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Abstract
Disaster management generally includes the post-disaster stage, which consists of
the actions taken in response to the disaster damages. These actions include the
employment of emergency plans and assigned resources to (i) rescue affected people
immediately, (ii) deliver personnel, medical care and equipment to the disaster area,
and (iii) aid to prevent the infrastructural and environmental losses. In the response
phase, humanitarian logistics directly influence the efficiency of the relief operation.
Ambulances routing problem is defined as employing the optimisation tools tomanage
the flow of ambulances for finding the best ambulance tours to transport the injured to
hospitals. Researchers pointed out the importance of equity and fairness in humanitar-
ian relief services: managing the operations of ambulances in the immediate aftermath
of a disaster must be done impartially and efficiently to rescue affected people with
different priority in accordance with the restrictions. Our research aim is to find the
best ambulance tours to transport the patients during a disaster in relief operations
while considering fairness and equity to deliver services to patients in balance. The
problem is formulated as a new variant of the team orienteering problem with hierar-
chical objectives to address also the efficiency issue. Due to the limitation of solving
the proposed model using a general-purpose solver, we propose a new hybrid algo-
rithm based on a machine learning and neighbourhood search. Based on a new set of
realistic benchmark instances, our quantitative analysis proves that our algorithm is
capable to largely reduce the solution running time especially when the complexity of
the problem increases. Further, a comparison between the fair solution and the system
optimum solution is also provided.
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1 Introduction

The destructive impacts of disasters have threatened societies for years and inevitable
consequences entail financial and human costs for the victims. However, today’s accu-
rate, effective and quick responses by decision-makers can reduce the damages and
loss of human life. The performance of humanitarian organisations against the natural
disasters such as earthquake, flood and storm, and human causes such as fire, environ-
mental pollution and war should be measured in several dimensions to optimise the
speed of operations and offer high flexibility services as well as cost minimisation’s
(Vargas Florez et al. 2015). To achieve that, disastermanagement by emphasising plan-
ning, prioritisation and decision making is a necessity in relief operations (Talarico
et al. 2015).

Disaster management generally includes pre- and post-disaster stages. Pre-disaster
stage predicts the potential human and property losses and develops the preparedness
plans to reduce the impact of disasters by improvement in emergency services and
humanitarian logistics while the post-disaster stage consists of the actions taken in
response to the disaster damages (Shiripour and Mahdavi-Amiri 2019). These two
phases have been classified into four action categories in more detail: (i) mitigation
refers to the actions needed to prevent the occurrence of a disaster and to decrease the
disastrous impacts; (ii) preparedness involves planning procedures in a community for
a timely response to damages; (iii) response includes the employment of emergency
plans and assigned resources to (a) rescue affected people immediately, (b) deliver
personnel, medical care and equipment to the disaster area, and (c) aid to prevent the
infrastructural and environmental losses; (iv) recovery is the final action category in
which actions followed to return the situation to normalcy (Boonmee et al. 2017; Altay
and Green 2006).

In the response phase, humanitarian logistics directly influence the efficiency of the
relief operation. Properly planned transportation of relief supplies and medical care to
a disaster area by ambulances prevent human losses (Ahmadi et al. 2015). Hence, it is
necessary to employ optimisation models to address the challenge of assistance to the
wounded. The ambulances routing problem is defined as employing the optimisation
tools tomanage the flow of ambulances for finding the ambulance tours to transport the
injured to hospitals (Tlili et al. 2018). The task of ambulances is to deliver personnel
to the disaster area to assist the slightly injured and transport the seriously injured to
hospital or shelter. The lack of medical services in disaster situations increases the
possibility of death and human suffering. To address, it is crucial to properly include
the concept of fairness in emergency relief routing optimisation for injured victims
(Zhu et al. 2019).

Althoughmany researchers concerning humanitarian relief services pointed out the
importance of equity, the few articles focused on fairness as an objective in disaster
optimisation problems. Modelling fairness is in itself challenging that resulted in
modelling approaches determining solutions with different quality. The concept of
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fairness has been varied in definition in accordance with to the context of problems.
Regarding relief operations, fairness can be defined as equity and impartiality at the
service level for people who are in need (Anaya-Arenas et al. 2018; Huang et al.
2012). Hence, managing the operations of ambulances in the immediate aftermath
of a disaster must be done impartially and efficiently to rescue affected people with
different priority in accordance with the restrictions.

Our research aim is to find the best ambulance tours to transport the patients in relief
operations after a disaster while considering fairness and equity to deliver services to
patients in balance. The problem is formulated as a new variant of the Team Orien-
teering Problem (TOP) (Butt and Cavalier 1994; Chao et al. 1996) with hierarchical
objectives to address also the efficiency issue. Due to the limitation of solving the
proposed model using a general-purpose solver as it will be shown in our quantitative
analysis, we propose a new hybrid algorithm based on a machine learning and neigh-
bourhood search. Based on a new set of realistic benchmark instances, our quantitative
analysis proves that our algorithm is capable of largely reducing the solution running
time especially when the complexity of the problem increases. Further, a comparison
between the fair solution and the system optimum solution is provided in order to
evaluate the so called price of fairness (Nicosia et al. 2017).

The paper is organised as follows. We review the most relevant researches in the
literature in Sect. 2 also providing an introduction to the TOP highlighting the new
characteristics of our problem with respect to the current TOP literature. The ambu-
lance routing problem is described and modelled in Sect. 3. The hybrid algorithm is
described in Sect. 4. The quantitative analysis based on the set of realistic instances
is reported and discussed in Sect. 5. Conclusions, challenges and future works are
discussed in Sect. 6.

2 Literature review

Emergency logistics have motivated many researchers to address humanitarian aid
problems. As can be seen in surveys (Anaya-Arenas et al. 2014; Hoyos et al. 2015;
Ozdamar and Ertem 2015) disaster management is a challenging area to investigate.
Among the disaster management problems, disaster relief routing is considered of
the utmost importance in which researchers attempt to optimise the relief aid trans-
portation in post-disaster situations. In this context, Nolz et al. (2011) formulated a
multi-objective optimisation problem to deliver the relief supplies to casualties. The
objectives considered are to minimise the risks and total travel time and to maximise
the population coverage of relief commodities. Ahmadi et al. (2015) proposed a multi-
depot location routing model considering failure in the transportation network. The
model determined the locations of local depots and routing for last-mile distribution
whereas the network destruction was modelled via a two-stage stochastic problem
and solved by a neighbourhood search algorithm. Sayyady and Eksioglu (2010) pro-
posed a mathematical model to find the best evacuation routes for transit vehicles
to minimise the number of casualties and the total evacuation time. A few articles
considered multi-commodity network flowmodels to integrate transportation of relief
commodities and injured people such as Yi and Ozdamar (2007) and Najafi et al.

123



R. Aringhieri et al.

(2013). Sabouhi et al. (2019) developed a routing and scheduling model for people
evacuation from affected areas to shelters and distribution of relief commodities while
considering the minimisation of the sum of arrival times of vehicles at affected areas,
shelters, and distribution centres.

