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Abstract

The significant difference in length scales between the flow around a moving fish net and the
flow around each twine of the net prevents the resolution of the complete structure within
a discrete fluid domain. In this paper, this issue is overcome by calculating the net and
fluid dynamics separately and incorporate their interaction implicitly. The forces on the net
are approximated using a screen force model, and the motion of the net is computed with
a lumped mass method. Here, a linear system of equations is derived from the dynamic
equilibria and kinematic relations. The net model is coupled to the CFD solver REEF3D
which solves the incompressible Navier-Stokes equations using high-order finite differences in
space and time. Several numerical calculations are provided, and the comparison of loads
and velocity reduction with available measurements indicates the good performance of the
proposed model

1 Introduction

Offshore aquaculture has seen growing interest due to greater concern regarding traditional
aquaculture and its environmental impact on coastal regions. In the past, the design process
was mostly based on the assumption that a decoupled consideration of fluid dynamics and
structural deformation is valid. Lgland [19] utilised linearised turbulent wake equations to
approximate the wake velocity behind the net, whereas other research relied on solutions
from potential theory as wave input[15]. A separated approach of investigating the fluid and
structural system loses validity under consideration of the changing environment offshore and
the steadily increasing structure size because of the strong relationship between the motion
of the structure and its interaction with the net. Therefore, coupled numerical simulations
using less restrictive equations to describe the physical interaction become relevant. Here,
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the structural response and the disturbance of the fluid is directly determined from time-
dependent fluid dynamics in and around the cage.

The significant difference in length scales between the flow around the fish cage and the flow
around each twine of the net prevents the resolution of the complete structure within a discrete
fluid domain. To overcome this issue, the calculation of net and fluid dynamics are separated
and their interaction is incorporated using a coupling algorithm. Recently, a porous medium
model was developed which defines a porous medium around the net. The governing volume-
and Reynolds-averaged Navier-Stokes equations are solved using a finite volume method |3,
25, 30]. Chen and Christensen [6, 7] derived more advanced porous resistance coefficients to
account for the porosity of the net. In Martin et al. [23], this approach was validated for
fixed and moving net sheets in steady current flow. In this paper, an alternative method is
utilised which is based on Lagrangian-Eulerian considerations which are generally efficient and
applicable. Here, the fluid is calculated on a fixed Eulerian grid and the net is tracked using
Lagrangian markers following its deformation. Appropriate interpolations are incorporated to
account for the correct information transfer. Further, a screen force model [16] is implemented
to account for the hydrodynamic forces on the net and the disturbances from the solid parts of
the porous structure are distributed in the fluid domain using a continuous forcing approach.

Most numerical models for simulating the dynamics of nets are based on simplified finite
element methods [28] or lumped mass methods [17]. In lumped mass methods, the net is
discretised into multiple knots connected with elastic and massless bars. The solution is
sought for the accelerations of the knots by solving Newton’s second law and explicit time
integration is applied to obtain the velocities and positions of the knots afterwards. This
approach was successfully coupled to a porous medium model to simulate the interaction of
flexible net sheets [3] and net cages [1] with steady fluid. The disadvantages arising from the
explicit time integration and missing constitutive equations led to the development of implicit
dynamic methods. In [24], an implicit quasi-static net model was introduced. High efficiency is
given due to missing time step restriction, but the approach lacks justification for applications
including large motions and snap loads due to increased accelerations between fluid and net
motion. A more elaborated approach is provided in [18] where a dynamic net model based on
a similar proposition was presented. The original method suffers from an inelastic material
assumption which led to the development of the implicit net model of Marichal [20]. This
approach is also the chosen net model in this paper.

The net model is implemented in the open-source Computational Fluid Dynamics (CFD)
code REEF3D [5]. The code has been used and validated for a wide range of marine appli-
cations, such as breaking kinematics [13], breaking wave forces [14], sloshing [10] and fluid-
structure interaction of floating objects [4, 22]. The new contribution of this paper consists
of the development of a dynamic implicit net model and its coupling to a CFD fluid solver
for calculating the interaction with the fluid. Thus, it is possible to analyse the deformation
of nets in complex fluid conditions.

