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We report here on the optical response of elliptical gold particles arranged in a rectangular lattice on glass
and probed at non-normal incidence in reflection using spectroscopic Mueller matrix ellipsometry in the
energy range 0.73− 5.9 eV. The surface plasmon resonances, reshaped near the Rayleigh anomalies, are
mapped out by full azimuthal rotation of the sample. The experimental Mueller matrices are discussed
and interpretation is supported by finite element modelling of the Mueller-Jones matrix elements, which
allows for identification of the dipolar and multipolar responses observed in the experimental spectra.
The data show a strong polarization conversion around the surface plasmon resonances as a function
of the azimuthal angle of incidence, also reshaped near the Rayleigh lines. An effective strong circular
diattenuation is observed from the recorded Mueller matrix. We further argue the importance of Mueller
matrix ellipsometry for metrology in the manufacture of metasurfaces, for understanding the effect of the
lattice in metasurface design, and finally in validating computational methods.
© 2022 Optical Society of America
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1. INTRODUCTION

Electronics, photovoltaics or photonics manufacturing is exten-
sively based on ellipsometry for both research and development
and for on-line process control [1–3]. The traditional application
of ellipsometry is in the characterization of optical properties
of individual layers and stacks of layers using a multilayer for-
malism (in general a 4x4 matrix formalism for anisotropic lay-
ers), dispersion models or tabulated data, and effective medium
models [1–3]. There is, however, a recent move towards the
use of scattering Mueller matrix ellipsometry in combination
with full wave modelling, in order to perform critical dimension
analysis of more complex lateral structures found in electronics
and photovoltaics manufacturing [3–11]. Metasurfaces are cur-
rently promising candidates for complete control of the optical
wavefront using compact virtually flat optics, with applications
ranging from e.g. colors, imaging (flat lenses), creation of vector
beams, holography, and polarization sensitive devices [12–15].

The successful manufacture of metasurfaces beyond prototypes
in the research laboratory, will similarly require a more detailed
analysis and control of the optical response, ranging from indi-
vidual layer thicknesses, patterning (critical dimension control),
and the overall measurement of the optical response for optical
devices. Furthermore, a major part of the design and calcula-
tion of the optical response of metasurfaces requires full wave
computational electromagnetic modelling, typically using meth-
ods such as the Finite Element Method (FEM), Finite Difference
Time Domain (FDTD) and Rigorous Coupled-Wave Analysis
(RCWA). It appears thus also important to have fundamental
experimental data that can be used to verify the accuracy of a
given computational approach and also in order to make the
link between manufacture and design. Most optical metasur-
faces have for simplicity been designed for operation at normal
incidence[12–15]. However, for e.g. high resolution imaging
purposes of metasurfaces, one can envisage that higher angles
of incidence are needed in order to preserve resolution, which
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will involve complex design issues. It then becomes important
to understand not only the individual particle response in terms
of amplitudes and phase shifts, but also possibly the complex
coupling to the lattice in terms of opening or closing of diffracted
modes.

Diffractively coupled localized plasmon resonances or plas-
monic surface lattice resonances (SLRs) have been extensively
studied for two dimensional arrays of plasmonic nanoparticles
[16–21]. They are observed as a resonant enhancement in the
reflectivity (or extinction in transmission) near the Rayleigh line,
where the resonance center frequency and the Q factor can be
tuned by the lattice constant and the particle size [16, 17, 19]. The
experimental and analytical studies have in majority considered
unsupported particles (the symmetric configuration), probably
since the Q-factor of the resonances can be much enhanced in this
configuration [17]. However, many of the experimental studies
are limited to normal incidence, while studies at oblique inci-
dence are mostly limited to incidence along the high symmetry
axis of the lattice [16–18], and to our knowledge do not consider
the polarimetric properties important for metasurface applica-
tions. Thus, comparatively little work has been performed study-
ing two dimensional arrays of supported particles on a substrate
(thus including images in the so-called lattice sums appearing in
the Coupled Dipole Approximation[16]), and with dimensions
relevant for metasurface designs, i.e. such as recently reported
using a multipole model including quadrupoles and magnetic
dipoles [22]. Brakstad et al. [23] recently presented the Mueller
matrix recorded in the specular direction, from reflection of a
close to square lattice, consisting of truncated hemispherical
particles (radius 54 nm, height 25 nm and lattice constant 210
nm) on a fused SiO2 surface, recorded for several polar angles of
incidence (45°, 55° and 65°), and for full 360 degrees azimuthal
angle of incidence [23, 24]. They mapped out the resonant re-
shaping of the localized surface plasmon resonance (LSPR) near
the Rayleigh lines, as observed in the Mueller matrix elements
and the generalized ellipsometric parameters. It was shown that
the spectral position of the latter plasmon resonance was slightly
oscillating with azimuthal angle of incidence (dispersive), which
was proposed to be a result of a weak coupling to the lattice prob-
ably of mainly dipolar origin. The sharp dip in the p-polarized
reflectivity (Rayleigh-Wood anomaly) was observed in this case
at a higher photon energy (well above the LSPR) at the onset
of diffraction on the ambient side. It was finally reported that
considerable polarization coupling was observed around the
Rayleigh lines at higher photon energies, a phenomena that has
been elsewise neglected in the vast literature on plasmonic 2D
lattices,