The distribution of humanitarian aids (inbound logistics) such as water, food, shel-
ters and medicine to the casualties are only part of the relief operation while providing
medical services to help the injured and the transportation of patients to hospitals
(outbound logistics) are other issues that have been focused on in several papers. For
instance, Chiu and Zheng (2007) integrated mobilisation destination, traffic assign-
ment, and departure schedule concepts to formulate a linear program to dynamically
model multi-priority groups of patients. Ozdamar and Demir (2012) suggested a hier-
archical cluster and route procedure for dealing with a disaster relief commodities
delivery and casualty pick up problem. The aimwas to optimise the allocation of ware-
houses and hospitals to clustering demand centres. Talarico et al. (2015) developed
two ambulance routing models for disaster response management where patients are
divided into two groups: low-priority injured people and high-priority patients which
should be transferred to the hospital. The model minimises the sum of the weighted
maximum service completion time for low-priority and high-priority patients. Tlili
et al. (2017) proposed a vehicle routing problem (VRP) with pickup and delivery to
model the route of the ambulances when a disaster occurs.

Scarce resources imposed restrictions in assistance to the victims and it has always
been highly problematic to deliver relief supplies and medical services in an equal
manner. Fairness approaches used in relief distribution as an objective can be cate-
gorised into three main groups (Anaya-Arenas et al. 2018).

The first type is based on theRawlisan approach inwhich the focus is onmaximising
the minimum outcome (Karsu and Morton 2015). For instance, Tzeng et al. (2007)
presented a multi-period multi-objective relief distribution model to minimise the
total costs and total travel times as well as maximising the minimal satisfaction at
each period. Sun et al. (2014) developed a multi-objective patient allocation model to
minimise the maximum distance a patient travels to a hospital in a pandemic outbreak.

The second approach deals with providing fairness recognised as a deviation mea-
sure. Lin et al. (2011) introduced a multi-items, multi-vehicles, multi-periods model
to minimise the range of the unsatisfied demands. Huang et al. (2012) measured the
effect of efficiency, efficacy, and equity on the structure of vehicle routes and the
distribution of resources.

Deprivation approach is the third one, which is less used due to its difficulty.
Holguín-Veras et al. (2012) proposed social costs as an objective function for the
post-disaster humanitarian logistics problem. Social costs can be achieved through
logistic costs and deprivation costs defined as the economic valuation of suffering
experienced by people in catastrophic events.

The fairness approach in the transportation of injured victims was used by Zhu
et al. (2019). The authors suggested a relative deprivation cost as an objective to
provide equity. The problemwas solved by an ant colonymeta-heuristic algorithm and
compared with a genetic algorithm. The integration of ambulance routing problem and
fairness approach is a research area which should be further emphasised considering
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also the price of fairness, a quality measure introduced by Nicosia et al. (2017), which
is a comparison between the system optimum solution and a fair solution.

Our problem is positioned in the context of the outbound logistics and, more pre-
cisely, in the ambulance routing problem framework, which consists in finding the
ambulance tours to transport the injured people to hospitals (Tlili et al. 2018). Our
research is inspired by the work reported in Talarico et al. (2015). Our problem is
modelled in Sect. 3 as a variant of the TOP (see Vansteenwegen et al. 2011; Gunawan
et al. 2016; Vansteenwegen and Gunawan 2019 for more detailed literature reviews),
which is a routing problem with profits and multiple vehicles. The class of the Vehi-
cle Routing Problems with Profits (VRPPs) is characterised by the fact that not all
customers can be served. This implies the need to consider two different decisions as
reported in Archetti et al. (2014), that is (i) which customers to serve, and (ii) how to
cluster the customers to be served in different routes (if more than one) and order the
visits in each route. The customer selection is driven by a profit associated with each
customer that makes such a customer more or less attractive.

Erdogan and Laporte (2013) introduces the Orienteering Problem with Variable
Profits (OPVP) in which a single vehicle can collect the whole profit at the customer
after a discrete number of “passes” or spending a continuous amount of time. As in
the classical orienteering problem, the objective is to determine a maximal profit tour
for the vehicle, starting and ending at the depot, and not exceeding a travel time limit.

Angelica Salazar-Aguilar et al. (2014) introduce an extension of the TOP by consid-
ering the multi-district aspect, a set of mandatory and optional tasks located in several
districts and some incompatible tasks which cannot be carried out during the same
day. The problem is called Multi-District TOP (MDTOP). It is required to perform all
mandatory tasks over the planning horizon, while the optional tasks are only executed
if time permits.

Our problem has service times at nodes as in Erdogan and Laporte (2013) and
mandatory and optional nodes as in Angelica Salazar-Aguilar et al. (2014). To the
best of our knowledge, this is the first research attempt to consider both aspects at the
same time. Further, in accordance with the literature reviews currently available, this
is the first application of the TOP to the case of humanitarian logistics.

3 Problem statement andmathematical formulation

The organisation leading the answer to a disaster differs country by country, and
it usually depends on different history, characteristics and needs of each different
national civil security systems (see, e.g., Boin et al. 2014). For instance, the Italian civil
security systems is based on the subsidiarity principle (Di Camillo et al. 2014), which
means that as soon as the calamitous event becomes larger in terms of geographical
distribution and/or intensity, different and larger administration are involved. On the
contrary, in other EU countries the system is more centralised. These differences
determine different organisation models at the tactical and operational level. In this
paper, the following problem statement is inspired by that reported in Talarico et al.
(2015).
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When a disaster occurs, initial data about the damages and injuries is collected as
fast as possible. The dispatcher classifies patients’ requests according to their severity
and locations. The ambulances staffed bymedical crew are dispatched to affected areas
immediately to treat wounded people and transport patients to hospitals as needed.
Two groups of patients based on a triage system can be considered in the affected
area. Red patients must be transported to hospitals because they suffer from serious
injuries. On the contrary, green patients are people who are slightly injured and, by
consequence, need only a first aid directly on the field.

Priority scores for green patients are introduced to define which of them is less
or more urgent, that is a preference about who should be rescued in a short time.
Therefore, all green patients have a score that can be interpreted as urgency level
weights, which are used to lead the selection of the most urgent green patients during
the optimisation. Maximising the overall score for green patients can be considered as
a goal to provide an efficient service. As the work-shift duration can provide, for job
safety reasons, a time limitation for each ambulance, all the green patients may not be
visited, and those with the higher scores should have the priority. On the other hand,
red patients are suffering from serious injuries and should be transferred to hospitals
to be cured with adequate medical equipment. Minimising the maximumwaiting time
for red patients can be considered as a goal to provide equal services.

To satisfy the needs of patients, an ambulance starts its tour from a depot (e.g.,
hospitals or medical centres) to visit patients in affected areas and returns to a hospital.
The personnel of the ambulance treat a green patient in the field and visit another
green patient in its tour while after visiting the red patient, the ambulance has to
pick the patient and take her/him to one of the available hospitals in the area, not
necessarily the closest one. In our operative context, we assume that the hospitals
have enough capacity to treat all the patients: actually, a common practice is that
patients are stabilised and then transferred to other hospitals to free up space and
resources.