In the following, details about the numerical fluid and net models, as well as their cou-
pling, are presented. Afterwards, validation cases for the coupling algorithm, the net motion
and the fluid-structure interaction are provided. The comparison of loads on and velocity
reductions behind a fixed and moving net panel with available measurements indicates the
good performance of the proposed model. Additionally, four moving net panels are presented
in order to emphasise the computational efficiency of the implementation.
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2 Numerical Model for Solving Fluid Dynamics

The basis for the presented developments is the open-source CFD solver REEF3D. In this
framework, the continuity and Navier-Stokes equations are solved on a Fulerian grid in the
whole domain:

V-u=0, (1)
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Here, u is the velocity vector, p represents the pressure, g is the gravity acceleration vector

and v is the kinematic viscosity. The forcing term f is later defined in order to account for

the presence of the net in the fluid domain. Turbulent viscosity is calculated using a k-w
turbulence model and added to v in Eq. (2).

The system of equations is solved on a rectilinear staggered grid which stores the velocities
and velocity related terms such as f on the cell faces and the pressure in the cell centres. Hence,
tight coupling between pressure and velocity is ensured. Finite differences are employed to
represent the terms in the Eqns. (1) and (2) in the discrete space. The convection term is
discretised with a fifth-order accurate weighted essentially non-oscillatory (WENO) scheme
[12] adapted to non-uniform point distances, and for Laplacian terms, second-order accurate
central differences are applied. All terms are advanced in time using a third-order accurate
TVD Runge-Kutta scheme [27] except the diffusion term, which is handled by the implicit
Euler method. This effectively removes the strong restriction on the CFL-number from the
diffusion term.

Chorin’s projection method for incompressible flows [8] is implemented in REEF3D. First,
the predictor step

1
—I—u~Vu:—;Vp+uV2u+g+f. (2)

u® — a™

A7 = —u™ . vul 4 V2t 4 g 4 £, (3)

is solved for the velocities u*) without pressure gradients. Then, a Poisson equation is
formulated for the pressure

1 1
V. [Zvpth)) = —v.u®, 4
(p P NV (4)
Finally, a velocity field respecting the continuity equation is calculated using
At

u™ ) — y® vprth), (5)

p

An n-halo domain decomposition strategy is implemented in the CFD solver. Here, the
domain is split into several subdomains, and data is transferred to neighbouring subdomains
using several layers of ghost cells. Convection term containing equations require three layers
due to the application of the fifth-order accurate WENO scheme. Otherwise, one layer is
sufficient because of at most second-order accurate spatial discretization schemes. High-
performance computation is enabled by using the message passing interface (MPI) for inter-
processor communication. This also enables the usage of the fully parallelized BiCGStab
algorithm with geometric multigrid preconditioning of the HYPRE library [29] for solving the
Poisson equation (4).
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3 Numerical Model for Solving Net Dynamics

A typical net in the aquaculture industry consists of a large number of meshes in the form of
a porous cylinder or sheet. The resolution of all meshes in a computational simulation would
demand too large costs today. Therefore, the net is defined by several larger numerical meshes,
and each numerical mesh represents the effect of several physical meshes in the simulation.
This is incorporated by utilising the solidity of a porous sheet Sn, [9]

sn:%_(df)Q, (6)

which defines the ratio of the solid front area to the total area. Here, d; is diameter of the
physical twines and I; their length. Each numerical mesh consists of four knots connected by
straight bars. The knots move in a Lagrangian manner through the numerical domain. In
addition, four screens are defined in the mesh, and each screen is assigned to the connected
knot.

Figure 1: Ilustration of the dynamic force equilibrium at the knot x;.