In this work, through experiment and full wave simulations,
we demonstrate the complex polarimetric response of a more
general case: a system of truncated ellipsoidally shaped particles,
arranged in a rectangular lattice, and supported by a substrate
(nonsymmetric configuration). The system is shown to exhibit
plasmon resonances of both dipolar and multipolar origin, in
addition to strong polarization coupling and interaction of the
plasmon resonances with Rayleigh anomalies. Although strictly
not a localized resonance, we will for simplicity in this paper
refer to the plasmon resonances as LSPRs. A major motivation
was that this system can be regarded as a common prototype
system for a class of reflective plasmonic metasurfaces[14], and
the associated experimental data are important in order to vali-
date computational approaches for Mueller matrix ellipsometric
characterization.

2. THEORY

The change in polarization state of monochromatic light upon
reflection from a smooth surface can in the non-depolarizing case
be formulated by the 2× 2 complex Jones matrix transforming
the incoming polarization state to the reflected polarization state
by the reflection amplitudes [2, 25] Ep

Es


r

=

 rpp rps

rsp rss

 Ep

Es


i

(1)

In writing Eq. (1), Ep and Es have been introduced as the plane
wave electric field components that are parallel and perpen-
dicular to the plane of incidence, respectively. The Jones ma-
trix is extensively used in the design of metasurfaces, although
mainly at normal incidence[12, 14, 15]. If the optical system
is non-depolarizing, we introduce the corresponding Mueller-
Jones matrix, relating the outgoing Stokes vector to the incom-
ing Stokes vector. For such a system described by the Jones
matrix J, the corresponding Mueller-Jones matrix is given by
M = A(J⊗ J∗)A−1 [26], where ⊗ is the Kronecker product and
the square matrix A is given in the literature [26]. The Mueller
Jones elements are also listed elsewhere [23, 26, 27], but repeated
here for completeness:
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1
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(
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)
The off-block-diagonal elements of M represent polarization

coupling. The Mueller matrix is conventionally normalized by the
M11 element. Here the normalized Mueller matrix is denoted by
m = [mij] with mij = Mij/M11, (i, j = 1, . . . , 4) so that trivially
m11 ≡ 1. Hence, no reference measurement is required beyond
standard calibration.

For a 2D periodic system with lattice parameters a1 and a2
(see Fig. 1), the fields in regions of space with constant (with
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respect to the spatial variable) dielectric function ε(ω, x) are
plane waves with in-plane (here denoted by a parallel symbol)
wave vectors which only differ by a reciprocal lattice vector
Gmn = m 2π

a1
x̂1 + n 2π

a2
x̂2, where (m,n) are integers. When a

wave with wave vector k = k3 + k‖ is incident on the system,
the wave vectors q = q3 +q‖ of the scattered waves must satisfy

the dispersion relation ε(ω)ω2

c2 − q2 = 0 and conservation of
in-plane momentum q‖ = k‖ + Gmn. Rayleigh anomalies are
defined by the opening or closing of propagating (diffracting)
waves, i.e. when a wave transitions from being evanescent to
propagating (or vice versa). The condition for a Rayleigh line is
found by setting |q3| = 0, leading to(

mλ0
a1

+ cos φ0 sin θ0

)2
+

(
nλ0
a2

+ sin φ0 sin θ0

)2
= N2 (3)

Here λ0 is the wavelength of the incident wave (coming from air),
N is the refractive index of the medium (here air or SiO2) and the
angles are such that k = 2π

λ0
(sin θ0 cos φ0, sin θ0 sin φ0,− cos θ0)

(see Fig. 1). The form in Eq. (3) is useful, as it allows to either
solve for the Rayleigh lines, the lattice constants or the refractive
index of the substrate.

The simulated Jones matrix elements of the system, and thus
the corresponding Mueller-Jones elements, were extracted from
the S-parameters calculated using COMSOL multiphysics 5.2,
with the wave optics module, through two separate calcula-
tions for p (TM) and s (TE) polarized incidence. The unit cell
used periodic boundary conditions and all diffracted modes
where included in the calculations. The frequency dependent
dielectric function for the Au particles and SiO2 substrate was
taken from ellipsometric analysis of the deposited Au film and
data from the Woolam software database, respectively. The lat-
tice parameters and particle radii used in the simulations were
extracted from a fitting routine using the reduced Rayleigh equa-
tions [11]. The calculations where performed in the energy range
h̄ω = 0.73− 4.96 eV (1700− 250 nm), in steps of 5 nm, at polar
angle of incidence θ0 = 55°, where each frequency was swept
for azimuthal angles of incidence φ0 = 0°− 180° in steps of 5°.
The resistive power heat loss function defined as L =

