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Abstract
We report an investigation of spinwave propagation in ion beam sputteredCo2FeAlHeusler alloy thin
film on Si(100) substrate. The spinwave transmission spectrameasured atfixed frequencies by
sweeping the external appliedmagneticfieldwere used to estimate technologically relevant spinwave
propagation parameters. The spinwave group velocity was found at 6.1 km s−1 with an attenuation
length larger than 7μm.TheGilbert damping parameter was estimated to be 0.019. The frequency
dependency of the group velocity decreasedwith increasing frequency and the attenuation length
increased at low frequencies while started to decrease at larger frequencies. The amplitude of non-
reciprocity also decreasedwith increasing frequency. The propagation parameters presentedwere also
independently verified by time-resolved propagating spinwave spectroscopy.

Introduction

Magnon spintronics, an emerging field of spintronics also known asmagnonics, aims at utilizing amagnon
current instead of a charge current for information and data processing [1, 2].Magnons are quanta of spinwaves
and offer a promisingway to realizeminiaturized, fast and energy efficient spintronics devices. Recent
realization of several concepts such as bidirectional conversion of spin to charge current [3], spinwave logic
gates [4], a spinwavemultiplexer [5] and spin torque nano-oscillators [6] (STNO) have boosted the interest of
the science community in this field. For such applications,materials with lowGilbert damping are important,
particularly for the realization of low power spin-transfer torque and spin–orbit torque based devices where the
switching current is proportional to theGilbert damping parameter (α) [7, 8]. Yttrium iron garnet (YIG), an
insulating ferrimagnet known for its lowGilbert damping,α≈10−5, is often thematerial of choice for
magnonics devices [9]. However, the incompatibility of Gd3Ga5O12 (GGG) substrates, widely used for YIG
growth, withCMOS technology put a constraint on the technological applications of YIGbased devices [2]. This
asks for the exploration of newmagneticmaterials with lowGilbert damping coefficients that are at the same
timeCMOS compatible.

Heusler alloys are a promising alternative among various possiblemagneticmaterial due to the often low
Gilbert damping, highCurie temperature, halfmetallicity and compatibility withCMOS technology [10–12].
Among the numerousHeusler alloys, Co2FeAl (CFA) is known for its highCurie temperature (TC=1000K),
high spin polarization and lowGilbert damping (α=0.001)whichmakes it an interesting candidate for both
spintronics andmagnonics applications [13, 14]. CFAhas beenwidely studied for its interesting static and
magnetodynamic properties. A large tunnelingmagneto resistance reported byWang et almakes it a candidate
as electrode inmagnetic tunnel junctions (MTJs) [15, 16].Moreover, it has been studied extensively inCFA/NM
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bilayers, hereNMstand for non-magneticmetal, because of its lowGilbert damping and for the potential
application inmagnetic random-accessmemory (MRAM) devices [17, 18]. However, data on spinwave
propagation properties and its dependence on spinwave frequency is stillmissing. Determining spinwave
propagation properties inCFA is thus essential for its application inmagnonics devices.

Here we report a study ofmagnetostatic surface spinwaves excited inCFA thin films utilizing an all electrical
propagating spinwave spectroscopy technique. The spinwave transmissionmeasurements were performed
sweeping an externalmagnetic field at different constantmicrowave frequencies, and the spinwave propagation
parameters were thus estimated as a function of frequency. The so obtained propagation parameters were also
independently verified by time resolved spinwavemeasurements.

Experimental

TheCFA thin filmwas deposited by ion beam sputtering at base pressure andworking pressure of 2×
10−7 Torr and 8×10−5 Torr at the room temperature respectively. The crystalline structure of the filmwas
investigated using x-ray diffraction (XRD) technique. Figure 1(a) shows the glancing incidence XRD
measurement perform at the glancing angle 1°. Presence of diffraction peak (220) at 45° and absence of peak
(200) at 32° suggest A2 type crystalline ordering in the deposited film [19]. The stoichiometry of the filmwas
investigated by energy dispersive x-ray analysis (EDX), see figure S in the supplementary information (available
online at stacks.iop.org/MRX/8/086101/mmedia). TheM-H loopsweremeasured bymagneto optic Kerr
effect (MOKE)magnetometer in longitudinal geometry at room temperature. The in-plane field angle (j)-
dependentMOKEmeasurements found to display in-plane uniaxial anisotropy of the film, seefigure 1(b).

