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a b s t r a c t 

A compact formulation has been developed to efficiently optimize early-stage field development plan- 

ning of multi-reservoir fields. The proposed formulation is a mixed-integer linear programming model 

which employs piecewise-linear functions to approximate the model non-linearities. The project eco- 

nomic value is maximized by optimizing the production allocation and the drilling schedule. The field 

production profiles are estimated with production potential curves calculated from simulated data of an 

integrated reservoir and surface facilities model. The novelties of this work are: a scalable model for 

the well combination selection, a logarithmic piecewise-linear model to approximate the well production 

potential curves, and the modeling and solution of realistic field development optimization problems. 

Through simulation analysis of a real field case study, the logarithmic and standard SOS2 formulations 

are compared in terms of computational performance and accuracy. The results show that the logarith- 

mic formulation has significantly reduced the computational time and achieved improved accuracy over 

SOS2. 

© 2021 The Authors. Published by Elsevier Ltd. 
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. Introduction 

The planning and development of oil and gas fields is a task 

f high complexity as it involves multiple disciplines and a large 

umber of decisions. The field performance and project economics 

re highly dependent on the decisions made by the asset man- 

ger and the development planning team. In order to come up 

ith a good development plan, it is important to consider a large 

ange of possible scenarios involving the most relevant parame- 

ers during the planning phase. However, because there are often 

ime constraints in the planning phase, the assessment of all pos- 

ible scenarios is somewhat infeasible. For example, in Brazil, Ex- 

loration and Production (E&P) concession contracts stipulate that 

he decisions regarding the development of a field must be taken 

ithin the first 180 days after a commercial discovery is realized 

 Rodrigues et al., 2016 ). Therefore, in field planning, there is often 

he need to perform engineering calculations and sensitivity analy- 
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is to determine the most attractive design and quantify the effect 

f uncertain parameters within a limited time span. 

Mathematical modeling was introduced to solve field devel- 

pment problems in the 1950s. To the best of our knowledge, 

ee and Aronofsky (1958) were the first to publish a paper em- 

loying linear programming (LP) to solve the well drilling schedul- 

ng problem. After that, many works have been published in the 

iterature on the use of mathematical programming methodolo- 

ies to solve field development problems. A review of this liter- 

ture can be found in ( Durrer and Slater, 1977 ; Sullivan, 1988 ;

avallali et al., 2016 ; Khor et al., 2017 ). The development of mathe-

atical modeling applications in field development problems fol- 

ows the advancing of computing speed and algorithmic tech- 

iques. Over all, the application of mathematical programming 

rogressed from linear programming (1960 - 1980s) ( Aronofsky 

nd Williams, 1962; Attra et al., 1961; Lee and Aronofsky, 1958 ), 

o nonlinear programming (1960 - 1980s) ( Rowan et al., 1967; Mc- 

arland et al., 1984 ), to mixed-integer linear programming (1970 

 2010s) ( Rosenwald et al., 1974; Sullivan, 1988; Haugland et al., 

988; Nygreen et al., 1998; Iyer et al., 1998; Carvalho and Pinto, 

006 ), and the latest mixed-integer nonlinear programming (20 0 0s 

 now) ( Goel et al., 2006; Goel and Grossmann, 2004; Humphries 

nd Haynes, 2015; Isebor et al., 2013; Lin and Floudas, 2003; van 

en Heever et al., 2001; Van Den Heever and Grossmann, 20 0 0 ).

osenwald et al. (1974) present a mathematical modeling proce- 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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ure using mixed-integer programming for determining the op- 

imum location of wells assuming a set of pre-designed possi- 

le sites for new wells. In the paper surveys conducted in 1977 

 Durrer and Slater, 1977 ), the problem of non-linearities of reser- 

oir behavior and production network was described as difficult to 

andle. McFarland et al. (1984) used nonlinear programming tech- 

iques to solve field development planning and management op- 

imization problems by selecting wells number, production rates, 

bandonment time and platform size. In their demonstrated cases, 

he well productivity is defined as a function of nonlinear pres- 

ure drop. In the work from Haugland et al. (1988) , where they 

ested and presented the computational performance of field de- 

elopment optimization using mixed-integer programming, they 

oncluded that the problem is hard to solve and the size of prob- 

ems is limited by the computational capacity. Even today, many 

ecently published papers report that mixed-integer nonlinear pro- 

ramming remains challenging due to its high computational re- 

uirements and unsatisfactory solution quality. The use of mathe- 

atical programming under decision-dependent uncertainty is an- 

ther popular subject in recent years ( Goel and Grossmann, 2004; 

rossmann et al., 2016; Gupta and Grossmann, 2014a,b, 2017; 

arhan et al., 2009 ), but these problems are out of the scope of

he present study. 

In most studies, after the development of a model of the field 

alue chain, some design parameters are optimized to improve 

ome key performance indicators. The resulting problems are typ- 

cally of large scale, non-linear, combinatorial, and combine black- 

ox and analytical models. When formulating the optimization 

roblem, there two main directions typically followed: minimiza- 

ion of the investment cost ( Rodrigues et al., 2016; Grimmett et al., 

987; Devine and Lesso, 1972; Hansen et al., 1992; Garcia-Diaz 

t al., 1996 ), and maximization of the Net Present Value (NPV) 

 Frair and Devine, 1975; Huppler, 1974; Iyer et al., 1998; McFar- 

and et al., 1984; Nygreen et al., 1998; Tavallali et al., 2013 ). In

eneral, the methods targeting investment cost minimization deal 

ith scheduling (e.g., drilling scheduling) and with how to place 

he platforms, wells, manifolds, pipelines and other relevant pro- 

uction facilities. Klose and Drexl (2005) reviewed and summa- 

ized the location and distribution problem in 2005, their results 

ere extensively refereed and cited afterward. The methods that 

arget the maximization of the NPV are typically focused on in- 

reasing the revenue and on cash flow analysis, mainly by improv- 

ng the production planning and wells allocation. 

In both investment cost minimization and NPV maximization 

roblems, there are different ways to represent the decision vari- 

bles and model their inter-relations. Different formulations to the 

ame problem might be developed depending on the selection of 

he decision variables of the problem and of its main features. 

or instance, if it is desired to model the relation between the 

umber of wells and the drilling sequence in the field perfor- 

ance, the influence of such decisions on the theoretical maxi- 

um production achievable must be included in the model, e.g., 

t is possible to produce higher rates if more wells are drilled. 

yer et al. (1998) proposed a list of the main decision variables in- 

olved in offshore field development problems: 

(1) Number and location of production platforms, facilities and 

their capacities; 

(2) Number and location of wells; 

(3) Facilities (mainly platform and well) installation scheduling; 

(4) Drilling rig location and scheduling; 

(5) Production rate allocation for each time period. 