The ambulance routing problem based on the TOP can be formulated to find the
optimal tour for ambulances to deliver the services to patients after a disaster. Note
that in the TOP each node can be visited once except for the source node and the
destination node. Then, we can define a network on a completed graph E = (N , A),
where N is the set of nodes representing locations over the considered area and A =
{(i, j) : i, j ∈ N } is the set of arcs indicating the connections between each pair of
such locations. Three main types of nodes are considered in this problem: (i) green
patients (set G), (ii) red patients (set R), and (iii) actual hospitals (set O). To this
types of node, we add several dummy nodes in order to bring the problem in the
TOP formulation, that is: (iv) the dummy source and destination depot nodes 1 and n,
and (v) several dummy hospitals (set D), which are replications of the actual hospital
nodes (i.e. they have same coordinates of the original nodes of the set O) that allows
us to visit two or more times the same actual hospital visiting two different nodes.
The number of replications of each actual hospital node is computed in such a way to
allow the visit of such nodes as a starting hospital for the assigned ambulances and
for the medical care of all the red patients (worst case). Furthermore, we indicate with
P = G ∪ R the set of all patients and with H = O ∪ D the set of all (actual and
dummy) hospitals. Therefore, N = P∪H ∪{1, n}. We set n = |N | and we enumerate
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Fig. 1 Example: solution of a TOP formulation representing the ambulance tours after a disaster. Each tour
starts from the starting dummy node and ends in the ending dummy node, and hospitals are always visited
in accordance with the graphic overlay. Numbers on arcs indicate the order in which they are visited in the
tour

all nodes from 1 to n. The priority score of green patients is denoted by si , while the
set of available ambulances is indicated with K .

An example of the introduced graph and the related solution is explained in Figure 1.
Nodes of sets G, R and O are coloured in green, red and white, respectively. Labels
on green nodes indicate the scores si , i ∈ G. In correspondence of each node of O ,
several replications are provided in order to suit our problem to the TOP framework;
such nodes, in grey, are the elements of D. Black nodes represent the dummy depots
{1, n}. Two ambulance tours are represented by the sequence of coloured arcs (orange
and blue) from the source depot to the destination depot: continuous arcs indicate
the actual moving of the ambulance between two physical places represented by the
nodes, while dashed arcs are only used to connect the dummy depots to the actual
hospital where the ambulance is located at the beginning and at the end.

The connections of the node 1 are set in accordancewith the instance of the problem:
the first arc visited by the tour of an ambulance is that between 1 and one of the nodes
related to the hospital in which it actually is located at the beginning. Such an initial
location is given by the parameter lhk , which is equal to 1 if the ambulance k ∈ K is
initially parked at the hospital h. The connections of the node n have the samemeaning,
but they are part of the solution because there is not any constraint about the final
destination of the ambulances (except that it must be a hospital node). Furthermore,
we observe that each intermediate node is visited at most once: if a hospital needs
to be visited twice or more, then a different node belonging to H , and related to that
hospital, is visited every time; for instance, the orange tour visits the actual hospital
node firstly and a dummy node for the second visit. We remark that red nodes must
be visited once, while green, white and grey nodes could be not visited.

Since the locations of patients and hospitals are identified, the travel time between
a pair of nodes i, j ∈ N is defined as ti j , where:

– ti j = t j i for each i, j ∈ N ;
– ti j = 0 if i ∈ {1, n}, j ∈ H ;
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Table 1 Notation

Sets Parameters

N All nodes ti j Travelling time between i and j

G Green patients fi Service time in the node i

R Red patients Tmax Maximum tour duration

P All patients si Priority score of the green patient i

O Actual hospitals lhk Initial location of k (1 if it is h, 0 otherwise)

D Dummy hospitals

H All hospitals

K Ambulances

Decision variables

xi jk Takes 1 if ambulance k visits node i directly before node j , 0 otherwise

yik Takes 1 if ambulance k visits patient i , 0 otherwise

zhk Takes 1 if ambulance k visits hospital h, 0 otherwise

mih Takes 1 if red patient i is transported to hospital h, 0 otherwise

uik Position of the patient i in the tour of the ambulance k

wi Visit time of the node i (waiting time if i is a patient)

Cmax Maximum completion time of all red patients

– ti j = 0 if i, j ∈ H are replications of the same actual hospital.

We take into account also the time spent by the ambulance on the nodes, to which we
will always refer as the service time fi , i ∈ N \ {1, n}. Such time represents: (i) the
on-place treatment duration when i ∈ G, (ii) the preparation time spent on the place
when i ∈ R, and (iii) the time spent to release a red patient to the hospital when i ∈ H .
We assume that hospitals can accept red patients regardless of the hospital capacity,
and an ambulance can only carry one red patient at a time without giving other patients
treatment in themeantime.Wefix amaximum time Tmax for each ambulance to provide
treatments to patients and to complete its tour moving to a hospital. We resume the
notation used in the model in Table 1.

Let us introduce the linear programming model of our problem based on the TOP
framework. Constraint (1) ensures that all ambulances start their visit from the dummy
depot node 1 and end on the dummy depot node n.

∑

k∈K

∑

j∈P

x1 jk =
∑

k∈K

∑

i∈P

xink = |K | (1)

Constraints (2) impose that at the beginning each ambulance k ∈ K is located to
the hospital node h ∈ H , in accordance with the value of the parameter lhk .

x1hk = lhk , ∀h ∈ H , k ∈ K (2)
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Constraints (3)–(4) guarantee that each green patient or hospital is visited at most
once and each red patient must be visited once, respectively.

∑

k∈K
yik ≤ 1 , ∀i ∈ G ∪ H (3)

∑

k∈K
yik = 1 , ∀i ∈ R (4)

Constraints (5) imply that each ambulance should go to a hospital after visiting a
red patient node.

∑

j∈P

∑

k∈K
xi jk = 0 , ∀i ∈ R (5)

Constraints (6) enforce the tour connectivity: when an ambulance visits a patient, it
also has to leave that location. Furthermore, they allows the consistency of the decision
variables xi jk and the corresponding yik .

∑

j∈N\{n}
x jik =

∑

j∈N\{1}
xi jk = yik , ∀i ∈ P, k ∈ K (6)

Constraints 7 ensure the respect of the time limit Tmax for each ambulance tour.

∑

i∈P∪H

∑

j∈P∪H

ti jk xi jk +
∑

i∈P

fi yik +
∑

h∈H
fhzhk ≤ Tmax , ∀k ∈ K (7)

Constraints 8 fix zihk to 1 when the hospital h is visited by the ambulance k.

xihk ≤ zhk , ∀i ∈ R, h ∈ H , k ∈ K (8)

Constraints (9)–(11) are introduced to properly compute the visit time of the nodes,
that is the waiting time for patient nodes and the arrival time to the hospital for the
(actual and dummy) hospital nodes. The waiting time of each patient visited directly
after a green patient is fixed by the constraints (9), which take into account the waiting
time and the service time of that patient, adding the travelling time between the two
nodes. Similarly, constraints (10) set the waiting time of a patient visited directly
after a hospital. In this case the service time at the hospital is considered only if that
node is not the starting location of the ambulance. The same rationale is used for the
constraints (11), which allows the computation of the arrival time at the hospital after
visiting a patient node (that can be after a red patient node or after the last green patient
of the ambulance tour). Big-M is used in these three constraints.

wi + fi + ti j ≤ w j + (1 − xi jk)M, ∀i ∈ G, j ∈ P, k ∈ K (9)

wh + (1 − lhk) fh + th j ≤ w j + (1 − xi jk)M, ∀h ∈ H , j ∈ P, k ∈ K (10)

wi + fi + tih ≤ wh + (1 − xihk)M, ∀i ∈ P, h ∈ H , k ∈ K (11)
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Fig. 2 Example: how the constraints (9)- (11) work

We report an example in Fig. 2 to describe how these constraints work. In order
to simplify the description, let us assume to have only one actual hospital h and we
indicated all its dummy nodes with the same notation. Then, we consider a single tour,
since the waiting times of patients visited on different tours do not affect each other.
Let us consider a tour in which the ambulance starts from the hospital h, then it moves
on the green patient g, which requires a certain service time and a travelling time to
reach the next node, that is the patient r . After visiting r on her/his location with a
duration equal to the patient’s service time fr , the patient is transported to the hospital
h (i.e., on a node which is one of its replications), where the ambulance spent other
time before to travel to the next place, that is the green patient g′. When the service
time of this patient is elapsed, the ambulance goes back to the hospital to finish the tour.
Constraints (9) relate the waiting times of the patients g and r , then constraints (11)
bind the visit time of h on the basis of wr , and finally the waiting time of g′ is related
to the visit time of r through constraints (10).