Following the approach of the screen force model [16], the hydrodynamic forces H; of the
fluid on the screens with areas Ay around knot ¢ can be calculated as

Si
H- Y
s=1

with ng the normal and n; the tangential direction of the relative velocity vector u,es =
us; — Xs. Here, ug is the fluid velocity interpolated at the screen. The normal vectors are

D

u?el,s(cdnd =+ clnl)s Asg, (7)
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depended on the relative velocity and screen normal vector following the relations:

Uprel,s
ngs = ’ 8
S |u7-6l75| b ( )

(urel,s X ns) X g

n s =

)

|(urel,s X ns) X nS‘. (9)
Here, n; is the unit normal vector of the screen pointing in the same direction as uye . The
drag and lift coefficients ¢4 and ¢; are calculated from a truncated Fourier series expanded
for the angle of attack a between fluid and screen direction. The Fourier coefficients are
determined using non-linear fitting to experimental data (see [21] for details).

At each time instance, the dynamic equilibrium between the knots has to be fulfilled. At

each knot x; with N; neighbouring knots, this can be written as Newton’s second law (see
also Fig. 1):

N;

k=1
with G; the vector of the sum of the gravity and buoyancy force and T;; the tension force
vectors

X — X
T, =T b.=T. (L "% 11
i ij Pij ij <‘Xj—Xi|>, (11)
where Tj; represents the tension force magnitude and b;; is the unit vector of the corresponding
bar. Further, the mass is lumped at the knots using

S;
m; = Z (ma,s + mair,s) y (12)

s=1

with mair s the mass of the screen in air and m, s its added mass calculated as the mass of
the water volume occupied by the screen. The remaining inertia force, which arises from the
Froude-Krylov force and the fluid-dependent part of the added mass force, is written into I;
as

L = 2mair,saSa (]—3)

with as the fluid acceleration interpolated at the screen.

The system of equations (10) is solved numerically as proposed in [20] to ensure physical
connectivity after each time step. The length of the bar between knot x; and x; is connected
by the linear elastic relation

5 =10 (1+ 5 Ty)?, (14)

with lg;; the original length and x an elasticity constant. At each time step (n+1), Eq. (14)
includes both, the unknown position of the knots and the unknown tension forces. A lin-
earisation is introduced in order to approximate this relation by introducing the incremental
increase of the tension forces

T+ — 7V L AT (15)
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Assuming small elasticity (x < 1) and small tension fluctuations (AT < 1), Eq. (14) yields

(zg‘“))Q — 12, (1 + 2 Tg”) . (16)

In each time step, the kinematic compatibility equation

(Xj(nJrl) . xi(n+1)>2 _ (ZZ(;7+1)>27 (17)

has to hold for all knots. This can be ensured by solving this equation instead of the dynamic
equilibria of Eq. (10). These equilibria are then fulfilled by inserting them into the compati-
bility equation using finite differences in time for replacing position vectors with accelerations.
In this paper, first-order backward finite differences are applied in order to maintain linearity
of the problem. They are inserted in the left-hand side of Eq. (17). Finally, the arising terms
are linearised such that a system of linear equations is given under consideration of (16):

() _ (m)?
(607 50 1 ar (2~ 507)) (<) - as)

This can be written for the tension force magnitudes using the definition (11) and Eq. (10):

Nj bEZ)T](;?H) Ni 1 (m)p(nt1)

Z T _ Z ik mlf <x§") _ Xz(n))

k=1 P
n )\ 2
By, g _ B (87 4)
(5757 (47 )
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A b

The resulting system matrix is inverted using the partially pivoted LU decomposition of the
C++ library Eigen [11]. Once a converged result has been found for the tension forces,
acceleration, velocity and position of the knots are found from Eq. (10) and

XD = () 4 A (0D, (20)
x(D) = x(M 4 A (D), (21)

As initial conditions, the geometrical information of the net at the start of the simulation has

to be given. An efficient algorithm is ensured by storing connectivity matrices as proposed in
[24].
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3.1 Two-way Coupling of Fluid and Net Dynamics

