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Assessment of Machine Learning Models for
Classification of Movement Patterns During a
Weight-Shifting Exergame

Elise Klabo Vonstad *“, Beatrix Vereijken

Abstract—In exercise gaming (exergaming), reward systems are
typically based on rules/templates from joint movement patterns.
These rules or templates need broad ranges in definitions of correct
movement patterns to accommodate varying body shapes and sizes.
This can lead to inaccurate rewards and, thus, inefficient exercise,
which can be detrimental to progress. If exergames are to be
used in serious settings like rehabilitation, accurate rewards for
correctly performed movements are crucial. This article aims to
investigate the level of accuracy machine learning/deep learning
models can achieve in classification of correct repetitions naturally
elicited from a weight-shifting exergame. Twelve healthy elderly
(10F, age 70.4 SD 11.4) are recruited. Movements are captured
using a marker-based 3-D motion-capture system. Random forest
(RF), support vector machine, k-nearest neighbors, and multilayer
perceptron (MLP) are the employed models, trained and tested
on whole body movement patterns and on subsets of joints. MLP
and RF reached the highest recall and F1-score, respectively, when
using combined data from joint subsets. MLP recall range are
91% to 94%, and RF F1-score range 79% to 80%. MLP and RF
also reached the highest recall and F1-score in each joint subset,
respectively. Here, MLP ranged from 93% to 97% recall, while
RF ranged from 73% to 80% F1-score. Recall results, show that
>9 out of 10 repetitions are classified correctly, indicating that
MLP/RF can be used to identify correctly performed repetitions
of a weight-shifting exercise when using full-body data and when
using joint subset data.

Index Terms—Classification, exergaming, machine learning,
movement patterns, movement quality, reward systems, weight-
shifting.

I. INTRODUCTION

ITH the overall rise in gamification in recent years,
W serious games have been employed in a wide variety
of fields, including education [1], professional training [2], [3],
cognitive training [4], and physical exercise (e.g., [5]). Gam-
ification refers to the introduction of elements from gaming,
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such as goals, reward systems, and challenges, into ordinary
tasks to make them more fun and thereby increase motivation
and adherence [6]. An essential element when designing serious
games is how to determine whether the player’s answer or action
is correct and thus should be rewarded in the games. Typically,
serious games predefine correct answers or actions, and track
the performance of players directly using controllers, keyboards,
or smartphones, allowing for relatively straight-forward checks
of correctness. In serious games for exercise (“exergaming”),
the player is interacting with the game using bodily movements
that are captured by cameras or other devices [5]. Movements
are subsequently assessed against predefined decision rules or
thresholds, as seen in e.g., [7], [8], and rewards are given if these
body parts performed as predefined, regardless of the correctness
of the movements of other parts of the body.

As commercial exergames aim at being entertaining and
easy to use, broad ranges and definitions of what is considered
“correct” by the game are necessary to accommodate different
body shapes and sizes. Because of these broad definitions,
players often figure out quickly what the minimum required
behavior is for receiving rewards [9]. When the game rewards
the player even when performing the movements in this manner,
players can easily cheat, or worse, not even know whether they
were performing the movements correctly or incorrectly. For
entertainment purposes, this may well be irrelevant. However,
in the context of regaining or maintaining physical function,
performing the correct movements is essential for effectiveness
and progress [10]. Effective exercise depends on performing the
necessary movements correctly, thus supervised exercise pro-
grams typically report better results than nonsupervised exercise
programs [11].

For older adults, exergaming is regarded as a promising tool
to deliver guided exercise without the presence of therapists or
clinicians. Furthermore, exercise delivered through exergames
has been shown to be more fun and motivating than traditional
exercise [5], [12]. This could help increase adherence and mo-
tivation for exercising in older adults, which is a prerequisite
for mediating the strain the ongoing demographic change will
place on our health care systems [13]. Older adults often have
different requirements for movements during exercise compared
to healthy people, as they might have physical constraints due
to ageing [14]. ColorRules and settings in exergames therefore
need to be adapted to individual constraints and goals, but still
allow for proper form and tempo to progress in training [15]. If
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exergames are to be effective in serious exercise settings such
as rehabilitation, we need game systems that accurately identify
and reward correctly performed movements to ensure efficiency
and progress [16], [17].

One alternative to using broadly defined rules and thresholds
to determine the correctness of a movement is to study the
occurrences of movement patterns with good or poor quality
and build models that embody the features of each of these.
These models can then be used to assess movement quality,
potentially with high accuracy, as the model is trained to recog-
nize features of a correctly performed movement pattern without
being fed predefined rules or thresholds. Recent developments
in machine learning (ML)/deep learning (DL) have made it
possible to efficiently analyze large amounts of data, which is
promising for using high-volume data from whole-body move-
ment patterns. Such models have been used successfully to
recognize different everyday activities like walking, sitting, and
lying down [18], [19], and movement patterns during traditional
exercise (e.g., [20]). However, to the best of our knowledge, it
has yet to be applied to assessment of movement pattern quality
during exergaming.

