
model are used to validate the trained model’s performance. The 

Fig. 15. Week 2 and week 18 plots of RH in (A) bedroom, (B) living room, (C) bathroom, and (D) kitchen.  
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moisture efficiency predictions with a 95% confidence interval are 
compared to the actual true response in Fig. 9. The model is capable of 
predicting the moisture efficiency for the randomly selected 100 test 
data points. 

3.3. Moisture recovery efficiency in the heat wheel 

The developed GPR machine learning model predicts the heat 
wheel’s moisture transfer efficiency with two input parameters: tem-
perature efficiency and condensation potential. Fig. 10 (A) shows annual 
moisture efficiency predictions and the 95% confidence interval. Fig. 10 
(B) and (C) display the temperature efficiency and condensation po-
tential, which are used as new input parameters for the GPR model to 
predict the moisture efficiency. The annual predicted average moisture 
efficiency is 19.2% when the heat wheel operates, and the maximum 
efficiency is 67.6%. Relatively high moisture efficiency (greater than 
60%) appears when high condensation potentials exist, mainly due to 
showering. During most of the heat wheel operating time, the moisture 
efficiency is about 20% even when the condensation potential is zero or 
negative. As stated before, it is speculated that the non-hygroscopic heat 
wheel acts as a sorption wheel due to the unintended surface charac-
teristic change possibly caused by surface oxidation or fouling. The 
temperature efficiency fluctuates significantly during spring and 
autumn as this is regulated to maintain supply air temperature at 18 ◦C. 
The moisture efficiency drops when the corresponding temperature ef-
ficiency is reduced. 

Weekly plots of week 2 and week 18 for moisture and temperature 
efficiency, outdoor air temperature and condensation potential are 
presented to show more evident moisture efficiency variations. Fig. 11 
shows week 2 (early in January) and week 18 (early in May) as examples 
of the weekly plots for winter season and spring season, respectively. 
Most of the peaks of moisture efficiency correspond to showering time 
when maximum condensation potentials appear. The peak at midnight 
on Tuesday is related to the operation of the dishwasher. The moisture 
efficiency for the rest of the time is relatively constant at 20% for week 2. 
During the weekend of week 2, the temperature efficiency is lowered for 
frost protection when the outdoor air temperature is extremely low. In 
week 18, the heat wheel’s temperature efficiency is, however, reduced 
to prevent overheating the supply air. 

The moisture recovery in the heat wheel adds moisture to the supply 
air affecting indoor moisture levels. Fig. 12 shows, for a whole year, the 
RH in extract air and supply air, including and neglecting the moisture 
recovery. The average difference of RH for extract air, including and 
excluding moisture recovery, as represented by the yellow line in Fig. 12 
(A), is 1.1%, and the maximum difference is 13.4% during showering 
time. The corresponding difference for the supply air is respectively 
1.4% and 47.5%, shown in Fig. 12 (B). The supply air RH, including 
moisture recovery, has high moisture recovery peaks corresponding to 
showering and cooking, as demonstrated by the magnification view in 
Fig. 12 (B). 

The extract and supply air RH, including and excluding moisture 
transfer, outdoor air temperature and condensation potential for weeks 
2 and 18 are plotted in Fig. 13. The influence of the moisture recovery on 
RH peaks in extract air is relatively low compared to the effect on supply 
air due to the air distribution, mixing and movement from dry to wet 
rooms for both week 2 and week 18. For week 2, RH in supply and 
extract air is lower than 20% for a large fraction of time. During week 18 
it is generally over 20%. The drier supply air may cause this low indoor 
RH. 

Table 4 shows the percentage of hours per year when the indoor air 
RH is below 20% and over 60%, both including and excluding moisture 
recovery. Over 65% of the time per year, indoor RH is in a range of 20%– 
60%. All the rooms in Table 4 experience extremely low indoor RH for 
more hours than they do too high RH. The overall time duration of “dry 
indoor air” accounts for around 20% of the year, which is about half of 
the wintertime. The moisture recovery in the heat wheel reduces the too 

low RH time by 2% on average. Its effects on too high RH time is less 
than 0.5%. 

Fig. 14 shows the time duration, minimum, first quartile, median, 
third quartile and maximum of RH in different rooms for the scenarios 
both considering and not considering moisture recovery. For the 
selected four rooms, the indoor RH median during the reference year is 
around 30%. The time distribution of different RH both including and 
excluding moisture recovery is of similarity. It means the moisture re-
covery in the heat wheel has limited impacts on improving the dry room 
conditions in this case. The large area per person, high ventilation rates 
and dry outdoor air during winter in Oslo contribute to the low indoor 
RH, even if the effect of the moisture recovery is considered. Thus, we 
can conclude from Table 4 and Fig. 14 that the moisture recovery has 
relatively little effect on the RH for the studied heat wheel in this work. 

Fig. 15 shows the weekly RH in different rooms for weeks 2 and 18. It 
can be found that higher peaks of RH for the dry rooms (bedroom and 
living room) appear during showering in which more indoor moisture is 
recovered to the supply air. The RH profiles in the wet rooms (bathroom 
and kitchen) are almost identical. All the rooms have dry indoor air (RH 
< 20%) most of the time in week 2. 

4. Conclusions 

In this work, a model for heat recovery is obtained from machine 
learning analysis of measurements. Based on 4736 observations, this 
study is validated by predicting the moisture recovery in 100 unseen 
cases. The best GPR model predicts annual moisture efficiency with a 
95% confidence interval for the heat wheel. Moisture recovery is often 
neglected for heat wheels but measurements prove that this should not 
be done. The developed moisture recovery model is coupled with a 
moisture generation and ventilation simulation with moisture balance 
equations. The effects of using the heat wheel on indoor moisture levels 
are assessed for different dry and wet rooms. In general, the studied 
building in Oslo may experience too dry air despite the moisture re-
covery in the heat wheel. The moisture recovery efficiency of the heat 
wheel changes over time. In the simulated case, the humidity in the 
bedroom and living room is higher during occupancy and takes longer to 
reduce the higher values. The effect of moisture recovery on indoor 
moisture levels, often neglected in simulations, is relatively limited for 
the best-case scenario of moisture generation schemes in the different 
rooms of the studied single-family house building. Bear in mind that the 
absolute humidity levels of outdoor air in cold climates are low, but this 
effect could be more decisive for warmer climates. Also, there are only 
three occupants for a house of 100 m2, and the building is very well 
ventilated in this case. This article’s conclusions should not be extended 
to other buildings with different occupancy densities, other climates, or 
other activity-related moisture production. 
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