A series of spinwave devices were fabricated on theCFA thin film depositing an insulating layer of SiO2

followed by deposition of a pair ofmicrowave antennas by a combination of electron beam lithography and lift-
off techniques. Both, the SiO2 layer and themicrowave antennaswere deposited by electron beam evaporation.
A typical device fabricated for the excitation of spinwave along the hard axis is shown infigure 1(c). The

Figure 1. (a)Glancing angle x-ray diffraction spetcra of theCFA thinfilm. (b)The in-plane field angle (j) dependentM-H curves
measured onCFA film. (c) Scanning electronmicroscope image of a spinwave device. The inset shows the part of the image depicting
the widths of signal and ground lines and also the signal-ground gapwidth.
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microwave antennaswere chosen in the ground-signal-ground (GSG) geometry.Thewidths of ground and
signal lines were 2, 1μmrespectively with ground-signal gap of 1μm, seefigure 1(c). The patterned devices were
placed between the pole piece of an electromagnet, allowing an in-planemagnetic field parallel to the coplanar
waveguides (CPWs) to be applied to excitemagnetostatic surface spinwave (MSSW).Microwave current/
voltage pulses from anAgilent analog signal generator/picosecond pulse generator were sent to one antenna in
order to excite spinwaves. The excited spinwaves travelling towards the second antenna induce a voltage which
is detected by a spectrum analyzer and sampling oscilloscope in continuous and time resolved spinwave
measurements, respectively. The spinwavemeasurements were performed at various antenna gap distances, s,
ranging from8–20μm (seefigure 1(c)) along the positive and negative directions of the appliedmagnetic field.

To quantitatively evaluate the spinwave propagation parameters, the signal recorded as a function of
magnetic fieldwasfitted to the product of aGaussian and oscillatory function given by [20]:
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where,A is the amplitude of the spinwave,ΔH the linewidth,Hr the resonance field,Hper the period of
oscillation, andHref, the reference field forwhich there is no spinwave signal.

The spinwave amplitude, resonance field, and oscillation period are extracted from the fittings. The spin
wave amplitude, which follows an exponential decay,A=exp(−s/Λ), whereΛ is the attenuation length, was
estimated as a function of gap distance, andwas used to determine the spinwave attenuation length. The
oscillation period observed infield spacewas converted to frequency space in order to estimate the spinwave
delay time (td).More information of thismethod can be found somewhere else [21]. Plotting td versus s allows to
estimate the group velocity (as s=υgtd). Finally, the spinwave relaxation timewas inferred from the slope of
ln(A) versus td plots.

Results and discussion

The induced voltagemeasured at various gap distances, s=10, 15, and 20μmis shown infigure 2(a). A clear
oscillatory signal was observed, and the amplitude and oscillation period decreasedwith increasing gap distance.
Figure 2(b) depicts a FFT transformof the current density calculated numerically from the spatial distribution of
microwave current in the antenna. Amain peak at wave vector, k=1.34μm−1 and two secondary peakswere
observed. The calculatedwavevector relates to the actual wave vector of the spinwave to be excited. To verify
this, the spinwave resonance fieldwas extracted as function of frequency and fitted toMSSWdispersion curve
given by equation (2), see figure 2(c).
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where, fMSSW ismagnetostatic surface wave frequency, g is the gyromagnetic ratio=gμB/h, g is the Landé
g-factor,μB is the Bohrmagneton, and h is the Planck’s constant.

The best fit between experimental and theoretical data is found for an effective field,Meff=12500±100
Oe, and k=1.24±0.2μm−1 [22]. The experimentally observedwave vectormatches well with the theoretical
value. The effective field extracted is further used for estimating the spinwave delay time.

The signal amplitudemeasured corresponds to the amplitude of the spinwave and the oscillations attributed
to the phase delay acquired by the spinwave during propagation between the two antennas [23]. The spinwave
excited by the antenna is not perfectlymonochromatic. This non-monochromaticity is attributed to the finite
width (Δk) of the excitedwave vector due to the antenna geometry. Therefore, the excited spinwave signal
consists ofmultiple wave vector components. These components acquire different phase delays,j=k s, after
propagating the distance s between the two antennas. Spinwaves arrivingwith different phases satisfy the
resonance condition at different fields and results in an oscillatory behavior in themeasured signal. The spin
wave amplitude and the oscillation period are two important parameters containing the details of spinwave.
Investigating these two parameters as a function of gap distance thus allows to estimate the spinwave
propagation properties. Figure 2(d) (data in black open square) shows a plot of logarithmof spinwave amplitude
against gap distance. A straight linefitted to -ln(A) versus s gives an attenuation length at 7.7μmat 3GHz.
Similarly, the spinwave relaxation time and group velocity were estimated fitting -ln(A) versus td and td versus s
data, seefigure 2(d) (data in red and blue open circles). The relaxation time and group velocity were found to be
1.2 ns and 6.1 km s−1 at 3GHz, respectively. TheGilbert damping parameter,α=υg/Λω, is estimated at 0.019.

