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Abstract—Collision avoidance is one of the main challenges in
the field of autonomous underwater vehicles (AUV). In this paper
a method for detecting obstacles is proposed, using a single-beam
mechanically scanning sonar, including planning of an optimal
path around the obstacles. Obstacle detection is achieved with
an inverse-sonar model updating a vehicle-fixed occupancy grid.
A new and obstacle-free path is planned using Voronoi diagrams
and Dijkstras algorithm. The path is smoothed using Fermats
spiral and a line of sight-guidance system with a time-varying
lookahead-distance as guidance. The method is implemented and
a full-scale test is performed from IKMs onshore control room on
a remotely operated vehicle (ROV) operating at Statoils Snorre
B oil field on the Norwegian Continental Shelf. The technology
is applicable to ROVs and AUVs in underwater operations.

Index Terms—obstacle detection, collision avoidance, path
planning, single-beam sonar

I. INTRODUCTION

Underwater vehicles and specifically remotely operated ve-
hicles (ROVs) are commonly used for Inspection, Maintenance
and Repair (IMR) missions in the oil and gas industry. This is
a cost-driven industry and advances in automation is key-factor
to reduce mission expenses. One of the main difficulties during
automated missions is the risk of collision. The collision
avoidance challenge is often solved using multi-beam sonars,
in a Simultaneous Localization And Mapping approach [6]
or with the image recognition based techniques [1]. By using
a single-beam sonar the costs can be significantly reduced.
The object detection challenge is thougher with single-beam
sonars, but can be solved with occupancy grids [4] or with a
potential field method [7]. In this paper, occupancy grids are
populated using the dynamic inverse-sonar model presented
in [9]. The detected obstacles are then used as input to an
online re-planning algorithm. This algorithm is motivated by
the work presented in [5].

II. SYSTEM DESCRIPTION

The system developed in this paper is tested on IKMs
Merlin UCV, Fig. 1, which is a work-class ROV permanently
situated at Statoils Snorre B oil field. However, the method is
applicable also to autonomous underwater vehicles (AUVs).
The ROV has a Doppler-velocity log aided INS system, which
together with a hydro-acoustic positioning system, situated at
the rig provides accurate attitude and position information.

The hydro-acoustic positioning system is a useful tool in the
verification of the system, even though it is not needed for the
algorithm.

Fig. 1. The Merlin UCV. The sonar position is highlighted in blue.

The ROV is equipped with a Tritech Super SeaKing sonar.
The mounting position of the sonar is highlighted in Fig.
1. The sonar is a single beam, mechanically scanning sonar,
which utilizes CHIRP technology with frequencies centred at
either 325 kHz or 675 kHz. During the the test the sonar
was running at a centre frequency of 675 kHz, which gives
a horizontal beam width of 1.5° and a vertical beam width
of 40°. The step between horizontal scans was 1.8°, which
causes a small gap between subsequent scans. An illustration
of the horizontal beam width, with three subsequent scans can
be seen in Fig. 2 and the vertical beam width, along with
the blind-spot can be seen in Fig. 3. The scanning speed of
the sonar was approximately 22.5°/s, which means that a full
180° scan takes 8 seconds. During the tests a cruising velocity
of 0.5 m/s was selected.

The ROV is operated from IKMs onshore control-room at
Bryne, Norway, which makes it accessible for testing of new
algorithms. The communication with the ROVs control system
and the sonar is performed with UDP-messages following a
binary protocol. The position updates are received as NMEA-



Fig. 2. Top view of the ROV. Beam width of sonar for three subsequent
scans.

Fig. 3. Vertical beam width of sonar with blindspot underneath.

messages.

III. METHODS AND IMPLEMENTATION

The collision avoidance system is divided into three mod-
ules. First, the obstacles are detected in the object detection
module. The detected obstacles are then passed on to the path
planning module, which checks for potential collision threats,
and calculates a new path if needed. The last module is the
guidance system. The three modules and the information flow
between them is shown in Fig. 4.

A. Obstacle Detection

A local vehicle-fixed and vehicle centred occupancy grid,
M(x, y) is used. Each cell in M(x, y) is assigned an initial
probability Pinitial and updated using a log-odds formulation
to reduce the computational impact.

Once new measurements are available from the sonar the
grid is updated using one of two possible methods. If there
is an obstacle present, the grid cells intersecting the sonar
cone is updated according to the dynamic inverse-sonar model
presented by [9]. When no obstacles are present, the grid is
updated with an inverse-sonar model described thoroughly in
[8]. The grid cells used in these updates has a lower resolution
M(x, y), to reduce the computational load.

Both methods are dependent on translation from the sonar
output to a possible obstacle. This is done with a dynamic
threshold, where the threshold value applied to the raw data
is tied to the dynamic range selected by the operator on the
sonar display, rather than a fixed value.