A. Pilot Study

To study the suitability and potential of applying ML for
our objective, we conducted a pilot study first to investigate
whether ML models can distinguish between similar full-body
movement patterns where some are performed correctly and
others incorrectly [21]. In this pilot study, participants (N =
11, 6 F, mean age 69.3 years, SD 4.0) performed repetitions of
weight-shifting movements where half of the movements were
performed with clear incomplete weight shifts (i.e., incorrectly
performed repetitions), and the other half with clear complete
weight-shifts (i.e., correctly performed repetitions). Participants
were instructed on how to perform the movements to ensure that
the right movement patterns for incorrect and correct repetitions
were recorded. A marker-based 3-D motion capture system
(3DMoCap) was used to track participants’ movements, and
statistical features were calculated for each repetition. Three
different ML models [Random forest (RF), support vector ma-
chine (SVM), and K-nearest neighbor (K-NN)] were trained and
evaluated for classification performance using leave-one-group-
out (LOGO) cross-validation. All three models achieved good
performance (>90% accuracy, [18]). These results encouraged
us to investigate whether ML models can accurately classify
movements that are naturally elicited (i.e., not instructed) from
abalancing exergame. As naturally elicited movements are more
varied, both within and across participants, classification can be
more challenging.

B. Aim of This Article

The present aticle investigates what level of Fl-score and
recall four different ML/DL models can achieve in classifying
correctly performed whole-body and joint-subset movement
patterns naturally performed during a balance exergame.

C. Article Organization

This article is organized as follows. Related work is outlined
in Section II. The experimental set-up and data analysis proce-
dures are described in Section III. Section IV presents results
comparing four different ML models in the classification of
movement correctness. Discussion of the results and limitations
of the study are presented in Section V. Conclusion and future
work are presented in Section VI.

II. RELATED WORK

In general, exergaming for older adults is considered a promis-
ing tool for facilitating unsupervised exercise at home or in an
elderly care center (e.g., [4], [22], [23]). Research has shown
that exergames are effective in delivering exercise for several
physical and mental functions, such as balance and postural
control [24], gait [25], upper body movements [12], cognitive
function [26], problem solving [27], and memory [28]. Ex-
ergames are also found to be more motivating and fun than
traditional exercise [9], [29], which is an essential feature that
could facilitate adherence and motivation for exercise [12]. In
addition, the technologies that exergames are based on make it
possible to tailor games to individual needs and goals [30], which
is a major advantage that could make exergaming even more
effective than traditional exercise. Furthermore, to ensure that
exergames are appropriate for older adults, extensive research
has been conducted into the design and usability requirements
for this population, resulting in guidelines and design principles
that apply to exergames for older adults [16], [31].

In recent years, there has been a proliferation of work im-
plementing the (semi)automatic classification and recognition
of actions and activities based on multimodal data recorded
from human movement [18]. Although research on movement
classification, as shown in [18], is an adjacent field of research,
these models only focus on identifying what movement has been
performed, not the guality of the movement (e.g. how well the
movement was performed). We are particularly interested in
assessing the quality of movement and will therefore focus pri-
marily on related work that sheds light on evaluating movement
quality.

High-quality research has been conducted with the aim of
identifying errors in movement patterns compared to predefined
movement templates [32]-[35], and rules/thresholds [7], [8],
[36]. Movement performance compared to the predefined goal is
used to provide feedback on how to improve movement patterns.
Comparison of movements to thresholds and/or rules is also done
in comprehensive work on modelling and evaluation of human
movement, as seen in [15], [14], and [37].

Using template movements and decision rules can be appro-
priate for players that do not have physical constraints or do
not need individual adaptation of movement patterns during
exercise and are aiming to perform the exercises similarly to
a healthy person. As mentioned, participants need to have goals
that are adjusted to their needs and constraints, so comparing
their movements to a healthy person or a template movement
can be detrimental to motivation or might push them to perform
the exercise outside their safe limits.
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One earlier study also aimed to classify movement quality
in a more naturally elicited, less instructed, fashion [38]. Here,
exercise repetitions near exhaustion were used as examples of
incorrectly performed movements and classified as correct or
incorrect using ML models. This study was conducted on healthy
children, using a smartphone (i.e, an inertial measurement unit)
to capture movements.

In conclusion, we find that there is a wide variety of settings
and contexts where automatic identification of movement er-
rors during exercise is receiving attention, including technique
analysis in general fitness and elite sports, as well as exercis-
ing for elderly at home or in rehabilitation centers. However,
research into classification of movement quality specifically
during exergaming is scarce, especially regarding identification
of correctly and incorrectly performed movements.

Further, a large body of the related work demonstrated that
errors in movement patterns can be identified during exercise by
comparing performed movements to rules and template move-
ments or expert scoring. Conversely, our study aims to build
ML/DL models that can classify correctly performed move-
ments that are naturally elicited, without comparing to a template
movement or a set of rules or thresholds. Then, we assess the ac-
curacy with which these models can identify correctly performed
movements in unseen samples of the movement patterns.

III. EXPERIMENTAL SETUP AND ANALYSIS: ASSESSING
MOVEMENT PATTERNS USING ML

1) Participants: Participants were healthy older adults re-
cruited from local exercise groups in the municipality. All
participants gave their written, informed consent. There were
12 participants in total (10F); average age was 70.4 (SD 11.4)
years (range 54-92). Average height and weight were 172.3 (SD
11.4) cm and 70.4 (SD 12.1) kg, respectively. Exclusion criteria
were physical or cognitive injuries/impairments that affected
their balance and gait ability, and age <50 or age >80 years.
The project was approved by the Norwegian Regional Ethics
Committee and the Norwegian Centre for Research Data (REK
case number: 2017/2078-1).

