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ABSTRACT

This work proposes an efficient batch-based implementation for
kernel regression on graphs (KRG) using random Fourier features
(RFF) and a low-complexity online implementation. Kernel regres-
sion has proven to be an efficient learning tool in the graph signal
processing framework. However, it suffers from poor scalability
inherent to kernel methods. We employ RFF to overcome this issue
and derive a batch-based KRG whose model size is independent
of the training sample size. We then combine it with a stochastic
gradient-descent approach to propose an online algorithm for KRG,
namely the stochastic-gradient KRG (SGKRG). We also derive suf-
ficient conditions for convergence in the mean sense of the online
algorithms. We validate the performance of the proposed algo-
rithms through numerical experiments using both synthesized and
real data. Results show that the proposed batch-based implementa-
tion can match the performance of conventional KRG while having
reduced complexity. Moreover, the online implementations effec-
tively learn the target model and achieve competitive performance
compared to the batch implementations.

Index Terms— kernel regression on graphs, online learning on
graphs, random Fourier features, stochastic gradient.

1. INTRODUCTION

The connectivity of real-world elements and the amount of data
generated in networks have increased over the last decades [1, 2].
Real networks and their corresponding data come in vastly dif-
ferent shapes and applications, ranging from genetic interaction
networks [3] and the human brain [4] to sensor networks and smart
cities [5]. Although an extensive range of classical digital signal
processing (DSP) tools are available, they are not directly applica-
ble to information processing of signals from networked structures.
The graph signal processing (GSP) emerged in the last decade as a
suitable framework for signal processing over networks, leveraging
the network structure to process the networked data [4–7].

A major area of research in GSP is learning over graphs, which
aims at discovering patterns in the data and graph structure to al-
low, e.g., prediction and reconstruction of graph signals [10–18].
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Among the several approaches for learning over graphs, kernel re-
gression has proved to be an innovative technique in several estima-
tion and reconstruction applications for networked data [14–17]. In
this work, we build upon the methodology of kernel regression on
graphs (KRG) proposed in [16], which embeds a metric of smooth-
ness over the graph in the optimization problem to improve the learn-
ing of regression parameters. However, the methodology in [16] suf-
fers from scalability issues from kernel methods and is restricted to
a batch-based offline approach. In this work, we first derive an ef-
ficient batch-based KRG using random Fourier features [19]. Then,
we propose an online strategy for KRG using the stochastic gradient
descent approach.

This paper is organized as follows. Section 2 presents the basic
concepts of graph signal processing, and formulates the problem of
kernel regression over graphs. The proposed batch-based KRG using
RFF is presented in Section 3, and in Section 4, we present the online
strategy for KRG, namely, the stochastic-gradient KRG (SGKRG).
In Section 5, we derive sufficient conditions for the update step size
to guarantee the proposed online algorithm’s convergence. In Sec-
tion 7, we present the final remarks of this work.

2. LEARNING OVER GRAPHS

2.1. Graph Signal Processing

A graph is denoted by G = {V, E}, where V = {1, . . . ,K} is the set
of vertices, or nodes, and E = {e11, . . . , eKK} is the set of edges.
Elements eij > 0 indicate pairwise relations between nodes i and j
according to a chosen metric, and an edge eij exists if and only if i
and j are related [1,7]. In GSP, edges are typically represented in the
adjacency matrix A, such that the entry Aij = eij if eij exists and
Aij = 0 otherwise. In this work, we consider undirected graphs,
such that eij = eji. The degree matrix D is a diagonal matrix such
thatDjj =

∑
i∈Nj

eij andNj is the set of vertices that are adjacent
to node j, referred to as neighborhood of j. The graph Laplacian is
the positive semidefinite matrix L = D−A [2].

In GSP [2, 6], the signal on a graph is given by the mapping
s : V → R and is represented by a vector sn ∈ RK . The graph
signal represents a snapshot of the network state at time n. The
graph Laplacian induces a variation metric for a graph signal s that
depends on the graph structure [7]. The variation metric is given by

ν(s) = sTLs =
∑
i6=j

Ai,j

(
si − sj

)2
, (1)

where we can observe that the difference between two entries of the
signal vector are penalized by the weight of the edge connecting the



two nodes. That is, a graph signal where values in adjacent nodes are
different is associated with a large variation metric according to (1).

2.2. Learning Task

Consider a set of data pairs {xn, tn}, n ∈ {1, 2, . . . , N}, such
that vectors xn, called reference signals, are related to target sig-
nals tn through an unknown function f(·) such that tn = f(xn).
The objective of typical learning strategies over graphs is to model
f(·) : RK → RK in the case where both xn and tn belong to
the same graph G. Previous research on learning over networks in-
clude, e.g., dictionary learning [11], linear [12, 13] and nonlinear
graph filtering [18], kriged Kalman filtering [10], and kernel regres-
sion strategies [14–17].