In our work we are focusing on three variables from the list: 

he production rate allocation, the number of wells and the drilling 

cheduling. The production profiles over time are used to compute 

he revenue generation via cash flow analysis, and to compute the 
2 
equired capacity of processing facilities. The number of wells and 

he drilling scheduling define the maximum production rates that 

an be produced from the reservoir at each time step and this af- 

ects significantly the investment costs. According to statistics from 

he North Sea, the cost of well drilling accounts for about 40 - 50% 

f the total investment expenditure in offshore subsea field devel- 

pment projects (information compiled for the Norwegian Conti- 

ental Shelf as of 2019) ( Pavlov et al, 2020; NPD, 2020 ). As men-

ioned, the production allocation and the drilling schedule must 

e decided at an early stage of the field planning with limited and 

ncertain information. In subsequent stages of field development, 

hese decisions are often frozen despite the availability of new in- 

ormation that could lead to improvements on the base design. 

Production rate allocation is a process of allocating and fore- 

asting recoverable reserves into a number of time periods or 

roduction horizons within the field’s lifetime. This is typically 

erformed with, e.g., three-dimensional reservoir models, de- 

line curves (or type curves), material balance models and in- 

egrated coupled models of reservoir and surface network. In- 

egrated coupled models of reservoir and surface network are 

ften considered the most realistic because they capture ade- 

uately fluid energy losses from well bottom-hole to process- 

ng facilities. Rahmawati et al. (2012) evaluated optimal produc- 

ion strategies for an integrated field asset that coupled three 

eservoirs, a surface facility model and an economic model. 

epguler et al. (1997) present a study that couples a three- 

imensional reservoir simulator with a general-purpose network 

imulator. Their study concludes that an integrated model gives 

 much more complete description of field behavior. However, it 

an be time-consuming and challenging to set up and run in- 

egrated models ( Coats et al., 2003 ; Hepguler et al., 1997; Hoff- 

ann et al., 2019 ). Some of the challenges are due to the com- 

lexity and non-linearity of the fundamental equations used to 

escribe flow in reservoir and in surface network. Examples of 

ptimization using a coupled model of reservoir-network are the 

orks by Rahmawati et al. (2012) , Hoffmann et al. (2019) and 

ilva et al. (2019) . Hoffmann et al. (2019) proposed a solution that 

ntegrated the reservoir and network models built in commercial 

oftware. Silva et al. (2019) proposed the model integration based 

n an open-source fully implicit reservoir simulator such that the 

radients are made available to the optimization algorithm through 

utomatic differentiation. The well and network models are de- 

cribed with mechanistic equations based on physical principles. 

Despite being more accurate, when it comes to optimization, 

he computational time required for achieving a solution using 

on-linear coupled reservoir-network models is usually prohibitive. 

augland et al. (1988) compared the computational performance - 

PU time - in terms of numbers of integer and continuous vari- 

bles, the computation is extremely time-consuming even with 

nly 23 integer variables and 60 continuous variables, demonstrat- 

ng that problems including integer decision variables are hard 

o solve. Furthermore, models are often created using commercial 

oftware that are black-box, which significantly limits the avail- 

bility and effectiveness of optimization tools. Therefore, many re- 

earch studies have been focusing on the development of meth- 

ds that utilize reduced computational resources. For instance, 

ullivan (1988) discussed and illustrated a method to convert im- 

licit production behavior to explicit models to solve much larger 

roblems effectively. Goel et al. (2006) present a dual Lagrangian- 

ased branch-and-bound algorithm to achieve a significant reduc- 

ion in the model size. Gupta and Grossmann (2012) compared dif- 

erent solvers used in the optimization, and pointed out that refor- 

ulating MINLP into an MILP can solve the problem in an efficient 

ay. 

An alternative to full-fledged models is the use of low-order 

nd reduced-complexity models, also known as proxy models. Be- 
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ause of its computational advantages, proxy models are often 

sed to perform production scheduling with varying degrees of 

omplexity and accuracy. A simple approach, for example, is as- 

igning a production profile to each well. With such proxies, it is 

ossible to model the drilling schedule, where wells are drilled at 

ifferent points in time, but the well inter-dependency with vary- 

ng target rates is not captured in the field performance. An exam- 

le of this approach is the work of Wang et al. (2019) , where they

pply linear superposition of base production curves for each pro- 

ucer. Such methods are often used in facility placement and rout- 

ng optimization problems since the main focus is on minimizing 

he investment cost, see Rodrigues et al. (2016) . 

Another approach to model production scheduling is a hy- 

rid method where proxy models are used only for specific parts 

f the production system. For example, in the work by Iyer 

yer et al. (1998) and Van Den Heever and Grossmann (20 0 0) ,

eservoir pressure, producing gas-oil ratio and water cut are rep- 

esented as a non-linear function of the cumulative production, 

hich is extracted from the output of a reservoir simulation. 

ell deliverability, pressure drop in wellbore and flowlines were 

olved using mechanistic equations based on physical principles. 

yer et al. (1998) proposed a sequential decomposition strategy us- 

ng aggregation and disaggregation technique for the planning and 

cheduling of investment and operation in offshore oil field facil- 

ties. Carvalho and Pinto (2006) used the algorithm of Iyer et al. 

n an offshore oilfield infrastructure planning problem but modify- 

ng the branching priorities and solver parameters to decrease the 

omputation cost. Lin and Floudas (2003) used a similar method to 

haracterize the non-linear reservoir performance of gas fields and 

ncluded it into the well platform planning problem. 

A field-level proxy method that allows to represent the well 

nter-dependency and variations in the wells and field target 

ates are the production potential curves. The production potential 

urves can be seen as an upper bound to the oil or gas rates, which

re feasible to be produced by the production system at a spe- 

ific depletion state. At any given time, one can decide to produce 

t the potential or at any value below it. Goel et al. (2006) and

oel and Grossmann (2004) assume a linear relationship between 

he field’s deliverability and the recovered amount of hydrocar- 

ons. By changing the end points of the curve they represented 

he uncertainties in reservoir size and field productivity. 

González et al. (2019) and Angga (2019) performed mixed 

nteger-piecewise linear optimization of drilling and production 

cheduling in early-phase field planning using a collection of pro- 

uction potential curves. The curves were generated with a cou- 

led reservoir-network model and depended on the number of 

ells, reservoir size, network layout, artificial lift mechanism and 

eservoir recovery method. One of the drawbacks of their approach 

s that the process to generate production potential curves might 

e time-consuming when there are many variables to consider. 

Stanko (2021) further developed this method and introduced 

he use of dimensionless production potential curves by dividing 

umulative production values by reservoir size and production po- 

ential by their upper bound. Stanko showed that, in many cases, 

he dimensionless production potential curve is not affected sig- 

ificantly by network layout, heterogeneity in the well and gath- 

ring network, well count, reservoir size, separator pressure and 

rtificial lift method. Therefore, in such cases, production potential 

urves can be generated by scaling dimensionless production po- 

ential curves with the maximum production potential and reser- 

oir size of the case. Alkindira (2020) used this scaling technique 

n an early-phase field development optimization problem while 

onsidering uncertainties in-place volumes and scheduling of wells 

ith distinct performance. 