2) Experimental Protocol: The experiment was conducted at
the Motion Capture and Visualization Laboratory (“Vislab™) at
NTNU Trondheim in June 2019. A marker-based 3-D motion
capture (3-DMoCap) system was used to measure participants’
movements for use in analysis and classification. Four cameras
(MX400, 90 Hz, Qualisys AB) were used. Thirty-six reflective
markers were placed following the Plugin-Gait (PiG) marker
placement protocol [39], excluding head and fingers.Two digital
video cameras (Hero 3+ Black, 25 Hz, 1080p, GoPro Inc)
captured movements in the sagittal and frontal planes of the
player. Two 3-axial force plates (1000 Hz, 600x400x35 mm,
Kistler Nordic AB) were located under the participants’ feet
to measure the ground reaction forces while playing. A plat-
form matching the force plates’ height was placed laterally
of each force plate. The experimental setup can be seen in
Fig. 1.

3) Game System: The game was built in Unity (v. 5, Unity
Technologies, Denmark). As time-of-flight camera technology
is commonly used in exergaming [5], [40], we used the Kinect
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Fig. 1. Experimental setup.

Fig. 2.

Game interface.

v2 (30 Hz, Microsoft Inc), set up in front of the participants,
to enable gameplay. The participants played three rounds of the
two parts of the game, totaling six trials for each participant.
If the movement tracking from the Kinect was not satisfactory,
for example when the avatar did not follow the participants’
movements, avatar movements were jittery, or if the sensor failed
to identify the player at all, the trial was stopped and started again
until smooth, continuous movement tracking from the Kinect
was achieved.

The two parts of the game were designed to elicit different
movement patterns from the players: the first aimed at having
the player perform a complete, and thus correct, weight shift
by moving their upper body over their weight-bearing foot. The
second part was designed to make the player perform movements
without moving their upper body over the weight-bearing foot,
i.e., incompletely performed weight shifts. The game interface
consisted of arail cart with an avatar in it, representing the player,
as shown in Fig. 2. On each side of the rail were coins which
the player would try to hit with the cart as they moved along the
rail. The cart tilted from side to side, following the medio-lateral
leaning movements of the player. There were never more than
two coins successively, and the coins appeared in random places
for each participant. There were a total of approximately 100
coins in each game part, with approximately 50% of the coins
on each side of the rail. The player was rewarded with points
if they hit a coin with the cart, and the position of their upper
body decided the amount of points rewarded in each of the game
parts. There was a bar above the avatar. In part 1 the bar was grey,
in part 2 the bar was multicolored as seen in Fig. 3. The grey
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Fig. 3. (a) and (b) Two versions of the exergame. (c) and (d) Typical body
postures when playing the two different exergame versions. (a) Part 1: Two-split
grey bar, shown at the end of the track, with the star to the right of the dividing
line, rewarding 3 points. (b) Part 2: Three-split color bar, shown at the end
of the track, with the star in the middle 33%, rewarding 3 points. (c) Typical
body posture when being rewarded 3 points in part 1 of the game. Here, the
player is leaning their upper body over their weight-bearing foot, resulting in
the distance between the virtual marker and the CoP of the weight-bearing foot
being <50 mm, and the GRF Z-component being >74% of body weight. BW =
body weight. GRF = ground reaction force. CoP = center pressure. (d) Typical
body posture when being rewarded 3 points in part 2 of the game. Here, the
player is not leaning their upper body over their weight-bearing foot, resulting
in the distance between the virtual marker and the CoP of the weight-bearing
foot being >50 mm, and the GRF z-component being <74% of body weight.
GRF = ground reaction force. CoP = center of pressure.

bar was divided in the middle: if the star was on the line when a
coin was hit, the player was rewarded 1 point. Three points (max
score) were awarded if the star was as far away from the dividing
line as possible, i.e., at any of the lateral parts of the grey bar as
seen in Fig. 3(a). The multicolored bar was divided into three
equally sized color fields: green in the middle 33%, yellow in
the next 33% on each side, and red at the 33% most lateral fields.
The red field rewarded 1 point, the yellow two points and the
green three points, as seen in Fig. 3(b). Fig. 3(c) shows a typical
posture form playing version 1, and Fig. 3(d) shows a typical
posture from playing version 2 of the game.

4) Preprocessing: Joint center locations of shoulders (SHO),
hips (HIP), knees (KNE) and ankles (ANK), as well as cen-
ter of pressure (CoP), were extracted from the standard PiG
biomechanical model from each of the six game trials for all
participants. Game trials were then segmented into single medio-
lateral movement repetitions using the peak-finding algorithm
peakutils (v 1.3.3 for Python) on the y-axis of the right SHO joint
in the Qualisys coordinate system. One repetition was defined
as a continuous movement starting at the most lateral point of a
medio-lateral movement, ending at the most lateral point on the

[3DMoCap [Labelling [ Feature }
data extraction

PCA features

[ Statistical features ]

LOGO

Fig. 4. Data analysis pipeline. The process, from “Feature extraction,” was
repeated for all joint data combined, and for each joint subset separately. PCA
= Principal component analysis, RF = random forest, SVM = support vector
machine, KNN = k-nearest neighbor, MLP = multilayer perceptron, LOGO =
leave-one-group-out, CV10 = tenfold cross-validation.

opposite side. Python for Windows (v. 3.8.2) was used for all
analyzes. An overview of the data analysis pipeline can be seen
in Fig. 4.