Constraints (12) is used to compute the maximum completion time of the red
patients, that will be minimised within the proposed objective functions. The com-
pletion time is defined as the time elapsed from the beginning of the ambulance tour
up to the release of the patient at the hospital. Constraints (13) are used to compute
the value of the binary variable mih , which indicate in which hospital a red patient is
transported and is used in constraints (12).

Cmax ≥ wi + fi + mih(tih + fh), ∀i ∈ R, h ∈ H (12)

mih ≥
∑

k∈K
xihk, ∀i ∈ R, h ∈ H (13)

Finally, constraints (14)–(15) are necessary to prevent sub tours.

2 ≤ uik ≤ n, ∀i ∈ N \ {1}, k ∈ K (14)

uik − u jk + 1 ≤ (n − 1)(1 − xi jk), ∀i, j ∈ N \ {1}, k ∈ K (15)
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As discussed at the beginning of this section, two objectives emerge from the
analysis of the problem: the fairness in reducing the red patient waiting times, and
the efficiency in collecting the green patient scores. The former is the minimisation
of Cmax , while the latter is the maximisation of the value σG equal to the sum of the
scores of all the green patients visited. To deal with these conflicting objectives at
the same time, we adopt the hierarchical objective function modelling approach to
represent the two objectives. Such an approach allows us to optimise the higher level
objective, and then to improve as much as possible the lower level objective without
deteriorating the higher level one.

We propose two hierarchical objective functions that differ in the hierarchy in order
to evaluate the differences between the resulting solutions, as reported in Sect. 5. Such
objective functions are subject to the constraints (1)–(15) and consist of two levels
corresponding to the two different goals. The former z f (16) puts the minimisation
of Cmax at the higher level and the maximisation of σG at the lower level. The latter
ze (17) reverses the two levels with respect to the first one. The constants α1 and α2
have to be fixed in such a way to ensure the hierarchy of the two components from a
numerical point of view: we set α1 = ∑

i∈G si + 1 and α2 = Tmax + 1.

min z f = α1Cmax −
∑

k∈K

∑

i∈G
si yik (16)

max ze = α2

∑

k∈K

∑

i∈G
si yik − Cmax (17)

As discussed in Anaya-Arenas et al. (2018), the min-max approach is just one of
the possible ways to represent and model the fairness. Alternative approaches include
deprivation-like models (as reported in Sect. 3) or survival functions (see, e.g., Knight
et al. 2012). Our approach is in continuity with the work Talarico et al. (2015), which
inspired this work, and justified by the fact that the min-max approach seems more
suitable to evaluate the price of fairness (Nicosia et al. 2017) through the hierarchical
objective functions (16) and (17).

To explain better how the two objective functions z f (16) and ze (17) work, we can
consider the example depicted in Fig. 1, which could represent the best solution for the
proposed model using ze. We can observe that in the orange tour a red patient is visited
after a green patient. Such a tour can not be an optimal solution using z f : as a matter
of fact, a change of the visit order of those patients can minimise the value of Cmax ,
which means that red patients have a lower maximum completion time. Generally,
we expect that setting the fairness component at the higher level of the hierarchical
objective function, red patients are all visited at the beginning of the |K | tours, as
depicted in Fig. 3. After minimising the value of Cmax , the objective function (16)
maximises the scores collected in the green nodes without having an impact on the
red patients. Conversely, the tours in Fig. 1 maximises the collected scores, but they
take into account how soon the red patients are visited, unless it is possible to decrease
their completion time without decreasing the value of σG .
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Fig. 3 Example: fairness solution of a TOP formulation representing the ambulance tours after a disaster.
Each tour starts from the starting dummy node and ends in the ending dummy node, and hospitals are
always visited in accordance with the graphic overlay. Numbers on arcs indicate the order in which they
are visited in the tour

4 Solution algorithm

As soon as the complexity of the instance increases due to an increase in the number
of patients and/or the number of teams, an ad hoc and efficient solution algorithm is
required. In this section, we report a new hybrid algorithm based on amachine learning
and neighbourhood search, which is capable of largely reducing the solution running
time especially when the complexity of the problem increases. In the following, we
report the basic elements of the algorithm highlighting its differences when dealing
with the two different objective functions z f and ze. Finally, we describe the whole
solution algorithm.

4.1 Initial solution based on amachine learning approach

Due to the complexity of computing a tour for each ambulance (as depicted in Figs. 1
and 3), the basic idea is to find proper clusters of nodes belonging to N to ease the
computation of good initial tours. This approach takes up the well-known cluster-first
route-second algorithm for solving routing problemswith some ad hoc improvements.

The clusters of nodes belonging to N are computed through a Machine Learning
algorithm called Spectral Clustering (SC) (Ng et al. 2001). The spectral clustering is
an algorithm used to identify communities of nodes in a graph based on the edges
connecting them. It makes use of a similarity matrix that consists in a quantitative
assessment of the relative similarity of each pair of nodes in the graph or points in
the dataset. In our implementation, the similarity matrix is a function of the distance
between two nodes in such a way that closer nodes are more similar than distant
nodes. The advantage of using a spectral clustering algorithm instead of the classical
K-Means algorithm (MacQueen 1967) is to have a more general and effective initial
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procedure, which can be adapted to different classes of instances having different
distance measures.

In the beginning, the set G is clustered in |K | clusters using the SC algorithm.
Then, the cardinality of the clusters obtained from G is balanced by moving a green
node from a cluster to another in such a way to minimise the average distance of the
destination cluster to the others. After computing some clusters from the set R using
the SC algorithm, each red cluster is added to the closest (in terms of average distance
among nodes) green cluster. Again, to regain a balanced cardinality, red nodes are
moved to other clusters to minimise the average distance of the destination cluster to
the others. Finally, the nodes belonging to H are added to the current clusters following
the same procedure adopted for the nodes in R.

Such clusters are then the input for a single team customised version of the linear
programdescribed in Sect. 3 to compute the initial tour of the teamassociatedwith each
one of the |K | clusters. When dealing with the z f objective function, the customised
single team linear program imposes that all red nodes are visited before the first green
node. Conversely, when dealing with the ze objective function, we adopt the same
customised linear program but with the aim of maximising the overall score.

4.2 Improving the solution using ad hoc neighbourhoods

The initial solution is composed of |K | feasible tours that could be not optimal. Such
a solution is then improved by a neighbourhood search. First, we describe the ad
hoc neighbourhoods and then how they are used within the neighbourhood search
framework.

Neighbourhoods for red patients.
We introduce three neighbourhoods aimed at intensifying or diversifying the search
on the current solution operating on nodes belonging to R.