∫
V J · EdV,

where V is the domain volume of the Au particle, E(x) is the
electric field (frequency domain) and J(x) is the current den-
sity, was calculated for both input polarisations. The simulation
time for p-polarized incidence (including all azimuthal angles
of incidence), was 2 minutes for h̄ω = 0.73 eV and 2 hours and
27 minutes for h̄ω = 4.96 eV on a computer equipped with an
Intel i7-3930K processor and 32 GB of RAM, running under win-
dows 7. The equivalent times for s-polarization were 2 minutes
(h̄ω = 0.73) and 2 hours and 18 minutes (h̄ω = 4.96).

3. EXPERIMENTAL

We study a two-dimensional photonic crystal made from a rect-
angular array of hemi-ellipsoidal gold (Au) particles supported
by a fused silica SiO2 substrate. The sample was produced by
first evaporating a thin film of Au onto a clean (and flat) UV-
grade fused silica surface using an ebeam evaporator (Pfeiffer
Vacuum Classic 500). The deposited film thickness was 40 nm,
and the film was smooth but polycrystalline. The Au nanostruc-
tures were then produced by Focused Ion Beam (FIB)-milling
using Ga ions (FEI Helios Dual-beam FIB). The sample was de-
signed and manufactured to make up approximately truncated
(half) Au ellipsoids supported directly by the glass substrate
without an adhesion layer. Fig. 1 shows a SEM image of the
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Fig. 1. a) Scanning Electron Microscopy image of the sample.
b) Schematic of the geometry of the particles used in the FEM
modelling. c) Transmission Electron Microscopy image of
similar sample produced on a Si3N4 membrane (note that this
sample has different dimensions, but was otherwise produced
under identical conditions using FIB milling). d) Schematic of
the lattice and particle geometry (top view).

sample (as well as a transmission electron microscopy (TEM)
image of a sample similar to the one studied here), and schemat-
ics of the particle and lattice geometry used in the modelling.
From SEM characterization of the sample, the particle height
r3 = 40± 10 nm, the lattice parameters a1 = 473± 10 nm and
a2 = 322± 7 nm, and the particles in-plane radii r1 = 107± 4 nm
and r2 = 47± 4 nm could be estimated. The optical response of
the sample was investigated by azimuthal angle-resolved spec-
troscopic Mueller matrix ellipsometry in the reflected specular
direction. A variable angle multichannel dual rotating com-
pensator Mueller matrix ellipsometer (RC2) from JA Woollam
Company was used.

Our instrument has a 150W Xe source and operates in the
spectral range from 210 nm (5.9 eV) to 1700 nm (0.73 eV). The
total area milled with the FIB was limited to 240 µm× 240 µm
and therefore UV transparent achromatic focusing and collection
lenses with a focal length of 20 mm and a numerical aperture
of approximately 0.15 were used [23]. The spatial coherence
of the system is an important parameter in terms of estimating
depolarization properties [28] of metasurfaces or 2 dimensional
plasmonic lattices. Furthermore, to resolve nominally sharp fea-
tures in spectra (such as e.g. coupled plasmon surface lattice
resonances) a reasonable coherence length is required (typically
an illumination numerical aperture of NA<0.1 is reported [16]).
The pin-hole on the source side was selected to its maximum
diameter of Ds=100 µm in order to maximize the signal. This
pin-hole is here regarded as the incoherent source area for the
estimation of the spatial coherence. The spatial (or transverse)
coherence length for the paraxial ray-bundle is then estimated
to 200λ0 (which will be the spatial coherence length for the colli-
mated beam). However, including the full numerical aperture
of the focusing lens, the coherence length strongly reduces to
approximately λ0/0.15. The spot diameter was estimated to be
approximately 100 µm at normal incidence. No major depolar-
ization was observed from the measured Mueller matrix of the
sample as long as the beam stayed inside the milled area. In the
current data set, the Mueller matrices in the range φ0 = 0°− 90°



Research Article Journal of the Optical Society of America B 4

0.73 eV

2.5 eV
Exp

Sim

180° 0°

ϕ₀

ϕ₀

Fig. 2. Normalized Mueller matrix elements mij = Mij/M11 (i,j = 1, . . . , 4) color coded and shown as functions of the photon
energy h̄ω (radial variable) in the range 0.73− 2.5 eV and the azimuthal angle of incidence (angular variable) φ0 ∈ [0°, 180°]. The
polar angle is θ0 = 55°. The upper halves of the polar plots are experimental mij-elements, and the corresponding lower halves are
simulation results obtained from the FEM model using parameters given in the text. Notice from the schematic in the upper-left
corner the positive direction assumed for the azimuthal angle of incidence φ0, comparison between measured and simulated results
should be made symmetrically with respect to the horizontal black dashed lines of each element.

have depolarization less than 0.5 %. A larger depolarization
of 2 % was observed in the range φ0 = 90°− 180° where the
beam is believed to have partially touched the boundaries of the
milled area (consisting of the unmilled Au film).