5) Labeling: The repetitions were subsequently assessed for
the weight shift being correctly (i.e., a complete weight shift)
or incorrectly (i.e., an incomplete weight-shift) performed. A
physical therapist experienced in rehabilitation was consulted to
determine the features of a correctly performed weight shift. The
following criteria had to be met for a repetition to be deemed a
correct weight shift. 1) The majority of the persons’ body weight
(over 74%, as 50% on each foot means that the person is standing
with equal amount of weight on their feet) must be shifted to the
weight-bearing foot. 2) The upper body must be moved over
the weight-bearing foot as the weight is shifted. To evaluate
whether condition 2 was met, a virtual marker was calculated
as the 3-D midpoint between the left and right SHO, and the
distance between the y-position of this virtual marker and the
y-position of the CoP was calculated. Mean distance of <50 mm
was required for the repetition to be deemed correctly performed.
Sample videos form all participants were consulted to ensure that
these criteria captured actual incorrectly and correctly performed
movement patterns. All repetitions were assessed according to
these criteria and assigned a target variable for incorrect (0) or
for correct performance (1). This resulted in 2821 repetitions,
where 1803 were labeled 1 (correct) and 1018 O (incorrect).

6) Feature Extraction: After the target labels were assigned,
statistical features were extracted from each repetition using
the TSfresh library [41] (v. 12.0) for Python. See Appendix
1 for an exhaustive list of features. Furthermore, the feature
dimensions were reduced using principal component analysis
(PCA). Principal components that combined explained 95% of
variance in the data were retained for further analysis.

7) Classification Models and Hyperparameter Tuning: Four
models were employed in this study: RF, SVM, kNN, and an
artificial neural network [multilayer perceptron (MLP)]. SciKit-
Learn (version 22.1) for Python was used for analysis. RF is an
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TABLE I
HYPERPARAMETER VALUES FOUND TO ACHIEVE THE BEST ACCURACY FROM
GRIDSEARCHCYV. RF = RANDOM FOREST, SVM = SUPPORT VECTOR
MACHINE, KNN = K-NEAREST NEIGHBOR, MLP = MULTILAYER
PERCEPTRON, LOGO = LEAVE-ONE-GROUP-OUT, CV 10 = TENFOLD
CROSS-VALIDATION

Hyperparameter 1 Hyperparameter 2 Hyperparameter 3

Name = Value Name = Value Name = Value

Min. leaf = 4
Gamma = 0.01

RF Criterion = Entropy Min.samples at split = 10
SVM | C=0.01
KNN | Leaf Size = 15

MLP | #Hidden layers = 50

Metric = Manhattan
Alpha = 0.01

No. neighbors = 35

ensemble classifier that employs a set of decision trees to predict
class labels, where each tree sees arandom subset of features, and
uses the majority class predicted by each tree’s leaf nodes to clas-
sify a sample. Ensemble classifiers have been used successfully
in similar work on movement quality (e.g, [42]) and in adjacent
fields such as action classification [18], [19]. SVM is a linear
model that finds the optimal line (or hyperplane) to separate
classes, using the line/hyperplane that yields the largest support
vectors (i.e., decision boundaries) between classes. SVM is often
used in action recognition, as it is a powerful classifier [18],
[19]. The kNN model evaluates the (k) nearest data points’
class for each feature and classifies the sample based on the
majority of these neighbors’ class. kNN is a fast and simple,
yet powerful classifier that has been used in adjacent work [15],
[43]. MLP is a layered network of nodes that classifies samples
based on activation of nodes in the “hidden” layers between
the input and the output layer, using backpropagation to adjust
weights and biases in the hidden layer nodes for each iteration of
training. MLP requires more training data and processing power
than ML methods, but often outperforms ML methods in action
classification when provided with sufficient training data [18].

The optimal combination of hyperparameter tunings for each
model [44], with regard to classification accuracy, was found
using grid search (threefold CV) from the SciKit-Learn-pckage.
Table I shows the hyperparameter tunings (that are not default for
the models in the current SciKit-Learn version) that achieved the
highest accuracy for each model. These hyperparameter tunings
were used in subsequent analyzes.

8) Cross-Validation and Classification Procedures: The
models were trained and tested using cross-validation (CV) by
LOGO, and tenfold CV (CV10). LOGO entails training the
model on all the data except one participant and using this
participants’ data as the testing set. CV10 creates ten random
subsets of the data from all participants and holds one subset
out for testing in each iteration. To simulate a situation where
only subsets of joints are reliably tracked, each model was also
trained and tested in the same manner by using only subsets of
joint data, i.e., only ankle data, knee data, hip data, or shoulder
data. Thus, all models were trained and tested on 20 different
versions of the data set as seen in the last step of Fig. 4.

9) Evaluation: Model performance was evaluated using the
Fl1-score and the recall. Fl-score is an accuracy measure (the
harmonic mean between precision and recall), which gives
more useful insight into model performance in an imbalanced
dataset than standard accuracy [45]. Recall, or sensitivity, is the

TABLE I
PERCENT F1-SCORE ACHIEVED ON JOINT SUBSETS [SHOULDER (SHO), Hip
(HIP), KNEE (KNE), AND ANKLE (ANK) JOINTS]. MODELS ARE RANDOM
FOREST (RF), SUPPORT VECTOR MACHINE (SVM), K-NEAREST NEIGHBOR
(KNN), AND ARTIFICIAL NEURAL NETWORK (MLP). THE FEATURE
REPRESENTATIONS (FEATS) ARE STATISTICAL (STAT) AND PCA (PRINCIPAL
COMPONENTS). CV = CROSS-VALIDATION: LOGO =
LEAVE-ONE-GROUP-OUT, CV10 = TENFOLD. SD = STANDARD DEVIATION. M
= MEAN. THE HIGHEST AVERAGE RECALL ACHIEVED BETWEEN JOINT
SUBSETS (COLUMNS), AND HIGHEST AVERAGE BETWEEN THE MODELS (ROWS)
ARE HIGHLIGHTED IN BOLD FONT. THE HIGHEST RECALL ACHIEVED WITHIN
JOINT SUBSETS IS HIGHLIGHTED IN GREEN

