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Abstract
There is a need for reliable structural health monitoring (SHM) systems that can detect local and global structural dam-
age in existing steel bridges. In this paper, a data-based SHM approach for damage detection in steel bridges is presented. 
An extensive experimental study is performed to obtain data from a real bridge under different structural state conditions, 
where damage is introduced based on a comprehensive investigation of common types of steel bridge damage reported in 
the literature. An analysis approach that includes a setup with two sensor groups for capturing both the local and global 
responses of the bridge is considered. From this, an unsupervised machine learning algorithm is applied and compared with 
four supervised machine learning algorithms. An evaluation of the damage types that can best be detected is performed by 
utilizing the supervised machine learning algorithms. It is demonstrated that relevant structural damage in steel bridges can 
be found and that unsupervised machine learning can perform almost as well as supervised machine learning. As such, the 
results obtained from this study provide a major contribution towards establishing a methodology for damage detection that 
can be employed in SHM systems on existing steel bridges.

Keywords  Structural health monitoring (SHM) · Damage detection · Machine learning · Statistical model development · 
Receiver operating characteristics (ROC) curves · Experimental study · Bridge · Fatigue

1  Introduction

For bridges, structural health monitoring (SHM) systems 
provide information regarding the state of the bridge condi-
tion, with the aim of increasing the economic and life-safety 
benefits through damage identification. Many highway and 
railway bridges in Europe and the US, which experience 
increasing demands with respect to traffic loads and inten-
sity, are approaching or have exceeded their original design 
lives. A large part of these bridges are steel and composite 
steel–concrete bridges. Based on an overview and compre-
hensive investigation of the common damage types expe-
rienced by such bridges that are reported in the literature 
[1], it is found that most damages are caused by fatigue and 
most frequently occur in or below the bridge deck. With the 
large number of existing bridges in infrastructure, lifetime 

extension is the preferred option for ensuring continuous 
operation. Consequently, there is a need for reliable SHM 
systems that can detect both local and global structural dam-
ages in such bridges.

SHM is referred to as the process of implementing an 
automated and online strategy for damage detection in a 
structure [2, 3]. There are two main approaches in SHM: 
model-based and data-based [4, 5]. In the model-based 
approach, a numerical finite element model is continuously 
updated based on new measurement data to identify dam-
age. The data-based approach, however, builds a statistical 
model based on experimental data only and generally relies 
on, but are not limited to, machine learning algorithms for 
damage identification. Additionally, a hybrid approach to 
SHM can be made that takes principles from both the model-
based and data-based approaches into consideration. The 
analysis of the distributions of damage-sensitive features by 
machine learning algorithms, either supervised or unsuper-
vised learning algorithms, is referred to as statistical model 
development [6]. Here, and in the context of SHM, super-
vised learning refers to the situation where data are avail-
able from both the undamaged and damaged conditions of 
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the structure, whereas unsupervised learning refers to the 
situation where data are available only from the undam-
aged condition. For bridges in operation, data from both 
the undamaged and damaged conditions are rarely available, 
and consequently, unsupervised learning is often required. 
Furthermore, bridges are subjected to changes in operational 
and environmental conditions, which complicate the detec-
tion of structural damage. One of the fundamental chal-
lenges in SHM is the process of separating changes caused 
by operational and environmental conditions from changes 
caused by structural damage, referred to as data normali-
zation [7]. However, prior to including data normalization, 
principal knowledge about the damage detection possibilities 
of existing steel bridges must be established by consider-
ing relevant structural damage during stable operational and 
environmental conditions.

Applications of statistical model development have 
received increasing attention in the technical literature in 
recent years. In the absence of data from actual bridges, 
numerical models or test structures are commonly applied 
[8–11]. A significant contribution is the work performed 
by Figueiredo et al. [12], where damage detection under 
varying operational and environmental conditions is taken 
into consideration using the Los Alamos National Labora-
tory (LANL) test structure. Further work using the same 
test structure is performed by Santos et al. [13]. There are, 
however, inherent uncertainties in using a numerical model 
for damage detection, not only in the establishment of the 
numerical model itself but also in the modelling of structural 
damage. Similarly, damage introduced to laboratory test 
structures must be based on several assumptions and can, 
at best, be only a moderate representation of actual struc-
tural damage. Nevertheless, in the presence of data from 
actual bridges, important contributions to statistical model 
development related to damage detection studies on the Z24 
prestressed concrete bridge [14] have been reported [15–18]. 
These studies mainly investigate the effects of operational 
and environmental conditions on damage detection using 
natural frequencies as damage-sensitive features. However, 
the relevant structural damage introduced to this bridge is 
mostly applicable to concrete bridges. Similar works with 
other bridge applications that are considered important 
contributions within this topic are found in Refs. [19, 20]. 
Except for [14, 21–27], few experimental studies have been 
reported in the literature where relevant structural damage 
is imposed on bridges. Furthermore, there are currently no 
studies in the literature where statistical model development 
is performed based on experimental studies on steel bridges.

This paper presents a data-based SHM approach for dam-
age detection in steel bridges. The aim is to detect relevant 
structural damage based on the statistical model develop-
ment of experimental data obtained from different structural 
state conditions. The Hell Bridge Test Arena, a steel riveted 

truss bridge formerly in operation as a train bridge and 
therefore representative of the many bridges still in service, 
is used as a full-scale damage detection test structure [28, 
29]. An extensive experimental study is performed to obtain 
acceleration time series from the densely instrumented 
bridge under different structural state conditions during 
stable operational and environmental conditions. As such, 
relevant structural damage is implemented, the bridge is 
excited using a modal vibration shaker for simulating ambi-
ent vibration, and measurements are obtained from a setup 
containing two sensor groups to capture both the local and 
global responses of the bridge. The damage types chosen, 
including their locations, are based on the most common and 
frequently reported damage types in the literature: fatigue 
damage occurring in and below the bridge deck. The damage 
is considered highly progressed, representing loose connec-
tions and large cracks that open and close under dynamic 
loading. Autoregressive (AR) parameters are used as dam-
age-sensitive features. The use of AR parameters has proven 
to be beneficial mainly because they are sensitive to the non-
linear behaviour of damage [30], which is a typical behav-
iour resulting from fatigue damage. Statistical model devel-
opment is performed by considering both supervised and 
unsupervised machine learning. Four supervised machine 
learning algorithms are applied to test the abilities of differ-
ent machine learning algorithms to detect structural damage, 
learn the structure of the data and determine how well the 
different damage types can be classified. The Mahalanobis 
squared distance (MSD), shown to be a highly suitable data 
normalization approach in terms of strong classification per-
formance and low computational effort [12], is implemented 
as an unsupervised machine learning algorithm by novelty 
detection. Finally, the performances of the machine learning 
algorithms are assessed via both receiver operating charac-
teristics (ROC) curves and confusion matrices.