4. RESULTS AND DISCUSSION

A. Overview of the experimental and simulated Mueller matrix

The experimental results obtained as functions of the azimuthal
angle of incidence φ0 ∈ [0°, 180°] and photon energy h̄ω for the
polar angle of incidence θ0 = 55 ° are shown in the upper halves
of the contour plots of the normalized Mueller matrix in Fig. 2.
Here the energy increases in the radial direction from h̄ω =
0.73 eV (inner circle) to h̄ω = 2.5 eV (outer circle). Note that the
full 0°− 360° data set (not presented here) shows the expected
inversion symmetry, except for small deviations caused by the
beam partially touching the boundaries, which here happened
for certain azimuthal angles of incidence. The Mueller matrix
elements show in general strong azimuthal dependent features
related to localized surface plasmon resonances (LSPRs). For a
particle that is rotationally symmetric around the x3 direction,

we previously showed that the LSPR related feature in the m12
element would trace out nearly a circle, only weakly affected
by the lattice [23]. In the current case, this LSPR feature is split
in two; a low energy part and a high energy part, due to the
asymmetry of the particles. Another prominent optical feature
of the system is the significant polarization coupling observed
around the LSPRs. This can be seen in the off-diagonal blocks of
the Mueller matrix, which are nominally zero when there is no
polarization coupling, i.e. rps = rsp = 0 in Eq. (2). Finally, it is
possible to observe from Fig. 2 that the LSPR related features are
reshaped near boundaries in (h̄ω, φ0) parameter space. These
boundaries are near the Rayleigh lines/anomalies, as discussed
below.

The simulated normalized Mueller matrix elements using
FEM (COMSOL) in the energy range h̄ω = 0.73− 2.5 eV are
shown in the lower half of Fig. 2. The particle radii used in the
simulation were r1 = 113.2 nm, r2 = 47.4 nm and r3 = 34.4 nm,
and the lattice parameters were a1 = 443.9 nm and a2 = 315.4
nm. It is observed that the main spectral features agree well
with the experimental counterparts. In particular, the azimuthal
angle-dependent LSPR features, which we mainly attribute to
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Fig. 3. Measured block diagonal Mueller elements as a func-
tion of photon energy h̄ω and azimuthal angle of incidence φ0
for polar angle θ0 = 55°. The data is color coded and shown
in two energy ranges separated at 2.5 eV. The dashed red lines
correspond to the lowest order Rayleigh lines for air (labelled
with red text in the m12 element) and the dashed black lines
correspond to the lowest order Rayleigh lines for SiO2 (la-
belled with black text in the m22 element). The lines are sym-
metric about φ0 = 90°.

dipolar resonances for the E-field vector along the principal axes
of the hemi-ellipsoids, seem well reproduced by the simulation.
The position of the LSPRs are slightly offset with respect to
the experimental data in the energy range shown, and larger
discrepancies are found at higher energies (not shown here).
This is believed to be due to uncertainties in the lattice param-
eters and particle geometry. In addition, it was found that an
over milling into the substrate had occurred when the particles
were manufactured, resulting in a dielectric mound beneath
the particles. This mound (and any possible inclusion of Ga
ions), was for simplicity not included in the model. For a similar
system based on isotropic particles, it has been demonstrated
that the reduced Rayleigh equations could be integrated into
an optimization scheme, and allowed for fast determination of
all relevant morphological parameters, including the mound
height [11]. However, having established that a FEM model re-
produce the experimental data with sufficient accuracy and that
the experimental data contains limited depolarization allows for
analyzing and interpreting the recorded optical spectra through
the calculation of quantities not accessible in common optical
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Fig. 4. Measured upper off-block diagonal Mueller elements
as a function of photon energy h̄ω and azimuthal angle of inci-
dence φ0 for polar angle θ0 = 55°. The data is color coded and
shown in two energy ranges separated at 2.5 eV. The dashed
red lines correspond to the lowest order Rayleigh lines for
air (labelled with red text in the m13 element) and the dashed
black lines correspond to the lowest order Rayleigh lines for
SiO2 (labelled with black text in the m23 element). The lines
are symmetric about φ0 = 90°.

techniques, such as e.g. the complex Jones elements. These
elements are also fundamental in the design of metasurfaces,
which is often guided by the specular Jones Matrix and concepts
from diffraction theory.

B. Symmetries of the Mueller matrix
For each azimuthal angle of incidence, the symmetries in the
Mueller matrix in Fig. 2 correspond to a general biaxial system
[29]. For such a system, the following set of relations are valid:
m12−m21 = 0, m13+m31 = 0, m14−m41 = 0, m23+m32 = 0,
m24−m42 = 0 and m34+m43 = 0, which is equivalent to setting
rps = −rsp in Eq. (2). These sums are trivially 0 in the modelled
Mueller Jones elements, and within ±0.075 in the experimental
data.