Special Ordered Set 2 (SOS2) is used to piecewise-linearize 

roduction potential curves yielding Mixed-Integer Linear Pro- 
3 
ramming formulations ( Angga, 2019; Alkindira, 2020; González 

t al., 2019 ). This approach of using Special Ordered Sets on 

iecewise linearization has been used extensively in the past by 

.g., Sullivan (1988) ; Hoffmann et al. (2019) ; Gupta and Gross- 

ann (2012) ; Gunnerud et al. (2012) ; Gunnerud and Foss (2010) ; 

pelle and Gerogiorgis (2020) ; Rosa et al. (2018) , often to approxi- 

ate the well and pipe flow behavior for a hydrocarbon produc- 

ion system. For instance, Sullivan (1988) used Special Ordered 

ets (SOS) to identify reservoir production alternatives when for- 

ulating the optimization problem as an MIP model. Epelle and 

erogiorgis (2020) used SOS2 to piecewise-linearize the pressure- 

ate responses in a production system encompassing the wells, 

outing in the gathering network and pipelines. In this paper, 

hey did an extensive computational analysis to compare MILP 

nd MINLP formulations through 3 case studies. All these studies 

how improvements in computational efficiency after using SOS2 

o convert the Mixed-Integer Non-Linear Programming (MINLP) 

roblems into Mixed-Integer Linear Programming (MILP) problems. 

owever, other studies indicated that in more complex cases the 

erformance of SOS2 might not be satisfactory. Silva and Cam- 

onogara (2014) compared different algorithms used to piecewise- 

inearize a gas lift optimization problem. In their study, it is shown 

hat even though the formulation using SOS2 variables can find 

he global optimal, it struggles when applied to complex problems 

nvolving fine multidimensional nonlinear approximations. This is 

onsistent with the observations provided by Brito et al. (2020) in 

 hydro unit commitment problem, where they concluded that 

OS2 is not as efficient as the Logarithmic Convex Combination 

Log) model ( Vielma et al., 2010 ). 

.1. Paper objective 

In this paper, we formulate the early-phase offshore oil field de- 

elopment problem with a mathematical programming model fo- 

using on production allocation and well drilling scheduling. We 

rst list all relevant well combinations and compute their max- 

mum production potential using an integrated reservoir-facility 

odel. In our mathematical model, we propose a novel formula- 

ion for the selection of the well combination that is scalable to 

elds with a large number of wells because only one binary vari- 

ble per well is required. We propose the use of Log, a compact 

iecewise-linear model, to approximate the non-linear functions 

epresenting the production potential, the field water and gas pro- 

uction. The efficiency and accuracy of the resulting MILP formu- 

ation with Log are assessed in a case study of a real hydrocar- 

on field, where the results obtained with the proposed formula- 

ion are compared against standard SOS2-based models. The dis- 

inct features of our work are as follow: 

(1) We propose a formulation for the well combination selection 

and activation that is easy to expand to fields with a large 

number of wells as it only requires one binary variable per 

well. 

(2) Although the Log model has been used in the past in 

production optimization problems to approximate pressure 

drop and well production curves Silva and Camponog- 

ara (2014) , to the best of our knowledge, despite its promis- 

ing computational efficiency, our work is the first to employ 

a Logarithmic-based piecewise-linear model to represent the 

nonlinear functions of field development optimization prob- 

lems. In this work, detailed piecewise-linear formulations 

of the standard SOS2 and the Log model are presented for 

a field development optimization problem of considerable 

complexity. 

(3) After a comprehensive comparison between the standard 

SOS2 model and the proposed Logarithmic model, We 
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demonstrate using a real-world case study that the opti- 

mization with Log is considerably more efficient, mainly be- 

cause of its compactness and the strength of the result- 

ing relaxations, as it was also described by Vielma and 

Nemhauser (2011) . Furthermore, the proposed approxima- 

tions with Log have improved accuracy compared to stan- 

dard SOS2 techniques because of the higher resolution ap- 

proximations yielded through the use of simplices (instead 

of hypercubes) in the domain partitioning. 

(4) We demonstrate the effectiveness of the new model for field 

development optimization problems, which combines a scal- 

able formulation for well combination selection and a Log- 

arithmic model for the piecewise-linear approximations, by 

applying it on a real-world case study of an early-phase off- 

shore field development planning problem. The case investi- 

gated in the paper is more realistic than others found in the 

literature, which can also be regarded as a contribution in 

terms of modeling and application in the field development 

research area. 

.2. Paper structure 

This paper is organized as follows. Section 2 and 

ection 3 present the problem description and a mathemat- 

cal model, respectively. Then, in Section 4 , an approximate 

ixed-integer linear programming model is proposed using piece- 

ise linear (PWL) models. In Section 5 , we demonstrate the 

dvantages of our approach with a set of illustrative examples and 

 real-world case study. The conclusions are presented in the last 

ection of the paper. 

. Field development optimization 

In offshore field development projects, it is often common to 

ommingle the production of multiple neighboring reservoirs into 

he same platform and facilities. These multi-reservoir fields are 

ecome more and more common not only because of technological 

dvances but also for economic reasons, i.e., in some cases is not 

rofitable to develop a small size reservoir independently. Multi- 

eservoir fields can also be developed when the new discovery is 

ade in nearby regions of mature fields, which often have an ex- 

ra capacity of processing and transportation. In either of the cases, 

he oil company chooses the most financially beneficial develop- 

ent concept that can including all discovered reservoirs in their 

sset region. 

.1. Problem statement 

The case study for this paper is a field with two reservoir units, 

ubsea wells and gathering network producing to a production 

latform as illustrated in Fig. 1 . The production from the wells in 

ach reservoir unit goes through their wellhead to a subsea man- 

fold, where it is commingled into a pipeline network. Reservoir 1 

as a total of 6 wells and Reservoir 2 has a total of 3 wells. 

The variables to determine using mathematical maximization 

f project value are production rate allocation per year, the total 

umber of wells required in each reservoir and drilling scheduling. 

ore wells and higher production increase the revenue stream due 

o hydrocarbon sales, but they also increase the operational and 

apital expenditures, e.g., topside facilities need to be bigger and 

ore wells cost more. 

For a given reservoir size, the maximum producible reserves (or 

he fraction of the hydrocarbon initial in place) are fixed depend- 

ng both on the recovering strategy and production mechanism. In 

his paper, we assume the reservoir production is driven by natu- 

al depletion, which means that no secondary recovery mechanism 
4 
uch as water injection or gas injection is employed. We also as- 

ume that the location of the production platform, the well-heads, 

he manifolds are known and fixed a priori and have been deter- 

ined by layout optimization methodologies and seabed geologi- 

al survey studies. Additionally, we assume that the initial oil in 

lace of both reservoirs is deterministic and known. Furthermore, 

he following extra assumptions and considerations are made: 

(1) There is no underground flow communication between the 

reservoirs. 

(2) The production from reservoir 1 is hydraulically decoupled 

from the production from reservoir 2. 