Two novel contributions to the field of SHM regarding its 
application to bridges are made in this paper. First, statistical 
model development provides insight into the performances 
of several supervised machine learning algorithms based 
on a unique dataset established from a real-world applica-
tion and allows for a study on the detectability of different 
damage types. Although these results have limited practical 
significance since data from both undamaged and damaged 
conditions are rarely available for bridges in operation, such 
information is invaluable for the SHM process and in the 
design of SHM systems. Second, a comparison between 
supervised and unsupervised learning algorithms is made. 
The implication of this insight provides a major contribu-
tion towards establishing a methodology for damage detec-
tion that can be employed in SHM systems on existing steel 
bridges.

The outline of this paper is as follows. Section 2 pro-
vides a description of the experimental setup, including the 
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damage introduced to the bridge and the operational and 
environmental conditions experienced during the measure-
ments. Section 3 describes the feature extraction and the 
process of selecting the appropriate AR model order in 
addition to giving a brief overview of the supervised and 
unsupervised machine learning algorithms applied in this 
study. Section 4 presents the utilized analysis approach and 
the results obtained from the statistical models developed 
using the supervised and unsupervised machine learning 
algorithms. Finally, Sects. 5 and 6 summarize the work, dis-
cuss the analysis results obtained and suggest further work.

2 � Experimental study

2.1 � Experimental setup

The Hell Bridge Test Arena, shown in Fig. 1, is used as 
a full-scale damage detection test structure. The structural 
system of the bridge is composed of two bridge walls, the 
bridge deck and the lateral bracing. Figure 2 shows a sche-
matic overview of the bridge.

An instrumentation system from National Instruments 
consisting of three cRIO-9036 controllers was used to 

Fig. 1   The Hell Bridge Test 
Arena

(a) (b)

Fig. 2   Overview of the Hell Bridge Test Arena. a Bridge layout, including the locations of the modal vibration shaker (MVS) and sensors. b 
Damage introduced to the bridge deck and lateral bracing
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acquire data from 58 accelerometers. The accelerometers 
were divided into a setup containing two sensor groups. 
Sensor group 1 consisted of 40 single-axis accelerometers 
(Dytran 3055D3) located below the bridge deck to measure 
the vertical response (global z-direction). Sensor group 2 
consisted of 18 triaxial accelerometers (Dytran 3583BT and 
3233A) located above the bridge deck, i.e. on the bridge 
walls, to measure the lateral and vertical responses (global 
y and z-directions). Data were sampled at 400 Hz. The data 
were detrended, filtered and resampled to 100 Hz before 
they were used for analysis. The bridge was excited in the 
vertical direction using a modal vibration shaker (APS 420) 
located at the bridge midspan. A band-limited random white 
noise in the range of 1–100 Hz with a maximum peak-to-
peak excitation amplitude (stroke) of 150 mm was applied 
to simulate ambient vibration. The location of the modal 
vibration shaker and the sensor positions on the bridge are 
shown in Fig. 2a.

Ten different structural state conditions were consid-
ered, as summarized in Table 1. The structural state con-
ditions were categorized into two groups: undamaged and 
damaged states. In the first group, the reference structural 
state of the bridge was represented by the baseline con-
dition. Two baseline conditions were established under 
similar environmental conditions. In the second group, the 
damage states of the bridge were represented by different 

damage types with varying degrees of severity. Alto-
gether, eight different damage states were established by 
considering four different damage types: stringer-to-floor 
beam connections; stringer cross beams; lateral bracing 
connections; and connections between floor beams and 
main load-carrying members. The variation in the degree 
of severity was considered by introducing each damage 
type at one or more locations in the bridge. The damage 
states were established consecutively in a sequence: dam-
age was introduced, measurements were performed, and 
the damage was subsequently repaired. The damage types 
were chosen based on two considerations: first, these are 
the most common and frequently reported damage types in 
the literature [1]; and second, these are the most severe but 
relevant damage types for this type of bridge. An overview 
of the damage types introduced in the bridge, including 
their locations, is shown in Fig. 2b.

The damage types, shown in Fig. 3, were imposed by 
temporarily removing the bolts. All bolts were removed in 
each damage state condition. The damage types considered 
involved highly progressed damage, representing loose con-
nections and large cracks that open and close under dynamic 
loading. As such, each damage represented a fully developed 
crack resulting from fatigue, leading to a total loss of func-
tionality of the considered connection or beam. Such damage 
progression, which leads to a redistribution of forces, would 

Table 1   Overview and descriptions of the structural state conditions

1 Local: damage to the secondary steel structure. Global: damage to the primary steel structure

Label State condition Categorization1 Type Description

UDS1 Undamaged – Baseline condition Before all damage state conditions
UDS2 Undamaged – Baseline condition After all damage state conditions
DS1 Damaged Local Stringer-to-floor beam connection Single connection damaged
DS2 Damaged Local Stringer-to-floor beam connection Multiple connections damaged
DS3 Damaged Local Stringer cross beam Main part of single cross beam removed
DS4 Damaged Local Stringer cross beam Main parts of multiple cross beams removed
DS5 Damaged Global Lateral bracing connection Single connection damaged
DS6 Damaged Global Lateral bracing connection Single connection damaged
DS7 Damaged Global Lateral bracing connection Multiple connections damaged
DS8 Damaged Global Connection between floor beam and 

main load-carrying member
Single connection damaged

Fig. 3   The damage types 
imposed on the bridge. a 
Stringer-to-floor beam connec-
tion. b Stringer cross beam. c 
Lateral bracing connection. d 
Connection between floor beam 
and main load-carrying member
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be demanding on the structure over time but not critical to 
the immediate structural integrity due to the redundancy 
inherent in the design of the bridge. Details regarding the 
damage types, including the associated mechanism, can be 
found in Ref. [1].

80 tests were performed for each state condition, result-
ing in a total of 800 tests. For each test, time series data 
were generated over 10.24 s, and data were obtained from 
a total of 75 sensor channels (40 channels from sensor 
group 1 and 35 channels from sensor group 2). It is noted 
that one channel in the lateral direction from sensor group 
2 was excluded. Accelerometers were included in sensor 
groups 1 and 2 to capture the local and global responses 
of the bridge, respectively.

2.2 � Operational and environmental conditions

Variability in the operational and environmental condi-
tions imposes difficulties on the damage detection pro-
cess. In general, operational conditions mainly include live 
loads, whereas environmental conditions include tempera-
ture effects, wind loading and humidity. During the meas-
urements, no sources of variability were considered for the 
operational condition, which was limited to the operation 
of the modal vibration shaker only. The environmental 
conditions were logged during the measurements and are 
summarized in Table 2.

The environmental conditions were stable during the 
measurement period, which gives confidence that any 
changes observed in the results are caused by the damage 
imposed in the different damage states. An increase in the 
temperature occurred during the testing of DS3 and DS4; 
however, this temperature change was found to have little 
impact on the damage detection process.