Due to the common symmetries of the Mueller matrix, we
now focus on the main block diagonal elements (m12, m22, m33
and m34) in Fig. 3, and the upper off-block diagonal elements
(m13, m14, m23 and m24) in Fig. 4, as a function of the azimuthal
angle of incidence and photon energy. All figures are maps
where the color indicates the value of the measured Mueller
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Fig. 5. The top figures are simulated reflection amplitudes∣∣rpp
∣∣ (top left figure) and |rss| (top right figure) using the FEM

model. The bottom figures show the corresponding power dis-
sipation in the particles, for incident p-polarization (Lp bottom
left figure), and s-polarization (Ls bottom right figure). The
lowest order Rayleigh lines for air (green) and SiO2 (white)
are superposed on the data. Horizontal blue lines mark the
position of the EL = 1.39 eV, EQ = 1.88 eV and ET = 2.12 eV
resonances. The polar angle is θ0 = 55°.

matrix element. Each element is presented in two subfigures,
one for lower photon energies h̄ω < 2.5 eV (as presented in
Fig. 2) and one for higher photon energies h̄ω > 2.5 eV. The
lowest order Rayleigh lines for air (red) and SiO2 (black) are also
shown. Note that, for increased visibility of the data, the lines
are only shown for φ0 = 90°− 180° as they are symmetric about
φ0 = 90°. The symmetry of the Mueller elements (with respect
to the azimuthal angle φ0) follows the symmetry of the sample,
except for small deviations close to φ0 = 180°, most visible in
the m12, m33 and m34 elements in Fig. 3. We attribute these
deviations to the increased depolarization (due to beam wander)
at these angles of incidence, as discussed in the experimental
section. All elements show features related to LSPRs for the
lower photon energies.

C. Identification of LSPRs and interaction with Rayleigh
anomalies

The Mueller elements can be interpreted directly, but the inter-
pretation becomes more convenient when also inspecting the
amplitudes of the simulated Jones elements

∣∣rpp
∣∣= √Rpp and

|rss|=
√

Rss together with the power loss in the Au particles Lp
and Ls for incident p- and s-polarized light, respectively. The re-
flectivities Rpp and Rss were not measured in this work, but they
can be extracted with some loss of accuracy from the measured
Mueller matrix, if a proper reference measurement is addition-
ally performed. The reflection amplitudes and power losses for
s- and p-polarized light are fully mapped out as functions of
energy (h̄ω ∈ [0.73, 2.5] eV) and azimuthal angle of incidence
(φ0 ∈ [0°, 180°]) in Fig. 5. The reflection amplitudes along high
symmetry directions are further shown in figure Fig. 6. Through
Figs. 3, 4, 5 and 6 we identify three main LSPRs, and interpret
them as resonances corresponding to cases i) - iii):

i) The electric field is along the long axis of the particle (i.e.
along x̂1 in Fig. 1) with corresponding resonance EL=1.39 eV.

(-1,0)air

ϕ₀ = 0°

(-1,0)SiO2
ϕ₀ = 0°

EQ

ET

EL

Fig. 6. The simulated reflection amplitudes |rss| and
∣∣rpp

∣∣ at
φ0 = 0° and φ0 = 90°, and

∣∣rps
∣∣ at φ0 = 45°, highlighting the

three plasmon resonances EL = 1.39 eV, EQ = 1.88 eV and
ET = 2.12 eV, fully mapped out in Fig. 5. The dashed vertical
lines correspond to the (−1, 0) Rayleigh lines in air and in
glass at φ0 = 0°. The polar angle is θ0 = 55°.

This resonance is readily observed in the experimental data in
the upper block Mueller elements in Fig. 3. It is also observed
in the simulated

∣∣rpp
∣∣ at φ0 = 0° and |rss| at φ0 = 90°, as seen

in Fig. 5 (the position of the resonance is indicated by a dot-
ted blue line) and in Fig. 6. The simulated resistive loss with
s-polarized incidence (bottom right in Fig. 5) also clearly shows
the EL resonance for φ0 = 90°, while p-polarized incidence
gives as expected a strong loss feature around EL for φ0 = 0°
and 180°. The shape of the resonance is very different under
p- and s-polarized incidence. In |rss| and Ls the resonance is
broad (due to the imaginarty part of the dielectric function of
Au), while for p-polarized incidence the resonance shows two
prominent spectral features. The latter two features are a result
of the Rayleigh lines (±1, 0)SiO2 and (±1, 0)air overlapping the
normally broad non-dispersive LSPR and consequently reshap-
ing it, as seen in Figs. 5 and 6. Indeed, the amplitude