The neighbourhood N1 swaps two red nodes belonging to the same tour to generate
a new feasible tour aimed at reducing the overall tour duration. On the contrary, the
neighbourhood N2 swaps two red nodes belonging to two different tours to generate
two new feasible tours aimed at reducing the duration of each tour. Finally, neighbour-
hood N3 shifts one red node (and the subsequent hospital node) from a tour to another
one in such a way to generate a feasible solution aimed at reducing the duration of
each tour.

All the neighbourhoods select the best feasible move (best improvement) but only
N2 and N3 select such a move even if it worsens the current one. To avoid cycles, tabu
lists have been introduced as depicted below.

Neighbourhoods for hospitals.
We introduce two neighbourhoods aimed at intensifying or diversifying the search on
the current solution operating on nodes belonging to H .

The neighbourhood N4 swaps one hospital node belonging to a tour with one
hospital node not visited in such a way to reduce the tour duration but maintaining the
feasibility. The neighbourhood N5 randomly selects one-third of the nodes in H and
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visited by one tour. Each selected node is then substituted by another node in H but
not visited.

Both neighbourhoods select the best feasible move (best improvement) even if it
worsens the current one. To avoid cycles, tabu lists have been introduced as depicted
below.

Neighbourhoods for green patients.
We introduce three neighbourhoods aimed at intensifying or diversifying the search
on the current solution operating on nodes belonging to G.

The neighbourhoods N6 and N7 are aimed at improving the overall priority score.
The neighbourhood N6 swaps one green node belonging to a tour with one green node
not visited in such a way to generate a feasible solution inserting the new node to
reduce, if possible, the tour duration and, in the case of z f , inserting the new green
node after all the reds. The neighbourhood N7 inserts one green node not visited into
a tour in such a way to generate a feasible solution inserting the new node to reduce,
if possible, the tour duration and, in the case of z f , inserting the new green node after
all the reds.

All the neighbourhoods select the best feasible move (best improvement) even if it
worsens the current one. To avoid cycles tabu lists have been introduced as depicted
below.

Finally, the neighbourhoods N8 removes one-third of the nodes belonging to G and
visited by one tour selecting them among those with a minimal value of the ratio

si
thi + fi + ti j

where h and j are respectively the node that precedes and that follows the node i .
The rationale is to remove from the solution those patients whose marginal score is
minimum to free up time in such a way to allow the visit of more profitable patients.
Note that the ratio is updated after each deletion.

Avoiding cycles.
To avoid cycles during the exploration of the above neighbourhoods, two types of tabu
lists are used.

The first one L1 avoids a node to come back to its starting tour for a number of
iterations after a move while the second one L2 blocks one node to be moved from its
destination tour for a number of iterations after a move. According to this description
and the type of nodes, we use LG

1 and LG
2 (with lengths �G1 and �G2 , respectively) for

green nodes, LH
1 and LH

2 (with lengths �H1 and �H2 , respectively) for hospital nodes,
and LR

1 and LR
2 (with lengths �R1 and �R2 , respectively) for red nodes. All four tabu

lists are implemented using tabu tags (Gendreau et al. 1994).

The solution algorithm.
We have all the elements to describe the complete algorithm. A pseudocode of our
solution approach is reported in Algorithm 1.

After computing the initial solution (line 1), the algorithm starts a cycle of Itot iter-
ations (line 4). At each iteration, the selected neighbourhood is visited once generating
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a new solution (lines 5 and 6). Such a neighbourhood is selected from the sequence
N1, N2, N4, N6, N7 and N3: for instance, after using N1 the next iteration uses N2,
and the next N4, and so on. After Ini not improving iterations (line 11), the algorithm
restarts the search applying the neighbourhoods N5 and N8. The algorithm ends by
returning the best solution computed (line 12).

Algorithm 1: Solution algorithm A
Data: G, R, H , K , si , fi , ti j , tmax;

Result: solution S = [T 1, . . . T |K |];
/* compute the initial solution (Sect. 4.1) */

1 (z′, S′) ← initialSolution(G, R, H );
2 (z∗, S∗) ← (z′, S′);
/* solution improving phase (Sect. 4.2) */

3 ni = nip = 0;
4 while ni < Itot do
5 Nc := selectNextNeighbourhood(N1, N2, N4, N6, N7, N3);
6 (z′, S′) := neighbourhoodSearch(Nc, z′, S′); /* with tabu list update */
7 if (z′, S′) is best than (z∗, S∗) then
8 (z∗, S∗) ← (z′, S′); nip = 0;
9 else

10 nip = nip + 1;

11 if nip = Ini then (z′, S′) ← restartSearch(N5, N8, z
′, S′) ni = ni + 1;

12 return (z∗, S∗);

5 Quantitative analysis

In this sectionwepresent a quantitative analysis performedona set of realistic instances
(reported in Sect. 5.1) in order (i) to evaluate the quality and the efficiency of the
algorithm A proposed in Sect. 4, and (ii) to compare the fair solution and the system
optimum (reported in Sect. 5.2).

5.1 The generation of realistic instances

We generate a set of 24 benchmark instances exploiting the instance generator pre-
sented in Aringhieri et al. (2019), which has been modified in such a way to partition
the nodes into three different types (hospital, green patient and red patient) and to
label: (i) the green patients with a score in 5, 10, 15 with uniform probability, (ii) all
patients with a service time (minutes) generated with a uniform distribution in [5, 35]
for the green patients and in [2, 15] for the red patients, (iii) all hospitals with a fixed
service time of 10 minutes. Coordinates have been scaled considering a square area
of 900 km2, then travelling times have been computed through the Euclidean distance
between nodes and considering an average speed of 50 km/h.

We generated 8 instances for three different numbers of patients: 10, 25 and 50. The
size of the instances is the same of those tested in Talarico et al. (2015). Each instance
differs for the coordinates of the nodes, the distribution of the red patients (scattered
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Table 2 Characteristics of the realistic benchmark instances

id |N | |G| |R| Red distr. |O| |D| |K | Tmax (min)

P10C3O1 18 7 3 Clustered 1 5 1 248

P10S3O1 18 7 3 Scattered 1 5 1 248

P10C4O1 19 6 4 Clustered 1 6 1 315

P10S4O1 19 6 4 Scattered 1 6 1 315

P10C3O2 26 7 3 Clustered 2 12 2 135

P10S3O2 26 7 3 Scattered 2 12 2 135

P10C4O2 28 6 4 Clustered 2 14 2 135

P10S4O2 28 6 4 Scattered 2 14 2 135

P25C6O2 54 17 8 Clustered 2 25 3 203

P25S6O2 54 17 8 Scattered 2 25 3 203

P25C8O2 58 15 10 Clustered 2 29 3 225

P25S8O2 58 15 10 Scattered 2 29 3 225

P25C6O3 70 17 8 Clustered 3 40 4 167

P25S6O3 70 17 8 Scattered 3 40 4 167

P25C8O3 76 15 10 Clustered 3 46 4 169

P25S8O3 76 15 10 Scattered 3 46 4 160

P50C12O3 120 35 15 Clustered 3 65 5 203

P50S12O3 120 35 15 Scattered 3 65 5 180

P50C16O3 135 30 20 Clustered 3 80 5 248

P50S16O3 135 30 20 Scattered 3 80 5 257

P50C12O4 146 35 15 Clustered 4 90 6 158

P50S12O4 146 35 15 Scattered 4 90 6 158

P50C16O4 166 30 20 Clustered 4 110 6 225

P50S16O4 166 30 20 Scattered 4 110 6 212

or clustered), the number of hospitals, and the number of ambulances. Then, for each
instance, we used the 1-tree bound for the Travelling Salesman Problem (Valenzuela
and Jones 1997) as lower-bound of the travelling time needed to visit all the nodes with
only 1 ambulance. We sum all the service times to the 1-tree bound value to have a
lower bound LB of the total time. Then, we find a value of in [0.8 LB, 1.2 LB], in such
a way to have feasible but non-trivial solutions (e.g., the available time is sufficient to
serve all the red patients but not large enough to visit all the green ones easily). The
characteristics of the instances are resumed in Table 2, in which we highlight how the
dimension of the graph increases with the increasing of the number of ambulances,
hospitals and red patients, because of the number of dummy hospital nodes, that is
|D| = |K | + |O| (|K | + |R|).