3 � Feature extraction and machine learning 
algorithms

3.1 � Feature extraction

In the context of SHM, machine learning is applied to asso-
ciate the damage-sensitive features derived from measured 
data with a state of the structure; the basic problem is to 
distinguish between the undamaged and damaged states. In 
this study, an AR model is used to extract damage-sensitive 
features from time series data. For a specific time series, the 
AR(p ) model of order p is given as [31]

where yt is the measured response signal, �j denotes the 
AR parameter(s) to be estimated and �t is the random error 
(residual) at the time index t . The use of AR parameters has 
proven useful for SHM applications regarding civil infra-
structure mainly for three reasons [12, 30]: first, the param-
eters are sensitive to the nonlinear behaviour of damage, 
which is a typical behaviour resulting from fatigue damage; 
second, feature extraction depends only on the time series 
data obtained from the structural response; and third, the 
implementation is simple and straightforward.

To determine the appropriate order for a time series, two 
model selection criteria are commonly used: the Akaike 
information criterion (AIC) and the Bayesian model crite-
rion (BIC). The AR model with the lowest AIC or BIC value 
gives the optimal order p.

3.2 � AR model order selection

To find a common AR model order that can be applied to 
all time series, a model selection evaluation is performed. 
Analyses are performed for a selection of time series by con-
sidering the AIC and BIC values obtained by AR(p ) models 
of increasing order p . The root mean square (RMS) values 
of the residuals are also considered as a heuristic approach, 
where the residuals are the differences between the model’s 
one-step-ahead predictions and the real values of the time 
series. The results are based on the average results of all 
sensor channels, which are obtained by performing analy-
ses of 80 tests in the undamaged state condition (40 tests 
from UDS1 and UDS2, respectively). Analyses of the AR 
parameters are performed using the statsmodels module in 
Python [32].

Figure 4 shows the results obtained by considering the 
normalized AIC and BIC values in addition to the RMS val-
ues of the residuals. The optimal order, p , is determined by 
the lowest values or by the convergence point of the values 

(1)yt =

p
∑

j=1

�jyt−j + �t,

Table 2   Environmental conditions during the measurement period

State Temperature (°C) Wind 
speed 
(m/s)

Weather

UDS1 10–11 1–2 Cloudy
UDS2 13 0–2 Partly cloudy and sunny
DS1 14 0–2 Partly cloudy and sunny
DS2 13 0 Partly cloudy and sunny
DS3 21 0–2 Sunny
DS4 22 0–2 Sunny
DS5 13 0–2 Partly cloudy and sunny
DS6 13 0–2 Partly cloudy and sunny
DS7 13 0–2 Partly cloudy and sunny
DS8 11 0–2 Partly cloudy and sunny
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for a varying order. It is observed that the curves generally 
follow each other well and that the curves decrease rapidly 
for the lowest model orders. Although the AR models of 
order 8 or higher prove to be close to optimal representa-
tions of the time series, a lower-order model is used in this 
study. The choice of AR model order is important, not only 
because the optimal order provides the best representation 
of the time series but because the AR parameters are used 
as inputs for the machine learning algorithms in a concate-
nated format, affecting the dimension of the feature space. A 
high AR model order increases the dimension of the feature 
space. Consequently, there is a trade-off between obtain-
ing the optimal time series representation and reducing the 
uncertainty of dealing with high-dimensional data. Data 
with high dimensionality may lead to problems related to 
the curse of dimensionality [33]; as the feature space dimen-
sion increases, the number of training samples required to 
generalize a machine learning model also increases dras-
tically. Although a lower-order model is arguably not the 
optimal representation, it can still provide a good representa-
tion of the time series for use with all state conditions, and 
it reduces the uncertainty associated with high-dimensional 
data for the considered analysis approach. Therefore, for 
each test of each state condition, AR(5) models are estab-
lished for the time series obtained from all sensor channels. 
The features are used as inputs to the machine learning algo-
rithms for supervised and unsupervised learning.

3.3 � Supervised learning

For supervised learning, a training matrix � ∈ ℝ
n×k with n 

samples and k features and a test matrix � ∈ ℝ
m×k with m 

samples are composed of data from both the undamaged and 
damaged conditions. The target variable � ∈ ℕ

n×1 is a vec-
tor composed of the class labels y . �i ∈ ℝ

1×k and �i ∈ ℝ
1×k 

denote arbitrary samples with an index i from the training and 

test matrices, respectively, with a corresponding class label yi . 
Note that k here is the total number of features to be included.

Supervised machine learning algorithms are considered 
for group classification only. The supervised machine learn-
ing algorithms are applied to test the abilities of different 
machine learning algorithms to detect structural damage, learn 
the underlying structure of the data and determine how well 
the different damage types can be classified. For this purpose, 
four common supervised machine learning algorithms are 
chosen: the k-nearest neighbours (kNN), the support vector 
machine (SVM), the random forests (RF) and the Gaussian 
naïve Bayes (NB) algorithms. Each algorithm yields different 
properties with respect to complexity, computational efficiency 
and performance in terms of the size of the training data and 
dimensionality of the feature space. In the context of SHM, 
the presented algorithms have never before been applied in 
supervised learning for damage detection on actual bridges, 
and only a few applications have been reported with respect to 
numerical studies or experimental studies using test structures 
[34, 35]. The theoretical backgrounds of the presented algo-
rithms can be found in Refs. [36, 37], and practical examples 
(including implementations) can be found in Refs. [38, 39].

3.4 � Unsupervised learning

For unsupervised learning, a training matrix � ∈ ℝ
n×k with n 

samples and k features is composed of data from the undam-
aged condition only, and a test matrix � ∈ ℝ

m×k with m sam-
ples is composed of data from both the undamaged and dam-
aged conditions. Unsupervised learning by novelty detection 
is implemented to take into consideration that data from the 
structure are generally only available in the undamaged condi-
tion. Novelty detection occurs when only training data from 
the undamaged state condition, i.e. the normal condition, are 
used to establish if a new sample point should be considered 
as different (an outlier). Consequently, if there are significant 
deviations, the algorithm indicates novelty. For SHM applica-
tions, several unsupervised machine learning algorithms have 
been reported in the literature [8, 12, 13, 17, 18, 34]. However, 
the MSD is found to be a highly suitable data normalization 
approach in terms of strong classification performance and low 
computational effort [12].

The MSD is a normalized measure of the distance between 
a sample point and the mean of the sample distribution and is 
defined as

where �i ∈ ℝ
1×k is the new sample point and potential out-

lier, � ∈ ℝ
1×k is the mean of the sample observations (sam-

ple centroid) and � ∈ ℝ
k×k is the covariance matrix. Both � 

and � are obtained from the training matrix � . The MSD is 
used as a damage index, which is denoted as DI.

(2)DIi =
(

�i − �
)

�−1
(

�i − �
)T
,

Fig. 4   Average AIC, BIC and RMS values for AR(p ) models of 
increasing order p from all sensor channels for a selection of time 
series from the undamaged state condition
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To determine if a sample point is an inlier or outlier, 
a threshold value can be established using Monte Carlo 
simulations. The procedure of this method is adopted from 
Ref. [40] and summarized by the following steps for a 1% 
threshold:

1.	 A (n × k) matrix is constructed, where each element is a 
randomly generated number from a normal distribution 
with zero mean and unit standard deviation. The MSD 
for all n samples is calculated and the largest value is 
stored.

