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A B S T R A C T   

To meet the ever-increasing global energy demands, it is more necessary than ever to ensure increments in the 
recovery factors (RF) associated with oil reservoirs. Owing to this challenge, enhanced oil recovery (EOR) 
techniques are increasingly gaining more significance as robust strategies for producing more oil volumes from 
mature reservoirs. Water alternating gas (WAG) injection is an EOR method intended at improving the micro
scopic and macroscopic displacement efficiencies. To handle and implement successfully this technique, it is of 
vital importance to optimize its operating parameters. This study targeted at implementing robust proxy para
digms for investigating the suitable design parameters of a WAG project applied to real field data from “Gullfaks” 
in the North Sea. The proxy models aimed at reducing significantly the rum-time related to the commercial 
simulators without scarifying the accuracy. To this end, machine learning (ML) approaches, including multi-layer 
perceptron (MLP) and radial basis function neural network (RBFNN) were implemented for estimating the 
needed parameters for the formulated optimization problem. To improve the reliability of these ML methods, 
they were evolved using optimization algorithms, namely Levenberg–Marquardt (LM) for MLP, and ant colony 
optimization (ACO) and grey wolf optimization (GWO) for RBFNN. The performance analysis of the proxy 
models revealed that MLP-LMA has better prediction ability than the other two proxy paradigms. In this context, 
the highest average absolute relative deviation noticed per runs by MLP-LMA was lower than 3.60%. Besides, the 
best-implemented proxy was coupled with ACO and GWO for resolving the studied WAG optimization problem. 
The findings revealed that the suggested proxies are cheap, accurate, and practical in emulating the performance 
of numerical reservoir model. In addition, the results demonstrated the effectiveness of ACO and GWO in 
optimizing the parameters of WAG process for the real field data used in this study.   

1. Introduction 

Since the dawn of the 21st century, the population growth and the 
enormous advancements of industry have created an acute need for 
energy (Tillerson, 2008). Despite all the efforts to replace fossil fuels 
with other energy sources, they still remain the most used and 
demanding source of energy. As oil reservoirs that were easy to locate 
and operate are increasingly moving towards the vision of scarcity, the 
main challenge and current interest is to better exploit the proven res
ervoirs by acting on the reservoir and its effluents (Ahmadi et al., 2018). 

The production cycle from the oil reservoirs passes through three 

recovery phases: primary, secondary and tertiary, depending on the 
driving forces and the drainage mechanisms involved in the production 
(Ahmed, 2018). During primary recovery, these come from the natural 
energy source associated with the rock and fluids in the reservoir. Sec
ondary recovery processes are often implemented in the presence of 
aquifer or/and gas cap by injecting respectively water and gas into these 
sources. This kind of injection allows maintaining the pressure of 
reservoir in a manner such that the production increases. Since the re
covery factors provided by primary and secondary methods do not 
usually reach high values, applying tertiary recovery techniques known 
as enhanced oil recovery (EOR) has become a necessity (Ahmadi and 
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Shadizadeh, 2013; Lake et al., 2014). 
Currently, water alternating gas (WAG) injection in its two main 

forms, i.e., immiscible and miscible, is one of the most used EOR 
methods due to its efficiency and simplicity of implementation (Afzali et 
al, 2018, 2020; Kulkarni and Rao, 2005; Ranaee et al., 2019). Besides, 
this technique has the advantages of the two conventional assisted re
covery methods, which are water injection and gas injection. The 
implementation and management of WAG process consists of optimizing 
the influencing factors of this EOR method in order to establish the best 
strategies to maximize the recovery factor (Christensen et al., 2001; Nait 
Amar et al., 2018a). Numerical simulation is usually the standard 
decision-making tool used in the industry for this workflow. 

While investigating the proper operating parameters of a WAG pro
cess, it is quite often to confront the dichotomy relating precision to 
calculability efforts of a model: on one side, the latter must meet the 
precision requirements, and on the other, it must be fast enough to meet 
the practical needs. In addition, the optimization task is very complex, 
because significant number of scenarios must be evaluated, and each 
evaluation requires the execution of a time-consuming run. Due to the 
non-linearity and complexity of the problem under consideration, 
leading to intensive computing and significant CPU times, the devel
opment of robust alternative tools capable of keeping the complexity of 
the reservoir model and reducing the execution time is necessary, as 
shown in our prior works (Nait Amar et al, 2018a, 2020b; Nait Amar and 
Zeraibi, 2019). 

In recent years, there has been growing recognition of the vital link 
between handling complex systems and soft computing (SC) approaches 
(Zendehboudi et al., 2018). Indeed, these approaches are increasingly 
playing central role in addressing the issues of calculability and reli
ability in different fields. Various published studies have witnessed the 
successful implementation of SC techniques in resolving complicated 
systems and modelling high-complexity phenomena such as flow 
assurance problems (Benamara et al., 2020; Hemmati-Sarapardeh et al., 
2013, 2019, Nait Amar, 2021; Nait Amar et al., 2021), estimating pa
rameters related to the oil and gas industry (Baldwin et al., 1990; Ghiasi 
et al., 2014; Ghiasi and Mohammadi, 2015; Kamari et al., 2014; Zen
dehboudi et al., 2018), and CO2 utilization related parameters (Amooie 
et al., 2019; Bakyani et al., 2016; Daryasafar et al., 2019; Hemmati-
Sarapardeh et al., 2016; Rashid et al., 2017). 