5.2 Computational analysis

The aim of this section is to report the quantitative analysis on the realistic instances
described in the previous section. First we summarise the analysis performed using a
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Table 3 CPLEX: computational results over the benchmark instances with 10 patients

Fairness Efficiency

z f Cmax secs. ze σG ze σG secs. z f Cmax

P10C3O1 11,987 182 7.5 6043 25 10,959 45 0.4 16,191 246

P10S3O1 7698 138 19.8 7332 30 10,961 45 0.3 13,619 244

P10C4O1 15,509 219 96.7 12,421 40 17,077 55 0.2 21,458 303

P10S4O1 14,676 241 11.4 7659 25 12,335 40 0.2 18,565 305

P10C3O2 5783 88 294.9 3312 25 6679 50 15.9 7936 121

P10S3O2 4063 73 383.5 3327 25 5986 45 13.5 7459 134

P10C4O2 6218 88 667.2 3992 30 7355 55 12.9 8820 125

P10S4O2 6659 94 229.4 1946 15 7353 55 18.8 8962 127

general purpose solver to solve themathematical model with the hierarchical objective
functions z f (16) and ze (17). Then, we discuss the efficiency and the quality of the
solutions computed by our algorithm. Finally, we provide a comparison between the
z f and ze solutions to assess the so called price of fairness (Nicosia et al. 2017).

All the computational tests have been performed on a standard desktop computers
equipped with a Intel Core i7-8700 3.20GHz with 12 cores, and 16 Gb of memory.
The integer linear programs resulting from the discussion reported in Sect. 3 has
been implemented adopting OPL language and solved with CPLEX 12.9 with default
settings. We would remark that the default settings use all the cores available reducing
the overall running time instead of using only one core. The algorithm A has been
implemented in Python using the following parameter settings: Itot = 2000, Ini = 20,
�G1 = 5 and �G2 = 7, �H1 = 5 and �H2 = 7, �R1 = 10 and �R2 = 15.

Table 3 reports the computational results obtained with CPLEX on the first 8
instances, for which the optimal solution has been computed. The table contains
two sets of columns. The first set (under the name fairness) reports the values z f and
Cmax of the solution computed, and the running time in seconds; then the columns ze
and σG report the efficiency values computed on the fairness solution. On the contrary,
the second set (under the name efficiency) reports the values ze and σG of the solution
computed, and the running time in seconds; then the columns z f and Cmax report
the fairness values computed on the efficiency solution. The columns have the same
meaning also in Tables 4 and 5 .

We observe a consistent difference in running time: actually, the computation of a
fairness solution requires ten times the running time needed for computing an efficient
solution. We observe similar running time differences for the larger instances reported
in Table 2. Furthermore, several hours are required for bigger instances often to find a
sub-optimal solution. Since the aim of our problem is to provide a prompt decision in
a situation of post-disaster management, this fact highlights the need for the solution
algorithm presented in Sect. 4.

Table 4 reports the computational results of the proposed solution algorithm where
the numbers in bold highlight the optimal solutions with respect to the optimal values
reported in Table 3. From a comparison with the values reported in Table 3, the results
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Table 4 Algorithm A: computational results over the benchmark instances with 10 patients

Fairness Efficiency

z f Cmax secs. ze σG ze σG secs. z f Cmax

P10C3O1 11,987 182 3.8 6043 25 10,959 45 4.0 16191 246

P10S3O1 7698 138 4.0 7332 30 10,961 45 4.1 13,619 244

P10C4O1 15,509 219 4.7 12,421 40 17,077 55 4.9 21,458 303

P10S4O1 14,676 241 4.4 7659 25 12,335 40 4.6 18,565 305

P10C3O2 6235 95 6.0 4665 35 6679 50 5.1 7936 121

P10S3O2 4063 73 6.0 3327 25 5986 45 4.3 7459 134

P10C4O2 6218 88 5.0 3992 30 7355 55 4.2 8820 125

P10S4O2 7567 107 5.2 3973 30 7353 55 4.7 8962 127

Table 5 Algorithm A: results over the benchmark instances with 25 and 50 patients

Fairness Efficiency

z f Cmax secs. ze σG ze σG secs. z f Cmax

P25C6O2 22,413 128 21.6 23,217 115 26,191 130 21.2 34,894 199

P25S6O2 26,488 143 23.7 22,187 110 28,223 140 25.7 36,502 197

P25C8O2 25,657 152 28.2 21,852 95 28,654 140 24.4 35,435 201

P25S8O2 26,264 154 32.3 14,756 70 27,483 130 25.1 35,267 207

P25C6O3 16,620 95 28.5 16,205 100 23,474 145 25.9 28,191 161

P25S6O3 15,514 84 26.9 17,846 110 25,103 155 26.6 29,977 162

P25C8O3 20,025 125 39.7 16,875 100 23,632 140 34.2 26,908 168

P25S8O3 15,025 100 37.7 11,975 75 22,380 140 29.3 24,020 160

P50C12O3 56,464 159 102.7 28,261 140 43,444 215 88.7 71,341 201

P50S12O3 42,570 120 103.3 27,030 150 40,546 225 88.4 63,499 179

P50C16O3 55,254 184 186.5 30,366 130 47,941 205 133.6 70,229 234

P50S16O3 65,043 213 181.4 34,482 135 56,285 220 146.6 77,810 255

P50C12O4 53,200 150 121.2 36,050 200 38,735 215 105.3 63,865 180

P50S12O4 43,267 122 138.0 26,113 165 43,567 275 108.5 55,973 158

P50C16O4 61,582 202 197.8 58,908 230 69,135 270 159.5 77,760 255

P50S16O4 46,761 156 214.9 41,379 195 56,234 265 176.7 63,246 211

in Table 4 prove the quality of the solution computed by the algorithmA: actually, the
algorithm A replicates all the optimal values in the efficiency case, and 6 over 8 in the
fairness case. Furthermore, the results prove the efficiency of the proposed algorithm,
which is capable of obtaining such results in a few seconds instead of tens (efficiency)
or hundreds (fairness) of seconds.

In order to evaluate the impact of each neighbourhood on the quality of the final
solutions z f and ze, we solved the ten instances reported in Table 3 temporarily
disabling one of the eight neighbourhoods resulting in 160 new solutions, which are
then compared with the results reported in Table 4.
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When dealing with the fairness, we observed significant variations in z f (i.e., at
least 0.5%) only for N2 and N6. We also consider the value of ze computed on the
fairness solution.Without N2, the value of z f worsens of the 6.02%while no significant
variations are reported in the value of ze. On the contrary, no significant variation of
z f are reported without N6 while the value of ze worsens of the 3.29%.