2.	 Step 1 is repeated for a minimum of 1000 trials. The 
array with all of the largest MSD values is structured in 
descending order.

3.	 The threshold value is established by considering the 
MSD values in the structured array in which 1% of the 
trials occur.

The threshold value is dependent on the numbers of 
observations and dimensions for the considered case.

4 � Experimental analysis and results

4.1 � Analysis approach

In the analysis approach used in this study, all sensor chan-
nels from each sensor group are taken into consideration 
simultaneously. The features are concatenated and applied 
as inputs for the machine learning algorithms. Hence, the 
setups for sensor groups 1 and 2 yield feature vectors with 
dimensions of 200 (40 × 5) and 175 (35 × 5) , respectively. 
Statistical model development is performed based on the 
experimental study using both supervised and unsupervised 
learning for each setup separately.

4.2 � Supervised learning

In supervised learning, labelled data are available. The 
supervised machine learning algorithms presented in 
Sect. 3.3 are implemented. The features are scaled to zero 
mean and unit variance for the algorithms, where relevant, 
to improve their performances.

The data are divided into 75% for training and 25% for 
testing. Consequently, the training matrix � has dimen-
sions of 600 × 200 and 600 × 175 for sensor groups 1 and 2, 
respectively. The two baseline conditions (UDS1 and UDS2) 
are merged for the undamaged state condition (UDS) and 
include a total of 120 tests, whereas 60 tests are included for 
each damage state condition (DS1–DS8). Hence, a total of 
nine different class labels are included for evaluation. To find 
the optimal hyperparameters and increase the abilities of the 
machine learning algorithms to generalize to unseen data, 
a grid search with fivefold cross-validation is performed on 
the training data. The grid search conducts an exhaustive 
search over the specified hyperparameters to obtain the best 
cross-validation score. The hyperparameters of each algo-
rithm, together with the final values obtained from the grid 
search, are summarized in Table 3. The test matrix � has 
dimensions of 200 × 200 and 200 × 175 for sensor groups 1 
and 2, respectively. Since the undamaged state condition is 
merged, it includes a total of 40 tests, whereas 20 tests are 
included for each damage state condition. For evaluation 
purposes, each sample from the test data is classified into 
one of the nine classes, resulting in a multi-class classifica-
tion approach.

To evaluate the performances of the machine learning 
algorithms, also referred to as classifiers, ROC curves are 
established. The ROC curves represent the relative trade-offs 
between true positives (TP), or the probability of detection, 
and false positives (FP), or the probability of a false alarm 

Table 3   Specified hyperparameters for the supervised machine learning algorithms

The final values of the hyperparameters are provided in parentheses for sensor groups 1 and 2. Details of the hyperparameters are specified in 
[38, 39]
1 The kernel coefficient is not applicable (NA) for the linear kernel
2 One parameter can be tuned in the NB algorithm; however, the default value was chosen

Algorithm Hyperparameters

Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5

SVM Regularization strength
(0.1, 0.01)

Kernel type (linear, linear) Kernel coefficient (NA, NA)1 – –

RF Number of trees (200, 100) Node impurity criterion
(Entropy, Gini)

Maximum tree depth
(10, 6)

Minimum 
leaf node 
samples

(4, 4)

Maximum number of 
features for best split 
(14, 7)

NB2 – – – – –
kNN Number of neighbours

(1, 5)
Leaf size
(1, 1)

Parameter for the Minkowski 
metrics (1, 1)

– –
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[41]. Figure 5 shows the averaged ROC curves, including 
the areas under the curves (AUCs), by considering all the 
classifiers for sensor groups 1 and 2. Each averaged ROC 
curve represents the micro-average of all classes, i.e. the 
contributions from all classes are aggregated to compute the 
average. To compare the classifiers, the ROC performances 
are reduced to scalar AUC values that represent the expected 
performances. Hence, a perfect classification is represented 
by the point (0, 1) with an AUC value of 1.0. Consequently, 
from the plots shown in Fig. 5, it is concluded that all classi-
fiers perform well; however, the SVM outperforms the other 
classifiers and obtains perfect classification results for both 
sensor groups.

To obtain a more detailed view of the results, nor-
malized multi-class confusion matrices for each classi-
fier are established and shown in Fig. 6. By considering 
both sensor groups, it is clearly observed that the class 
labels are mostly incorrectly classified within each dam-
age type, with a few exceptions. In particular, damage in 
the stringer cross beams, represented by the class labels 
DS3 and DS4, and damage in the lateral bracing connec-
tions, represented by DS5, DS6 and DS7, represent the 
majority of the incorrect predictions made. Accordingly, 
DS3 is incorrectly classified as DS4 or vice versa, and 
DS5 is incorrectly classified as DS6 or DS7, or vice versa. 
Interestingly, the stringer-to-floor beam connection type of 
damage, represented by DS1 and DS2, and the connection 
between floor beam and main load-carrying member type 
of damage, represented by DS8, are correctly classified 
by all classifiers. It is also observed that the naïve Bayes 
classifier performs worst for the stringer cross beam and 
lateral bracing connection types of damage relative to all 
classifiers, which is not very well reflected in the aver-
aged ROC curves. There are two main explanations for 
the results obtained. First, damage in the stringer cross 

beams is categorized as local damage, and consequently, 
it is expected that introducing this type of damage gener-
ally has little influence on the structural response and thus 
makes it difficult to classify. Second, damage in the lat-
eral bracing connections is categorized as global damage 
and is expected to have a global effect, rather than a local 
effect, on the structural response. Additionally, these two 
damage types influence the structural response mainly in 
the lateral direction of the bridge, which also explains the 
differences in the results obtained between sensor groups 
1 and 2, since sensor group 1 only measures the response 
in the vertical direction.

An important part of the statistical model development 
process for supervised learning is to characterize the type 
of damage that can best be detected. Information regarding 
the damage types that are most difficult to detect when using 
the analysis approach considered is valuable information for 
bridge owners. In doing so, the true positive rate (TPR) (or 
recall) and positive predictive value (PPV) (or precision) are 
good measures. These measures are defined as

where TP denotes the true positives, FN represents the false 
negatives and FP signifies the false positives for a specified 
class. The TPR measures the proportions of correctly iden-
tified positives, whereas PPV measures the proportions of 
positive results. Additionally, the F1 score is the harmonic 
mean of the recall and precision. Table 4 summarizes the 
mean values of the TPR , PPV and F1 scores of the four clas-
sifiers for all class labels.

(3)TPR =
TP

TP + FN
,

(4)PPV =
TP

TP + FP
,

(a) (b)

Fig. 5   Averaged ROC curves for the machine learning algorithms. a Sensor group 1. b Sensor group 2
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From the results obtained, and by specifically consider-
ing the TPR , it is concluded that, on average, damage in 
the stringer-to-floor beam connections and the connection 
between floor beam and main load-carrying member are 
classified best, followed by damage in the stringer cross 

beams and the lateral bracing connections. Furthermore, 
a higher degree of stringer cross beam damage (DS4) is 
classified better than a lower degree (DS3); however, a 
similar conclusion cannot be made about the damage in the 
lateral bracing connections, with no obvious explanation. 