Regarding the alternative approaches suggested in the literature for 
optimizing the WAG processes, Panjalizadeh et al. (2015) applied a 
surface response methodology for investigating the suitable parameters 
of a WAG process in an inverted five-spot pattern. The authors combined 
polynomial regression techniques, namely quadratic and cubic schemes, 
with some classical sampling strategies for implementing their work
flow. Jaber et al. (2017) suggested a proxy model gained by generating 
CO2-WAG scenarios using Box-Behnken design and performing 
quadratic regression. Zhang et al. (2017) established a reliable approach 
consisted of a combination of two algorithms, namely steepest ascent 
and simplex stochastic gradient, to investigate the best well trajectories 
and controls that allow maximizing the net present value (NPV) for a 
water/surfactant solution and CO2 gas (WAG/SAG) process. Mohaghe
ghian et al. (2018) considered robust evolutionary algorithms, including 
particle swarm optimization (PSO) and genetic algorithm (GA), for the 
automatic optimization of the WAG process Norne field, specifically the 
E-segment. In their approach, NPV was the objective function. Nait 
Amar et al. (2018a) implemented dynamic proxy models of a composi
tional reservoir and coupled these proxies with 2 different metaheuristic 
algorithms, namely GA and ant colony optimization (ACO), to conduct 
the optimization of WAG. In another approach, Nwachukwu et al. 

(2018) employed the extreme gradient boosting (XGBoost) to develop 
the proxies and used Mesh Adaptive Direct Search (MADS) to optimize 
well locations and parameters of a WAG process under geological un
certainty. More intriguingly, Nait Amar and Zeraibi (2019) coupled their 
developed dynamic proxy with Non-Dominated Sorting Genetic Algo
rithm version II (NSGA-II) to conduct the multi-criteria optimization of 
WAG CO2 injection. In addition to this, Belazreg et al. (2019) illustrated 
novelty by using group method of data handling (GMDH) to develop the 
predictive model of WAG incremental recovery factor based on the data 
from a reservoir model. Thereafter, Belazreg and Mahmood (2020) 
demonstrated the practicality of GMDH in the predictive proxy devel
opment by using the real field data from worldwide WAG pilot projects 
(28 cases). Moreover, Belazreg et al. (2020) showed that random forest 
algorithm could also be applied to forecast the increasing in the recovery 
factor of CO2 WAG process. In the same context, Nait Amar et al. 
(2020b) evolved support vector regression (SVR) using GA to establish a 
dynamic proxy and implemented GA along with this proxy to optimize 
WAG CO2 process. Also, Yousef et al. (2020) used the methodology of 
top-down modelling, which was coined by Mohaghegh (2017), to build 
a model that could predict the reservoir performance of a carbonate 
onshore in Middle East under WAG process. The literature survey on the 
application of intelligent proxies for predictive analysis in WAG process 
reveals the high ability of these advanced schemes for dealing with 
different formulated optimization problems. 

In the present study, reliable proxy models were proposed to opti
mize the design parameters of a WAG process in a real field, “Gullfaks” 
in the North Sea. The task was formulated as a constrained non-linear 
problem. Two artificial neural network types, viz. multilayer percep
tron (MLP) and radial basis function neural network (RBFNN), were 
implemented to model the different parameters needed in the optimi
zation problem. Levenberg–Marquardt algorithm (LMA) was the 
learning algorithm for the MLP model, while ant colony optimization 
(ACO) and grey wolf optimization (GWO) were implemented for opti
mizing the RBFNN control parameters. After confirming the accuracy of 
different proxy models, the best performing one was coupled with ACO 
and GWO to identify the proper design parameters of the studied WAG 
optimization problem. The main contribution of this work can be sum
marized as establishing new smart hybridization, soft-computing tech
niques and nature-inspired algorithm, for developing robust proxy 
models that can deal with real geological fields when implementing EOR 
techniques such as WAG, thus, avoiding performing a great number of 
direct time-consuming reservoir simulation runs. 

2. Methods 

2.1. Modelling techniques 

Artificial neural network (ANN) is a robust type of machine learning 
techniques, which has a great ability for recognizing patterns and dis
tinguishing relationships regardless the complexity and the non- 
linearity of a given system (Haykin, 2010; Nait Amar et al., 2020a). 
The conception and the functioning of ANN are inspired from the human 
brain and its learning processes. The topology of an ANN model involves 
mainly the neurons which are known also as nodes (Varamesh et al., 
2017a). The neurons are allocated to three kinds of layers:  

- Input layer: It is the first layer in the paradigm. It receives the inputs, 
and hence its number of neurons is similar to the dimensionality of 
the system. 
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- Output layer: It corresponds to the last layer in the network. It allows 
to gain the outcomes of the network. Its number of neurons repre
sents the number of outputs of the system.  