In particular, the work in [16] proposes a kernel regression
methodology that allows the reference signal to be agnostic to the
graph. That is, the regression signal does not need to be a graph
signal, whereas the target signal lies over G, which widens the range
of applications for the proposed method. For this, [16] assumes that
graph signals are expected to be smooth with respect to the graph,
inducing a low value of the variation metric (1). The model is then
estimated in terms of a matrix W such that

yn = WTφ(xn), (2)

where yn is an estimate of the target graph signal tn and φ(·) is an
unknown function of the input signal. The optimal parameter matrix
W is found by minimizing the cost function

C(W) =

N∑
n=1

‖tn − yn‖22 + αtr(WTW) + β

N∑
n=1

ν(yn), (3)

where the last term on the right-hand side enforces that the model
respects the smoothness of the target signal. The solution for (3) is
obtained in [16] in closed form using the kernel method. This leads
to a model whose dimension increases with the number of training
samples. In the next sections, we propose a reduced-complexity so-
lution for the batch-based solution of (3) using RFF, and we propose
an online implementation for KRG.

3. BATCH-BASED KRG USING RANDOM FOURIER
FEATURES

A way to overcome the scaling issues of kernel methods is provided
by random Fourier features [19]. Using RFF, a shift-invariant kernel
evaluation κ(xi,xj) = κ(xi − xj) is approximated as an inner
product in the D-dimensional RFF space, where D is much lower
than the number of training samples. The mapping of xi into the
RFF space RD is given by

zi = (D/2)−
1
2

[
cos(vT

1 xi + b1) . . . cos(vT
Dxi + bD)

]T
, (4)

where the phase terms {bi}Di=1 are drawn from a uniform distribu-
tion on the interval [0, 2π], and vectors {vi}Di=1 are drawn from
the probability density function (pdf) p(v), which corresponds to
the Fourier transform of k(xi − xj) [14, 19]. To derive the KRG
model in the RFF-space, consider the kth entry of the estimate y as
yk = wT

k φ(x) where wk denotes the kth column of the parameter
matrix W. Using the substitution W = ΦTΨ, and the kernel trick
κ(xi,xj) = φ(xi)

Tφ(xj), we can write

yk =

(
N∑

n=1

Ψn,kφ(xn)

)T

φ(x) =

(
N∑

n=1

Ψn,kκ(xn,x)

)
. (5)

Using RFF, (5) can be approximated by

yk ≈
N∑

n=1

Ψn,kzT
nz = hT

k z. (6)

Finally, the RFF-based regression for the entire graph signal is writ-
ten as

y = HTz, (7)

where H = [h1 h2 . . . hK ] ∈ RD×K is the representation of
the regression coefficient matrix in the RFF space. Now, the cost
function (3) can be rewritten for the optimization in terms of H as

C(H) =

N∑
n=1

‖tn − yn‖22 + αtr(HTH) + β

N∑
n=1

ν(yn). (8)

Letting the matrix Z = [z1 z2 . . . zN ]T ∈ RN×D represent the
RFF mapping of all training input vectors {xn}Nn=1, the cost func-
tion (8) can be rewritten as

C(H) =

N∑
n=1

‖tn‖22 − 2tr(TTZH) + tr(HTZTZH)

+ α(HTH) + βtr(HTZTZHL), (9)

where T = [t1 t2 . . . tN ]T ∈ RN×K . The gradient of C(H) with
respect to H is given by

∇C(H) = −2ZTT + 2ZTZH + 2αH + 2βZTZHL. (10)

By making∇C(H) = 0, we obtain

(ZTZ + αID)H + βZTZHL = ZTT. (11)

Then, vectorizing both sides of (11) and using the relation vec(AXB) =
(BT ⊗ A)vec(X), where vec(·) denotes the column-stacking op-
erator and ⊗ denotes the Kronecker-product operator, the optimum
regression coefficients in the RFF space can be obtained as

vec(Ho) = (BRFF + CRFF)−1vec(ZTT), (12)

where BRFF = (IK ⊗ (ZTZ +αID)) and CRFF = (βL⊗ZTZ).
Once the regression coefficients are trained, the target estimate

y given an input signal x corresponding to z in the RFF space is
given by

y = HT
o z.

It can be seen that the regression does not depend on the number
of training samples and the model has a fixed size D. Therefore,
the proposed RFF-approach offers an efficient batch-based KRG for
large datasets. Note that the batch-based implementation requires
that all samples are available.

4. ONLINE KERNEL REGRESSION ON GRAPHS

We now derive online implementations for KRG using stochastic-
gradient descent approaches. These implementations avoid the delay
inherent to the batch-based implementation by updating the regres-
sion parameters for each new sample. Additionally, each update has
a small computational cost when compared to the batch computa-
tion.