(3) The field’s main product is oil, but it also produces some as- 

sociated gas and water. The producing gas-oil ratio and wa- 

ter cut are a function of cumulative oil production. 

(4) The production performance is unique for each well and for 

the overall field for different well combinations. 

(5) Production potential curves are used to define the upper 

bound of production profiles. 

The usage of production potential curves to constrain the 

ptimal production rates is widely adopted, as seen in previ- 

us works from Gupta and Grossmann (2012, 2017) ; Lin and 

loudas (2003) ; Goel et al. (2006) ; Goel and Grossmann (2004) ; 

arhan et al. (2009) ; González et al. (2019) ; Stanko (2021) . Basi-

ally, it is a numerical representation based on the material bal- 

nce of the production performance of a production system. The 

roduction system can comprise of reservoir and wells or an in- 

egrated system including reservoir, wells and gathering network 

o the processing facilities. It is derived from the rate-pressure- 

olume relation to a rate vs. cumulative production or recovery 

actor. Curve’s shape in linear or nonlinear, convex or non-convex 

ndicates the degree of complexity and understanding of the sys- 

em. 

In this paper, production potential curves (field production 

otential versus oil cumulative production) were extracted for 

ach reservoir and subsea system from simulations of coupled 

eservoir-network models. The simulations consider all wells in 

ach reservoir are active and produce as much as possible. To de- 

ermine the production potential when only a particular combi- 

ation of wells is active, we use a variation of the method de- 

cribed by Stanko (2021) : 1) perform steady-state well and net- 

ork model simulations of the particular well combination w j at 

nitial time and record rate q r pot , max (w j ) of reservoir r; 2) scale 

he production potential values of the curve by the factor f n = 

 

r 
pot , max (w j ) /q r, all 

pot , max , where q r, all 
pot , max is the production potential of 

he curve considering all wells from reservoir r are active at ini- 

ial conditions. This procedure assumes that the curve of current 

imensionless production potential of a given reservoir and sub- 

ea system is not affected significantly by well combination. Please 

ote that our model does not track how much is produced by each 

ell, it only considers what a set of wells produces. Therefore, in 

ur formulation, it is usually not possible to apply rate constraints 

n a well level, only on a field level (unless there is only one 

ell producing). Nevertheless, different field production potentials 

re considered depending on which wells are drilled and produced 

rom (well combination) over the field life time. 

Fig. 2 shows the field production potential of reservoir 1 with 3 

roducers and for 3 distinct well combinations. As it can be seen, 

he field production potential is scaled up or down depending on 

he well combination. The combination of wells w 3 , w 4 , w 5 gives

igher production than w 1 , w 4 , w 5 and w 1 , w 2 , w 3 . However, to-

ards the right of the curve, all wells combinations converge to 

imilar values of oil cumulative production. Using wells w 3 , w 4 , w 5

llows to produce higher rates at early times, but the processing 

apacity of the production platform must also be increased, which 

osts more and may reduce the value of the project. 
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Fig. 1. Field layout. 

Fig. 2. Curves of production potential versus cumulative production of a reservoir 

using 3 distinct well combinations. 
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The produced gas and water rates of each reservoir are fore- 

asted from curves of cumulative gas production and cumulative 

ater production versus cumulative oil production. This approach 

ssumes that GOR and WC are functions of cumulative oil produc- 

ion only and are not affected by well combination. However, the 

rithmetic operations between oil rate, GOR and WC to obtain gas 

nd water rates are non-linear, and must then be linearized to be 

ompatible with a MILP formulation. Angga (2019) compared two 

ethods to compute water and gas rates: 1) a bi-linearization of 

he arithmetic operations and 2) computing oil and gas rates from 

urves of cumulative gas production and cumulative water produc- 

ion versus cumulative oil production. He showed that the latter 

pproach is significantly more computationally efficient. A similar 

bservation is provided by Gupta and Grossmann (2012) . The pro- 

uced gas and water rates also impact the capacity, design and ul- 

imately the cost of topside facilities. 

In addition to the well combination, the drilling sequence also 

mpacts the field production potential. Fig. 3 illustrates the pro- 

uction potential curve of Reservoir 1 where the well combination 
5 
s varied at specific cumulative oil production values, i.e., specific 

ells are drilled and start production at each point. At initial time, 

ells w 1 , w 2 and w 3 are active. The production potential curve

ill change when one chooses different wells to be drilled in each 

ecision node. If, for example, one wishes to produce the field at 

n oil high plateau rate, scenario 3 gives the longest plateau dura- 

ion from all scenarios. If, alternatively, one wishes to produce the 

eld at a long oil plateau rate, scenario 4 gives the longest plateau 

uration from all scenarios. 

The drilling schedule and well combination affect not only the 

roduction profile but also the investment profile (drilling expen- 

itures and facilities expenditures). Thus, the production schedule, 

rilling schedule and well combination must be determined such 

hat the overall economic value of the project is maximized. In 

his work we use the Net Present Value (NPV) as an economic in- 

icator, which includes the discounted revenue obtained with the 

roducts’ sales and the overall expenditures required to develop 

he field. 

. Mathematical formulation 

In this section we present a mathematical programming model 

or multi-reservoir field development optimization. The objective 

s to maximize the net present value of the project and the main 

ecision variables are the drilling and production schedule. We in- 

roduce a novel approach to determine the well combination and 

he total number of active wells over the field producing time. The 

roposed formulation is as generic as possible, such that it will 

e possible to expand it to deal with more reservoir units, adding 

ore wells, studying complex drilling scenarios, and including dif- 

erent cost functions, among others. Several equality and inequal- 

ty constraints are formulated to represent physical limitations of 

he system. For instance, the field production is constrained by 

he process capacity limitations, the number of drilling wells is re- 

tricted by the maximum drilling capacity (e.g., the window to drill 

ells in Artic areas is usually less than 5 months per year). 

The description of the model is divided into notation, objec- 

ive function, and constraints. The following section introduces the 
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Fig. 3. Curves of production potential versus cumulative production when different well combinations are enforced at specific values of cumulative production . 

Table 1 

Sets and indices. 

T Set of all time steps 

R Set of reservoirs 

W 

r Set of wells in reservoir r

KG Set of breakpoints in the cumulative gas production(Gp) 

KW Set of breakpoints in the cumulative water production(Wp) 

KF Set of oil rate breakpoints q o in the domain of the potential Np pot1 

KQ Set of oil rate breakpoints q o in the domain of the function f n pot2 

(i ) Well indices i ∈ { 1 , . . . , W 

r } 
( j) Well permutations j ∈ { 1 , . . . , 2 W r } 

Table 2 

Continuous variables. 

q o (t) Oil production in period t 

q g (t) Gas production in period t 

q w (t) Water production in period t 

Table 3 

Integer Variables. 

N r w ∈ Z Number of wells of reservoir r

N f w ∈ Z Number of wells of field f

x r 
i 

∈ [0 , 1] Status of well i in reservoir r

m

S
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odel notation. Section 3.2 presents the objective function, and 

ection 3.3 presents the model constraints. 