- Hidden layer(s): This type is known as intermediate layer(s) as they 
are between the input and output layers. The principal role of this 
kind is to alter the data by mapping them in higher dimensionality 
features to capture the non-linearity of the system. 

The structure of an ANN is characterized by another vital parameter, 
the weights, which ensure the connection between the neurons of two 
succeeding layers. Besides, the neurons of the hidden and output layers 
include bias terms. 

Different types of ANN can be distinguished according to the topol
ogy schemes and the manner of treating or learning the information. In 
this context, multilayer perceptron (MLP) and radial basis function 
neural network (RBFNN) are two robust types (Karkevandi-Talkhoon
cheh et al., 2018; Siddique and Adeli, 2013):  

• Multilayer perceptron (MLP): this type of ANN involves at least one 
hidden layer (Haykin, 2010). Several activation functions, such as 
logsig and tansig are frequently applied in the hidden layers to map 
the inputs in a non-linear feature. The number of hidden layers and 
their neurons as well as their activation function are determined by 
means of trial and error method (Varamesh et al., 2017b). The 
learning stage of an MLP aims at achieving the proper weight and 
bias values. To do so, several back-propagation algorithms can be 
applied. In this investigation, Levenberg–Marquardt algorithm 
(LMA) was implemented in the learning phase of MLP paradigm. 
More information about this technique can be found in prior works, 
e.g. (Haykin, 2010; Hemmati-Sarapardeh et al., 2018).  

• Radial basis function neural network (RBFNN): It covers only one 
hidden layer. In the nodes of this hidden layer, a radial basis function 
is applied as a kind of non-linear transformation (Tatar et al, 2015, 
2016; Zhao et al., 2015). Gaussian function is the frequently applied 
RBF characterized by it spread coefficient (σ2). To ensure reliable 
performance of a RBFNN model, the number of hidden nodes and the 
spread coefficient of the Gaussian function should be determined 
properly. In this study, we have applied two metaheuristic algo
rithms, namely ant colony optimization (ACO) and grey wolf opti
mization (GWO), to optimize these control parameters. 

2.2. Optimization algorithms 

2.2.1. Ant colony optimization (ACO) 
Ant Colony Optimization (ACO) is another reliable nature-inspired 

optimization algorithm. ACO mimics the real-searching process 
applied by ants for food searching (Blum, 2005). Like the other 
nature-inspired algorithms, ACO applies two principles: exploration 
(investigating new parts of the search space) and exploitation 
(improving the existing solutions). These processes are facilitated by the 
mechanism of depositing pheromone with different concentrations. 
These concentrations are proportional to the quantity and the quality of 
food (Hemmati Sarapardeh et al., 2020). Accordingly, the pathway with 
the highest concentration will be the shortest and will be followed by the 
maximum number of ants. 

The adaptation of the real-ant principle is given as per following 
steps (Heris and Khaloozadeh, 2014; Socha and Dorigo, 2008):  

- Initialization: an initial population m of ants is created randomly in 
the search space.  

- Evaluation: a fitness function is included as an assessment indexes for 
the individuals.  

- Solution archive: sorting the ants from best to worst according to the 
fitness function.  

- Weight application: solution archive members are provided with 
weight values wi. The following equation is therefore applied 

(Hemmati Sarapardeh et al., 2020; Heris and Khaloozadeh, 2014; 
Socha and Dorigo, 2008): 

wi∝
1
̅̅̅̅̅
2π

√
αm

exp
[

−
1
2

(
i − 1
αm

)2]

(1)  

∑m

i=1
wi = 1 (2)  

Equation (1) sets the weight values to be distributed under a 
Gaussian function with element indexes ‘i’, mean value of 1, and 
standard deviation αm, where α is a parameter of the algorithm and 
m is the number of ants.  

- Probabilistic paradigm: this model based on the Gaussian mixture is 
applied as shown below (Hemmati Sarapardeh et al., 2020; Heris and 
Khaloozadeh, 2014): 

Gn(x[n]) =
∑m

i=1
wiN(x[n]; μi[n], σi[n]) (3)  

N(x; μ, \σ)= 1̅̅̅
̅̅

2π
√

σ
exp

[

−
1
2

(x − μ
σ

)2
]

(4)  

In the above equation, n is the index number and x[n] corresponds 
to the nth element in vector x. 

Then, the mean (μ) and standard deviation of the Gaussian mixture 
(σ) are calculated as (Hemmati Sarapardeh et al., 2020): 

μi[n] = xi[n] (5)  

σi[n] =
δ

m − 1
∑m

i′ =1

[xi[n] − xi′ [n]] (6)  

The positive parameter δ is a factor for balancing between the 
exploitation and exploration.  

- Sampling: a predefined number of new individuals is gained based on 
the archive outcomes.  

- Selection: the fittest elements and the new offspring are exploited to 
generate a new archive.  

- The best solution is the fittest individual in the archive. 