The interaction between fluid and net is handled implicitly in a two-way coupled manner using
a forcing term in the Navier-Stokes equations. This term adds or removes the momentum
initiated from the net motion and the porosity of the net. The information from the Lan-
grangian knots of the net is distributed on the Eulerian fluid grid using an inverse distance
weighting interpolation. For this purpose, the term f in Eq. (3) is approximated at point x.
of the fluid grid using

_ 1 Zlel We,l - f(x)
"y Zlel w@,l

with f (x;) the hydrodynamic screen force vector at the Lagrangian point x; on the net, L
the number of knots on the net within a defined Kernel around x, and w,; the dimensionless
weights chosen as

f(xe)

, (22)

1

) 23
’Xe _xl‘g ( )

We | =
The parameter ~ arises in (22) from the transition of a surface force to a volume force and
represents the diameter of the influence sphere of each knot. It is adjusted so that it accurately
predicts the deceleration of the flow through the net. Finally, the screen forces are represented
by the drag and lift forces at each knot (Eq. (7)):

F(xi) = Sulay - (cana + cm), (24)

It is noticed that the same interpolation procedure is used to obtain the fluid velocities for
the calculation of the hydrodynamic forces on the net screens us. Thus, a two-way coupling
is considered because the information of the fluid is used to calculate the net deformation and
the disturbance of the fluid through the net is included in the fluid solution.

4 Validation of the Numerical Model

Several validation cases are presented for the proposed numerical model. In particular, forces
on net sheets, their deformation and the velocity reduction behind them are compared to
available experimental data.

The decrease of velocity is typically indicated by the velocity reduction factor U,

Uy =1.0— 2, (25)

Uoo
with u,, the velocity in the wake of the net. Further, the numerically predicted forces on the
net are determined by integrating (7) over the net surface.
4.1 Forces on a fixed net panel

First, the accuracy of the drag force estimation of the proposed numerical model is inves-
tigated. For this purpose, the experimental data of Rudi et al. [26] is considered. They
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Figure 2: Computational domain for the simulation of the fixed net panel in steady current
flow by Rudi et al. [26]. The domain is symmetrical in y- and z-direction.

measured the drag forces on a fixed net panel in a steady current using varying inflow veloc-
ities uo, angles of attack a and net geometries.

The net with solidities Sn = 0.13 and 0.243 is fixed in a neglected frame of 1.5 m x
1.5 m. The angles of attack are a« = 0°,30° and 60° with « defined as shown in Fig. 2. The
inflow velocities are 0.159 m/s, 0.316 m/s and 0.966 m/s. As the computational domain, a
7 m long and 3.7 m wide and high rectangular box is considered, and the net is placed in
the middle of the domain at x = 2.5 m. The size of the domain is chosen so that the results
are not influenced by the boundaries of the domain. The side boundaries of the domain are
modelled as no-slip walls. A uniform grid with a grid point distance of 0.02 m is choosen for
the simulations. This choice is not critical for the results as shown in [21]. As results, Fig. 3
shows the comparison of the drag force coefficients between the experimental data and the
numerical predictions.

5
0.30, : : : : : : 0.

O C Exp0.159m/s OO Exp0.316m/s <O Exp 0.966m/s OO Exp0.159m/s OO Exp0.316m/s <> Exp 0.966m/s
0.25| — NumO0.159m/s - - NumO0.316m/s  --- Num 0.966m/s 1 0.4 — Num0.159m/s - - Num0.316m/s --- Num 0.966m/s

0'000 10 20 30 40 50 60 70 0'00 10 20 30 40 50 60 70

(a) Sn =0.13. (b) Sn = 0.243.

Figure 3: Comparison of the numerical and experimental drag force coefficients for the fixed
net panel in different steady current flows and different angles of attack.

Fig. 3a presents the numerical and experimental drag force coefficients for the different
inflow velocities as a function of « for Sn = 0.13. The computed drag coefficients decrease
with increasing inflow velocity and increasing angle of attack. This agrees qualitatively with
the measurements. The smallest deviations can be found for us = 0.316 m/s, whereas the
model under-predicts ¢4 for smaller and larger velocities by up to 30%. Similar results are
shown for Sn = 0.243 in Fig. 3b. Generally, a better agreement between experiments and
simulation is stated. The maximum deviation occurs for a = 0° and us = 0.966 m/s with
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22% over-prediction.