Fig. 6   Normalized confusion 
matrices obtained from super-
vised learning by considering 
both sensor groups. For each 
confusion matrix, the predicted 
label is on the x-axis, and the 
true label is on the y-axis
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Nevertheless, and most importantly, by using an appropri-
ate classifier, such as the SVM, all damages can be cor-
rectly classified. The results from the SVM, based on the 
grid search, were obtained using a linear kernel for both 
sensor groups, proving that the dataset is linearly separable.

4.3 � Unsupervised learning

In unsupervised learning, no labelled data are available. The 
MSD algorithm presented in Sect. 3.4 is implemented as a 
novelty detection method.

To obtain a reasonable amount of data from the undam-
aged state condition, the training matrix � is based on the 
measured data with a level of noise added. Thus, to estab-
lish the training matrix, 80 tests from the undamaged state 
condition are used as basic training data, i.e. 40 tests from 
each of the two baseline conditions (UDS1 and UDS2). The 
basic training data are copied 20 times, and each copy is 
subsequently corrupted with white Gaussian noise. Noise is 
added with a signal-to-noise ratio (SNR) equal to 20 using 
the definition

where � is the mean of the absolute value of each individ-
ual feature considering all the samples in the basic training 
data and � is the standard deviation (or RMS) of the noise. 
Notably, the statistics of each feature in the feature vector 
are taken into consideration during noise generation. The 
result is a suitable mean vector � and covariance matrix � 
representing the undamaged state condition. Adding training 
data corrupted with noise improves and stabilizes the MSD 
algorithm and is found to be a good solution in situations 
where adequate measured training data are not available 
[40]. Consequently, the training matrix � has dimensions 
of 1600 × 200 and 1600 × 175 for sensor groups 1 and 2, 
respectively. The test matrix � is composed of the remaining 
data from the undamaged state condition (UDS), i.e. 80 tests 
from the two baseline conditions (UDS1 and UDS2), and 80 

(5)SNR =
�

�
,

tests from each of the damage state conditions (DS1–DS8). 
Thus, the test matrix has dimensions of 720 × 200 and 
720 × 175 for sensor groups 1 and 2, respectively. For evalu-
ation purposes, each sample from the test data is classified 
as either undamaged or damaged, resulting in a binary clas-
sification approach.

Figure  7 shows the ROC curves for the MSD algo-
rithm, including the AUC values, obtained by considering 
both sensor groups. From this figure, it is concluded that 
the algorithm performs well: good classification results 
are obtained for sensor group 1, and perfect classification 
results are obtained for sensor group 2. The performance of 
the classifier regarding the 1% threshold is shown in Fig. 8, 
where the damage indices (DIs) from the state conditions 
are established for both sensor groups. Additionally, the 
state conditions of the respective test numbers are added for 
informative purposes at the top of the plots. In the binary 
classification approach, FP (false positive indications of 
damage) and FN (false negative indications of damage) are 
referred to as Type I and Type II errors, respectively. Type I 
errors are observed in all the tests based on the undamaged 
state condition (black markers) that are above the threshold, 

Table 4   Mean values of the 
TPRs, PPVs and F1 scores of 
the four classifiers

Class label Sensor group 1 Sensor group 2

TPR PPV F1 score TPR PPV F1 score

UDS 0.957 0.958 0.956 1.000 0.988 0.994
DS1 1.000 1.000 1.000 1.000 1.000 1.000
DS2 1.000 1.000 1.000 1.000 1.000 1.000
DS3 0.805 0.836 0.811 0.938 1.000 0.966
DS4 0.822 0.827 0.820 1.000 0.967 0.983
DS5 0.790 0.837 0.808 0.976 1.000 0.988
DS6 0.752 0.709 0.722 1.000 0.983 0.991
DS7 0.718 0.733 0.722 0.985 1.000 0.992
DS8 1.000 1.000 1.000 1.000 1.000 1.000

Fig. 7   ROC curves yielded by the MSD algorithm by considering 
both sensor groups
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whereas Type II errors are observed in all the tests based on 
the damaged state condition (grey markers) that are below 
the threshold. For quantification purposes, these errors are 
summarized in Table 5 for both sensor groups with respect 
to the considered thresholds.

The results show that the setup for sensor group 1 yields 
the best performance with regard to avoiding false positive 
indications of damage (6.3%). The setup for sensor group 2 
has a very low performance regarding false positive indica-
tions of damage (48.8%); however, it has an excellent per-
formance when detecting damage (0.0%). Overall, the total 
misclassification rate obtained is lower for sensor group 1 
(4.3%) than for sensor group 2 (5.4%). Nonetheless, these 
are good results for a novelty detection method. Addition-
ally, an interesting observation in Fig. 8a is the clear trend 
showing that larger degrees of severity for each damage type 
also provide generally larger damage indices: DS2 > DS1, 
DS4 > DS3 and DS7 > DS6 and DS5. Although this is not 
observed in Fig. 8b, it clearly shows that the MSD algorithm 
performs well, particularly for the sensor group 1 setup.

4.4 � Sensitivity analysis

To investigate the effect of a dense sensor network on the 
classification results, a sensitivity analysis is performed in 

the unsupervised learning with a reduced number of sen-
sors in sensor group 1. Two cases are considered. In case 
1, the sensors located in positions P1 and P2 in the longitu-
dinal direction of the bridge are included, shown in Fig. 2, 
whereas the sensors in positions P3 and P4 are included in 
case 2. As such, only 20 sensors are included in each case, 
and the sensors located closest to the damage state condi-
tions DS1, DS2 and DS8 are included in case 1. Figures 9 
and 10 show the ROC curves and performance of the classi-
fier regarding the 1% threshold for both cases, respectively. 
The Type I and II errors are summarized in Table 6.

From the results obtained, and through a comparison with 
the original case in sensor group 1 where all sensors are 
included, the effect of a dense sensor network can be clearly 
observed. Particularly, two important observations are made. 
First, although the performance regarding false negative 
indications of damage for case 1 (22.0%) is higher than that 

(a) (b)

Fig. 8   Damage indices (DIs) yielded by the MSD algorithm for the undamaged (black) and damaged (grey) state conditions with respect to the 
threshold value (dashed line) established from the Monte Carlo simulations. a Sensor group 1. b Sensor group 2

Table 5   Type I and II errors for both sensor groups yielded by the 
MSD algorithm

Setup Error

Type I (FP) Type II (FN) Total

Sensor group 1 5 (6.3%) 26 (4.1%) 31 (4.3%)
Sensor group 2 39 (48.8%) 0 (0.0%) 39 (5.4%)

Fig. 9   ROC curves yielded by the MSD algorithm by considering 
both cases in sensor group 1
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for case 2 (15.8%), case 1 shows more distinct results for 
damage state conditions DS1, DS2 and DS8 than case 2. 
These results indicate the positive effect of sensors being 
located near the damage locations. Second, the total misclas-
sification rates of cases 1 (19.7%) and 2 (14.2%) are higher 
than that in the original case (4.3%). The low performance 
of both cases regarding outliers, or false negative indications 
of damage, is more unfavourable than that of incorrectly 
diagnosing inliers, or false positive indications of damage. 
Hence, reducing the number of sensors drastically increases 
the false negative indications of damage, which clearly dem-
onstrates the importance of a dense sensor network.