FEATS CV SHO (SD) HIP (SD) KNE (SD)  ANK (SD) | M(SD)
RF Stat LOGO 797(10.8) 789 (114)  69.9(185)  73.1(10.0) | 754(127)
cvi0 792(105)  77.1(13.0)  759(123) 748 (11.0) | 77.4(L7)
PCA  LOGO 77.3 (9.3) 767 (103) 762 (9.3) 753 (10.8) | 768 (9.9)
CV10 770 (102) 765 (9.9) 77.6 (9.9) 759 (9.2) 77.1 (9.8)
SVM  Stat LOGO 763 (1L1) 680 (17.2)  647(172)  647(172) | 70.0(15.7)
cvio 77.9 10.7) 728 (140)  725(149)  725(148) | 747 (13.6)
PCA  LOGO 760 (10.7) 675 (184)  645(17.0)  61.9(20.4) | 69.2 (16.6)
CV10 7740107 724 (134)  726(145) 691117 | 738(12.6)
KNN  Stat LOGO 79.8(103) 769 (125 759 (9.1) 759 (9.1) 77.7 (10.2)
cvio 79.2 (8.5) 75.9 (9.8) 752(1L0)  752(119) | 77.0 (10.1)
PCA  LOGO 789(10.0) 775116  77.1(8.7) 742 (9.2) 77.3 (9.9)
CVio 78.0 (9.0) 77.0 (9.6) 762 (10.1) 757 (9.5 77.0 9.6)
MLP  Stat LOGO 796 (10.0)  78.1(10.1)  747(127)  77.5(108) | 77.8(10.9)
cvio 79.9 (8.7) 777 8.7) 76.2 (9.7) 76.6 (9.0) 78.2 (9.0)
PCA  LOGO 79.7(105) 779 (9.9) 76.3 (9.3) 77.5(103) | 78.1(10.0)
CV10 79.3 (8.2) 773 (9.2) 77.4 (9.5) 77.2 (8.9) 78.0 (8.9)
M(SD) 78.4 (1.3) 75.5 (3.4) 73.9 (4.0) 734 (4.4)
TABLE III

PERCENT RECALL ACHIEVED ON JOINT SUBSETS [SHOULDER (SHO), Hip
(HIP), KNEE (KNE), AND ANKLE (ANK) JOINTS]. MODELS ARE RANDOM
FOREST (RF), SUPPORT VECTOR MACHINE (SVM), K-NEAREST NEIGHBOR
(KNN) AND ARTIFICIAL NEURAL NETWORK (MLP). THE FEATURE
REPRESENTATIONS (FEATS) ARE STATISTICAL (STAT) AND PCA (PRINCIPAL
COMPONENTS). CV = CROSS-VALIDATION: LOGO =
LEAVE-ONE-GROUP-OUT, CV10 = 10-FOLD. SD = STANDARD DEVIATION. M
= MEAN. THE HIGHEST AVERAGE RECALL ACHIEVED BETWEEN JOINT
SUBSETS (COLUMNS), AND HIGHEST AVERAGE BETWEEN THE MODELS (ROWS)
ARE HIGHLIGHTED IN BOLD FONT. THE HIGHEST RECALL ACHIEVED WITHIN
JOINT SUBSETS IS HIGHLIGHTED IN GREEN

FEATS CV SHO (SD)  HIP (SD) KNE (SD)  ANK (SD) | M (SD)
RF Stat LOGO 875(112)  883(103)  79.1(260) 829 (147) | 844 (156)
cvio 848 (8.9) 822(141)  828(139)  820(123) | 829(123)
PCA  LOGO 89.4 (1.3) 89.0 (8.4) 879 (148)  88.4(104) | 88.7(10.2)
[@%0) 87.7 (1.2) 875 (8.1) 89.2 (7.9) 88.5 (9.7) 882 (8.2)
SVM  Stat LOGO 782(144) 665 (219)  292(647)  67.4(292) | 60.3 (32.5)
cvio 790 (110) 706 (167)  735(181)  735(181) | 74.2(16.0)
PCA  LOGO 778 (140) 660 (22.6)  66.6(289)  615(255) | 68.0(228)
cVio 783(112)  700(159) 736 (180) 664 (127) | 72.1(144)
KNN  Stat LOGO 87.3 (8.6) 839 (109)  845(10.6)  845(106) | 85.1(10.2)
cvio 869 (6.4) 820 (8.6) 843 (15.1) 843 (15.1) | 844(113)
PCA  LOGO 872 (8.6) 86.8 (8.2) 88.1(10.0)  843(103) | 86.6(9.3)
CVio 859 (6.9) 854 (1.8) 865 (124) 881 (8.8) 86.5 (9.0)
MLP  Stat LOGO 92.1 (19) 957 (5.1) 870 (194) 933 (8.6) 92.0 (10.3)
cvio 90.8 (6.0) 94.9 (43) 89.0(10.9) 927 (87) 91.8 (1.5)
PCA  LOGO 945 (5.8) 96.3 (3.8) 909 (11.7) 964 (5.5) 945 (6.7)
[@%1) 94.1 (44) 96.5 (3.0) 93.4 (6.6) 96.4 (3.2) 95.1 (4.3)
M(SD) 863 (5.3) 83.9 (10.1)  80.3(149) 832 (10.4)

true positive rate and describes the ratio of correctly identified
positive samples out of all sampled classified as positive by the
model. This is a useful measure as it says how many of the
correctly performed repetitions were actually labeled as correct,
i.e., how many of the correct repetitions a model identified as a
correct repetition.