It is noticed that the numerical model includes empirical approximations for ¢4 which
are obtained from experimental data. A better agreement could hence be obtained if the
incorporated data set would be limited to the measurements for this particular net sheet.

4.2 Velocity reduction behind a fixed net panel

In the experiments of Bi et al. [2], PIV measurements of the fluid around a single and multiple
fixed net panels in varying currents were performed. The flume is 22 m long, 0.45 m wide,
0.6 m high and has a water depth of 0.4 m. Amongst other investigations, a single fixed net
panel of 0.3 m x 0.3 m is placed in the centre of the flume normal to the flow direction. As
above, the side boundaries are modelled as walls. The domain is discretised in equidistance
grid points with a distance of 0.01 m. Three different net configurations are investigated with
varying solidity of Sn = 0.135,0.243, and 0.272. The inflow velocities uy, are 0.056 m/s,
0.113 m/s, 0.17 m/s and 0.226 m/s. The presence of the net panel extracts momentum from
the fluid which results in a flow velocity reduction as illustrated in Fig. 4. The accurate
determination of this reduction is of major importance for modelling the flow pattern in the
cage and the loads on the back side of the structure. In the experiments, the fluid velocity
was measured one frame length L behind the net for each geometry. Additionally, the velocity
profile along a line in x-direction through the centre of the net was reported for u, = 0.17 m/s.
The comparability of the numerically calculated velocities at specific points of the physical
experiment is not valid because of the continuous numerical representation of the net in
the fluid domain. Therefore, velocity probes are arranged in the form of a disc around the
measured point and the average value is compared with that from the experiment. This should
provide a better impression of the numerical accuracy because it takes the discrete approach
of macro elements into account.

u
0.1 0.140.150.150.150.160.170.17 0.2
[—"

— o

N

Figure 4: Numerically calculated x-velocity distribution on x-y plane through the centre of
the net for the configuration Sn = 0.243, us = 0.17 m/s and a = 45°.

The computational domain is shown in Fig. 5. The tank has the dimensions 4 m x 0.5 m X
0.5 m, and the net panel is placed centred at x = 1.5 m. As the results, the velocity reduction
factor U, is compared for the different net geometries and varying angles of attack between
0° and 60° in Fig. 6 and 7.

Fig. 6a shows U, over us two L behind the net located perpendicular to the inflow. The
relative velocity reduction increases with the solidity of the net due to increased shielding.
Further, U, only slightly decreases with increased inflow velocity, expect of the smallest veloc-
ity where a strong increase is measured for two of the nets. It is to be discussed whether this
deflection is due to physical effects or uncertainty sensitivity which amplifies at this point due
to the small flow velocity and the division by us in Eq. (25). Exempt from these data points,
the numerical model shows a pvery good agreement with the experiments as the deviations
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Figure 5: Computational domain for the simulation of the fixed net panel in steady current
flow by Bi et al. [2]. The domain is symmetrical in y- and z-direction.

are mostly below 10%. Fig. 6a provides further insight by showing the distribution of U,
over x on the middle line through the net. Here, the experiments show a slight decrease of
U, over x behind the net. This effect implies an acceleration of the fluid which might be
due to enhanced turbulence in the wake-field. In the numerical model, this would have to
be incorporated by increasing the turbulence production through the net in the turbulence
model. Despite this, the simulations can still provide an accurate distribution with all errors
below 10%.

0.30 T T : - 0.30
C O ExpSn=0.135 [0 ExpSn=0.243 O Exp Sn=0.272 C C ExpsSn=0.135 [0 ExpSn=0.243 < Exp Sn=0.272
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(a) Velocity reduction factors at /L = 2.0 over varying(b) Distribution of the velocity reduction factors along
inflow velocities. the middle line through the net panel for u., =
0.17 m/s.