5 � Summary and discussion

From the statistical model development in supervised learn-
ing, three major observations are made. First, relevant struc-
tural damage in steel bridges can, in fact, be found. More 
specifically, by considering the hierarchical structure of 
damage identification [3, 42], level I (existence) and level 
III (type) damage detection can be performed. Second, how 
well structural damage can be classified strongly depends on 
the machine learning algorithm being applied. The machine 

learning algorithms perform differently; however, the SVM 
achieves perfect classification results and outperforms the 
other algorithms, including those that can capture complex 
nonlinear behaviours. Third, a study on the detectability of 
the different damage types, based on the average perfor-
mances of the classifiers, shows that damage to the lateral 
bracing connections is most often misclassified, followed by 
damage to the stringer cross beams. The other damage types 
are perfectly classified and represent the damage types that 
can best be detected. Such information is invaluable for the 
design of SHM systems with respect to instrumentation setup 
and sensor placement, and it provides insight into which 
damage types can generally be expected to be difficult to 
detect and those that are not for a similar analysis approach.

Data from both the undamaged and damaged conditions 
are generally not available for bridges in operation. Hence, 
unsupervised learning is required, where data from only 
the undamaged condition are available. Consequently, the 
results obtained from unsupervised learning are emphasized 
in this study. From the statistical model development, it is 
observed that the MSD algorithm performs well for the con-
sidered analysis approach with respect to minimizing the 
number of both false positive and false negative indications 
of damage. This algorithm has a high classification perfor-
mance, is computationally efficient, and does not require any 
assumptions or tuning of parameters, although training data 
are added numerically to obtain improved performance. As 
such, the results obtained in this study, particularly by com-
paring supervised and unsupervised learning, are of major 
importance. Specifically, the unsupervised learning algo-
rithm performs almost equally as well as the best supervised 
learning algorithms. This not only demonstrates that relevant 
structural damage in steel bridges can be classified using 

(a) (b)

Fig. 10   Damage indices (DIs) yielded by the MSD algorithm for the undamaged (black) and damaged (grey) state conditions with respect to the 
threshold value (dashed line) established from the Monte Carlo simulations. a Case 1 in sensor group 1. b Case 2 in sensor group 1

Table 6   Type I and II errors for both cases in sensor group 1, includ-
ing the original case, yielded by the MSD algorithm

Case Error

Type I (FP) Type II (FN) Total

Original 5 (6.3%) 26 (4.1%) 31 (4.3%)
Case 1 1 (1.3%) 141 (22.0%) 142 (19.7%)
Case 2 1 (1.3%) 101 (15.8%) 102 (14.2%)
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unsupervised learning but also shows that a methodology 
for damage detection can be employed on existing bridges.

In this study, variability in the operational and environ-
mental conditions was not taken into consideration using data 
normalization. To include data normalization, a larger vari-
ability in the environmental conditions than that experienced 
during the measurements is needed for the baseline data that 
represent the undamaged state condition. As such, periodic 
measurements that take all seasonal variations into considera-
tion should be a minimum requirement. This is not included in 
the scope of this study, and future work should assess whether 
changes caused by damage can be separated from changes 
caused by any operational and environmental conditions. Such 
an assessment will reduce the uncertainty in the process of 
damage state assessment. Furthermore, it is acknowledged 
that for a future assessment based on long-term monitoring 
where data normalization is included, unsupervised learning 
methods, such as the auto-associative neural network (AANN) 
and Gaussian mixture models (GMMs), should be considered, 
particularly in the presence of nonlinear effects caused by var-
iability in the operational and environmental conditions [17].

There are several advantages of the analysis approach pre-
sented in this study. The approach is computationally efficient 
from a machine learning perspective because many sensors 
can be evaluated simultaneously. Consequently, both super-
vised and unsupervised learning (novelty detection) can easily 
be performed. Furthermore, the approach allows for level I 
(existence) and level III (type) damage detection (the latter is 
only for supervised learning) but limits the possibility of per-
forming level II (location) damage detection in unsupervised 
learning due to the large number of sensors widely distrib-
uted over the structure. The importance of a large number of 
sensors in a dense sensor network is demonstrated through a 
sensitivity analysis. The dense sensor network ensures a low 
total misclassification rate and enhances the damage detection 
capabilities. The main disadvantage of the analysis approach, 
however, is the high dimension of the feature space, which 
limits the number of features that can be included per sensor 
channel. From a general perspective, this limitation can be 
solved by increasing the number of samples in the training 
data or by performing dimension reduction techniques. From 
the results obtained in this study, despite this limitation, dam-
age detection can still be successively performed.

AR parameters were found to be excellent damage-sen-
sitive features in this study, and an AR(5) model was con-
sidered adequate. A low-order model was primarily used to 
reduce the dimension of the feature space for the analysis 
approach considered but also because low variations in the 
environmental and operational conditions were experienced 
during the measurements. The AR(5) model was able to cap-
ture the underlying dynamics of the structure and to accu-
rately discriminate the undamaged and damaged states when 
applied as inputs for the machine learning algorithms under 

both supervised and unsupervised learning. However, it is 
important to note that environmental and operational condi-
tions can introduce changes in the structural response. Fur-
thermore, such changes can mask changes in any responses 
related to damage when a low model order is used, as shown 
by Figueiredo et al. [30]. This awareness is needed when 
using low-order models. Increasing the model order can eas-
ily be done when appropriate training data are available.

As a final note, the dataset used in this study was a result 
of measurements obtained using a dense instrumentation 
setup that was widely distributed over the structure, to cap-
ture both the local and global structural responses. Addition-
ally, different damage types and degrees of severity were con-
sidered, and the operational and environmental conditions 
were logged. Consequently, the dataset obtained is unique in 
the context of performing damage detection in steel bridges.

6 � Conclusion

The primary motive of SHM is to design a system that mini-
mizes false positive indications of damage for economic and 
reliability concerns and false negative indications of damage 
for life-safety issues. For bridges, such a system should pri-
marily be considered in an unsupervised learning approach, 
where data from only the undamaged condition are available.

This paper presented a data-based SHM approach for 
damage detection in steel bridges. The results obtained 
from an extensive experimental study proved that relevant 
structural damage in steel bridges, which is typically caused 
by fatigue, can be established using unsupervised learning. 
As such, this study provides a major contribution towards 
establishing a methodology for damage detection that can be 
employed in SHM systems on existing steel bridges. Future 
work will assess data normalization, where changes caused 
by damage can be separated from changes caused by any 
operational and environmental conditions, to reduce the 
uncertainty in the resulting damage state assessment.

Acknowledgements  The Hell Bridge Test Arena is financially sup-
ported by Bane NOR and the Norwegian Railway Directorate.

