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Abstract: Pressure oscillations at small time steps have been known to be an issue in poroelasticity
simulations. A review of proposed approaches to overcome this problem is presented. Critical time
steps are specified to alleviate this in finite element analyses. We present a mixed isogeometric
formulation here with a view to assessing the results at very small time steps. Numerical studies
are performed on Terzaghi’s problem and consolidation of a layered porous medium with a very
low permeability layer for varying polynomial degrees, continuities across knot spans and spatial
discretizations. Comparisons are made with equal order simulations.
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1. Introduction

The study of porous materials, where the flow of fluid and solid deformation are cou-
pled, is essential in several areas of science and engineering. The theory of poroelasticity is
a mathematical formulation developed to describe these coupled processes and predict the
response of fluid saturated/unsaturated porous media to external loading. There are differ-
ent types of porous materials that are studied under this theory, such as soil, rock, concrete
and other man-made materials. Poroelasticity has a wide range of applications in different
disciplines of engineering mechanics and natural sciences. Some of the application areas
include geomechanics, biomechanics, reservoir engineering and earthquake engineering,
for problems where plastic deformations are negligible. In addition to these diverse areas
of application, it is gaining popularity in the study of modern man-made porous media in
material science.

The mathematical formulations describing the fluid-solid coupled processes are devel-
oped based on porous media theory where the multiphase medium is approximated as a
continuum, [1]. The volume fraction concept is used for averaging the properties of the
multiphase medium in a continuum formulation.

The governing partial differential equations of poroelasticity were first developed for a
one-dimensional case by Terzaghi [2,3]. The formulations were later generalized for a three-
dimensional case and extended by Biot [4–6]. The mathematical formulations have since
been extensively studied by several researchers. Various analytical and numerical studies
have been proposed in the literature. Analytical solutions were obtained for problems with
simplified material domains and boundary conditions. Application to boundary value
problems with complex material domains and boundary conditions required the use of
numerical methods. The emergence of the finite element method opened the door for a
detailed numerical study of poroelasticity and for application to arbitrary geometries and
boundary conditions.
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The finite element method was first applied to the governing equations of poroelas-
ticity to solve the initial boundary value problem of flow in a saturated porous elastic
medium by Sandhu and Wilson [7]. Hwang et al. [8] also used the finite element method for
plane strain consolidation problems and verified the results against closed form solutions.
The application of the finite element method started gaining momentum afterwards and
several researchers engaged themselves not only on application problems but also in the
investigation of the numerical properties of the method within the context of poroelas-
ticity. Ghaboussi and Wilson [9] applied the finite element method to partially saturated
elastic porous media and first noticed the ill-conditioning of the matrix equations that
may result when an incompressible fluid is assumed to occupy the pore spaces. Booker
and Small [10] investigated the stability of the numerical solution when the finite element
method is applied to Biot’s consolidation equations. The stability was studied for different
numerical integration schemes and time-step sizes. The numerical performance of some
finite element schemes for analysis of seepage in porous elastic media was studied by
Sandhu et al. [11]. They studied various spatial and temporal discretization schemes and
evaluated the numerical performances against the analytical solution of Terzaghi’s one-
dimensional consolidation problem. Triangular and quadrilateral elements with equal and
mixed orders of interpolation for the displacement and pressure were considered. It was
shown that the elements with equal orders of interpolation showed oscillatory behavior in
the solution. Vermeer and Verruijt [12] derived a lower bound for the time-step size in the
analysis of consolidation by finite elements in terms of the mesh size and the coefficient
of consolidation. They showed that there is an accuracy condition in the finite element
analysis of consolidation by using a critical time-step, below which oscillatory solutions
are observed. The derived critical time-step is strictly valid for a one-dimensional case and
a uniform finite element mesh. Reed [13] analyzed the numerical errors in the analysis
of consolidation by finite elements. It was shown that the use of a mixed formulation for
the field variables helps in reducing the pore pressure oscillations but may not remove
them entirely. They instead used Gauss point smoothing to eliminate the pore pressure
oscillations. Special finite elements for the analysis of consolidation were proposed by
Sandhu et al. [14]. They presented “singularity” elements to model pore pressures in the
vicinity of free-draining loaded surfaces immediately after application of loads. The ele-
ments were special in that they use special interpolation schemes which reflect the actual
variation of the field variables.