To investigate the dependence of propagation parameters on spinwave frequency,measurements were
performed at variousmicrowave frequencies. Figure 3 summarizes the variation of group velocity, attenuation
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length, relaxation time and amplitude non-reciprocity with the spinwave frequency in (a), (b), (c), and (d),
respectively. The group velocity was found to decrease with increasing frequency.While the attenuation length is
found to increase at low frequencies and to decrease at larger frequencies. Such behavior is unexpected, normally
the behavior follows the same trend as the group velocity. To investigate this behavior, we examined the spin
wave amplitude, which used to extract the spinwave attenuation length, inmore detail. The spinwave amplitude
was found to follow the same trend as the attenuation length. One possible explanation is that the sample is not
fully in a saturation state at lowmagnetic fields. As the externalmagnetic field increases, themagnetization
increases and hence the spinwave amplitude increases at first until the film is fully saturated. The observation is
matchingwell with the trend observed in theM–Hcurve along the hard axis. The spinwave amplitude reaches
itsmaximumvalue at the saturation, and for even larger applied field the amplitude starts to decrease because of
dampingwhich has a linear dependency on spinwave frequency. The spinwave relaxation timewas found to
increase with increasingmagnetic field. The observed frequency dependence is in accordancewith the observed
attenuation length behavior. The spinwave amplitude non-reciprocity was estimated taking the ratios of spin
wave amplitude propagating along positive and negativemagnetic fields. The non-reciprocity parameter (κ)was
found at 0.72±0.15 at 3GHz and decreasing in a linear fashionwith increasing frequency.

Furthermore, to verify the spinwave parameters estimated using this approach, time resolved propagating
spinwavemeasurements were performed. The spinwave packetmeasuredwas fitted to aGaussian function, see
figure 4(a).Wave packetmeasured at various gap distances is reported infigure 4(b). The spinwave amplitude
and delay timewas used to estimate the group velocity and the attenuation length using the samemethod as
discussed above. The spinwave group velocity and attenuation lengthwere estimated at 6.9 km s−1 and 9.2μm
at 3GHz,matchingwell with the continuous spinwavemeasurements.

Figure 2 (a) Spinwavemeasured at gap distance, s=10, 15 and 20μmfor 10 nmCFAdevice. The open black circles and the colored
solid lines show the experimental and fitted data points, respectively. (b)The spinwave spectra calculated from the Fourier Transform
of the spatial distribution of current density inside the antenna. (c)The spinwave frequency dispersion curves plotted for the devices at
various gap distance. The open symbols and the solid pink line show the experimental and fitted data, respectively. (d) Logarithmof
spinwave amplitudeA plotted against gap distance s (in black), and delay time td (in red). The td versus s is plotted in blue. The colored
open symbols and the colored solid lines show the experimental and fitted data points, respectively.
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Finally, we discuss the promise of sputtered Co2FeAl for future high-performancemagnonic device
technology. A large group velocity and lowGilbert damping are the basic requirements for anymaterial to be
useful formagnonics applications. Ourmeasurements reveal a lowGilbert damping,α≈0.019, for ultrathin,

Figure 3. Spinwave group velocity, attenuation length, relaxation time, and amplitude non-reciprocity plotted as function of spin
wave frequency in (a), (b), (c) and (d), respectively.

Figure 4.The experimental (black open circle) andfitted (solid red line)data of spinwave packetmeasured for the device with gap
distance s=8μmin (a) and for devices with gap distance s=8, 10 and 15μmin (b).

5

Mater. Res. Express 8 (2021) 086101 S Singh et al



10 nmCFAfilm on aCMOS compatible silicon substrate. Thick (53 nm)Co2FeAl films have also been reported
to have lowGilbert damping,α≈0.0015 [21]which is one order ofmagnitude smaller than other sputtered
Heusler alloys [24].We note that the enhancedGilbert dampingwemeasure in ultrathin films can tentatively be
attributed to the impurity induced scatteringwhich typically dominates at low thickneses [25].Moreover, the
film degradation due to lithography processesmay have also caused the enhancement in the damping
parameter. The spinwave group velocitymeasured for theCFA films is 5 times larger than typically reported for
YIG [26], and competes well with those reported for otherHeusler alloy thin films [24]. Therefore, our findings
support that CFAholds a great promise for application inmagnonics devices including fast propagating spin
waves over long distances.

Conclusion

In conclusion, we have investigated spinwave propagation properties of ion beam sputtered Co2FeAl, Heusler
alloy ultrathin films using all electrical propagating spinwave spectroscopy.We established a spinwave group
velocity of 6.1 km s−1, substantially larger than for YIG.Moreover, we found aGilbert damping parameter of
α≈0.019 for ultrathin films on Si, comparable to that in the thickerfilms of otherHeusler alloy films. The spin
wave propagation parameters namely the group velocity is found to decreasewith increasing frequencywhile the
relaxation length found to increase with increasing frequency. The spinwave attenuation length is found to
increase at low frequencies and started to decrease at larger frequencies. The amplitude non-reciprocity was also
found to decrease with increasing frequency. The obtained data for the spinwave group velocity and attenuation
lengthwere independently verified by time resolved propagating spinwave spectroscopy. The results, presented
here for ion beam sputtered Co2FeAl ultrathin films on silicon, i.e., a large spinwave group velocity and low
Gilbert damping are promising for applications inmagnonics applications.
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