When dealing with the efficiency, we observed no significant variations in ze (i.e.,
at least 0.5%) temporarily disabling one of the eight neighbourhoods. On the contrary
we reported a significant worsening of the value of z f computed on the efficiency
solution ranging from 0.62% to 0.98%.

We performed a further test temporarily disabling all the neighbourhoods working
on a specific component of the solution, that is (i) the neighbourhoods for red patients
N1, N2 and N3, (ii) the neighbourhoods for hospitals N4 and N5, and (iii) the neigh-
bourhoods for green patients N6, N7 and N8. The results clearly get worse in all the
tests.We observed a peak of 6.31% for z f when dealingwith the fairness and disabling
N1, N2 and N3. On the contrary, we observed a peak of 10.58% for ze when dealing
with the efficiency and disabling N6, N7 and N8.

Table 5 reports the computational results of the algorithm over the remaining bench-
mark instances, that is those with 25 and 50 patients. The running time of the algorithm
proves its capability of dealing with larger and more realistic instances. Fairness solu-
tions seem harder to be computed than the efficiency one, at least in terms of running
time.

A preliminary comparison between the two kinds of solutions can be done as
follows. Moving from an efficient solution to a fair one, it is possible to measure the
benefit in terms of fairness gained and efficiency lost. Vice versa, we can measure the
benefit in terms of efficiency gained and fairness lost. In the former case, the average
fairness gained is about 27.71% while the efficiency lost is about 29.87%. In the latter
case, the average efficiency gained is about 46.10% while the fairness lost is about
40.63%. These results seem to prove that there is no dominance between the two kinds
of solutions.

No significant difference emerges from dealing with instances with a different
distribution of the red patients over the disaster area: similar completion times have
been obtained for such patients on the clustered and scattered version of the same
instances. For example, P25C6O2 has a slightly lower value of Cmax with respect to
P25S6O2, but the opposite occurs comparing P25C6O3 and P25S6O3. In order to
better appreciate the trade off between Cmax and σG provided by the two different
objective functions z f and ze, we plot the solution obtained for the instances with 25
and 50 patients in Fig. 4. Both fairness and efficiency solutions provided for the same
instances are far from dominating each other. Furthermore, smaller instances show a
clear separation between fairness and efficiency solutions, regardless of how patients
are distributed over the disaster area. Such a separation vanishes as the number of
patients to be visited increases, but without loosening the strong trade off between the
two objectives.

From the reported analysis that can be seen as a sort of Pareto analysis, it is evi-
dent that no clear dominance between the fairness and efficiency solutions has been
identified. From an application perspective, this empirical result makes clearer the
meaning of price of fairness (Nicosia et al. 2017): actually, to improve the efficiency
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(b)(a)

Fig. 4 Comparing the solution provided by the algorithmA using z f (circles) and ze (squares) as objective
functions (same color is used for the two solutions of the same instance)

of a fairness solution, it is necessary to allocate more time resources to serve the same
green patients served by the efficient solution.

6 Conclusions

Although many researchers concerning humanitarian relief services highlight the
importance of equity, the few articles focused on fairness as an objective in disaster
optimisation problems as highlighted in our literature review. As discussed in Nicosia
et al. (2017), modelling fairness is in itself challenging since the concept of fairness
can vary in accordance with the context of the problem. This results in modelling
approaches determining solutions with different quality. Regarding relief operations,
the concept of fairness can be defined as equity and impartiality at the service level
for people who are in need and, by consequence, the management of the operations in
the immediate aftermath of a disaster must be done in such a way to to rescue affected
people with different priority in accordance with the restrictions.

In this paper we considered the problem of finding the best ambulance tours to
transport the patients in relief operations while considering fairness and equity to
deliver services to patients. We formulated such a problem as a new variant of the
Team Orienteering Problem with hierarchical objectives to address also the efficiency
issue. Since the aim of our problem is to provide a prompt decision in a situation of
post-disaster management, we developed a new hybrid algorithm based on a machine
learning and neighbourhood search capable of largely reducing the solution running
time especially when the complexity of the problem increases. Our computational
tests are based on a new set of realistic benchmark instances. Finally, the comparison
between the two objectives showed a clear absence of dominance between fairness
and efficiency.
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Fairness is one of the central arguments of our work. As reported this study provides
initial but interesting insights that should be further investigated. From this point
of view, it could be of interest to test different approaches to deal with fairness in
accordance with the remarks in Anaya-Arenas et al. (2018), Huang et al. (2012) and
Nicosia et al. (2017). This can be further extended considering deprivation-likemodels
(Zhu et al. 2019) or survival functions (Knight et al. 2012) as objectives.

From an application perspective, the problem can be extended considering more
than two classes of urgency, hospitals with a maximum capacity in terms of patients
to be served, and to explicitly consider a multi level hierarchy of hospitals. Other
extension could consider a heterogeneous fleet of emergency vehicles, which means
that only a subset of vehicles can serve some particular patients. We considered a
static version of the problem in which all the patients are known in advance. Our work
can be extended to fit a more realistic situation in which new patients might arrive
over time. A possible solution is to use our algorithm within a more general online
optimisation framework, as discussed in Aringhieri (2019).

From a methodological perspective, this new variant of the team orienteering prob-
lem deserves a detailed analysis of the its characteristics, and a deep study of the
problem in order to provide general solution algorithms as discussed in Aringhieri
et al. (2021). It could be of interest to study a different and more flexible way to
consider the maximum time limit for the duration of a tour: instead of having a strong
constraint on time limit as the depicted by Eq. (7), the mathematical model discussed
in Sect. 3 can be modified adding a sort of penalisation of the total duration time of
an ambulance. Finally, a possible improvement of the algorithm proposed in Sect. 4 is
that of considering nested neighbourhoods within an Adaptive Neighbourhood Search
framework.

Acknowledgements The authors wish to thank the anonymous reviewers for their valuable comments
which significantly improved the quality of the article.

Funding Open access funding provided by Università degli Studi di Torino within the CRUI-CAREAgree-
ment.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Ahmadi M, Seifi A, Tootooni B (2015) A humanitarian logistics model for disaster relief operation consid-
ering network failure and standard relief time: a case study on San Francisco district. Transp Res Part
E Logist Transp Rev 75:145–163

AltayN,GreenWG(2006)OR/MS research in disaster operationsmanagement. Eur JOperRes 175(1):475–
493

123

http://creativecommons.org/licenses/by/4.0/


R. Aringhieri et al.

Anaya-Arenas A, Renaud J, Ruiz A (2014) Relief distribution networks: a systematic review. Ann Oper
Res 223(1):53–79

Anaya-Arenas AM, Ruiz A, Renaud J (2018) Importance of fairness in humanitarian relief distribution.
Prod Plan Control 29(14):1145–1157

Angelica Salazar-Aguilar M, Langevin A, Laporte G (2014) The multi-district team orienteering problem.
Comput Oper Res 41:76–82

Archetti C, Speranza MG, Vigo D (2014) Vehicle routing problems with profits, chap. 10, pp 273–297
Aringhieri R (2020) Online optimization in health care delivery: Overview and possible applications. In:

Operations research proceedings. Springer Nature, pp 357–363
Aringhieri R, Bigharaz S, Duma D, Guastalla A (2021) Novel applications of the team orienteering problem

in health care logistics. In: Optimization in artificial intelligence and data sciences, AIRO Springer
Series. Springer Nature (to appear)