.1. Notation 

All the sets and indices used in the mathematical formulation 

re presented in Table 1 . The continuous and integer variables can 

e found in Tables 2 and 3 , respectively. The parameters used in 

he mathematical formulation are shown in Table 4 . Finally, the su- 

erscripts utilized in the formulation appear in Table 5 . 

.2. Objective function 

The objective function to be maximized is the Net Present Value 

 NPV ) formulated in Eq. (1) , which is the sum of yearly cash flows

iscounted to time ”zero”. The yearly cash flow includes the rev- 

nue obtained from oil and gas sales subtracted by the costs of 
6 
nvestment in facilities, drilling and operation of the field: 

max NP V = 

T ∑ 

t 

Re v enue f (t) − Cost f (t) 

(1 + D ) t 
(1) 

e v enue f (t) = P o (t) × q f o (t) + P g (t) × q f g (t) (2) 

ost f (t) = CAP EX 

f (t) + OP EX 

f (t) (3) 

he yearly cash flow is discounted to its present value using the 

iscount factor D , which is a decimal number. The commodity 

rice P o and P g are used as inputs in the revenue calculation Eq. (2) .

e assume the commodity price is constant during the lifetime 

f the field, but the formulation can be extended to consider a 

arying commodity price. The cost is split into capital expenditure- 

APEX (the cost associated with drilling, facilities construction and 

nstallation, etc.) and operation expenditure- OPEX (the cost associ- 

ted with production operations) in Eq. (3) . 

.3. Constraints 

In this section we present the model constraints. The con- 

traints are split into production rate, cumulative production, well, 

APEX, OPEX and well scheduling constraints. 

.3.1. Production rate constraints 

Assuming that reservoirs r ∈ R in the field f are independent, 

he total oil, gas and water production in the field are calculated 

s the sum of the production coming from all reservoirs, as for- 

ulated in Eqs. (4) , (5) and (6) . These total production rates are

onstrained by the respective capacities of the processing facilities 

t the production platform, as stated in Eqs. (7) , (8) and (9) , where

 

f 
o (t) , q f g (t) , and q 

f 
w 

(t) are respectively the total oil, gas, and water

ates produced by the field, which are bounded by the correspond- 

ng topside capacities q max 
o , q max 

g , and q max 
w 

. The field’s production 

ate must be selected such that the revenue due to hydrocarbon 

ales out-weights the costs of facilities, see Jahn et al. (2008) . 

The third constraint is the production potential curve. The oil 

roduction rate of each reservoir r is bounded by its production 

otential at a given point in time in Eq. (10) , where q r 0 (t) is a vari-

ble denoting the production rate from reservoir r at time/year t, 
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Table 4 

Parameters. 

D Discount factor 

q max 
o Maximum oil rate in the production platform 

q max 
g Maximum gas rate in the production platform 

q max 
w Maximum water rate in the production platform 

N f,Start 
w Pre-drilled well in field f 

N Dmax 
w Maximum drilling capacity per year 

N D Total number of years in which the initial CAPEX is distributed 

L f 
pipe 

Length of pipeline 

N f 
joint 

Number of subsea joints-template,manifold,pump etc. 

P o Oil price 

P g Gas price 

α1 CAPEX Dril l ing linear coefficient of single well drilling expenditure 

α2 , α3 CAPEX Subsea linear coefficient of pipeline length expenditure & subsea joint expenditure 

α4 , α5 , α6 CAPEX Topside linear coefficient of maximum oil, gas and water processing capacity 

α7 , α8 , α9 OPEX rate linear coefficient of the oil, gas and water rate 

α10 , α11 , α12 OPEX Nonrate linear coefficient of the well number, pipeline length and joints number 

β1 , β2 , β3 , β4 , β5 Constant term in the linear function of CAPEX Dril l ing , CAPEX Subsea , CAPEX Topside , OPEX rate and OPEX Nonrate 

Table 5 

Superscripts. 

( f ) Field 

(r) Variables associated with reservoir r ∈ R 

(o) Oil 

(g) Gas 

(w ) Water 

(t) Time periods 

a

t

m

q

q

q

q

q

q

q

3

v

v

p

o

1  

W  

r  

o

t

b

a  

W  

l

o

d

d

l

w

t

p

N

N

a

G

G

a

fi

W

W

3

w

i

i  

N

N

N

w

t  

o

a

nd q r o,pot (t) is the production potential of reservoir r at time/year 

. Eq. (10) ensures that the production does not exceed the maxi- 

um feasible oil production rate of the reservoir. 

 

f 
o (t) = 

R ∑ 

r=1 

q r o (t) (4) 

 

f 
g (t) = 

R ∑ 

r=1 

q r g (t) (5) 

 

f 
w 

(t) = 

R ∑ 

r=1 

q r w 

(t) (6) 

 

f 
o (t) ≤ q max 

o (7) 

 

f 
g (t) ≤ q max 

g (8) 

 

f 
w 

(t) ≤ q max 
w 

(9) 

 

r 
o (t) ≤ q r o,pot (t) (10) 

.3.2. Cumulative production constraints 

The cumulative production of oil, gas, and water for each reser- 

oir are calculated based on the cumulative production of the pre- 

ious time step or at the start of the production phase, and the 

roduction in the previous time step (backward approximation). In 

rder to simplify the calculations, the time step is assumed to be 

 year, and the unit used for the cumulative production N p , G p and

 p is 10 3 Sm 

3 , whereas the unit for the oil ( q o ), water ( q w 

) and gas

ate ( q g ) is 10 3 Sm 

3 /Year. We chose a time step of 1 year because

f 4 reasons: 1. In early phases of field development, the industry 

ypically performs discounted cash flow calculations on a yearly 

asis; 2. Most past and recent previous works in the literature 
7 
lso use a time step of a year (e.g. Epelle and Gerogiorgis, 2019 ;

ang et al., 2019 ; ( Gupta and Grossmann, 2012 ); 3. Our prob-

em has some constraints that only make sense in a time frame 

f a year, for example the maximum number of wells that can be 

rilled in a year; 4. Decreasing the time step length will increase 

ramatically the running time of the model and will make it chal- 

enging to run uncertainty analyses with it. Both the gas and the 

ater rates are back calculated from the cumulative gas and wa- 

er production, which are a function of the actual cumulative oil 

roduction, as formulated in Eqs. (13) and (15) . 