The finite element method became a well-established method for the analysis of prob-
lems in poroelasticity and the mathematical properties of the governing equations and
the numerical solution were studied in a further great detail. Murad and Loula [15] pre-
sented numerical analysis and error estimates of finite element approximations of Biot’s
consolidation problem. They used a mixed formulation and improved the rates of con-
vergence by using a sequential Galerkin Petrov-Galerkin post-processing technique. In a
further study [16], they investigated the stability and convergence of finite elements approx-
imations of poroelasticity. They derived decay functions showing that the pore pressure
oscillations, arising from an unstable approximation of the incompressibility constraint on
the initial conditions, decay in time. Finite element analysis of consolidation with automatic
time-stepping and error control was presented by Sloan and Abbo [17,18]. Automatic time
increments were selected such that the temporal discretization error in the displacements
is close to a specified tolerance. Ferronato et al. [19] studied the ill-conditioning of finite
element poroelasticity equations with a focus on the instabilities that may affect the pore
pressure solution. They claim that the origin of most instabilities is due to the assumption
that, for initial conditions, the porous medium behaves as an incompressible medium if
the pore fluid is incompressible. They also argue that oscillatory pore pressure solutions
may not always be observed for very stiff and low permeable materials depending on the
critical time step. Gambolati et al. [20] studied the numerical performance of projection
methods in finite element consolidation models. Dureisseix et al. [21] proposed a large time
increment (LATIN) computational strategy for problems of poroelasticity to improve the



Appl. Sci. 2022, 12, 2915 3 of 21

efficiency of the finite element analysis. A finite element formulation to overcome spatial
pore pressure oscillations caused by small time increments was proposed by Zhu et al. [22].
Korsawe et al. [23] compared standard and mixed finite element methods for poroelasticity.
In particular, Galerkin and least-squares mixed finite element methods were compared.
They claim that Galerkin’s method is able to preserve steep pressure gradients but over-
estimates the effective stresses. On the other hand, a least-squares mixed method was
noticed to have the advantage of direct approximation of the primary variables and ex-
plicit approximation of Neumann type boundary conditions but to be computationally
more expensive. A mixed least-squares finite element method for poroelasticity was also
proposed by Tchonkova et al. [24], claiming that pore pressure oscillations are eliminated
for different temporal discretizations. A coupling of mixed and continuous Galerkin fi-
nite element methods for poroelasticity was investigated for continuous and discrete in
time cases by Phillips and Wheeler [25,26]. They also studied a coupling of mixed and
discontinuous Galerkin finite-element methods, [27]. Haga et al. [28] studied the causes
of pressure oscillations in low-permeable and low-compressible media by presenting two,
three and four field mixed formulations in terms of the field variables displacement, pore
fluid pressure, fluid velocity and solid skeleton stress.

A posteriori error estimation and adaptive refinement in poroelasticity, as a numerical
stabilization technique for ill-conditioning or solution oscillations, has been studied by very
few researchers. Larsson and Runesson [29] presented a novel approach for space-time
adaptive finite element analysis for the coupled consolidation problem in geomechanics.
El-Hamalawi and Bolton [30] proposed an a posteriori error estimator for plane-strain
geotechnical analyses based on superconvergent patch recovery with application to Biot’s
consolidation problem. They later extended the application of the a posteriori estimator
for axisymmetric geotechnical analyses in [31]. Adaptive isogeometric finite element
analysis using LR B-Splines [32] and recovery based error estimators [33], was presented
for steady-state groundwater flow problems by Bekele et al. [34].

Isogeometric finite element analysis of poroelasticity was first presented by Irzal et al. [35].
The advantages of the smoothness of the basis functions in isogeometric analysis were
highlighted in their application. One of the advantages of higher continuity is that the
numerical implementation results in a locally mass conserving flow between knotspans,
analogous to elements in finite element analysis. However, the formulation presented relied
on equal orders of interpolation for the field variables in poroelasticity, namely displace-
ment and pore fluid pressure. Such a formulation, while still useful for several applications
without significant numerical challenges, has limitations when it comes to problems where
the material properties or boundary conditions are problematic. Mixed finite element
and NURBS-based isogeometric analysis for Darcy and Darcy–Brinkman flow through
deformable porous media was presented in [36]. Other related studies include isogeometric
analysis of fluid-saturated porous media including flow in the cracks [37], mixed isogeomet-
ric analysis of strongly coupled diffusion in porous materials [38] and isogeometric analysis
of fracture propagation in saturated porous media due to a pressurised non-Newtonian
fluid [39]. Regarding mixed methods for isogeometric finite elements we want to mention
the use of so-called Mixed Integration Point (MIP) recently proposed in [40] to achieve the
advantages of mixed formulation for avoiding locking in isogeometric analysis of thin shell
problems [41,42] without explicitly introducing the mixed set of variables.

In this paper, we present mixed formulation for isogeometric analysis of poroelastic-
ity. We demonstrate through numerical examples that mixed isogeometric analysis can
overcome pressure oscillations with the right choice of continuity and meshing, without
introducing additional field variables in the mathematical formulation. The results are
discussed in comparison with related numerical studies The paper is structured as follows.
In Section 2, the governing equations of poroelasticity are presented. The fundamentals of
isogeometric analysis and its particular features of interest within the current context are
discussed in Section 3. Numerical examples are given in Section 4 and the observations are
summarized with concluding remarks in Section 5.
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2. Governing Equations

Biot’s poroelasticity theory [4,5] couples elastic solid deformation with fluid flow in
the porous medium where the fluid flow is assumed to be governed by Darcy’s law. The
governing equations of the theory, the necessary boundary conditions, weak formulation
and Galerkin finite element discretization are presented in the following sections.