The grid is stored as a matrix of floating point values,
which is similar to the way digital images are represented. This
similarity makes it easy to use an image processing technique
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Fig. 4. Flowchart of the object detection and collision avoidance process.
The sharp-cornered boxes indicates a module, while the ones with rounded
corners represent functions/methods for the corresponding module.

called affine transformation to transform and rotate the grid in
an effective manner. The translation is performed each time
a position/relative position measurement is obtained, but very
small changes are saved for the next iteration.

The object detection procedure starts by applying a thresh-
old to M(x, y), resulting in a binary grid M(x, y)

B , which
is useful for finding the contours of the obstacles. In this
process, very small clusters of occupied cells are regarded as
false positives and thus disregarded. The rest of the contours
are regarded as possible objects. Another image processing
technique, called dilation is then applied to the contours, such
that a safety margin of a fixed distance is introduced. The con-
tours of the obstacles are then approximated as convex shapes
to reduce the number of input points to the path planning
module. A new binary grid C(x, y)

B is then constructed with
the convex shapes. C(x, y)

B is the basis for the incident-angle
calculation used in the dynamic inverse-sonar model and the
path planning module. The incident angle calculation finds the
part of the obstacle line that intersects the middle of the sonar
cone, and the angle is calculated as the angle between these
two lines.



B. Path Planning

The path planning module is split into two parts, where the
first part checks the current path for collisions and the second
part calculates a new path if necessary.

The collision check is archived by drawing the path, with
a safety-margin onto a binary grid, with the same resolution
as C(x, y)

B . A binary AND-check is then performed to detect
any overlaps by the detected obstacles and the path. This check
is relatively cheap computationally-wise and is run four times
a second if no collision is detected. If a collision is detected
the module will move on to the second step.

The re-planning uses the convex contour-approximations
from C(x, y)

B as generator points for a Voronoi diagram
(VD), as done by [5]. A VD is a tool for dividing space into a
set of regions, such that the borders of each region are as far
away from each generator point as possible. The borders make
the basis for the new path, but the unfeasible paths have to
be removed. This is done in the same manner as the collision
check. The borders do not contain the position of the vehicle,
or the destination point, which are inserted into the appropriate
regions and connected to the surrounding vertices. The end
point is selected as the first waypoint on the preplanned path
that is outside the region of the occupancy grid. In addition
another point is inserted in front of the vehicle, such that the
transition between paths can be as smooth as possible.

From the set of feasible paths, the shortest one is found
using Dijkstras algorithm. Dijkstras algorithm provides the
optimal path between two given nodes in the VD, but due
to the VD having a high density of nodes, the optimal path
may contain unnecessary nodes. These nodes are removed in
a two-step process: First all nodes that are close to colinear
are removed. The next step is to remove nodes giving a larger
clearance to the obstacle than necessary.

The new path still consists of straight line-segments, which
is a problem for underactuated vehicles, and unsuitable for
fully-actuated vehicles as a complete stop is needed. A suitable
method for ensuring a continuous curvature path is presented
by [2], where Fermats spiral is used for making a smooth
path. The path is then discretized to make it suitable for the
guidance system.

In some cases, with a very high obstacle density, the system
is not able to find a feasible path. In these cases, the last resort
is to halt the vehicle to a full stop, and afterwards slowly rotate
the vehicle to find a feasible path. The direction chosen for
rotation is based on the mean value of the starboard and port
parts of the occupancy grid.

C. Guidance

The Merlin UCV has a control system with several possible
configurations, where commands are sent as binary commands
over the network.

In this work the dynamic positioning (DP) system and a
heading/surge-controller are used. A LOS-controller is imple-
mented, following the procedure described in [3, Ch. 10], with
some modifications. The lookahead-distance is implemented

as a lookahead-time, such that lookahead-distance is a time-
varying parameter dependent on the vehicle velocity. The
region of acceptance is reduced if the curvature is large,
resulting in close waypoints.

The setpoint for the surge-controller is also time-varying.
When a new path is calculated, the guidance-system will
calculate the curvature for each path-segment-corner and sub-
sequently choose the correct velocity for the turn. As the
vehicle will need some time to reduce the velocity to the turn-
velocity a break-distance is implemented in the same manner
as the region of acceptance.

The guidance system tries to make the transition between
paths as smooth as possible, which means that as long as the
vehicle is on the new path, or sufficiently close to it, the
new path is started immediately. If these conditions are not
satisfied, the vehicle will stop and enter DP-mode to reach the
start of the new path.

IV. RESULTS

The system is first tested for object detection capabilities,
then the complete system is tested with pre-planned paths,
going straight through obstacles.