The cumulative oil production from reservoir r is defined as: 

 

r 
p (t) = N 

r 
p (t − 1) + q r o (t − 1) , t ≥ 1 (11) 

 

r 
p (0) = 0 , (12) 

s the cumulative gas production from reservoir r is: 

 

r 
p (t) = G 

r 
p (t − 1) + q r g (t − 1) , t ≥ 1 (13) 

 

r 
p (0) = 0 (14) 

nd finally the cumulative water production from reservoir r is de- 

ned as: 

 

r 
p (t) = W 

r 
p (t − 1) + q r w 

(t − 1) , t ≥ 1 (15) 

 

r 
p (0) = 0 (16) 

.3.3. Well constraints 

The wells activation and the corresponding number of drilled 

ells in each time step t are formulated with the following equal- 

ty constraint of Eq. (17) . The total number of wells in reservoir r

s N 

r 
w 

(t) and the total number of well of the field is denoted by

 

f 
w 

(t) in Eq. (18) : 

 

r 
w 

(t) = 

W 

r ∑ 

i 

x r i (t) (17) 

 

f 
w 

(t) = 

R ∑ 

r=1 

N 

r 
w 

(t) (18) 

here x r 
i 
(t) is a binary variable representing the well status, which 

akes on value 1 in case the well is opened at time step t, and 0

therwise. 

The number of wells is constrained by physical limitations both 

t the reservoir and field levels, e.g., the maximum number of 
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ells allowed to be connected to the template and production 

latform ( Eqs. (19) and (20) ). In some types of offshore production 

tructures, such as steel jackets and SPAR floaters, there is usually 

 limited number of well slots available on the deck. 

 

f 
w 

(0) ≤ N 

f 
w 

(t) ≤ N 

f,max 
w 

, t ≥ 1 (19) 

 

r 
w 

(0) ≤ N 

r 
w 

(t) ≤ N 

r,max 
w 

, t ≥ 1 (20) 

The number of pre-drilled wells is defined as N 

f,Start 
w 

, and it is 

qual to the number of wells at the beginning of the first year of 

he production, when t = 0 , as formulated in Eq. (21) . Once the

roduction starts, there is a limit on the number of yearly wells 

hat can be drilled in the field N 

Dmax 
w 

(see Eq. (22) ), e.g., no more

han 3 wells can be drilled per year. Eq. (23) ensures that, after a

ell is drilled, it can not be ”shut-in” (un-drilled or abandoned). 

 

f 
w 

(0) = N 

f,Start 
w 

= 

R ∑ 

r=1 

N 

r 
w 

(0) , t = 0 (21) 

 ≤ N 

f 
w 

(t) − N 

f 
w 

(t − 1) ≤ N 

Dmax 
w 

, t ≥ 1 (22) 

 

r 
i (t + 1) ≥ x r i (t) (23) 

n some cases, pre-drilling some wells before producing the first 

il improves the project cash flow in an offshore oil/gas field, see 

ahn et al. (2008) . 

.3.4. CAPEX constraints 

Linear equations were employed in the cost models for drilling, 

acilities, and operational expenditures. Despite being linear, the 

odel is flexible and allows extensions to more complex cost mod- 

ls. The cost model depends on the yearly and maximum oil, gas 

nd water flow rates and the number of wells. 

The field CAPEX costs are be defined as: 

 AP EX 

f (t ) = C AP EX Dril l ing (t ) + C AP EX Subsea (t ) + C AP EX Topside (t ) 

(24) 

here CAP EX Dril l ing (t) is the drilling cost, which is a function of 

he number of wells N 

f 
w 

drilled at a given time t . CAP EX Subsea (t )

ncludes the costs of pipelines, manifolds and any other subsea 

ayout structures. The cost of topside facilities CAP EX Topside (t) is a 

unction of the maximum installed capacity for processing oil, gas 

nd water rates. All expenditure of the facilities’ fabrication and 

nstallation can be allocated to CAP EX Subsea (t) or CAP EX Topside (t) . 

The drilling CAPEX is defined as a linear relation of the number 

f drilled wells N 

f 
w 

at a given time t multiplied by the expenditure 

f drilling a single well α1 : 

 AP EX Dril l ing (t ) = α1 × (N 

f 
w 

(t) − N 

f 
w 

(t − 1)) + β1 (25) 

here β1 are is a constant. Wellhead costs can be included into 

he parameter α1 as they are proportional to the number of wells. 

The subsea facilities CAPEX are defined as: 

 AP EX Subsea (t ) = 

α2 × L f 
pipe 

+ α3 × N 

f 
joint 

+ β2 

N D 

, ∀ t ∈ { 1 , . . . , N D } 
(26) 

otice that the joints can be regarded as manifolds that connect 

he wells and the pipes, but also flowline joints or subsea pumps. 

he length of the pipelines are defined as L 
f 
pipe 

, and N D is the to- 

al number of years in which the initial CAPEX is uniformly dis- 

ributed. The value of N D partly depends on the tax regulation of 

he country and may vary from project to project. Values of 3 - 4 
8 
re common in the North Sea. L 
f 
pipe 

and N 

f 
joint 

can be defined as 

ariables or parameters, depending on the particular case. 

The topside CAPEX costs are modeled as a function of the de- 

igned maximum rates of oil ( q max 
o ), gas ( q max 

g ) and water ( q max 
w 

) at

he processing unit: 

 AP EX Topside (t ) = 

α4 × q max 
o + α5 × q max 

g + α6 × q max 
w 

+ β3 

N D 

, 

∀ t ∈ { 1 , . . . , N D } (27) 

.3.5. OPEX constraints 

The operation costs (OPEX) can be divided into rate-dependent 

osts and non-rate costs: 

P EX 

f (t) = OP EX 

f 
rate (t) + OP EX 

f 
Nonrate 

(t) (28) 

ith the rate-dependent OPEX being defined as: 

P EX 

f 
rate (t) = α7 × q f o (t) + α8 × q f g (t) + α9 × q f w 

(t) + β4 (29)

nd the non-rate OPEX as: 

P EX 

f 
Nonrate 

(t) = α10 × N 

f 
w 

(t) + α11 × L f 
pipe 

+ α12 × N 

f 
joint 

+ β5 

(30) 

he rate-dependent OPEX is a function of the oil, gas, and water 

ates, whereas the non-rate costs are not. For rate-related costs, 

sually higher production rates lead to increased operational costs. 

on-rate costs are typically costs involved in operations of main- 

enance, inspections and offshore personnel, transport, insurance. 

hey are often dependent on the number of wells, the length of 

he pipelines and the subsea layout. 

.3.6. Well scheduling and status 

In the formulation, the production potential depends on the ac- 

ive wells in the field, i.e., the well combination. We decided not 

o track all combinations (and field potentials) by assigning one 

inary variable per combination because the number of possible 

ombinations grows exponentially with the number of wells, mak- 

ng the method non-scalable, i.e., the computational cost will be 

rohibitive for large systems. Instead, we utilize mapping and a set 

f disjunctions that yield a formulation which requires only one 

inary variable per well but still accounts for the different poten- 

ials of each well permutation. The compactness of the formulation 

ontributes to its computational efficiency and also allows dealing 

ith early-phase field development planning for longer producing 

ime and a larger number of wells. 

In order to account for the effect of well combinations on the 

roduction potential, we define the production potential for each 

eservoir r at time t as follows: 

 

r 
o,pot (t) = f n 

r (t) × f q (N 

r 
p (t)) (31) 

here f n r (t) is a factor that varies continuously in the interval 

0,1] that indicates the actual production potential of the field r for 

 selected subset of producing wells among all the possible well 

ermutations j ∈ { 1 , . . . , 2 |W 

r | } . The actual production of reservoir

also depends on the maximum production potential f r q (N 

r 
p (t)) , 

hich is a function of the cumulative oil production N p of reservoir 

at time t . 