2.1. Linear Momentum Balance Equation

The linear momentum balance equation for a fluid-saturated porous medium is
given by:

∇ ·
(

σ′ + αpf I
)

︸ ︷︷ ︸
=σ

+ρb = 0 (1)

where σ is the total stress, σ′ is the effective stress, α is Biot’s coefficient, pf is the fluid
pressure, I is an identity matrix, ρ is the overall density of the porous medium and b
represents body forces. The Biot coefficient α can be calculated from:

α = 1− Kt

Ks
(2)

where Kt and Ks are the bulk moduli of the porous medium and solid particles, respectively.
The constitutive equation for poroelasticity relates stress and strain linearly as:

σ′ = D : ε (3)

where D is a fourth-order stiffness tensor. Small deformations are also assumed, so the
strain ε satisfies a linear first-order equation with respect to the displacement u,

ε =
1
2
(∇u +∇ᵀu) (4)

where 1/2(∇+∇ᵀ) is the symmetrized gradient operator i.e.,

εij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
. (5)

In the following, it will be convenient to lower tensors and higher differential operators
to Voigt notation, which represents the symmetric d× d tensor σ′ as a d(d+1)/2-vector, which
we will denote with a tilde:σ′xx σ′xy σ′xz

σ′xy σ′yy σ′yz
σ′xz σ′yz σ′zz


︸ ︷︷ ︸

σ′

⇐⇒
{

σ′xx σ′yy σ′zz σ′yz σ′xz σ′xy

}ᵀ
︸ ︷︷ ︸

σ̃′

A similar conversion takes place for the strains, where the shear strains are replaced
by the engineering shear strains:εxx εxy εxz

εxy εyy εyz
εxz εyz εzz


︸ ︷︷ ︸

ε

⇐⇒
{

εxx εyy εzz 2εyz 2εxz 2εxy
}ᵀ︸ ︷︷ ︸

ε̃

Voigt notation allows us to express the equilibrium equation and the stress-strain
equation using the same differential operator L,
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Lᵀ =


∂

∂x 0 0 ∂
∂y 0 ∂

∂z
0 ∂

∂y 0 ∂
∂x

∂
∂z 0

0 0 ∂
∂z 0 ∂

∂y
∂

∂x

 (6)

Using L yields the following equilibrium equation in terms of the two primary un-
knowns u and pf,

LᵀD̃Lu− α∇pf + ρb = 0, (7)

where D̃ is the Voigt notation equivalent of D, taking into account the aforementioned
engineering shear strains. We will generally assume isotropic materials, where D̃ takes the
block form (in terms of Young’s modulus E and Poisson’s ratio ν)

D̃ =
E

(1 + ν)(1− 2ν)

[
D̃11 0

0 D̃22

]
(8)

where the two blocks are given as

D̃11 = (1− 2ν)I + ν1

D̃22 =
1− 2ν

2
I

(9)

and 1 is a matrix of ones.

2.2. Mass Balance Equation

A mass conservation equation together with the equilibrium equation in (7) completes
the governing equations of poroelasticity. The fluid content ζ is given by

ζ = α∇ · u + cpf (10)

where c is the storativity or specific storage coefficient at constant strain. It is given by

c =
α− n

Ks
+

n
Kf

(11)

where Kf is the bulk modulus of the fluid and n is the porosity of the material. The change
in the fluid content ζ satisfies the equation

∂ζ

∂t
+∇ ·w = 0 (12)

where w is the fluid flux, which is given by Darcy’s law as:

w = − 1
γf

k ·
(
∇pf − ρfb

)
(13)

where γf is the unit weight of the fluid, ρf its density and k is the hydraulic conductiv-
ity matrix.

The final equation of mass balance is then

α∇ · u̇ + c
∂pf

∂t
+∇ ·

[
− 1

γf
k ·
(
∇pf − ρfb

)]
= 0. (14)

2.3. Boundary Conditions

The governing linear momentum and mass balance equations in (7) and (14), respec-
tively, are accompanied by the usual boundary conditions in the formulation of boundary
value problems. Let (Γu

D, Γp
D) and (Γu

N , Γp
N) be two partitions of the boundary ∂Ω of domain

Ω, for representing Dirichlet and Neumann boundary conditions, respectively.
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The Dirichlet boundary conditions for the equilibrium (7) and mass balance (14)
equations are {

u = u on Γu
D,

pf = pf on Γp
D,

(15)

where u and pf are the prescribed displacement and pressure, respectively.
The Neumann boundary conditions are{

σ · n = t on Γu
N ,

w · n = q on Γp
N ,

(16)

where n is the outward pointing normal vector, t is the surface traction and q is the fluid
flux on the boundary.