∣∣rpp
∣∣ in

Figs. 5 and 6 shows that the reflection increases when approach-
ing the resonance, but drops in two stages; first when the photon
energy is increased beyond the opening of the (±1, 0)SiO2 trans-
missive mode and second when crossing the (±1, 0)air reflective
mode. This is also seen in Lp in Fig. 5 where the absorption
loss is reduced when the photon energy is increased and the
Rayleigh lines are crossed. It is further observed that for s-
polarized light the resonance appears bounded by the Rayleigh
lines, suggesting an abrupt redistribution of energy when the
first transmissive diffractive channels are opened. The apparent
sharp features/peaks around the Rayleigh lines, particularly for∣∣rpp

∣∣ at φ0 = 0°, could be interpreted as diffractively coupled
plasmon surface lattice resonances[16–18, 22] with low Q fac-
tors. However, the current system appears better described by
redistribution of energy upon opening of diffracted channels.

ii) The much weaker LSPR feature located at ET =2.12 eV
(indicated by blue dotted horizontal line in Fig. 5), where the
E-field is along the short axis of the particle (i.e. along x̂2 in
Fig. 1). This resonance is seen as weak features in |rss| at φ0 = 0°
and in

∣∣rpp
∣∣ at φ0 = 90°, see Figs. 5 and 6. It is, however, highly

visible in the loss Ls under s-polarized incidence at φ0 = 0°, and
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Fig. 7. The electric field norm and in-plane electric field directions in the x1x2-plane at the main LSPRs for a set of azimuthal angles
of incidence and polarizations at polar angle θ0 = 55°, simulated with the FEM model. The electric field norm is color coded on a
log-scale and the direction of the in-plane electric field is visualized by streamlines. The upper row correspond to azimuthal angle
of incidence φ0 = 0°, and the lower row to φ0 = 45°. The columns correspond to the three LSPRs EL = 1.39 eV, EQ = 1.88 eV and
ET = 2.12 eV.

in the loss Lp under p-polarized incidence at φ0 = 90°, shown in
Fig. 5. The LSPR features for both s- and p-polarization, appear
here bounded by the Rayleigh lines.

iii) An additional loss feature is observed at EQ = 1.88 eV,
indicated by the dotted blue horizontal line in Fig. 5). This
resonance is strongly excited under p-polarized incident light,
as seen from Lp (bottom left Fig. 5) and

∣∣rpp
∣∣ in Figs. 5 and 6,

suggesting initially that it may be a dipolar resonance in the r3
dimension of the particles. However, such a resonance would
nominally for a smaller particle (in the quasistatic approxima-
tion) be expected rather near the ET resonance [24]. It is possible
to observe the resonance as a weak feature in the m12 element,
and more indirectly in the m33 and m34 elements of the exper-
imental data in Fig. 3. It is highly interesting to note that the
resonance is not excited by s-polarized incidence at φ0 = 90° or
φ0 = 0°, but appear in the range φ0 ≈ 20°− 75°, as seen from Ls
and |rss| in Fig. 5. This contradict the notion that EQ is an out
of plane resonance, as this resonance should not be excited by
s-polarized light. It therefore appears more likely that the EQ res-
onance is of a multipolar origin. However, multipolar features
of freestanding particles nominally appear for more elongated
particles (higher aspect ratios)[30], but here the presence of the
substrate probably modifies the conditions and hence may allow
for a multipole.

D. Polarization conversion

Finally, a strong polarization conversion related to the plasmon
resonances are observed from the off-block diagonal elements in
Figs. 2 and 4, and in the m22 element in Fig. 3. It is understood
from Eq. (2) that these selected elements convey better the polar-
ization conversion (through rsp and rps) although also present
in the remaining block diagonal Mueller matrix elements. The
simulated cross polarization reflection amplitude

∣∣rps
∣∣ = ∣∣rsp

∣∣
is shown in Fig. 6 for azimuthal incidence of φ0 = 45°, showing

strong polarization conversion around the EL and EQ resonances,
and weaker conversion around the ET resonance. The Rayleigh
lines are similarly observed to shape the polarization coupling
near the plasmon resonances, but also far from any resonances.
This is evident in the off-block diagonal elements for higher
energies shown in Fig. 4. The magnitude of the polarization
coupling in this energy region is comparatively small, but the
relative changes in the spectra seem correlated to the Rayleigh
anomalies, although it must be noted that not all of the anoma-
lies are directly visible in the data. With a more well defined
incident k vector, these anomalies may be resolvable. However,
it is possible that the energy carried by these modes is small,
resulting in changes in the specular beam below the noise floor
of the normalized Mueller elements, i.e. the limit at which the
ellipsometer can measure when using focusing and collection
optics (≈ 10−4).