4.1. Stochastic Gradient Descent KRG

We propose to update the parameters of the KRG in an iterative
manner using a stochastic approximation of the gradient ∇C(H),
and derive the stochastic-gradient KRG (SGKRG) algorithm. Con-
sider the instantaneous version, at time n, of the RFF-based KRG
model (7), given by

yn = HT
nzn, (13)

Then, we can write the corresponding instantaneous cost function

C(Hn) = ‖tn − yn‖22 + αtr(HT
nHn) + βν(yn). (14)

The gradient of C(Hn) with respect to Hn, which corresponds
to a stochastic approximation of∇C(H) in (10), is given by

∇C(Hn) = −2zntTn + 2znzT
nHn + 2αHn + 2βznzT

nHnL

= −2
(
zn(eT

n − βyT
nL)− αHn

)
, (15)

where en = tn − yn is the network-level error at iteration n.
Given (15), in order to recursively minimize C(Hn), the parame-
ter matrix Hn is updated by taking a step in the negative-gradient
direction as

Hn+1 = Hn + µ
(
zn(eT

n − βyT
nL)− αHn

)
, (16)

where µ > 0 is the step size. Equation (16) represents the update
equation for the proposed online SGKRG algorithm using RFF. We
note the gradient obtained using all samples is expected to offer a
better optimization direction than the one obtained using a single
sample. Thus, the SGKRG and the batch-based KRG have opposite
characteristics in the trade-off between complexity and convergence
speed.

5. CONVERGENCE ANALYSIS

In this section, we analyze the convergence of the proposed online
algorithm in the mean sense [20–22]. We assume the observation
model tn = HT

o zn+υn, where υn is observation noise vector. The
noise is assumed to be zero-mean and independent of zn. Let Ξn =
Hn − Ho denote the deviation between the regression parameters
Hn and the optimal parameters Ho at iteration n. We have

Ξn+1 = Hn + µ
(
zn(tTn − zT

nHn − βzT
nHnL)− αHn

)
−Ho

= Ξn + µ
(
zn(tTn − zT

nHn)− βznzT
nHnL− αHn

)
,

(17)

which can be rewritten as

Ξn+1

= Ξn + µ(znυ
T
n + znzT

n (Ho −Hn)− βznzT
nHnL− αHn)

= (ID − µznzT
n )Ξn + µznυ

T
n − µ(βznzT

nHnL + αHn).
(18)

Vectorizing both sides of (18), we obtain

ξn+1 =
(
IK ⊗ (ID − µznzT

n )
)
ξn + µ(IK ⊗ zn)υn

− µ
(
αIKD + (βL⊗ znzT

n )
)

vec(Hn), (19)

where ξn = vec(Ξn). Substituting vec(Hn) = ξn + vec(Ho) into
(19), it can be rewritten as

ξn+1 =
[
IKD − µ

(
αIKD + (IK + βL)⊗ (znzT

n )
)]

ξn

− µ
(
αIKD + βL⊗ (znzT

n )
)

vec(Ho)

+ µ(IK ⊗ zn)υn. (20)

We now take the expected value on both sides of (20). Given the
zero-mean and independence assumptions on the observation noise,
the last term’s expected value on the right-hand side of (20) is zero.
We obtain the following recursion on E[ξn]

E[ξn+1] = AE[ξn]−Bvec(Ho), (21)

where

A = IKD − µ (αIKD + (IK + βL)⊗Rz)

B = µ (αIKD + βL⊗Rz) , (22)

with Rz = E[znzT
n ]. Taking the recursion (21) down to zero, we

obtain

E[ξn] = AnE[ξ0]− µ
n−1∑
i=0

An−1−iBvec(Ho). (23)

From (23), we see that convergence is guaranteed if limn→∞An =
0, which is achieved when ρ(A) < 1, where ρ(·) denotes the spec-
tral radius of the argument, i.e., its largest absolute eigenvalue. We
have that ρ(A) < 1 if ρ (µ (αIKD + (IK + βL)⊗Rz)) < 2.
Therefore, a sufficient condition for the convergence of the proposed
SGKRG algorithms is given by

0 < µ <
2

ρ(Rz) + α+ βρ(L)ρ(Rz)
. (24)

Under the convergence condition (24), (23) converges asymptoti-
cally to (IKD−A)−1Bvec(Ho), which reduces to (αIKD +(IK +
βL) ⊗ Rz)−1(αIKD + βL ⊗ Rz)vec(Ho). This means that the
solution of the SGKRG is asymptotically biased in the mean sense.
The bias is introduced by the regularization coefficients α and β.