2.4. Variational Formulation

To derive the variational formulations of Equations (7) and (14), we introduce a vector-
valued test function δu, which vanishes on Γu

D, and a scalar test function δp, which vanishes
on Γp

D.
We start with the total stress formulation of the linear momentum balance equation,

which from Equation (7) is given by

∇ · σ + ρb = 0. (17)

Multiplying by the test function δu and integrating over the domain Ω gives∫
Ω

δuᵀ∇ · σdΩ +
∫

Ω
δuᵀρbdΩ = 0. (18)

The first term in the above equation contains a double derivative of the unknown
displacement, and is relaxed using a form of Green’s theorem,∫

Ω
δuᵀ∇ · σdΩ = ∑

i

∫
Ω

δui∇ · σidΩ

= ∑
i

∫
∂Ω

δuiσi · ndΓ−∑
i

∫
Ω
∇δui · σidΩ

=
∫

Γu
N

δuᵀtdΓ−
∫

Ω
∇δu : σdΩ.

(19)

Due to the symmetry of the stress tensor, the last term is expressible in Voigt notation,

∇δu : σ = (Lδu)ᵀσ, (20)

yielding the weak form of (7) as∫
Ω
(Lδu)ᵀD̃(Lu)dΩ− α

∫
Ω
(Lδu)ᵀ ĨpfdΩ =

∫
Ω

δuᵀρbdΩ +
∫

Γu
N

δuᵀtdΓ (21)

where we have used Ĩ as the Voigt notation identity operator, which for a general three-
dimensional case is given by:

Ĩ = {1, 1, 1, 0, 0, 0}ᵀ (22)

For the mass balance equation, multiplying (14) by the scalar test function δp and
integrating over the domain Ω, we get

α
∫

Ω
δp∇ · u̇dΩ + c

∫
Ω

δp
∂pf

∂t
dΩ +

∫
Ω

δp∇ ·
[
− 1

γf
k ·
(
∇pf − ρfb

)]
dΩ = 0. (23)
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Again, by applying Green’s theorem to the last term, we obtain∫
Ω

δp∇ ·
[
− 1

γf
k ·
(
∇pf − ρfb

)]
dΩ =

∫
Γp

N

δpqdΓ

−
∫

Ω
∇δp ·

[
− 1

γf
k ·
(
∇pf − ρfb

)]
dΩ.

(24)

Thus, the weak form of the mass balance equation, (14), is

α
∫

Ω
δp∇ · u̇dΩ + c

∫
Ω

δp
∂pf

∂t
dΩ +

∫
Ω
∇δpᵀ

1
γf

k∇pfdΩ

=
∫

Ω
∇δpᵀ

1
γf

kρfbdΩ−
∫

Γp
N

δpqdΓ.
(25)

2.5. Galerkin Finite Element Formulation

With a suitable number N of basis functions defined, let Np : Ω → R1×N and
Nu : Ω → Rd×dN be the basis interpolation matrices for the pressure and displacement,
respectively. The unknowns and the test functions can then be represented using coeffi-
cient vectors:

u = Nuuc, δu = Nuδuc,

pf = Np pc, δp = Npδpc (26)

where uc and pc are the control point values of the displacement and pressure field variables.
Application of (26) to the weak form of the linear momentum balance equation in (21)
results in the matrix the discrete system of equations (after canceling δuc and δpc, as
Equations (7) and (14) are supposed to be valid for any choice of these)

Kuc −Qpc = fu (27)

where the stiffness matrix K, the coupling matrix Q and the vector of body forces and
surface tractions fu are given by

K =
∫

Ω
BᵀD̃BdΩ,

Q =
∫

Ω
Bᵀα ĨNpdΩ

fu =
∫

Ω
Nᵀ

u ρbdΩ,+
∫

Γu
N

Nᵀ
u tdΓ.

(28)

Here B = LNu is the strain-displacement matrix. Similarly, using (26) in the weak
form of the mass balance equation in (25) results in the discrete system of equations

Qᵀ ∂uc

∂t
+ S

∂pc

∂t
+ Ppc = fp (29)

where the storage matrix S, the permeability matrix P and the vector of fluid body forces
and fluxes fp are given by

S =
∫

Ω
Nᵀ

p cNpdΩ

P =
∫

Ω
∇Nᵀ

p
1
γf

k∇NpdΩ

fp =
∫

Ω
∇Nᵀ

p
1
γf

kρfbdΩ−
∫

Γp
N

Nᵀ
p qdΓ.

(30)
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Combining Equations (27) and (29) results in the coupled system of equations
for poroelasticity [

0 0
Qᵀ S

]{
u̇c

ṗc

}
+

[
K −Q
0 P

]{
uc

pc

}
=

{
fu
fp

}
. (31)

A symmetric system of equations can be obtained by time-differentiating the first
equation and multiplying one of the equations by −1, [43]:[

−K Q
Qᵀ S

]{
u̇c

ṗc

}
+

[
0 0
0 P

]{
uc

pc

}
=

{
− ḟu

fp

}
(32)

In this formulation, it is important that time-dependent quantities involved in fu, such
as traction and body forces, are “ramped up” from an initial equilibrium instead of being
applied immediately. This can be done in the first time step.