IV. RESULTS

Results for each joint subset are presented with Fl-score in
Table Il and recall in Table II1. Results for joint subsets combined
are shown with F1-score in Fig. 5 and recall in Fig. 6.
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Fig.5. Fl-score achieved using different feature representations and CV meth-
ods on all joint subsets combined. RF = random forest, SVM = support vector
machine, kNN = k-nearest neighbor, MLP = multilayer perceptron, LOGO
= leave-one-group-out, CV10 = tenfold cross-validation. PCA = principal
components.
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Fig.6. Recall achieved using different feature representations and CV methods
on all joint subsets combined. RF = random forest, SVM = support vector
machine, kNN = k-nearest neighbor, MLP = multilayer perceptron, LOGO
= leave-one-group-out, CV10 = tenfold cross-validation. PCA = principal
components.

A. FI-Score

The four models reached different levels of F1-score on differ-
ent joint subsets of the data. Table IT shows the F1-scores for each
subset of joints in classifying correct repetitions, as well as the
average performance of each joint subset. All models achieved
similarly good results, with a mean of 75.3% (SD 11.3) for the
Fl-score. RF slightly outperformed other models on hip and
knee joint subsets, while MLP performed best on shoulder and
ankle joint subsets. Overall, the performance variation in using
different feature representations or cross-validation methods
was small. Somewhat surprisingly, the SVM achieved the overall
lowest performance in terms of F1-score. All joint subsets also
had high average F1-scores, with over 70%, but the SHO subset
achieved the highest average with 78.4% (SD 1.3).

Fig. 5 shows the F1-score achieved by using all joint subsets
combined, using different feature representations and cross-
validation methods. These are results from all joint data only
Fl-score on joint subsets can be seen Appendix 2. Results
show good performance from all models, with 78.5% (1.3
SD) F1-score on average. Different feature representations and
cross-validation models are not affecting performance to any
noteworthy degree.

B. Recall

Table III shows the recall achieved by the models on joint
subsets of the data using different feature representations and
CV methods. On average, the models achieved 83.3% (SD 17.6)
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Fig. 7. Confusion Matrices for all models, with ratios of (clockwise from top
left) true positive, false positive, true negative, and false negative predictions.
Darker blue = higher ratio of samples predicted to belong in quadrant. Going
clockwise from top left, the panels are for random forest (RF), support vector
machine (SVM), multilayer perceptron (MLP), and k-nearest neighbor (kNN).

recall (see Table IIT). The MLP outperformed the SVM and kNN
models by 10%-25%, and was around 10% better than the RF
model. Lowest recall was by SVM on the knee joint subset with
statistical features and LOGO CV, with only 29.2%. On average,
the SHO joint subset achieved the highest recall with 86.3%
(SD 8.7) but other joint subsets also achieved high recall with
>80%.

Fig. 6 shows the recall achieved by different feature repre-
sentations and cross-validation methods. These are results from
all joint subsets combined joint subset recall results can be seen
Appendix 2. The MLP slightly outperformed the other models,
with an excellent average of 92.6% (SD 1.1) recall. RF and KNN
achieved comparable results, with an average of 86.5% (SD 0.8)
recall and 86.9% (SD 0.7) recall, respectively. SVM was the
overall lowest performing model in recall of correct repetitions,
with an average of 78.4% (SD 0.3). Feature representation and
CV methods showed only small differences, but PCA with
LOGO was the marginally best configuration in three out of
four models.

C. Classification of Incorrect Repetitions

Even though classification of correctly performed weight-
shift repetitions may be sufficient for many applications, being
able to accurately identify incorrect repetitions is important in
a feedback perspective. An exergame system often needs to be
able to identify e.g. an incomplete weight shift, and provide
feedback to the player on how the movement pattern can be
adjusted to achieve a complete weight shift. We analyzed the
current models’ ability to identify samples labeled as incorrect.
This is not captured in metrics such as Fl-score and recall, as
they attenuate the influence of true negative samples. As seen
in Fig. 7, incorrect samples were not classified with as high
accuracy as correct samples, although the MLP achieved 70%



248

TABLE IV
PERFORMANCE OF EACH MODEL AND CROSS-VALIDATION METHOD IN MEAN
TIME CONSUMPTION FOR TRAINING AND PREDICTION. RF = RANDOM
FOREST, SVM = SUPPORT VECTOR MACHINE, KNN = K-NEAREST
NEIGHBOR, MLP = MULTILAYER PERCEPTRON, LOGO =
LEAVE-ONE-GROUP-OUT, CV 10 = TENFOLD CROSS-VALIDATION

Training time (s, SD) Prediction time (ms, SD)

kNN LOGO 0.8 (0.1) 1738 (476)

CVI10 0.1 (0.1) 153 (15)
SVM  LOGO 9.9 (0.7) 843 (220)

CVI10 0.8 (0.1) 72 (5)
RF LOGO 8.3 (0.3) 15 (4)

CV10 2.8 (0.2) 15 (1)
MLP LOGO 7.0 (1.2) 2 (0.5)

CVI10 3.3 (0.1) 1(0.5)

accuracy. Overall, models were able to classify about half of the
incomplete weight shifts correctly.

V. DISCUSSION AND LIMITATIONS

In this article, we investigated the level of recall and F1-score
the employed ML/DL models achieved in classification of cor-
rectly performed weight-shifting exercise repetitions, naturally
elicited while playing a balancing exergame.