These steps are repeated until the satisfaction of a stopping criterion. 

2.2.2. Grey wolf optimization (GWO) 
Grey wolf optimizer (GWO) is another example of metaheuristic 

optimization techniques which was initiated by Mirjalili et al., (2014). 
This algorithm has been significantly applied in the petroleum industry 
as discussed in several literature (Bian et al, 2018, 2019, 2020; Nait 
Amar et al., 2018b) thanks to its robustness and simple implementation. 
Fundamentally, it is inspired by the natural hierarchy of leadership and 
hunting habit of grey wolves (Mirjalili et al., 2014). Regarding the 
optimization mechanism of GWO, the population of grey wolves can be 
categorized into four different groups, namely alpha (α), beta (β), delta 
(δ), and omega (ω). According to the ranking of the social leadership, α 
wolves are considered the highest among others and then, they are 
followed by β, δ, and ω wolves. Mathematically, a population of wolves 
is represented as a set of random solutions which is evaluated by using a 
predefined objective function to compute its respective fitness value 
(Hemmati Sarapardeh et al., 2020). Thereafter, the categorization of 
wolves’ population into the four above-mentioned groups is done based 
on the assessed fitness value. During the optimization process, the three 
best wolves: α, β, and δ, would gradually lead the other ω wolves towards 
the prey, which is the global optimum, in the search space. This can be 
done by updating the wolves’ positions as follows (Mirjalili et al., 2014): 
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D→=

⃒
⃒
⃒C→. Xp

̅→
(t) − X→(t)

⃒
⃒
⃒ (7)  

X→(t+ 1)=
⃒
⃒
⃒ Xp
̅→

(t) − A→.D→
⃒
⃒
⃒ (8)  

A→= 2 a→. r1
→− a→ (9)  

C→= 2r2
→ (10)  

where t represents the current step of iteration, X→ denotes the position 
vector of a grey wolf, Xp

̅→ indicates the position vector of the prey, a→ is 
generally reduced from 2 to 0, and r1

→, r2
→ act as the random vectors 

between 0 and 1. In the algorithm of GWO, the position vector of the 
prey (optimum) is unknown. Therefore, it is expected that the position 
vectors of α, β, and δ are treated as the optimum. Thereafter, the other ω 
wolves will re-adjust their positions with respect to those of α, β, and δ as 
shown below (Mirjalili et al., 2014): 

Dα
̅→

=

⃒
⃒
⃒ C1
̅→

. Xα
̅→

(t) − X→(t)
⃒
⃒
⃒ (11)  

Dβ
̅→

=

⃒
⃒
⃒ C2
̅→

. Xβ
̅→

(t) − X→(t)
⃒
⃒
⃒ (12)  

Dδ
̅→

=

⃒
⃒
⃒ C3
̅→

. Xδ
̅→

(t) − X→(t)
⃒
⃒
⃒ (13)  

where Xα
̅→

(t) means the position vector of α wolves at iteration t, Xβ
̅→

(t)

points out the position vector of β wolves at iteration t, and Xδ
̅→

(t) shows 
the position vector of δ wolves at iteration t, and X→(t) is the position 
vector of the current best solution. Basically, the above equations are 
used to approximate the distance between the current solution and α, β, 
and δ wolves (Mirjalili et al., 2014): 

X1
̅→

=

⃒
⃒
⃒Xα
̅→

(t) − A1
̅→

.Dα
̅→

⃒
⃒
⃒ (14)  

X2
̅→

=

⃒
⃒
⃒ Xβ
̅→

(t) − A2
̅→

. Dβ
̅→

⃒
⃒
⃒ (15)  

X3
̅→

=

⃒
⃒
⃒ Xδ
̅→

(t) − A3
̅→

. Dδ
̅→

⃒
⃒
⃒ (16) 

After that, the final position of the current solution is computed 
based on the following equation (Mirjalili et al., 2014): 

X(t+1)
̅̅̅→

=
X1
̅→

+ X2
̅→

+ X3
̅→

3
(17) 

The steps described above are repeated until the fulfilment of a 
stopping criterion. 

3. Description of the reservoir model 

The segment K1/K2 is a part of Gullfaks reservoir. This segment has 
an average thickness of 200 m and its top is at 1870 m. The K1/K2 
segment is sandstone and is characterized by excellent permeability 
values (Shpak, 2013). 

The reservoir is not supported by either an aquifer or a gas cap. Six 
wells are located in this segment (3 producers and 3 injectors). The year 
2016 is assumed to be the start of production, 2018 is assumed to be the 
implementation time of the WAG process and the year 2026 is the end of 
the simulations. The description of the numerical model of K1/K2 
segment is shown in Table 1. The compositions of the reservoir fluid and 
the injected gas are stated in Table 2. The compositions considered are 
taken from the SPE5 comparative study model (Killough et al., 1987). 

The distribution of the petrophysical characteristics, the position of 
the faults, and the location of the wells in the reservoir are illustrated in 
Fig. 1. 