The well status is represented by the variable x r 
i 
∈ { 0 , 1 } , where

 means that the well is shut-in, and 1 means that it is produc- 

ng. The well permutation is therefore denoted by a tuple w 

r 
j 
= < 

 

r 
1 
, x r 

2 
, . . . , x r n > describing the status of the wells i ∈ { 1 , . . . , n } with

 being the total number of wells (active and/or inactive) in reser- 

oir r ∈ R . 

One straightforward way to model the selection of a well com- 

ination from all possible permutations w 

r 
j 

of reservoir r is to as- 

ign one binary variable per permutation j. However, this would 
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equire a total of 2 |W 

r | binary variables, which can be intractable 

or fields with a large number of wells. As the number of bi- 

ary variables in a mixed-integer formulation affects considerably 

he computational time to obtain optimal solutions, we propose a 

ovel modeling approach that requires only |W 

r | binary variables 

o model the well combination selection. 

We start by defining a function g r : { 1 , . . . , 2 |W 

r | } → W 

r that

aps an index j from all permutations of well combinations w 

r 
j 

o the set of wells W 

r such that: 

 

r ( j) = { i ∈ W 

r : w 

r 
j (i ) = 1 } , ∀ j ∈ { 1 , . . . , 2 

|W 

r | } (32)

here w 

r 
j 
(i ) denotes the i-th element of the tuple w 

r 
j 
. This function

ndicates which wells i ∈ W 

r are active in reservoir r for the j-th 

ell combination. A table with a map generated by function g r (·) 
s calculated off-line and used in the constraints regarding the well 

ombination selection as follows: 

or all r ∈ R , j ∈ { 1 , . . . , 2 

|W 

r | } : 
f n 

r (t) ≤ f n 

r 
j + 

∑ 

i ∈ g r ( j) 

(1 − x r i (t)) 

+ 

∑ 

i ∈W 

r \ g r ( j) 

x r i (t) , ∀ i ∈ { 1 , . . . , n } (33) 

f n 

r (t) ≥ f n 

r 
j −

∑ 

i ∈ g r ( j) 

(1 − x r i (t)) −
∑ 

i ∈W 

r \ g r ( j) 

x r i (t) , 

∀ i ∈ { 1 , . . . , n } (34) 

qs. (33) and (34) create a set of disjunctions such that, depending 

n the selection of the active wells through the binary variables 

 

r 
i 
, the potential factor of the reservoir f n r (t) will be set to the

otential factor f n r 
j 

corresponding to the correct well combination 

 

r 
j 

from all permutations. 

. Piecewise-Linear approximations 

The field development optimization problem formulated with 

qs. (1) – (34) is a Mixed-Integer Non-Linear Programming 

MINLP) problem. It is mixed-integer because it contains both con- 

inuous variables regarding the well and field rates, and inte- 

er variables related to the status of the wells and the number 

f drilled wells. The nonlinearities of the problem appear in the 

roduction potential curves, including the actual potential based 

n the wells permutation, but also in the cumulative production 

ates for all the phases. The presence of discrete variables com- 

ined with the non-linear curves makes the optimization prob- 

em hard to solve. Our approach is to transform the MINLP prob- 

em into a Mixed-Integer Linear Programming (MILP) one by uti- 

izing Piecewise-Linear (PWL) functions to approximate the non- 

inearities, which is similar to the approach used in Silva and Cam- 

onogara (2014) for production optimization problems. 

In the optimization problem formulated in this work, there are 

 total of 3 non-linear functions, which are actually not available 

n an explicit form, and will be sampled from simulations and 

nterpolated with PWL functions. Among such functions are the 

umulative gas G 

r 
p and water production W 

r 
p , which are a one- 

imensional function of the cumulative oil production N 

r 
p . The 

ther non-linear function is the oil production potential q r o,pot , 

hich is a two-dimensional function of both the cumulative oil 

roduction N 

r 
p , and the field potential factor f n 

r 
. 

.1. Problem reformulation 

The non-linear functions G 

r 
p , W 

r 
p and q r o,pot will be sampled from 

imulators and replaced with PWL approximations built from the 

ampled data. The simulated data are the outputs of the integrated 
k

9 
eservoir-production model. The following functions will be ap- 

roximated with PWL models: 

 

r 
p (t) = f G (N 

r 
p (t)) (35) 

 

r 
p (t) = f W 

(N 

r 
p (t)) (36) 

 

r 
o,pot (t) = f n 

r (t) × f q (N 

r 
p (t)) (37) 

urther, notice that the multiplication of continuous variables in 

q. (37) yields a nonlinear constraint. To circumvent such non- 

inearities, we approximate this multiplication also with the use 

f PWL functions. 

The equations used in the multiplication linearization are the 

ollowing: 

 

r 
o,pot (t) = f n 

r (t) × f q (N 

r 
p (t)) (38) 

otice that the production potential equation is presented twice, 

oth in Eq. (37) and in Eq. (38) . The reason for that is the presence

f both the implicit function f q (N 

r 
p (t)) and the multiplication term 

f n r (t) × f q (N 

r 
p (t)) . 

Gas and water rate in time are computed by reformulating 

qs. (13) and (15) to Eqs. (39) and (40) . 

 

r 
g (t) = G 

r 
p (t + 1) − G 

r 
p (t) (39) 

 

r 
w 

(t) = W 

r 
p (t + 1) − W 

r 
p (t) (40) 

.2. SOS2 Formulation 

A continuous non-linear function f (x ) : D → R 

d with a com- 

act domain D can be approximated with a set of linear functions, 

hich are valid in a family of polytopes P with corresponding 

ertices V (P ) , such that ∪ P∈P P = D, { m p } P∈P ⊆ R 

d , and { c p } P⊆P ,
here: 

f (x ) = m 

′ 
p x + c p , ∀ x ∈ P, P ∈ P (41)

There are several different mathematical formulations for mod- 

lling PWL functions, see Vielma et al. (2010) for a review. A PWL 

ormulation that has become popular for its efficiency and sim- 

licity is known as Specially Ordered Sets of Type 2 (SOS2), see 

eale and Tomlin (1970) and Beale (1980) . The SOS2 model is 

ased on a convex combination of weighting variables associated 

o breakpoints in the domain of the function of interest. The SOS2 

ormulation works by ensuring that at most two of such weighting 

ariables can be nonzero simultaneously and, when that happens, 

hey need to be consecutive for a given ordering of vertices in 

he domain. These constraints are typically imposed in the branch- 

nd-bound algorithm by demand, and many off-the-shelf solvers 

ave native support for SOS2 constraints. 