A. Correct Weight Shifts

Classification of correctly performed whole-body movement
patterns is found to be feasible for all models used in this
study, arriving at results ranging between 70%—80% F1-score
(Table IT) and 75%-95% recall (Table III). The best performing
models in our study achieve over 90% recall and around 80%
F1-score, which demonstrates that these models could be used
in real-world applications for medio-lateral balance exercises.
Although there are few directly comparable studies, our results
show that using MLP or RF for classification of correct repe-
titions is in line with the state-of-the-art activity classification
systems as reported in [ 18], [19], and [46]. Even though some of
the models did not perform at a satisfactory level, we showed that
the best performing models are promising in settings where it
is useful to be able to receive feedback on movement pattern
quality without having a clinician present, such as in home
exercise.

The recall achieved by all models show that 90%—-95% (see
Fig. 6) of the correctly performed repetitions were, in fact,
identified as such, which in an exergame situation would im-
ply rewarding the player for close to all correctly performed
repetitions. In other words, only a rather low number of correct
repetitions were missed by the models. This is an indication that
the models accurately captured and represented the movement
features of a correct weight shift, without using manually de-
signed rules or thresholds. This work echoes the results in [20]
and [46].

The different classification models performed with slightly
different results, as seen in Figs. 5 and 6. When it comes
to computational performance, the models performing best on
average, RF and MLP, were also the most efficient in training
and prediction in terms of time usage (see Table IV). kNN was
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very fast in training, but slowest in prediction with >1.5 s used
for each LOGO iteration, which is likely due to kNN having
to build the model for each datapoint. As expected, SVM was
the slowest in terms of training time, as well as being slow in
prediction time. The distance-based models (kNN and SVM)
often perform worse in terms of classification accuracy when
the number of features is large compared to the number of
samples [47], as a complex feature space makes it difficult
to define decision boundaries that separate classes. The high
MLP performance is likely due to the manner MLP models
adjust the weights and biases in an iterative manner for a given
classification problem by using gradient descent [48]. As such,
MLP models also intuitively assess importance of different
features during training. This is similar to what RF models
do: features with high importance for the given classification
task are used in early splits. Furthermore, features are used in a
random fashion in the different decision trees, which contributes
to high performance despite a complex feature space. This is also
possibly the situation with the current dataset. The overall high
recall can be attributed to the high quality of the data; low levels
of noise have been shown to improve model performance [18],
[49]. These results suggest that RF is likely the model that
should be considered in similar applications for the following
reasons: 1) RF achieves high recall; 2) RF is considered a
“white box”, e.g., it is possible to extract the decision making
process in situations where transparency in the decision process
is required; 3) the computational cost of prediction in RF is low,
especially compared to MLP. These three features are likely
of importance for a ML/DL system to be usable in e.g., a
clinical or rehabilitation exercise setting. However, as the No
Free Lunch theorem suggest, and as is shown in these results,
there is no one model that is universally “best” for all problems
(e.g., joint subsets). The model that performs best on average
might not always be the best performing model in all problem
subsets [50]. This indicates that it is necessary to evaluate the
specific problem at hand, and how different models perform with
the given data types, available computational power and noise
level.

Results from the two cross-validation experiments are promis-
ing with respect to classification of previously unseen movement
patterns. The models’ performance did not worsen when classi-
fying movement patterns from a participant that the models were
not trained on. This is evident as the LOGO method performs
similarly to the CV 10 method, which holds out random subsets
of all participants’ data. Such similarity might be explained
in two ways. 1) Participants performed the correct movement
patterns similarly. 2) The models were indeed not overfitting,
but truly and accurately captured and represented the features for
correctly performed movement patterns to a good enough degree
to identify unseen data with high accuracy. The practical impli-
cation of such models is that people who have not been playing a
game using these assessment models before, will receive rewards
when performing weight-shifting movements correctly. This is
in line with the findings in [18]. Authors of [35] similarly found
that using different neural network configurations with LOGO
cross-validation produced good results. This further supports our
findings that a person can use such a game system even though
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the employed model for assessing movement pattern quality has
not seen his/her movement patterns before.

When looking at results from separate joint subsets, shoulder
movement patterns produced the best results in both Fl-score
and recall. This suggests that the shoulder movement pattern is
the most relevant in assessment of weight shifting, and should be
included to ensure high classification accuracy. Overall, using
joint subsets, our models also achieved a level of performance
(about 75% F1-score and 83% recall) comparable to other clas-
sification models using joint subsets [18]. One might argue that
using any of these joint subsets could provide accurate rewards in
weight-shifting exergames. Whole-body movement patterns still
achieve slightly better results than joint subsets, both in terms
of Fl-score and recall, indicating that whole body movement
patterns might still be a preferred setup if the primary goal is
to achieve the best quality assessment possible. However, if
the available tracking method only allows for accurate track-
ing of subsets of joints, using subsets is nonetheless a worthy
alternative (even a preferred one if and when any cost benefit
consideration renders the whole body tracking setup unsuitable)
as it still achieves a very good classification accuracy of correct
movement patterns using those subsets.

Regarding feature representation, there is no clear indica-
tion of any of the methods producing superior classification
results. This suggests that statistical features are representing
the exercise repetitions well, and that the principal components
explaining 95% of the variance in the feature data sufficiently
represent the latent information in the statistical features. PCA
might be preferable over statistical features in future use, as
they are lower dimensional and thus more computationally
efficient.