In this investigation, a numerical slim-tube model consisted of a one- 
dimensional compositional paradigm (in Eclipse 300) was considered to 
estimate the minimum miscibility pressure (MMP) of the injected gas. 
The latter is defined as the lowest pressure at which multi-contact 
miscibility between the reservoir fluid and the injected gas can be 
reached. The length and the width of the model are equal to 100 m and 1 
cm, respectively. This paradigm covers 600 grids with permeability and 
porosity of 2000 mD and 10%, respectively. The injection well was 
located at the first grid of the model (1,1,1), while the production well 
was placed at the end grid of the model (600,1,1). Whitson et al. (2000) 
proposed that the MMP corresponds to the pressure at which the re
covery factor is ~0.95 after injecting 1.2 pore volumes (PV) of gas. To 
estimate the MMP value, the gas is injected at various pressure values 
and the achieved recovery factor is reported after injecting 1.2 PV gas. 
According to the results, the MMP of the injected gas is about 199.6 bar 
which is below the initial reservoir pressure, so the type of the WAG in 
this study is miscible. 

4. Problem formulation 

Field oil production total (FOPT) is assumed the objective function to 
optimize during the implementation of the WAG process. In addition, 
two dynamic technical constraints are specified as follows:  

- A limit of 50% for daily water cut (Field Water Cut: FWCT).  
- The reservoir pressure must be higher than the MMP value. 

The considered design parameters are summarized in Table 3. The 
half-cycle time is defined as the time period during which the gas/water 
is continuously injected. The downtime parameter corresponds to the 
number of years in which the WAG process is active; in other words, 
after this time, the production is mainly by water injection until the end 
of the simulation (2026). Based on the minimum and maximum values 
of this parameter, three levels were considered (3, 4 and 5 years) to 
differentiate the time stages of the WAG, namely: 

Table 1 
Description of the numerical model (Shpak, 2013).  

Parameters Value Unit 

Top of the reservoir 1870 m 
Reservoir temperature 71.1 ◦C 
Initial reservoir pressure, Pi 320 bar 
GOR (in-situ) 102 sm3/sm3 

Formation volume factor at Pi 1.254 rm3/sm3 

Oil density 617.2 Kg/m3 

Oil viscosity 0.203–0.260 cP 
Permeability 0.4–4 D 
Porosity 20–35 % 
Compressibility of the rock at Pi 9 × 10− 5 bar− 1 

Initial oil in place 19.7 × 106 sm3 

Total number of grids 57,375 (45 × 75 × 17) / 
EOS Peng-Robinson / 
Number of producer wells 3 / 
Number of injector wells 3 /  

Table 2 
Compositions of the reservoir fluid and injection gas.  

Composition Molar fractions of the reservoir 
fluid (%) 

Molar fractions of the injection 
gas (%) 

C1 50 77 
C3 3 20 
C6 7 3 
C10 20 0 
C15 15 0 
C20+ 5 0  
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- Late time: 5 years.  
- Middle time: 4 years.  
- Early time: 3 years. 

Water and gas injection rates are used to determine the WAG ratio. 
Gas injection rate over half-cycle time gives the slug size. 

The optimization problem (P) is formulated as follows: 

(P) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maximize FOPT
(
qinjw, qinjg, halfcycg− w, downtime

)

subject to

2000
sm3

d
≤ qinjw ≤ 6000

sm3

d

1 × 106sm3

d
≤ qinjg ≤ 2.1 × 106sm3

d
3 months ≤ halfcycg− w ≤ 12 months

Downtime ∈ {3, 4, 5}years

MMP ≤ FPR
(
t, qinjw, qinjg, halfcycg− w, downtime

)

FWCT
(
t, qinjw, qinjg, halfcycg− w, downtime

)
< 50%

(18)  

where t is the time, FOPT is the field oil production total, qinjw and qinjg 
represent the field water and gas injection rates, respectively, FPR is the 
field pressure, and FWCT is the field water cut which is expressed as 
follows: 

Fig. 1. Illustration of the main characteristics of the segment K1/K2: (a) permeability distribution; (b) porosity distribution; (c) well locations; (d) fault positions 
(Shpak, 2013). 

Table 3 
The considered WAG design parameters.  

Parameter Min  Max  

Water injection rate: qinjw (sm3/ d) 2000  6000  

Gas injection rate: qinjg (106sm3/ d) 1.0  2.1  

Half-cycle time: halfcycg− w(months)  3  12  
Downtime (years) 3 5  

Table 4 
The considered control parameters for ACO and GWO.  

Algorithm Parameters Value 

ACO Population size 60 
Archive Size 60 
Selection probability 0.5 
Max number of generations 50 

GWO Number of wolves 60 
Max number of iterations 60 
a (linear decreasing) 2 to 0  
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In the above equation, FOPR and FWPR refer to the field oil and 
water production rates, respectively. 