Funding  Open access funding provided by NTNU Norwegian Univer-
sity of Science and Technology (incl St. Olavs Hospital - Trondheim 
University Hospital).

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 



	 Journal of Civil Structural Health Monitoring

123

permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Haghani R, Al-Emrani M, Heshmati M (2012) Fatigue-prone 
details in steel bridges. Buildings 2(4):456–476. https://​doi.​org/​
10.​3390/​build​ings2​040456

	 2.	 Farrar CR, Worden K (2007) An introduction to structural 
health monitoring. Philos Trans R Soc A Math Phys Eng Sci 
365(1851):303–315. https://​doi.​org/​10.​1098/​rsta.​2006.​1928

	 3.	 Worden K, Dulieu-Barton JM (2004) An overview of intelligent 
fault detection in systems and structures. Struct Heal Monit 3(1):85–
98. https://​doi.​org/​10.​1177/​14759​21704​041866

	 4.	 Farrar CR, Worden K (2012) Structural Health Monitoring: A 
Machine Learning Perspective. Wiley, Hoboken

	 5.	 Barthorpe RJ (2010) On Model- and Data-Based Approaches to 
Structural Health Monitoring. The University of Sheffield

	 6.	 Farrar CR, Doebling SW, Nix DA (2001) Vibration-based structural 
damage identification. Philos Trans R Soc A Math Phys Eng Sci 
359(1778):131–149. https://​doi.​org/​10.​1098/​rsta.​2000.​0717

	 7.	 Sohn H, Worden K, Farrar CR (2002) Statistical damage classifi-
cation under changing environmental and operational conditions. 
J Intell Mater Syst Struct 13(9):561–574. https://​doi.​org/​10.​1106/​
10453​89020​30904

	 8.	 Neves AC, González I, Leander J, Karoumi R (2017) Structural 
health monitoring of bridges: a model-free ANN-based approach 
to damage detection. J Civ Struct Heal Monit 7(5):689–702. https://​
doi.​org/​10.​1007/​s13349-​017-​0252-5

	 9.	 Neves AC, González I, Karoumi R, Leander J (2020) The influ-
ence of frequency content on the performance of artificial neural 
network–based damage detection systems tested on numerical and 
experimental bridge data. Struct Heal Monit. https://​doi.​org/​10.​
1177/​14759​21720​924320

	10.	 Pan H, Azimi M, Yan F, Lin Z (2018) Time-frequency-based data-
driven structural diagnosis and damage detection for cable-stayed 
bridges. J Bridg Eng 23(6):04018033. https://​doi.​org/​10.​1061/​
(ASCE)​BE.​1943-​5592.​00011​99

	11.	 Malekzadeh M, Atia G, Catbas FN (2015) Performance-based struc-
tural health monitoring through an innovative hybrid data interpreta-
tion framework. J Civ Struct Heal Monit 5(3):287–305. https://​doi.​
org/​10.​1007/​s13349-​015-​0118-7

	12.	 Figueiredo E, Park G, Farrar CR, Worden K, Figueiras J (2011) 
Machine learning algorithms for damage detection under operational 
and environmental variability. Struct Heal Monit 10(6):559–572. 
https://​doi.​org/​10.​1177/​14759​21710​388971

	13.	 Santos A, Figueiredo E, Silva MFM, Sales CS, Costa JCWA (2016) 
Machine learning algorithms for damage detection: Kernel-based 
approaches. J Sound Vib 363:584–599. https://​doi.​org/​10.​1016/j.​jsv.​
2015.​11.​008

	14.	 De Roeck G (2003) The state-of-the-art of damage detection by 
vibration monitoring: the SIMCES experience. J Struct Control 
10(2):127–134. https://​doi.​org/​10.​1002/​stc.​20

	15.	 Reynders E, Wursten G, De Roeck G (2014) Output-only structural 
health monitoring in changing environmental conditions by means 
of nonlinear system identification. Struct Heal Monit 13(1):82–93. 
https://​doi.​org/​10.​1177/​14759​21713​502836

	16.	 Figueiredo E, Moldovan I, Santos A, Campos P, Costa JCWA (2019) 
Finite element-based machine-learning approach to detect damage 
in bridges under operational and environmental variations. J Bridg 
Eng 24(7):04019061. https://​doi.​org/​10.​1061/​(ASCE)​BE.​1943-​
5592.​00014​32

	17.	 Figueiredo E, Cross E (2013) Linear approaches to modeling nonlin-
earities in long-term monitoring of bridges. J Civ Struct Heal Monit 
3(3):187–194. https://​doi.​org/​10.​1007/​s13349-​013-​0038-3

	18.	 Santos A, Figueiredo E, Silva M, Santos R, Sales C, Costa JCWA 
(2017) Genetic-based EM algorithm to improve the robustness of 
Gaussian mixture models for damage detection in bridges. Struct 
Control Heal Monit 24(3):1–9. https://​doi.​org/​10.​1002/​stc.​1886

	19.	 Oh CK, Sohn H, Bae I-H (2009) Statistical novelty detection within 
the Yeongjong suspension bridge under environmental and opera-
tional variations. Smart Mater Struct 18(12):125022. https://​doi.​org/​
10.​1088/​0964-​1726/​18/​12/​125022

	20.	 Magalhães F, Cunha A, Caetano E (2012) Vibration based structural 
health monitoring of an arch bridge: from automated OMA to dam-
age detection. Mech Syst Signal Process 28:212–228. https://​doi.​
org/​10.​1016/j.​ymssp.​2011.​06.​011

	21.	 Farrar CR et al (1994) Dynamic characterization and damage detec-
tion in the I-40 bridge over the Rio Grande

	22.	 Dilena M, Morassi A (2011) Dynamic testing of a damaged bridge. 
Mech Syst Signal Process 25(5):1485–1507. https://​doi.​org/​10.​
1016/j.​ymssp.​2010.​12.​017

	23.	 Döhler M, Hille F, Mevel L, Rücker W (2014) Structural health 
monitoring with statistical methods during progressive damage test 
of S101 Bridge. Eng Struct 69:183–193. https://​doi.​org/​10.​1016/j.​
engst​ruct.​2014.​03.​010

	24.	 Farahani RV, Penumadu D (2016) Damage identification of a full-
scale five-girder bridge using time-series analysis of vibration data. 
Eng Struct 115:129–139. https://​doi.​org/​10.​1016/j.​engst​ruct.​2016.​
02.​008

	25.	 Kim CW, Chang KC, Kitauchi S, McGetrick PJ (2016) A field 
experiment on a steel Gerber-truss bridge for damage detection uti-
lizing vehicle-induced vibrations. Struct Heal Monit 15(2):174–192. 
https://​doi.​org/​10.​1177/​14759​21715​627506

	26.	 Kim C-W, Zhang F-L, Chang K-C, McGetrick PJ, Goi Y (2021) 
Ambient and vehicle-induced vibration data of a steel truss bridge 
subject to artificial damage. J Bridg Eng 26(7):1–9. https://​doi.​org/​
10.​1061/​(asce)​be.​1943-​5592.​00017​30