2.6. Temporal Discretization

The generalized trapezoidal rule (GTR) is applied for the temporal discretization of
the coupled system of matrix equations in (32). Representing the vector of unknowns by
X = {uc, pc}ᵀ, we have the GTR approximation

∂X
∂t

∣∣∣∣
n+θ

=
Xn+1 − Xn

∆t

Xn+θ = (1− θ)Xn + θXn+1

(33)

where θ is a time integration parameter which has limits 0 ≤ θ ≤ 1 and n is a time
step identifier. Adopting backward Euler time stepping (θ = 1) with time step ∆t and
applying (32) and (33) we obtain the system of equations[

−K Q
Qᵀ S + ∆tP

]{
uc

pc

}
n+1

=

[
−K Q
Qᵀ S

]{
uc

pc

}
n
+ ∆t

{
− ḟu

fp

}
n+1

(34)

which is a linear system in this case, for poroelasticity, as the coefficient matrices are
independent of the unknowns.

3. Isogeometric Analysis
3.1. Introduction

Since its first introduction by Hughes et al. [44], isogeometric analysis (IGA) has been
successfully applied to several areas of engineering mechanics problems. The fundamental
aim for the introduction of IGA was the idea of bridging the gap between finite element
analysis (FEA) and computer-aided design (CAD). The main concept behind the method
is the application of the same basis functions used in CAD for performing finite element
analysis. In the process of its application to various engineering problems, IGA has shown
advantages over the conventional finite element method, for instance the ease of performing
finite element analysis using higher order polynomials.

We briefly present the fundamentals behind B-Splines and Non-Uniform Rational
B-Splines (NURBS) in the next section and highlight the features of IGA that are important
in our context.

3.2. Fundamentals on B-Splines and NURBS

We start the discussion on B-Splines and NURBS by first defining a knot vector. A
knot vector in one dimension is a non-decreasing set of coordinates in the parameter
space, written Ξ = {ξ1, ξ2, . . . , ξn+p+1}, where ξi ∈ R is the ith knot, i is the knot index,
i = 1, 2, . . . , n + p + 1, p is the polynomial order, and n is the number of basis functions.
Knot vectors may be uniform or non-uniform depending on whether the knots are equally
spaced in the parameter space or not.
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A univariate B-Spline curve is parametrized by a linear combination of n B-Spline
basis functions, {Ni,p}n

i=1. The coefficients corresponding to these functions, {Xi}n
i=1, are

referred to as control points. The B-Spline basis functions are recursively defined starting
with piecewise constants (p = 0):

Ni,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise
(35)

For higher-order polynomial degrees (p ≥ 1), the basis functions are defined by the
Cox-de Boor recursion formula:

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) (36)

B-Spline geometries, curves, surfaces and solids, are constructed from a linear combi-
nation of B-Spline basis functions. Given n basis functions Ni,p and corresponding control
points Pi ∈ Rd, i = 1, 2, . . . , n, a piecewise polynomial B-Spline curve is given by:

C(ξ) =
n

∑
i=1

Ni,p(ξ)Pi (37)

Similarly, for a given control net Pi,j, i = 1, 2, . . . , n, j = 1, 2, . . . , m, polynomial orders
p and q, and knot vectors Ξ = {ξ1, ξ2, . . . , ξn+p+1}, andH = {η1, η2, . . . , ηm+q+1}, a tensor
product B-Spline surface is defined by:

S(ξ, η) =
n

∑
i=1

m

∑
j=1

Ni,p(ξ)Mj,q(η)Pi,j (38)

B-Spline solids are defined in a similar way as B-Spline surfaces from tensor products
over a control lattice.

NURBS are built from B-Splines to represent a wide array of objects that cannot be
exactly represented by polynomials. A NURBS entity in Rd is obtained by projective
transformation of a B-Spline entity in Rd+1. The control points for the NURBS geometry
are found by performing exactly the same projective transformation to the control points
of the B-Spline curve. A detailed treatment of B-Splines and NURBS can be referred from
Cottrell et al. [45].

3.3. Important Features in Current Context

IGA has a number of advantages over FEA, such as the ability to represent exact ge-
ometries of structures or domains, non-negative basis functions and isoparametric mapping
at patch level. In the context of the current work, we focus on the features of IGA that are
especially important. These features are improved continuity because of the smoothness of
the basis functions and the ability to perform simulations with high continuity and high
regularity meshes. We look closely into each here.

3.3.1. Continuity

One of the most distinctive and powerful features of IGA is that the basis functions
will be Cp−m continuous across knotspans (analogous to elements in FEA), where p is the
polynomial degree and m is the multiplicity of the knot. This means that the continuity
across knotspans can be controlled by the proper choice of p and m. The continuity can be
decreased by repeating a knot—important to model non-smooth geometry features or to
facilitate the application of boundary conditions. For instance, quadratic (p = 2) splines
are C1 continuous over non-repeated knots while quadratic Lagrange finite element bases
are only C0 continuous. If we consider the quartic (p = 4) basis functions constructed from
the open, non-uniform knot vector Ξ = {0, 0, 0, 0, 0, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5}, we
get different continuities across knotspans as shown in Figure 1.
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Figure 1. Different continuities across knotspans, based on [45].