5. Implementation procedure 

Two types of proxy models were created to estimate all the included 

parameters in the formulated optimization problem (FOPR, FWPR, FPR) 
based on MLP and RBFNN, while the other parameters (FOPT, FWCT) 
are evaluated based on the rates and time. As mentioned in the previous 
sections, MLP model was optimized using LM algorithm (the weights 
and bias), and trial & error technique was applied for investigating its 
proper topologies (activation functions, number of hidden layers and 
their associated neurons), while the parameters of RBFNN paradigm 
were optimized using ACO and GWO. The control parameters of ACO 

Fig. 2. Flowchart of the main steps of the work.  

Table 5 
Performance analysis of MLP-LMA proxy model.  

Phase Parameters AARD (%) 
(runs) 

Min Avg. Max 

Training FOPR 0.12 0.23 0.37 
FOPT (t)final 0.0076 0.03 0.14 
FWPR 0.49 1.29 5.13 
FWPT (t)final 0.001 0.32 3.03 
FWCT 0.42 1.53 4.23 
FPR 0.001 0.013 0.017 

Validation (blind runs) FOPR 1.22 1.48 2.10 
FOPT (t)final 0.17 0.25 0.46 
FWPR 2.72 3.52 5.34 
FWPT (t)final 1.57 2.14 3.42 
FWCT 2.33 2.78 3.32 
FPR 0.05 0.07 0.09  

Table 6 
Performance analysis of RBFNN-ACO proxy model.  

Phase Parameters AARD (%) 
(runs) 

Min Avg. Max 

Training FOPR 0.17 0.73 1.03 
FOPT (t)final 0.05 0.19 0.41 
FWPR 0.98 1.84 6.37 
FWPT (t)final 0.12 1.05 4.88 
FWCT 0.93 2.37 5.69 
FPR 0.009 0.08 0.13 

Validation (blind runs) FOPR 1.29 1.55 3.16 
FOPT (t)final 0.34 0.61 1.13 
FWPR 2.93 4.18 6.68 
FWPT (t)final 1.84 2.91 4.28 
FWCT 2.76 3.07 4.33 
FPR 0.05 0.11 0.15  

Table 7 
Performance analysis of RBFNN-GWO proxy model.  

Phase Parameters AARD (%) 
(runs) 

Min Avg. Max 

Training FOPR 0.16 0.64 0.96 
FOPT (t)final 0.04 0.11 0.33 
FWPR 0.93 1.72 6.31 
FWPT (t)final 0.09 1.03 4.80 
FWCT 0.90 2.15 5.26 
FPR 0.009 0.06 0.10 

Validation (blind runs) FOPR 1.28 1.51 3.03 
FOPT (t)final 0.31 0.55 1.09 
FWPR 2.92 4.14 6.63 
FWPT (t)final 1.73 2.80 4.22 
FWCT 2.71 3.00 4.28 
FPR 0.04 0.10 0.15  

Fig. 3. Comparison between the performance of the established proxy models 
for predicting the different needed parameters of: (a) training runs and (b) 
blind runs. 

FWCT
(
t, qinjw, qinjg, halfcycg− w, downtime

)
=

FWPR
(
t, qinjw, qinjg, halfcycg− w, downtime

)

FOPR
(
t, qinjw, qinjg, halfcycg− w, downtime

)
+ FWPR

(
t, qinjw, qinjg, halfcycg− w, downtime

) (19)   
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and GWO are reported in Table 4. 
To build these proxy models, 24 runs for each of the downtime levels 

were selected, thus 72 runs were considered in the building phase of the 
proxy models. Latin Hypercube Design (LHD) was used for attributing 
the half cycle time and gas and water injection rates to these runs. Then, 
these latter were simulated using Eclipse 300. Afterwards, the generated 
database was used to develop the proxy models. Besides, 10 supple
mentary runs were selected randomly as blind runs for testifying the 

performances of the proxy models for unseen scenarios. 
In the last step of the implementation, the best proxy elaborated 

using the aforesaid machine learning techniques was coupled with ACO 
and GWO to find the proper design parameters of the formulated WAG 
optimization problem. Fig. 2 summarizes the main steps of the work. 

Fig. 4. Distribution of the errors associated with MLP-LMA proxy during the training phase: (a) FOPT, (b) FPR, and (c) FWCT.  

Fig. 5. Distribution of the errors associated with MLP-LMA proxy during the blind validation phase: (a) FOPT, (b) FPR, and (c) FWCT.  
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6. Results and discussion 

Before displaying the main findings of the proposed workflow for 
optimizing the WAG process using the hybridization SC-nature-inspired 
algorithms, it is worth mentioning that the performance evaluation of 
the training and blind validation steps was carried out using statistical 
and graphical error analysis. Average absolute relative deviation (AARD 
%) was applied as the main index to examine the reliability of the proxy. 
This index is expressed as: 

AARD%=
1
N

∑N

j=1

⃒
⃒
⃒
⃒
TjE − OjP

TjE

⃒
⃒
⃒
⃒× 100 (20)  

where the outputs of the commercial simulator and the proxy are 
denoted by TE and OP, respectively, and N represents the number of 
points. 