B. Incorrect Weight Shifts

Being able to identify and provide feedback on erroneous
movement patterns is useful in serious exergaming situations like
rehabilitation, as exergames could be used to guide rehabilitation
exercises without the presence of a clinician. The player would
then need feedback on how to improve their movement pattern
(such as having a larger range of motion, or moving faster) in
order to perform the exercise in a efficient manner. In earlier
work, where samples were labeled by error class, error types
were classified with 85%-95% accuracy [42], [51]. The results
from classification of incorrect repetitions in the current study
support this notion that classification models needs to be trained
on erroneous movement patterns that are labeled by error type,
in order to construct representations of the error types in the
features. Hence, actively classifying incorrect samples should
be the goal of classification systems aiming for use in feed-
back during exergaming in rehabilitation settings. The current
dataset does not contain enough samples of different error types,
and is therefore not suited for such analyzes. Furthermore, the
movement patterns in the erroneous repetitions probably vary
significantly between participants, making it challenging to find
robust representations of incorrect repetitions in the features.
This also indicates that the features in the current study might
not capture the information required for the models to represent

an incorrect repetition, as some incorrect repetitions might have
very similar movement patterns to correct repetitions. Still, the
MLP is able to classify incorrect samples with 70% accuracy,
as seen in Fig. 7, indicating that DL models might be usable for
such tasks in future work.

C. Limitations

There are some limitations to this study that are necessary to
keep in mind. Because this study included 12 participants only
moving in a single plane, it is important to keep limitations of
applicability of our results in mind. The movement performed
is restricted to a medio-lateral weight shifting exercise, which
is (ideally) confined to movement in the frontal plane of the
body, so movements in other planes or in combinations of planes
might be more difficult to classify correctly. Even though our
results are promising, further research should be conducted to
investigate the performance of these ML/DL models in more
complex and challenging settings. Furthermore, data from other
motion capture tools that are commonly available should be
evaluated as this might impact classification performance.

VI. CONCLUSION

In conclusion, this study shows that RF and MLP are able
to identify correctly performed weight-shifting repetitions with
high recall and F1-score. In the development of exergame sys-
tems we should consider using the best models presented here for
evaluating movement patterns, especially when aiming to reward
players for correctly performing exercise repetitions in weight-
shifting exercises. We showed that training ML/DL models using
labeled training data is a feasible option for identifying correctly
performed movement patterns, which can subsequently be used
to reward players in an accurate manner during exergaming. This
is an important improvement of many existing exergame systems
that are based on comparisons to templates, or assessments
using coarse rules and thresholds. Moreover, implementing a
self-learning approach based on our work can allow a system
to learn new movements without requiring a priori explicit
identification of their templates. Trusting that the game system
is actually rewarding the correct movements is a prerequisite for
using exergames in serious settings like physical rehabilitation
or independent exercise for older adults. If the game system is
trusted, the threshold for using exergame systems might be lower
for both users and clinicians, making it possible to benefit from
higher motivation and adherence in the rehabilitation process.
In future work, the implementation of the present classifica-
tion models into game systems would be an interesting next
step, possibly testing differences in rewards and/or feedback
compared to rule-based or template-based systems. Exploring
features is also a natural next step. The results of this study also
warrant further investigation into how well these models perform
in patient populations with more variable movement patterns,
and in classification of error types. Furthermore, other move-
ment patterns are also interesting to examine for classification
accuracy, especially more complex movements that combine
movements in various anatomical planes.
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APPENDIX A
FEATURES

TABLE V

FEATURES CALCULATED FROM TSFRESH

Variable

Parameters/Units

Variance

Standard deviation
Mean

Maximum

Minimum

Sum of values

Count below mean
Count above mean
Sum reoccurring values

Longest strike above
mean

Has duplicate values
Kurtosis

Skewness

Complexity invariance
distance

Absolute sum of changes
Change quantiles

Max Langevin Fixed
Point

Fourier Transform Coef-
ficient

Fourier Transform Ag-
gregated

Mean absolute change

True, False

True, False

Var,mean

Abs,angle,real,imag

Skew,centroid, kur-
tosis,variance

Quantile Q 0.1-0.9
Spektral Welch Density Coeff 2,58
Large sd R 0.01,0.05,0.25
Variance larger than sd True,False
Binned entropy Max bins 10
Number crossing m -1,0,1

Range count Max 1, min-1
Value count 0

Ratio beyond r sigma 05,15,5
Linear trend P-

Aggregate linear trend
Quantile

Has duplicate minimum
Has duplicate maximum
First location of mini-
mum

Last location maximum
Last location minimum
Has duplicate maximum
Has duplicate minimum
First location minimum
Quantile
Autocorrelation

Agg autocorrelation
Partial autocorrelation
Absolute energy

Continous wavelet trans-
form

Autoregressive AR(k)
Count above mean
Augmenter dickey fuller
Energy ratio by chunks
Friedrich Coefficients

% of reoccurring values

Value to time series
length

Number of peaks

Mean second derivative
central

Index mass quantile

value,intercept,slope
Max, min, mean

0.1-0.9

Lag 1-9
Mean,median,var
Lag 1-9

Width, peaks
234

p-value, teststat

Ratio
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APPENDIX B
JOINT SUBSET CLASSIFICATION RESULTS
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Fig. 8. Fl-score achieved using different feature representations with CV10
on joint subsets RA = random forest, SVM = support vector machine, kNN =
k-nearest neighbor, MLP = multilayer perceptron.
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Fig. 9. Fl-score achieved using different feature representations with LOGO
on joint subsets RA = random forest, SVM = support vector machine, kNN =
k-nearest neighbor, MLP = multilayer perceptron.
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Fig. 10. Recall achieved using different feature representations with LOGO
on joint subsets RA = random forest, SVM = support vector machine, kNN =
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joint subsets RA = random forest, SVM = support vector machine, kKNN =
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