6. NUMERICAL EXPERIMENTS

In this section we validate the performance of the proposed algo-
rithms. We reproduce two regression problems adopted in [16] and
compare the proposed algorithms against the conventional KRG.
In both experiments, we use the Gaussian kernel κ(xi,xj) =
exp

(
−‖xi − xj‖22/(2σ2)

)
when employing the kernel methods

and the RFF implementations.

6.1. Synthesized Data

The first experiment uses an Erdös Rényi graph with artificially gen-
erated data. The graph has K = 50 nodes with edge-probability
equal to 0.1. A total of S = 20000 K-dimensional data sam-
ples are generated as follows. First, a covariance matrix CS ∈
RS×S is drawn from the inverse Wishart distribution with an iden-
tity hyperparameter matrix and S degrees of freedom. Then, K
independent vector realizations are drawn from an S-dimensional
Gaussian distribution N (0,CS). Letting {xn}Sn=1 denote the ob-
tained signals, the corresponding target vectors {tn}Sn=1 are gen-
erated by projecting each signal onto the graph by solving tn =
arg minτ

{
‖xn − τ‖22 + τTLτ

}
.
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(a) Batch-based solutions.
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(b) Online solution.

Fig. 1. NMSE achieved by the KRG implementations versus number
of training samples.

From the total S = 20000 samples, we use 1000 samples as test
dataset and up to 19000 samples as training dataset. Target data in
the training dataset are corrupted with additive white Gaussian noise
(AWGN) and the signal-to-noise ratio is 5 dB. The parameters α and
β are estimated via 5-fold cross-validation with grid-search using a
separate dataset, and minimizing the normalized squared estimation
error

NMSE = 10 log10

(
E

[
‖Y −T0‖2F
‖T0‖2F

])
, (25)

where T is the true target matrix, Y is the estimated matrix. We
select the parameters that result in the best NMSE at the end of the
learning process.

The proposed batch-based algorithm is compared against the
conventional KRG from [16] and results, averaged over 500 inde-
pendent runs, are presented in Fig. 1a. The batch-based algorithms
are trained with up to 3000 samples, which meets the limit of our
computational power when running the conventional KRG. Plots
show that the RFF-based approach approximates well the conven-
tional KRG. In Fig. 1b, results show that the online algorithm is ca-
pable of learning the regression parameters. We run the SGKRG up
to 20000 samples, such that the test samples are included at the end
of the initial training samples. Note that the value of µ affects the
convergence of the proposed stochastic-gradient-based implementa-
tion. We demonstrate the performance for different step sizes and we
show that the NMSE level achieved by the SGKRG approximates
that of the batch RFF-based KRG as µ decreases.
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Fig. 2. NMSE achieved by the KRG implementations versus number
of training samples for the fMRI signal simulation.

6.2. Real Data

The second experiment uses real data and addresses the task of es-
timating brain activity of voxels in a functional magnetic resonance
imaging (fMRI) dataset. The data and graph used in [16] are made
available in [23] and the same are used in this experiment.

A voxel is a volumetric unit that constitutes a 3-dimensional im-
age of the brain, and each voxel is associated with a small cubic por-
tion of the brain. Regions of the brain relate to each other anatomi-
cally and, by considering these relations, a graph can be constructed
where voxels are the nodes, and edges represent relations between
them. More details on this dataset and graph construction are pro-
vided in [16]. The regression experiment consists of estimating the
signal on 90 of the voxels using the signal from 10 other voxels, such
that the graph structure corresponds to the set of pairwise relations of
the 90 voxels. Training and test datasets have the same size equal to
146 input-target pairs. The training signal is corrupted by an AWGN
with covariance matrix 0.1 · IK .

We conduct 100 independent runs with different permutations of
signals between training and test datasets. The RFF-space dimension
is D = 32. Results are shown in Fig. 2 for both batch and online
algorithms. In this experiment, both batch-based implementations
converge together to approximately -23 dB and it can be observed
that the RFF-based implementation matches the conventional KRG.
Results show that the SG-based implementation is capable of suc-
cessfully learning the target model and achieving low NMSE, around
-20 dB, using µ = 0.04.

7. CONCLUSION

This paper proposed batch-based and online implementations for
kernel regression on graphs. The performance of the proposed al-
gorithms was validated with numerical experiments using synthe-
sized and real data. The proposed batch-based implementation uses
RFF to approximate kernel evaluations as inner-products in a fixed-
dimension space, reducing the complexity of the regression model
compared to the conventional KRG. Results of numerical experi-
ments showed no significant performance loss in approximating the
kernel evaluations using RFF, such that the RFF-based implemen-
tation can achieve the same performance as the conventional KRG.
Additionally, sufficient conditions for convergence of this algorithm
in the mean sense were derived.
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