3.3.2. k-Refinement

IGA and FEA both allow h- and p-refinements, i.e., increasing the number of knotspans
by knot insertion (increasing the number of elements in FEA) and raising the polynomial
order. The non-commutativity of knot insertion and polynomial order elevation results
in a type of refinement that is unique to IGA, called k-refinement. This is achieved by
performing polynomial order elevation followed by knot insertion. This results in a high
continuity mesh with the least number of degrees of freedom, i.e., high regularity.

3.4. Mixed Isogeometric Formulation

A mixed formulation is constructed by first defining the knot vectors and basis func-
tions defining the geometry of the domain. The polynomial order defining the geometry is
used as the polynomial degree for one of the field variables and is raised by the desired
degree for the other field variable. In our context, the polynomial order for the pressure,
pp, is defined by the geometry construction and the polynomial order for the displacement,
pu, is raised by one. Both pp and pu can then be raised to the desired degree starting from
the initial definition. For example, a simple two-dimensional geometry defined by the knot
vectors Ξ = {0, 0, 1, 1} andH = {0, 0, 1, 1} implies pp = 1 and pu = 2 with 4 and 9 control
points, respectively. The number of control points, location of degrees of freedom in IGA,
on a B-Spline surface for different polynomial degrees is shown in Figure 2.

p = 1 p = 2 p = 3

Figure 2. Number of control points for a given element on a simple B-Spline surface with different
polynomial degrees. The element is highlighted and the blue squares represent control points.

4. Numerical Examples

In this section, the performance of a mixed isogeometric formulation is investigated
for some numerical examples. We first consider Terzaghi’s classical one-dimensional
consolidation problem for verification and mesh convergence studies. Consolidation of a
layered medium with a low permeability layer sandwiched between two high permeability
layers is studied. The mixed formulation results are compared with equal order simulation.
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4.1. Terzaghi’s Problem

Terzaghi’s problem is a classical one-dimensional consolidation problem with an ana-
lytical solution, which makes it suitable for code validation. A saturated porous medium
subjected to an external loading under plane-strain condition is considered where the fluid
is allowed to dissipate only at the top boundary, hence resulting in a one-dimensional con-
solidation. A no flux boundary condition is assumed for the lateral and bottom boundaries.
The displacement boundary conditions are such that the lateral sides are constrained from
horizontal deformation and the bottom boundary is fixed in both the horizontal and vertical
directions. The external load is applied as a Neumann traction p0 at the top boundary. Note
that we use x and y to denote the horizontal and vertical directions, respectively, while it is
also common to use z for the vertical direction in one-dimensional poroelastic problems as
in [28]. The domain and boundary conditions considered are shown in Figure 3.

h = 8 mm

x

y

ty = −p0, ux = 0, pf = 0

u = 0, q = 0

ux = 0
q = 0

ux = 0
q = 0

Figure 3. Terzaghi’s problem: Domain and boundary conditions.

The analytical solution for the pressure field as a function of time and space is given by:

pf(t, y)
p0

=
4
π

∞

∑
i=1

(−1)i−1

2i− 1
exp

[
−(2i− 1)2 π2ts

4

]
cos
[
(2i− 1)

πy
2h

]
where the dimensionless time ts is given as a function of the consolidation coefficient cv
and drainage path h (total height for one-way drainage) by:

ts =
cv

h2 t. (39)

The consolidation coefficient cv is given by:

cv =
(1− ν)Eκ

(1 + ν)(1− 2ν)
(40)

The material parameters used for this problem are given in Table 1, as used in [35]. The
choice of the storativity value c = 0 effectively corresponds to assuming incompressible
solid grains and an incompressible fluid.
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Table 1. Terzaghi’s problem: Load and material parameters.

Parameter Value Unit

External load, p0 1.0× 106 Pa
Hydraulic conductivity, k 1.962× 10−14 m2

Biot’s coefficient, α 1.0 −
Young’s modulus, E 6.0× 106 Pa
Poisson’s ratio, ν 0.4 −
Storativity, c 0 Pa−1

Body forces, b 0 N

The Terzaghi verification problem is simulated in a mixed and equal order formulation
for comparison. The polynomial degrees considered for the pressure are pp = 1, 2, 3. The
corresponding values for the displacement in a mixed formulation are pu = 2, 3, 4. The
number of elements used in the simulation is Ne = 72. Critical and sub-critical time step
sizes are considered to study the sensitivity of the simulations to temporal discretization
and to evaluate accuracy of the solution for small time step sizes. The critical time step is
calculated according to the relation derived in [12].