E. Analysis and visualization of resonances using FEM data

In order to better understand the features of the LSPRs the norm
of the electric field and the direction of the in-plane component of
the electric field vector are visualized in Fig. 7 in the x1x2-plane
(i.e. x3 = 0), under p- and s- polarized incidence. The top left
panel in Fig. 7 shows the EL resonance observed for p-polarized
light at φ0 = 0°. It is clearly a strong dipole resonance. For
diffractively coupled plasmon surface lattice resonances with
high Q factor, a highly visible lattice mode could be observed
from inspection of the the electric field in energy regions close
to Rayleigh anomalies [16–18]. In the current system, we do
not observe such modes close to the two Rayleigh anomalies
(−1, 0)SiO2 and (−1, 0)air.

The top middle panel in Fig. 7 shows the EQ resonance
observed for incident p-polarized light at φ0 = 0°. Interest-
ingly, this resonance is observed to have the characteristics of
a quadrupole resonance. The authors are unaware of previ-
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Fig. 8. The experimental generalized ellipsometric parame-
ters ψpp (top figure) and ∆pp (bottom figure) as functions of
photon energy, where each curve represent an azimuthal an-
gle of incidence from 0 degrees (blue curve) to 90 degrees (red
curve), in steps of 5 degrees. The intersections of the Rayleigh
lines (−1, 0)SiO2 (dark blue), (0,−1)SiO2 (green) and (−1, 0)air
(brown) with the experimental data, for each energy-angle
pair, are overlaid on the data (interpolation is used to draw the
lines between any two experimental curves). The LSPRs EL,
ET and EQ are indicated in the figure.

ous experimental reports of this resonance for such a truncated
low aspect ratio particle in air and supported by a glass sub-
strate. The top right panel shows the ET resonance excited by
s-polarized light along the short axis of the particle at φ0 = 0°.
The field is here more localized inside the particle, causing the
significant loss feature as seen in Fig. 5. It is also mainly a dipole
response, although of slightly mixed character.

For azimuthal incidence φ0 = 45°, it is instructive to observe
from the bottom left panel of Fig. 7, that for p-polarized light
at h̄ω = EL a strong dipole remains along the long axis of the
particle. The latter dipole can be decomposed into a compo-
nent parallel and perpendicular to the incidence plane, where
the perpendicular component then result in polarization conver-
sion from p to s, as observed in e.g. Fig. 6. The situations for
s-polarisation at the EQ and ET resonances at φ0 = 45° are more
complicated, but it appears that the field distribution and local
field directions at EQ are considerable more asymmetric than at
ET. We speculate that this may explain the stronger polarization
conversion around EQ than ET, as seen in the

∣∣rps
∣∣ = ∣∣rsp

∣∣ am-
plitude in Fig. 6. An electric field expansion and inspection of
only the scattered field may lead to a better understanding of
the system, but this is outside the scope of this work.

F. Generalized ellipsometric parameters
It is sometimes favourable to transform the normalized Mueller
matrix data into the generalized ellipsometric parameters, such
as ψpp and ∆pp, defined by rpp/rss = tan ψpp exp

(
i∆pp

)
[23].

The parameter ψpp, basically conveys similar information to m12
in Fig. 3, while ∆pp is a sensitive measure of the relative phase
change between p- and s-polarized light at a given azimuthal
angle of incidence. This latter information is also included in
e.g. the m33 and m34 elements, but the generalized parameters
are somewhat easier to interpret as they do not contain the
polarization conversion terms (see Eq. (2)). These parameters
are also less noisy in the near infra red part of the spectrum, as
they in this work (motivated by the limited depolarization in
the φ0 = 0°− 90° range) have been calculated from the Mueller
Jones matrix fitted to the experimental Mueller matrix [1, 23, 24].

Fig. 8 shows the experimental ψpp (upper figure) and ∆pp
(lower figure) as a function of photon energy, where one curve
is presented for each azimuthal angle of incidence ranging from
φ0 = 0° to 90°, in steps of 5°. We clearly observe the dispersive
reshaping (as a function of the azimuthal angle of incidence) of
the main LSPR resonance EL as a result of the overlapping of
the Rayleigh anomalies with the plasmon resonance. The ET
resonance is similarly shaped by the (−1, 0)SiO2 line, while the
EQ resonance does not seem modified by any Rayleigh anoma-
lies. The offset between the features of the EL resonance and the
(−1, 0)SiO2 line is believed to be due to uncertainty in the lattice
parameters (and possibly the dispersion of the substrate and the
angle of incidence) when calculating the Rayleigh lines for the
experimental data, as the Rayleigh lines were observed to be
well localized to these spectral features in the FEM simulations.
It is observed that there is no deep dip in the spectrum (as ex-
pected from the the first Rayleigh-Wood anomaly), but only a
peak/edge. In their multipolar model describing surface lattice
resonances (although no substrate nor azimuthal dependency
reported), Swiecicki and Sipe discussed the suppression of the
Rayliegh-Wood anomaly through interaction of several multi-
pole moments [22]. Furthermore, experimental issues related to
reduced coherence can also affect the quality of the resonance
and thus suppress the sharp dip. However, the FEM simulations
in Fig. 6 provide similar results to the experimental ones.