	27.	 Maas S, Zürbes A, Waldmann D, Waltering D, Bungard V, De 
Roeck G (2012) Damage assessment of concrete structures through 
dynamic testing methods. Part 1 – Laboratory tests. Eng Struct 
34:351–362. https://​doi.​org/​10.​1016/j.​engst​ruct.​2011.​09.​019

	28.	 Svendsen BT, Frøseth GT, Rönnquist A (2020) Damage detection 
applied to a full-scale steel bridge using temporal moments. Shock 
Vib 2020:1–16. https://​doi.​org/​10.​1155/​2020/​30837​52

	29.	 Svendsen BT, Petersen ØW, Frøseth GT, Rønnquist A (2021) 
Improved finite element model updating of a full-scale steel 
bridge using sensitivity analysis. Struct Infrastruct Eng 
10(1080/15732479):1944227

	30.	 Figueiredo E, Figueiras J, Park G, Farrar CR, Worden K (2011) 
Influence of the autoregressive model order on damage detection. 
Comput Civ Infrastruct Eng 26(3):225–238. https://​doi.​org/​10.​
1111/j.​1467-​8667.​2010.​00685.x

	31.	 Box GEP, Jenkins GM, Reinsel GC, Ljung GM (2015) Time Series 
Analysis: Forecasting and Control (5th Edition). Wiley, Hoboken

	32.	 Seabold S, Perktold J (2010) Statsmodels: Econometric and Statisti-
cal Modeling with Python. In: Proceedings of the 9th Python in Sci-
ence Conference, pp 92–96. https://​doi.​org/​10.​25080/​Majora-​92bf1​
922-​011.

	33.	 Bellman RE (1961) Adaptive Control Processes. Princeton Univer-
sity Press, Princeton

	34.	 Sun L, Shang Z, Xia Y, Bhowmick S, Nagarajaiah S (2020) Review 
of bridge structural health monitoring aided by big data and artifi-
cial intelligence: from condition assessment to damage detection. J 
Struct Eng 146(5):04020073. https://​doi.​org/​10.​1061/​(asce)​st.​1943-​
541x.​00025​35

	35.	 Flah M, Nunez I, Ben Chaabene W, Nehdi ML (2020) Machine 
learning algorithms in civil structural health monitoring: a 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/buildings2040456
https://doi.org/10.3390/buildings2040456
https://doi.org/10.1098/rsta.2006.1928
https://doi.org/10.1177/1475921704041866
https://doi.org/10.1098/rsta.2000.0717
https://doi.org/10.1106/104538902030904
https://doi.org/10.1106/104538902030904
https://doi.org/10.1007/s13349-017-0252-5
https://doi.org/10.1007/s13349-017-0252-5
https://doi.org/10.1177/1475921720924320
https://doi.org/10.1177/1475921720924320
https://doi.org/10.1061/(ASCE)BE.1943-5592.0001199
https://doi.org/10.1061/(ASCE)BE.1943-5592.0001199
https://doi.org/10.1007/s13349-015-0118-7
https://doi.org/10.1007/s13349-015-0118-7
https://doi.org/10.1177/1475921710388971
https://doi.org/10.1016/j.jsv.2015.11.008
https://doi.org/10.1016/j.jsv.2015.11.008
https://doi.org/10.1002/stc.20
https://doi.org/10.1177/1475921713502836
https://doi.org/10.1061/(ASCE)BE.1943-5592.0001432
https://doi.org/10.1061/(ASCE)BE.1943-5592.0001432
https://doi.org/10.1007/s13349-013-0038-3
https://doi.org/10.1002/stc.1886
https://doi.org/10.1088/0964-1726/18/12/125022
https://doi.org/10.1088/0964-1726/18/12/125022
https://doi.org/10.1016/j.ymssp.2011.06.011
https://doi.org/10.1016/j.ymssp.2011.06.011
https://doi.org/10.1016/j.ymssp.2010.12.017
https://doi.org/10.1016/j.ymssp.2010.12.017
https://doi.org/10.1016/j.engstruct.2014.03.010
https://doi.org/10.1016/j.engstruct.2014.03.010
https://doi.org/10.1016/j.engstruct.2016.02.008
https://doi.org/10.1016/j.engstruct.2016.02.008
https://doi.org/10.1177/1475921715627506
https://doi.org/10.1061/(asce)be.1943-5592.0001730
https://doi.org/10.1061/(asce)be.1943-5592.0001730
https://doi.org/10.1016/j.engstruct.2011.09.019
https://doi.org/10.1155/2020/3083752
https://doi.org/10.1111/j.1467-8667.2010.00685.x
https://doi.org/10.1111/j.1467-8667.2010.00685.x
https://doi.org/10.25080/Majora-92bf1922-011
https://doi.org/10.25080/Majora-92bf1922-011
https://doi.org/10.1061/(asce)st.1943-541x.0002535
https://doi.org/10.1061/(asce)st.1943-541x.0002535


Journal of Civil Structural Health Monitoring	

123

systematic review. Arch Comput Methods Eng. https://​doi.​org/​10.​
1007/​s11831-​020-​09471-9

	36.	 Koutroumbas K, Theodoridis S (2008) Pattern Recognition, 4th edn. 
Academic Press Inc, Cambridge

	37.	 Hastie T, Tibshirani R, Friedman J (2009) The Elements of Statisti-
cal Learning, 2nd edn. Springer, New York

	38.	 Géron A (2019) Hands-On Machine Learning with Scikit-Learn, 
Keras, and TensorFlow, 2nd ed. O’Reilly Media, Inc.

	39.	 Pedregosa F et al (2011) Scikit-learn: machine learning in python. 
J Mach Learn Res 12:2825–2830

	40.	 Worden K, Manson G, Fieller NRJ (2000) Damage detection using 
outlier analysis. J Sound Vib 229(3):647–667. https://​doi.​org/​10.​
1006/​jsvi.​1999.​2514

	41.	 Fawcett T (2004) ROC graphs: Notes and practical considerations 
for researchers. Palo Alto, CA

	42.	 Rytter A (1993) Vibrational Based Inspection of Civil Engineering 
Structures. University of Aalborg, Denmark

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s11831-020-09471-9
https://doi.org/10.1007/s11831-020-09471-9
https://doi.org/10.1006/jsvi.1999.2514
https://doi.org/10.1006/jsvi.1999.2514

	A data-based structural health monitoring approach for damage detection in steel bridges using experimental data
	Abstract
	1 Introduction
	2 Experimental study
	2.1 Experimental setup
	2.2 Operational and environmental conditions

	3 Feature extraction and machine learning algorithms
	3.1 Feature extraction
	3.2 AR model order selection
	3.3 Supervised learning
	3.4 Unsupervised learning

	4 Experimental analysis and results
	4.1 Analysis approach
	4.2 Supervised learning
	4.3 Unsupervised learning
	4.4 Sensitivity analysis

	5 Summary and discussion
	6 Conclusion
	Acknowledgements 
	References