Aringhieri R, Bocca S, Casciaro L, Duma D (2019) A simulation and online optimization approach for
the real-time management of ambulances. In: 2018 Winter simulation conference (WSC), vol 2018.
IEEE, pp 2554–2565

Boin A, Bossong R, Brazova V, Camillo FD, Coste F, Dorussen H, Ekengren M, Fanoulis E, Hegemann
H, Hellenberg T, Kesetovic Z, Kirchner E, Kuipers S, Marrone A, Matczak P, Nexon E, Pettersson
Y, Rhinard M, Samardzija V, Szalankiewicz D, Tessari P, Ungaro A, Visuri P (2014) Civil security
and the european union: a survey of european civil security systems and the role of the eu in building
shared crisis management capacities. Tech. rep, UIpapers—Swedish Institute of Internatioal Affairs

Boonmee C, Arimura M, Asada T (2017) Facility location optimization model for emergency humanitarian
logistics. Int J Disast Risk Reduc 24:485–498

Butt SE, Cavalier TM (1994) A heuristic for the multiple tour maximum collection problem. Comput Oper
Res 21(1):101–111

Chao IM, Golden BL, Wasil EA (1996) The team orienteering problem. Eur J Oper Res 88(3):464–474
ChiuYC,ZhengH (2007)Real-timemobilization decisions formulti-priority emergency response resources

and evacuation groups: model formulation and solution. Transp Res Part E Logist Transp Rev 43(6):
710–736 (challenges of emergency logistics management)

Di Camillo F, Marrone A, Silvestri S, Tessari P, Ungaro A (2014) The Italian civil security system. Istituto
Affari Internazionali

Erdogan G, Laporte G (2013) The orienteering problem with variable profits. Networks 61(2):104–116
Gendreau M, Hertz A, Laporte G (1994) A tabu search heuristic for the vehicle routing problem. Manage

Sci 40(10):1276–1290
Gunawan A, Lau HC, Vansteenwegen P (2016) Orienteering problem: a survey of recent variants, solution

approaches and applications. Eur J Oper Res 255(2):315–332
Holguín-Veras J, Jaller M, Van Wassenhove LN, Pérez N, Wachtendorf T (2012) On the unique features of

post-disaster humanitarian logistics. J Oper Manage 30(7):494–506
Hoyos MC, Morales RS, Akhavan-Tabatabaei R (2015) OR models with stochastic components in disaster

operations management: a literature survey. Comput Indus Eng 82:183–197
Huang M, Smilowitz K, Balcik B (2012) Models for relief routing: equity, efficiency and efficacy. Transp

Res Part E Logist Transp Rev 48(1):2–18 (select papers from the 19th international symposium on
transportation and traffic theory)

KarsuO,MortonA (2015) Inequity averse optimization in operational research. Eur J Oper Res 245(2):343–
359

KnightV,Harper P, Smith L (2012)Ambulance allocation formaximal survivalwith heterogeneous outcome
measure. Omega 40(6):918–926

Lin YH, Batta R, Rogerson PA, Blatt A, Flanigan M (2011) A logistics model for emergency supply of
critical items in the aftermath of a disaster. Socio Econ Plan Sci 45(4):132–145

MacQueen JB (1967) Some methods for classification and analysis of multivariate observations. In: Cam
LML, Neyman J (eds) Proceedings of the fifth Berkeley symposium on mathematical statistics and
probability, vol 1. University of California Press, pp 281–297

Najafi M, Eshghi K, Dullaert W (2013) A multi-objective robust optimization model for logistics planning
in the earthquake response phase. Transp Res Part E Logist Transp Rev 49(1):217–249

Ng AY, Jordan MI, Weiss Y (2001) On spectral clustering: analysis and an algorithm. NIPS’01. MIT Press,
Cambridge, MA, USA

Nicosia G, Pacifici A, Pferschy U (2017) Price of fairness for allocating a bounded resource. Eur J Oper
Res 257(3):933–943

123



Fairness in ambulance routing

Nolz P, Semet F, Doerner K (2011) Risk approaches for delivering disaster relief supplies. OR Spectrum
33:543–569

Ozdamar L, Demir O (2012) A hierarchical clustering and routing procedure for large scale disaster relief
logistics planning. Transp Res Part E Logist Transp Rev 48(3):591–602

Ozdamar L, Ertem MA (2015) Models, solutions and enabling technologies in humanitarian logistics. Eur
J Oper Res 244(1):55–65

Sabouhi F, Bozorgi-Amiri A, Moshref-Javadi M, Heydari M (2019) An integrated routing and scheduling
model for evacuation and commodity distribution in large-scale disaster relief operations: a case study.
Ann Oper Res 283(1):643–677

Sayyady F, Eksioglu SD (2010) Optimizing the use of public transit system during no-notice evacuation of
urban areas. Comput Indus Eng 59(4):488–495

Shiripour S, Mahdavi-Amiri N (2019) Optimal distribution of the injured in a multi-type transportation
network with damage-dependent travel times: two metaheuristic approaches. Socio Econ Plan Sci
68:100660

Sun L, DePuy GW, Evans GW (2014) Multi-objective optimization models for patient allocation during a
pandemic influenza outbreak. Comput Oper Res 51:350–359

Talarico L, Meisel F, Sorensen K (2015) Ambulance routing for disaster response with patient groups.
Comput Oper Res 56:120–133

Tlili T, Abidi S, Krichen S (2018) Amathematical model for efficient emergency transportation in a disaster
situation. Am J Emerg Med 36(9):1585–1590

Tlili T, Harzi M, Krichen S (2017) Swarm-based approach for solving the ambulance routing problem.
Procedia Comput Sci 112:350–357 (Knowledge-Based and Intelligent Information & Engineering
Systems: Proceedings of the 21st International Conference, KES-20176-8 September 2017, Marseille,
France)

Tzeng GH, Cheng HJ, Huang TD (2007) Multi-objective optimal planning for designing relief delivery
systems. Transp Res Part E Logist Transp Rev 43(6): 673–686 (Challenges of Emergency Logistics
Management)

Valenzuela CL, Jones AJ (1997) Estimating the held-karp lower bound for the geometric tsp. Eur J Oper
Res 102(1):157–175

Vansteenwegen P, Gunawan A (2019) Orienteering problems: models and algorithms for vehicle routing
problems with profits. Springer Nature Switzerland AG

Vansteenwegen P, Souffriau W, Oudheusden DV (2011) The orienteering problem: a survey. Eur J Oper
Res 209(1):1–10

Vargas Florez J, LaurasM,OkongwuU,Dupont L (2015)A decision support system for robust humanitarian
facility location. Eng Appl Artif Intell 46:326–335

Yi W, Ozdamar L (2007) A dynamic logistics coordination model for evacuation and support in disaster
response activities. Eur J Oper Res 179(3):1177–1193

Zhu L, Gong Y, Xu Y, Gu J (2019) Emergency relief routing models for injured victims considering equity
and priority. Ann Oper Res 283(1):1573–1606

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Fairness in ambulance routing for post disaster management
	Abstract
	1 Introduction
	2 Literature review
	3 Problem statement and mathematical formulation
	4 Solution algorithm
	4.1 Initial solution based on a machine learning approach
	4.2 Improving the solution using ad hoc neighbourhoods

	5 Quantitative analysis
	5.1 The generation of realistic instances
	5.2 Computational analysis

	6 Conclusions
	Acknowledgements
	References