Tables 5–7 show the performance analysis of the different proxy 
models (MLP-LMA, RBFNN-ACO, and RBFNN-GWO) during the learning 
(construction) and validation phases. In these tables, the errors (AARD) 
associated with each parameter involved in the optimization of the 
studied WAG process are reported. In this regard, three kinds of AARD, 
including the average, minimum, and maximum values, are reported 
with respect to the considered 72 runs and the 10 blind runs. Besides, the 
bar plots (a) and (b) of Fig. 3 display a visual comparison between the 
performance of the established proxy paradigms for estimating the 
investigated parameters of the training and blind runs, respectively. 
Based on the performances exhibited, the proposed proxy models can 
accurately predict the different parameters required in the optimization 
problem. In addition, a comparison of the AARD achieved by each of the 
models (for different parameters) suggests that MLP-LMA proxy out
performs the other two proxy paradigms. Therefore, MLP-LMA proxy 
model is selected for further evaluation and optimization. 

Fig. 6. Demonstration of the reliability of the MLP-LMA proxy model to emulate the outcomes of a run included in the training phase (a) FOPR and FOPT (b) FWPR 
and FWPT (c) FWCT and FPR. 

M. Nait Amar et al.                                                                                                                                                                                                                            



Journal of Petroleum Science and Engineering 206 (2021) 109038

9

In order to test the reliability of the best proxy model, Figs. 4 and 5 
illustrate the distributions of the errors between the outputs of the 
commercial simulators and MLP-LMA proxy in histogram diagrams for 
the main parameters of the formulated problem during the training and 
blind validation steps, respectively. As graphically shown in these fig
ures, a normal distribution of the errors with a center equal to or very 
close to zero-error value is noticed in all the investigated parameters 
during the training and blind validation steps. This confirms again the 
high robustness of the suggested proxy model. 

In another step, the reliability of the implemented MLP-LMA proxy 
model was tested for predicting the different parameters as a function of 
time. Figs. 6 and 7 compare the results emulated by the implemented 
best-proxy and those of the numerical simulator for a run included in the 
learning phase and for a blind run, respectively. In all the graphs, the 
parameters are represented as a function of time. 

According to the exhibited results, the proposed MLP-LMA proxy 
model has a strong ability to correctly estimate the different parameters 
needed in optimization, either included in the learning or the blind 
phase. Also, very small errors were marked with all parameters. As a 
result, the performance of the developed dynamic proxy model is very 
satisfactory, and therefore this paradigm can be used in the task of WAG 
process optimization for the K1/K2 segment. Besides, it can be deduced 
from these figures that the trend of the outputs of the proxy is very 
similar to that of the numerical simulator. For example, subplot (a) of 
Figs. 6 and 7 reveals that the proxy captured the macroscopic and 
microscopic effects by injecting water (relatively high FOPR during the 
half cycles of water and after the downtime of the process) and gas 

Fig. 7. Demonstration of the reliability of the MLP-LMA proxy model to 
emulate the outcomes of one blind run (a) FOPR and FOPT (b) FWPR and FWPT 
(c) FWCT and FPR. 

Fig. 8. Relative importance of the main input variables on the outputs of 
the proxy. 

Table 8 
Summary of the best results achieved.  

Algorithm Number of iterations to 
reach best FOPT 

Best FOPT 
(106 sm3) 

qinjw 

(sm3/d) 
(best 
FOPT)  

qinjg(sm3/ 
d) 
(best 
FOPT)  

half cycg− w 

(month) 
(best FOPT)  

WAG 
Ratio 

Slug size 
(PV) 

Down time 
(years) 

Max WCT 
(%) 

Min and Max 
FPR (bar) 

ACO 14 13.68 5652 106  6 1.98 0.04 3 35.42 305–310 

GWO 11 13.68 5652 106  6 1.98 0.04 3 35.42 305–310  

Fig. 9. Optimization results with the proposed hybridizations: proxy-ACO and 
proxy-GWO. 

Table 9 
Comparison of the results of the proxy model and the numerical simulator for the 
best scenario.  

Parameter Proxy run (for best GFa 

parameters) 
Eclipse 300 run (for best 
GF parameters) 

AARD 
(%) 

FOPTt_final 

(sm3) 
13,685,903 13,654,497 0.23 

FWCT (%) – – 2.37 
FPR (bar) – – 0.08  

a Global Function.  
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(relatively low FOPR during the half cycles of gas), respectively. Also, 
subplots (b) and (c) of Figs. 6 and 7 demonstrate that the downtime 
results in the increase in FWPR and FWCT, while the pressure is almost 
stable. 

To examine the relative importance of the main input parameters on 
the main outputs of the smart models needed in the optimization step, 
the relevancy factor (r) was applied. The higher the absolute value of r, 
the more the effect of this parameter on the output. The mathematical 
formula of this factor is expressed as follows (Chen et al., 2014; Nait 
Amar, 2020): 

r
(
Ij, O

)
=

∑N
i=1

(

Ij,i − Ij

)(
Oi − O

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(

Ij,i − Ij

)2∑n
i=1

(
Oi − O

)2
√ (21) 

In the above equation, the index of the point is denoted i; Ij repre
sents the jth input,Ij points out the average value of Ij, O and O are the 
proxy output value and its average, respectively. As depicted in Fig. 8, 
water injection rate has the highest impact on the main outputs of the 
suggested proxy model. 