A. Obstacle Detection

In the first test the ROV was flown by a pilot, from the
garage, around a subsea-module and back again. The results
from this test can be observed in Fig. 5. A snapshot of the
detected obstacles is taken every 10 seconds and then plotted
in the same figure. The altitude of the ROV is controlled by

Fig. 5. Obstacle detection test. A map of the subsea structures are drawn in
as green lines and points.

the pilot and thus it appears to be flying straight through some
obstacles, such as the toolstand and Module A. In these cases,



the ROV was flying above them. The ROV is flying at a mean
altitude of approximately 2 meters until it reaches Module
C, then the mean altitude is increased to 3.5 meters for the
remainder of the flight. It can be observed that all obstacles
are clearly detected. It should be noted that there is some
drift in the position, which can be observed by looking at the
tool stand, which has changed location between the beginning
and the end. The detected obstacles appear larger than the
obstacles on the map, and this is due to a safety-margin of
two meters. It should also be noted that the algorithm has
some problems accurately detecting the south-side of Module
D. This is likely due to the high altitude and proximity to the
module, which causes the sonar to miss it completely. The
blindspot underneath the vehicle can be seen in Fig. 3.

B. Collision Avoidance

Several tests on collision avoidance are performed. All of
the tests start close to the garage, with a preplanned path.
The ROV was never able to reach the destination point due to
constraints with the tether and ongoing operations.

The results of the first test can be observed in Fig. 6-8. In
Fig. 6 the inital path can be observed. Soon after the vehicle
started on the inital path, Module B is detected and a new
path is calculated from the vehicles position to the end of
optimization point. It should be noted that this path takes the
vehicles current velocity into account, and thus the first turn is
quite sharp. In Fig. 7 a new obstacle is detected and a new path
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Fig. 6. Collision avoidance test. A map of the subsea structures are drawn
in as green lines and points. The initial path is marked as old path.

is calculated according to the known obstacles. The toolstand
and Module A is not detected due to the close proximity and
the altitude of the vehicle. The sharp turn between Module C
and D is due to an earlier recalculation of the path. It should
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Fig. 7. Collision avoidance test. A map of the subsea structures are drawn
in as green lines and points.

be noted that most of the obstacles in the sonars field of view
are detected. The only undetected obstacle is Module A (see
Fig. 5), which is due to proximity and altitude. The system
calculates a short deviation from the planned route, and is able
to avoid the obstacle before the new path rejoins the old one.

Right after the point where the optimization stops, between
Module 2 and 3, there is a sharp bend in the path. This is the
result of an earlier path recalculation. Since it is outside the
optimized region, it is not smoothed away before it is closer
to the optimized region.

In Fig. 8 the path is once again recalculated around the
obstacles. It should be noted that the path is further away from
the obstacle than necessary. There is also some smoothing
problems.

After the tests were done the algorithm was improved to
allow for better smoothing between the old and the new path,
as well making the new path closer to the obstacles. When
this improved algorithm was run on the test data shorter and
smoother paths were selected. This can be seen in Fig. 9 where
the test data from Fig. 8 is run through the improved algorithm.

The second test is made a few days later, with a different
configuration of the sonar. The sonar configuration is decided
by the pilot, and has implications for the effectiveness of the
algorithm. When looking at Fig. 10 it can be observed that
the obstacles appear smaller. This is due to the change in the
sonar receiver gains causing less distinguishable return echoes.
The initial and time variable receiver gains can be hard to
adjust. The system still manages to calculate a route around
the obstacles.
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Fig. 8. Collision avoidance test. A map of the subsea structures are drawn
in as green lines and points.
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Fig. 9. Collision avoidance test with improved path planning algorithm.
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Fig. 10. Second collision avoidance test. A map of the subsea structures are
drawn in as green lines and points.

V. DISCUSSION AND CONCLUSIONS

This paper has presented an effective method for detecting
obstacles using a single-beam sonar, as well as an effective
way of calculating a new obstacle-free path. A vehicle-fixed
local occupancy grid has several advantages over a global
map. The complexity is reduced, and thus calculation time
is significantly less. The major advantage is that the grid can
be completely decoupled from global positions. The changes
in position can then come from only a doppler-velocity log
and a compass.

The full-scale test showed that the system is capable of de-
tecting the obstacles in its path in an effective manner. A new
and obstacle-free path is calculated and executed. The full-
scale test showed that a mechanically-scanning singlebeam
sonar is adequate for detecting and avoiding obstacles.

The dependence on the sonar configuration is a problem that
should be addressed, either through making the detection al-
gorithm independent of the sonar configuration, or by making
an algorithm that can automatically tune the sonar.

This system only considers paths in the two-dimensional
space. Voronoi diagrams can easily be extended to work in a
3D-space, but this will most likely not be possible without the
use of extra sensors, such as a camera, an extra sonar or a
3D-sonar to extract information about the height of obstacles.
Adding data from a camera will also improve the detection
capabilities at a close range. The methods are applicable to
any underwater vehicle equipped with a single beam sonar,
as the field of view can be reduced to increase the scanning
velocity.
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