The results from a simulation using the critical time step are shown in Figure 4. A
linear solution space is used for the pressure and a quadratic space for the displacement.
The results from simulations with a sub-critical time step are shown in Figure 5 for mixed
and equal order cases. The results with the time step size equal to the critical time step
show no oscillations in the pressure values. On the other hand, slight oscillations are visible
for the sub-critical time step case. These oscillations at very small time steps appear worse
for the equal order simulations compared to the mixed simulation. In both cases, the results
are observed to improve with increasing polynomial degrees.

0 1
0

1

y/h

pf/p0

t = 2∆tc

t = 100∆tc

t = 500∆tc

t = 2000∆tc

t = 5000∆tc

Figure 4. Numerical solution to the Terzhagi problem with pp = 1, pu = 2 and and Ne = 72 using
critical time step.
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pp = 1 pp = 2 pp = 3

0 1
0

1

y/h

pf/p0

(a)

0 1
0

1

y/h

pf/p0

(b)

Figure 5. Numerical solution to the Terzaghi problem with Ne = 72 using a sub-critical time step of ∆t = 0.1∆tc for different polynomial degrees. All plots are
shown for the first time step. (a) Mixed. (b) Equal order.
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4.2. Terzaghi’s Problem: Convergence Study

Next, a simplified version of the Terzaghi problem is used as a convergence study. We
consider a domain with dimensions of w× h = 1× 1 with the same boundary conditions
as in the previous case. For simplicity we choose the following material parameters: α = 1,
c = 0, E = 2/3, ν = 0.25 and κ = 1. The external load applied is p0 = 1 and we assume no
body forces i.e., b = 0.

This case was run with an increasing number of degrees of freedom using polynomial
degrees pp = 1, 2, 3 for the pressure and correspondingly pu = 2, 3, 4 for the displacement.
In all cases, the time step was kept sufficiently small for the spatial discretization error to
dominate and we look at the results at the end of the first time step.

The convergence study is performed by calculating the relative L2 error of the pressure
field. The relative error based on the computed pressure values, ρh, is calculated from

ρh =
‖pf

h − pf‖L2

‖pf‖L2
(41)

where pf
h and pf are the computed and analytical solution pressures, respectively. The

results from the mesh convergence study are shown in Figure 6 in terms of plots of the
relative error versus the total number of degrees of freedom. The expected convergence rate
based on the analytical solution is also shown. We observe from the results that optimal
convergence rates are obtained for all polynomial degrees considered.
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O(N−3/2)

pp = 3

O(N−2)

Figure 6. Convergence rates in the relative L2 norm of pressure, for three different polynomial degrees.

4.3. Low Permeability Layer

The next example we consider is the consolidation of a very low permeability layer
sandwiched between two high permeability layers, as presented in [28]. A one-dimensional
consolidation is assumed by applying the appropriate boundary conditions. The fluid
is allowed to dissipate at the top boundary and a no flux condition is defined at the
lateral and bottom boundaries. The bottom boundary is fixed from vertical and horizontal
displacement and the domain is allowed to deform only in the vertical direction. An
external load p0 is applied at the top boundary. The problem setup with the boundary
conditions is shown in Figure 7.

The material parameters for this problem are given in Table 2. Simplified material
properties are assumed to focus on the permeability differences of the middle and the
bounding layers.
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x

y

κ2

κ1

κ1

ty = −p0, ux = 0, pf = 0

u = 0, q = 0

ux = 0
q = 0

ux = 0
q = 0

Figure 7. The Haga problem: Domain and boundary conditions.

Table 2. The Haga problem: Load and material parameters.

Parameter Value Unit

External load, p0 1.0 Pa
Darcy coefficient, k1/γf 1.0 m2/Pa s
Darcy coefficient, k2/γf 1.0× 10−8 m2/Pa s
Biot’s coefficient, α 1.0 −
Young’s modulus, E 0.67 Pa
Poisson’s ratio, ν 0.25 −
Storativity, c 0 Pa−1

Body forces, b 0 N

The low permeability layer problem is studied using mixed and equal order simula-
tions. The polynomial degrees for the pressure are increased continuously from linear to
quartic i.e., pp = 1, 2, 3, 4. The corresponding polynomial degrees for the displacement in a
mixed formulation are pu = 2, 3, 4, 5. The continuities at the boundaries between the layers
are also varied. We consider C0 and Cpp−1 continuities at these interfaces. In addition,
simulations are performed for uniform and graded meshes. The results are presented for
these different combinations.