The ∆pp spectra shows significant relative phase shift be-
tween the s and the p component of the reflection amplitudes
associated with each resonance. This relative phase shift is ob-
served to span 120° upon azimuthal rotation of the sample. The
effect of the Rayleigh anomalies are also here observed in the
spectra, but not to the same degree as in ψpp. It is interesting to
note that the relative phase is highly sensitive to φ0 in regions
where the change in amplitudes is limited, highlighting the gen-
eral sensitivity of ellipsometric techniques. Furthermore, all
Mueller matrix elements which include relative phase changes
(in addition to amplitude changes), are expected to supply a
high lateral sensitivity to the lateral dimensions of nanostruc-
tures [4–11], in addition to the standard reported thickness of
layer sensitivity [1]. Hence through fitting a morphological
model to the recorded spectrum, a metasurface consisting of
identical scatterers may be characterized with high sensitivity to
manufacture parameters, an issue that will be discussed further
elsewhere.

G. Decomposition and metasurface applications
In terms of metasurface applications, considerable polarization
coupling is a major issue and needs to be carefully addressed
and included in any design process, such as for combatting
e.g. coma and astigmatism in the design of e.g. flat lenses [31].
At normal incidence, each particle is commonly modelled as a
retarder. The reflection matrices reported in this work can be ten-
tatively decomposed using the forward decomposition [32, 33]
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as the product of a retarder Mueller matrix MR and a diattenua-
tor matrix MD, such that M = MRMD. The MD matrix is then
easily calculated from the diattenuation vector D=(m12,m13,m14)
thus directly available from the experimental Mueller matrix. It
is recalled that the m13 element is thus simply the ± 45 degrees
diattenuation while the m14 is the circular diattenuation. It is
striking that we observe here from Fig. 4 a considerable circular
diattenuation (±0.35), which in addition is resonantly enhanced
by coupling to Rayleigh anomalies. The circular diattenuation is
expected to be accompanied by a circular retardance or optical
rotation. The m23 and m24 elements are consequently compli-
cated functions of both diattenuation and retardance. The linear
retardance is associated to the phase-shifts between two linear
orthogonal states along the principal axis (i.e. with respect to
the orientation of the retardance vector), as often explored in
metasurface designs [12, 14]. The forward decomposition of the
experimental Mueller matrix results here in a linear retardance
spanning 75-177 degrees, while the optical rotation spans as
much as ± 45 degrees across the spectral range, where both
depends strongly on the azimuthal angle of incidence.

A circular diattenuation of similar amplitude has been re-
ported in arrays of circular holes in a gold film, again supported
by a glass substrate [34, 35]. The current system is different as it
does not rely on excitation of surface plasmon polaritons, and
Brakstad et al. [23] only observed a minor circular diattenuation
at oblique incidence for hemispherical particles. On the other
hand, strong circular diattenuation has been reported for lattices
of e.g. U shaped particles [36]. The complex field patterns in
the bottom row of Fig. 7 (at azimuthal incidence φ0 = 45°), are
thus near field patterns corresponding to a far field response
revealing linear and circular birefringence and diattenuation.
Complete multipolar models [22] or e.g. the reduced Rayleigh
equations [11], including the substrate and the azimuthal ori-
entation at oblique incidence, are envisaged to reveal further
details of such a complex system.

It is expected that the overlapping of higher order Rayleigh
lines with the LSPRs or even e.g. Mie resonances in metasurface
designs, will cause a considerable amount of reshaping of the res-
onances with associated phase shifts. For metasurfaces designed
to operate in the visible (many plasmonic designs are today lim-
ited to 800-900 nm), it will thus be of high importance to control
and design the metasurfaces correctly in order to include the
effect of the lattice, both in terms of phase shifts and amplitudes.
This will be even further important for metasurfaces operating
at higher angles of incidences [37].

5. CONCLUSION

Mueller matrix ellipsometry at oblique incidence reveal a
considerable amount of information related to the coupling
between the lattice and the plasmon resonances of truncated
elliptical gold particles on glass. A direct interpretation of the
Mueller matrix can be difficult, but it is shown that through
a combination of experimental Mueller matrix data, a Finite
Element Model and calculation of Rayleigh lines, it is possible
to describe the major spectral features of the optical response
of the system. As an example, we presented the power loss
and discussed spectral and dispersive features (as a function of
azimuthal angle of incidence) for the LSPRs and the Rayleigh
lines, therein also for polarization conversion. We identified a
quadrupole resonance for elliptical particles supported by a
substrate. It is further shown that the interaction of the LSPRs
and the lattice through the Rayleigh anomalies (i.e. through

grazing diffracted waves) have a serious impact on the resulting
Jones matrix elements, including relative phase changes.
Furthermore, circular diattenuation and optical rotation appears
important at oblique incidence. It is thus of high importance
to understand, measure (monitor and control) and model the
interaction between the Rayleigh anomalies and the LSPR for
the design and manufacture of metasurfaces.
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