Figure 6: Comparison of the numerical and experimental predicted velocity reduction factors
for varying solidities and o = 0°.

The net with solidity Sn = 0.243 is further analysed by varying the angle of attack with
the inflow. In Fig. 7a, U, over us two L behind the net located perpendicular to the inflow
is shown for a = 0° — 60°. Physically, the reduction factor increases with a due to the
increasing net area perpendicular to the flow. Further, the factor decreases with increasing
inflow velocity for small a but increases with increasing inflow velocity for larger angles. The
model accurately reproduces the first effect but cannot reproduce the increase of U, over uq
for a = 60°. For the distribution of U, over x (Fig. 7b), similar agreement as above can be
found between experiment and simulation.

10



Martin, T. et al., 2022

0.30 : : : : 0.30,
O O Expo® O C Exp30° OO Exp4s® OO Exp60° O O Expo® O O Exp30° OO0 Exp4s° OO Exp60°
0.25, — Num0° — - Num 30° --- Num 45° Num 60° 0.25, — Num0° - = Num 30° --- Num45° Num 60°
0.20f 0.20} Net
Z .15t < 0.15} [ AN
= = B PSRRI = RS bet o ALty
0.10 0.10/
0.05} 0.05
050 0.05 0.10 0.15 0.20 0.25 000565 00 05 10 15 20 25

tsg[m/s] @/L -]

(a) Velocity reduction factors at /L = 2.0 over varying(b) Distribution of the velocity reduction factors along
inflow velocities. the middle line through the net panel for us =
0.17 m/s.

Figure 7: Comparison of the numerical and experimental predicted velocity reduction factors
for Sn = 0.243 and varying angles of attack.

4.3 Deformation of a single net panel in steady current

After the validation of the force model and coupling algorithm, the net deformation is included
for a final validation case. Bi et al. [3] conducted experiments on a flexible net sheet in a
similar configuration as presented in the previous section. The net of 0.3 m x 0.3 m has a
solidity of 0.243, and a steel bar with a mass of 64.5 g in water is attached to the bottom of the
net. The bar is not resolved in the simulation but added as additional masses to the first row
of meshes. A stiffness constant of x = 0.01 s2/kg is chosen from fitting the linear range of the
experiments in [17]. This choice is though not critical for the simulations as the deformations
are relatively small compared to the motion due to the current. The computational domain,
the boundary conditions and the grid size are taken from above (see Fig. 5). The inflow
velocities us are 0.056 m/s, 0.113 m/s, 0.17 m/s and 0.226 m/s. The interaction of fluid
and net results in the deformation of the net and a velocity reduction in its wake as shown in
Fig. 8.

T

0.00 0.020.030.040.050.060.070.08 0.0966
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-~ 0116
—0.114
—n0.l112
—-011 =
—0.108
0.106
- 0.104
0.102
0.1
0.0963

Figure 8: Numerically calculated x-velocity distribution on x-y plane through the centre of
the net for us, = 0.113 m/s.

First, the deformation of the net is compared with experimental data extracted from pictures
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during the measurements in Fig. 9. Generally, the numerical model provides an accurate
representation of the physical deformation over the whole range of inflow velocities. For
larger velocities, the model tends to predict a larger curvature in the middle part of the net
so that the lowest point deflects less in comparison to the experiment.

<> O Exp u, =0.058~m/s O O Expu,=0.113~m/s 0O O Exp u, =0.17~m/s O O Expu,=0226~m/s
300 — Numu,=0058~m/s = Numu,=0113~m/s  =-- Numu,=017~m/s  --- Num u,=0226~m/s

e,
E Ou\ o 5 X
E 15C % GK\ ] ’,‘\_\\

100 Y<<>> < e s D R
50 \<> %f\ i} =i O 0
0] \Q \\% DW Y
0 50 100 150 200

Figure 9: Comparison of the deformation of the net. The figure shows the distribution of the
net in the x-z plane through its centre for the different inflow velocities.