The results from simulations with a uniformly refined mesh are shown in Figure 8
for the mixed and equal order cases. Severe pressure oscillations are observed within the
low permeability layer for the equal order simulations. For short and early time steps
coupled with a very low permeability, the solution to Equation (14) requires divergence-free
displacements close to the dissipation boundary and in the layer with the low permeability.
Requiring to satisfy this with equal order elements for displacement and pressure locks
out most of the displacement degrees of freedom leading to oscillations in the pressure
solution. Due to its high permeability, the fluid in the top layer dissipates very quickly for
the time step size considered here i.e., ∆t = 1s. The pressure oscillations start as soon as the
fluid in the low permeability layer starts dissipating. The results improve with increasing
polynomial degrees but some oscillations are still seen for a quartic solution space for the
pressure, pp = 4. The results with C0 continuities at the material interfaces improve slightly
better than with Cpp−1 continuity since a C0 continuity is a more accurate representation of
material interfaces. The pressure oscillations in the mixed simulations are less severe and
are localized at the boundary between the low permeability and bottom layers. These again
decrease with increasing polynomial degrees and a C0 continuity at the material interfaces.
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Figure 8. Numerical solution to the Haga problem using Ne = 60 uniform elements and ∆t = 1 s. All figures are shown after two time steps. On the left the mixed
order method, and on the right the equal order method. The continuity in the boundary layer is Cpp−1 in the top row, and C0 in the bottom row.
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Simulations with a graded mesh are also performed for the different combination of
polynomial degrees and interface continuities. The graded mesh is generated such that
more elements are concentrated at the material interfaces. The results from this case are
shown in Figure 9. The pressure oscillations in the equal order case improve significantly in
this case compared to the results from uniform mesh refinement. However, the oscillations
still occur throughout the low permeability layer. The equal order results for linear basis
functions show a slightly strange behavior in that the oscillations are lesser within the low
permeability layer than for higher order elements, but show slightly higher oscillations at
the top material interface. The results are again better with a C0 continuity at the material
interfaces. The mixed simulation results also improve with a graded mesh. Almost no
oscillations are noticed for combinations of higher polynomial degrees and C0 continuities
at the material interfaces.

To compare our IGA analysis results with standard finite elements, we refer to the
extensive finite element study on pressure oscillations presented in [28] where the low
permeability layer problem is one of the numerical examples investigated. Haga et al.
presented a systematic case study where they considered three different formulations for
the mathematical model of poroelasticity and several combinations of finite elements. The
mathematical formulations considered are (1) two-field formulation (displacement and
fluid pressure), similar to our paper, (2) three-field formulation (displacement, velocity
and fluid pressure) and (3) four-field formulation (displacement, soild pressure, velocity
and fluid pressure). These different formulations were numerically investigated using
several combinations of standard triangular and quadrilateral finite elements with different
combinations of polynomial orders or continuities for the field variables. Lagrangian,
Raviart–Thomas, Crouzeix–Raviart (triangular) and Rannacher–Turek (quadrilateral) el-
ements were used for the numerical studies. For the low permeability problem, and as
expected, equal order triangular and quadrilateral Lagrange finite elements (both first-
and second-order) were found to fail in removing pressure oscillations. Mixed triangular
and quadrilateral Lagrange elements (second-order for displacement and first-order for
fluid pressure) were found to improve the pressure solution, but local pressure spikes were
still exhibited. Satisfactory solutions were obtained only when using three- and four-field
formulations with different element types for the field variables for example when repre-
senting the velocity field with linear Raviart–Thomas elements where the displacement
and fluid pressure use second- and lowest-order triangular and quadrilateral Lagrangian
elements. Our IGA analysis results produced satisfactory results based on the two-field
formulation, without the need of introducing additional field variables and combinations
of finite element types for the field variables.
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Figure 9. Numerical solution to the Haga problem using a graded mesh with small elements near the boundary layer and ∆t = 1 s. All figures are shown after two
time steps. On the left the mixed order method, and on the right the equal order method. The continuity in the boundary layer is Cpp−1 in the top row, and C0 in the
bottom row.
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5. Conclusions

Mixed isogeometric analysis of poroelasticity is presented where different orders of
polynomials are used for the displacement and pore pressure field variables. Numerical
studies on Terzaghi’s classical one-dimensional consolidation problem and consolidation of
a layered soil with a middle low permeability layer are presented. The results from mixed
polynomial order simulations are compared with equal order analyses.

For Terzaghi’s one-dimensional consolidation problem, the pore pressure oscillations
are investigated when a time step size less than the critical value is used. The oscillations
were observed to be higher in the equal order simulations compared to the mixed order
results. The oscillations are not completely removed in the mixed isogeometric simulations
but it is observed that they tend to decrease with increasing polynomial orders for the pore
pressure. This is illustrated by the convergence of the relative L2 norm of the pore pressure
error for varying polynomial orders.

The low permeability layer problem showed similar trends in the pore pressure os-
cillations, i.e., the equal order simulations resulted in worse pore pressure oscillations
compared to the mixed results. Again, in both cases, the oscillations decreased with increas-
ing polynomial orders. The use of a graded mesh, where the knot spans are concentrated
at the interfaces between the low permeability and other layers, resulted in much lower
oscillations both in the equal order and mixed cases. This indicates the potential of adaptive
refinement for such class of problems.

Our isogeometric mixed finite elements with maximum continuity show superior
results compared to earlier studies of these problems using C0-continuous mixed Lagrange
finite elements. In particular, for the problem of consolidation of a very low permeability
layer, the improved performance of the isogeometric finite element formulation (due to the
higher regularity) is significant.
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