After confirming the reliability of MLP-LMA proxy model, it was 
coupled with ACO and GWO in order to find the proper design param
eters with respect to equation (18) that illustrates the mathematical 
formulation of the WAG optimization problem. The design parameters 
include water injection rate, gas injection rate, half-cycle time, and the 
downtime (WAG ratio and slug size are deduced from the other 
parameters). 

The results obtained with the two hybridizations, namely proxy-ACO 
and proxy-GWO, are presented in Table 8 and in Fig. 9. 

According to the reported results, it can be noted that the optimi
zation parameters found by the proxy-metaheuristic hybridizations are 
the same with only a slight difference in the convergence speed, where 
only 11 iterations were taken by GWO to find the optimum, while ACO 
used 14 iterations for this purpose. 

In order to validate the robustness of the developed proxy paradigm, 
the outputs of the dynamic proxy corresponding to the best control 
parameters found with the two hybridizations are compared with those 
from the numerical simulator. The suitable control parameters found 
using the direct simulation (commercial simulator) were the same as 
those mentioned in Table 8. However, the AARD associated with pre
dictions of the proposed proxy versus the direct simulation are shown in 
Table 9. 

As seen in Table 9, very good match between the results of the MLP- 
LMA proxy model and the numerical simulator is obtained, where very 
small errors are observed (for all the parameters) for the best run found. 
This confirms the precision and robustness of the optimization proced
ure presented in this study. Furthermore, and from the simulation time 
perspective, it is worth mentioning that by using an Intel® CoreTM i7- 
7700HQ 2.80 GHz and 16 Gb of RAM, our suggested proxy takes only 
1.2 s to generate the whole needed parameters for one realization, while 
more than 15 min is required using the commercial simulator. This 
significant reduction in the simulation time demonstrates the robustness 
and the efficiency of the proposed proxy. 

The optimization results show that a field water rate of 5652 sm3/ 
d and a field gas rate of 106 sm3/d with an injection half-cycle of 6 
months and a downtime of 3 years are the optimal parameters for the 
WAG process studied in this paper. 

To end with, it is needed to mention that the findings gained from 
this study contribute to the knowledge of the mathematics of oil re
covery, specifically EOR techniques based on gas injection, from many 
standing points of view, viz. the implementation of simple-to-use and 
robust time-dependent proxy models for real geological fields, the 
optimization of WAG process under dynamic constraints, and also the 
ability of the nature-inspired algorithms for resolving the optimization 
problems related to EOR techniques. The work carried out and the 

achieved outcomes offer very interesting recommendations for future 
works such as the development of proxy models for hybrid EOR schemes 
and the mono/multi-objective optimization of more complicated EOR 
methods. Finally, it is important to add that the suggested proxy scheme 
can be considered as a substitution of the direct simulation for WAG 
projects which are similar to the case studied in this investigation if the 
design parameters are within the considered ranges. This ensures the 
satisfaction of the applicability conditions of the proxy, thus, accurate 
predictions are expected as the main sources of errors are resulted from 
the disruption of these conditions. 

7. Conclusions 

In this paper, we applied a hybridization of intelligent techniques for 
optimizing a WAG process in a real field (K1/K2 segment of Gullfaks). 
The aim of the study was to maximize the total oil production associated 
with this project in the presence of dynamic technical constraints. 
Robust dynamic proxy models were built with two types of artificial 
neural networks, viz. MLP and RBFNN. Based on the achieved results, 
the following conclusions can be drawn:  

1. The proposed proxy models can emulate accurately the outputs of 
the commercial simulator.  

2. MLP-LMA proxy outperformed the other two proxy models.  
3. The best dynamic proxy hybridizations developed with ACO and 

GWO provide the optimal parameters for WAG control, including 
water and gas injection rates, injection half-cycle, downtime, WAG 
ratio and gas slug size.  

4. The suggested proxy model ensured significantly reducing the 
simulation time and conserving the required accuracy.  

5. The obtained results confirmed the performance of the suggested 
methodology for a real reservoir. 
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Nomenclature 

AARD Average Absolute Relative Deviation 
ACO Ant Colony Optimization 
EOR Enhanced Oil Recovery 
LHD Latin Hypercube Design 
FOPR Field Oil Production Rate 
FOPT Field Oil Production Total 
FPR Field Pressure 
FWCT Field Water Cut 
FWPR Field Water Production Rate 
FWPT Field Water Production Total 
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FWIR Field Water Injection Rate 
GWO Grey Wolf Optimization 
LM Levenberg–Marquardt Algorithm 
MLP Multi-layer Perceptron 
MMP Minimum Miscibility Pressure 
qinjw Field Water Injection Rate 
qinjg Field Gas Injection Rate 
RBFNN Radial Basis Function Neural Network 
WAG Water Alternating Gas 
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