Next, the total drag forces on the deformed net are analysed in Fig. 10. For the numerical
results, the forces on the sinker are approximated using Morison forces on a cylinder. The drag
forces increase quadratically with the velocity as expected, and the numerical model shows
good agreement with the experiments for lower inflow velocities. The deviations increase with
the inflow velocity which might be due to the increasing importance of the forces on the sinker.
Fig. 11 shows the distribution of the velocity reduction factor behind the net for two inflow
velocities. The general distribution of U, and agreement between experiment and numerical
model is, as expected, similar to above. The maximum deviation occurs at z/L = 2 with an
over-prediction of 7%.

1.0

OC Exp  — Num O

) 0.05 0.10 0.15 0.20 0.25

to[m/s]

Figure 10: Comparison of the total drag forces on the deformed net over the inflow velocities.
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Figure 11: Comparison of the distribution of the velocity reduction factors along the middle
line through the net panel (x/l =~ 0).

5 Application to Multiple Deforming Net Panels in Steady
Current

In the following, the study of the interaction of current flow and four deforming net panels
is presented. This shall emphasise the advantage of the presented model to simulate the
interaction of several nets with each other within a single fluid domain. The validation of
the proposed model for multiple rigid nets has been presented in [21]. The setup is the same
as reported in [2], but the deformation of the nets is enabled. The computational domain is
shown in Fig. 12. Three additional nets are added behind the original net with a distance of
one frame length between each of them. The inflow velocity is chosen as us, = 0.17 m/s. In
the simulation, about 3% of the total computational time is linked to a single net calculation
and its coupling to the fluid solver. Fig. 13 shows the resulting flow pattern around the nets
and the net deformation at steady state.
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Figure 12: Computational domain for the simulation of four deforming net panels in steady
current flow. The domain is symmetrical in y- and z-direction.
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Figure 13: Numerically calculated x-velocity distribution on x-y plane through the centre of
the deformed nets.

In Fig. 14, the deformation of the N = 4 nets is shown. The net in the front deforms
the most due to the undisturbed inflow conditions. The deformations of the downstream
nets reduce successively due to the velocity reduction through each structure as indicated
in Fig. 15. It is further noticeable that downstream nets slightly influence the flow through
upstream panels due to impounded water. Finally, Fig. 16 shows the total drag forces on each
of the nets. The reduced inflow velocity results in reduced drag forces on the downstream
structures as expected. Between the first and last net, a reduction of 40% is calculated.
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Figure 14: Numerical deformation of the nets shown as the distribution of the nets in the x-z
plane through its centres.

6 Conclusion

The present paper describes a complete numerical model for simulating the interaction of
deforming nets and fluid dynamics. The coupling is achieved through the inclusion of the
momentum disturbances in the Reynolds-averaged Navier-Stokes equations. The forces on
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Figure 15: Numerical distribution of the velocity reduction factor along the middle line
through the net panels.

0.6
0.5
0.4}

£ 0.3

-

0.2

0.1}

08605 To0 15 20 25 30 35 40 45

Figure 16: Numerical total drag forces on the deformed nets.

the net are calculated under the usage of the screen force model. This model has advantages
over Morison type force models due to the incorporation of the angle between fluid and net
into its formulation. An implicit model is chosen for the calculation of the net dynamics to
avoid time-step restrictions or sub-step iterations in the fluid solution. Hence, the inclusion
into existing CFD solvers is straightforward and the effect on the efficiency of the solver is
minimised.

The numerical model is validated against existing experiments for fixed and deforming
net panels with varying geometries and solidities in current flows. Overall, the proposed
model agrees well with the experimental data as most deviations for drag forces and velocity
reduction are below 10%. It is noticed that the numerical model relies on empirical data for
the drag force on a net panel. Therefore, the quality and quantity of available experimental
data influences the results of the CFD model. The study of multiple deforming nets delivers
insight into possible applications and advantages of the model. Future work will focus on the
simulation of fish cages in current and waves and the inclusion of free surfaces with a moving
collar.
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