.2.1. PWL approximations using SOS2 

We assume the function f G (N 

r 
p (t)) is sampled over the domain 

 

r 
p (t) for a set of breakpoints K G in G 

r 
p (t) and the corresponding

unction values are denoted as f r 
G 
(k ) . The PWL approximation of 

he non-linear function in Eq. (35) is formulated as follows: 

 

 p 
r 
(t) = 

∑ 

k ∈K G 
ηr 

k (t) · f r G (k ) (42) 

 

r 
p (t) = 

∑ 

k ∈K G 
ηr 

k (t) · N 

r 
p (k ) (43) 

∑ 

 ∈K G 
ηr 

k (t) = 1 , ηr 
k (t) ≥ 0 (44) 
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ηk (t) ) k ∈K G is a SOS2 (45) 

here ηr 
k 

are weighting variables used in the PWL approximation, 

nd Eq. (45) are the SOS2 constraints which are imposed by the 

olver. 

Analogously we sample the function f W 

(N 

r 
p (t)) in a set of 

reakpoints K W 

over the domain N 

r 
p (t) , and store the correspond- 

ng function values f r W 

(k ) . The PWL linearization of Eq. (36) is then

efined as follows: 

˜ 

 p 
r 
(t) = 

∑ 

k ∈K W 
σ r 

k (t) · f r W 

(k ) (46) 

 

r 
p (t) = 

∑ 

k ∈K W 
σ r 

k (t) · N 

r 
p (k ) (47) 

∑ 

 ∈K W 
σ r 

k (t) = 1 , σ r 
k (t) ≥ 0 (48) 

σ r 
k (t) 

)
k ∈K W 

is a SOS2 (49) 

here σ r are the weighting variables used in the PWL approxima- 

ion, and Eq. (49) are the corresponding SOS2 constraints. 

Further, the function f q is sampled in a set of breakpoints K Q 

ver the domain N 

r 
p (t) , and the corresponding function values 

f r 
Q 
(k ) are stored in table format. Since this function is used in the

onlinear multiplication in Eqs. (37) and (38) , we linearize this re- 

ation using a 2-dimensional PWL function as follows: 

 

r 
o,pot (t) = 

∑ 

j∈K F 

∑ 

k ∈K Q 
�r 

j,k,t · f r q (k ) (50) 

f n 

r = 

∑ 

j∈K F 

∑ 

k ∈K Q 
�r 

j,k,t · f n 

r ( j) (51) 

∑ 

j∈K F 

∑ 

k ∈K Q 
�r 

j,k,t = 1 , �r 
j,k,t ≥ 0 (52) 

j = 

∑ 

k ∈K Q 
�r 

j,k,t , ∀ j ∈ K F (53) 

k = 

∑ 

j∈K F 
�r 

j,k,t , ∀ j ∈ K Q (54) 

φ j 

)
j∈K F 

is a SOS2 (55) 

 

φk ) k ∈K Q is a SOS2 (56) 

here the function f n r is sampled in a set of breakpoints K F , �
r 
j,k,t 

re the weighting variables for the PWL approximation, and φ j and 

k are auxiliary variables which are required in the PWL multidi- 

ensional approximation using SOS2. Eqs. (55) and (56) are the 

OS2 constraints which are implemented by the solver. 

.3. Logarithmic formulation 

The PWL function (41) can be described with several formula- 

ions other than the SOS2 formulation. These formulations vary in 

he way they represent the polytopes P ∈ P in the domain and the 

unction approximation itself. Although all the different PWL for- 

ulations are equivalent in terms of accuracy for the same domain 

artitioning P ⊆ D, they can vary significantly in terms of size and 

fficiency. One crucial aspect of such formulations is the number of 
10 
dditional variables and constraints required to construct the ap- 

roximation. The SOS2 formulation does not require any additional 

ariables and constraints, but its performance tends to degrade for 

ultidimensional approximations with a large number of break- 

oints ( Silva and Camponogara, 2014; Vielma et al., 2010 ). 

A formulation which has promising properties for modeling 

ultidimensional functions with numerous breakpoints is the 

ogarithmic formulation, also known as Log, see Vielma and 

emhauser (2011) . Log is a variation of the aggregated convex 

ombination (CC) model Keha et al. (2004) ; Lee and Wilson (2001) ; 

adberg (20 0 0) that requires an additional number of binary vari- 

bles and constraints that grow logarithmically with respect to 

he number of breakpoints. Because of the compactness of the 

esulting formulation and the strength of its linear relaxations, 

og generally enables considerable improvements in terms of ef- 

ciency compared to other PWL formulations. As Log relies on a 

onvex combination of breakpoints of the function domain, one 

eighting variable is assigned to each vertex v ∈ V (P ) of the do-

ain such that the point in the graph of the function is de- 

cribed through a convex combination of the function values at the 

ertices, i.e, (x , f (x )) = 

∑ 

v ∈V (P ) λv (v , f (v )) , { λv } v ∈V (P ) ⊂ R + such

hat 
∑ 

v ∈V (P ) λv = 1 . 

Although both SOS2 and Log rely on a convex combination of 

reakpoints of the domain, they differ significantly on how they 

reate the domain partitioning P ⊆ D. SOS2 selects a single active 

olytope P ∈ P using on-demand constraints imposed by the opti- 

ization solver directly in the branching algorithm ( Beale, 1980 ). 

n the other hand, Log utilizes a logarithmic number of additional 

inary variables and constraints to create a branching scheme that 

ill select the active polytope within the domain. In other words, 

og relies on an injective function B : P → { 0 , 1 } � log 2 |P| such that

 (P ) = y to map each polytope P ∈ P with a binary vector y ∈
 0 , 1 } � log 2 |P| . The only requirement for the function B is that it

ust be compatible with SOS2 constraints, i.e., the non-zero λ
ariables need to be associated with the vertices of at least one 

olytope P of P: 

 P ∈ P such that { v ∈ V (P ) : λv > 0 } ⊆ V (P ) (57) 

hereas the other λ variables that lie outside the active poly- 

ope P are equal to zero. For a 2D illustrative example of Log, see 

 Silva et al., 2012 ). 

In Vielma and Nemhauser (2011) a branching scheme for Log 

s proposed for a valid injective function B . The proposed scheme 

enerates a domain partitioning P that is topologically equivalent 

o a triangulation known as J1 or ”Union Jack”. This domain par- 

itioning is created through a set of additional constraints, which 

onsists of two phases. The first phase constrains the active poly- 

ope to a single hypercube using disjunctive sets. Then, in a second 

tage, certain vertices within the selected hypercube are disabled 

uch that the convex combination is restricted to a single simplex. 

The implementation of the branching scheme proposed by 

ielma and Nemhauser (2011) requires new concepts and defini- 

ions. Let S e = { s 0 , . . . , s n } be the set of ordered breakpoints on

he coordinate e, and I e := { [ s 0 , s 1 ] , . . . , [ s n −1 , s n ] } be the intervals

ontaining pairs of consecutive breakpoints. Let I e (s ) := {I ∈ I e :
 ∈ I} be a set of the intervals containing the breakpoint s, and 

e ([ s i , s i +1 ]) = i + 1 be the index of an interval [ s i , s i +1 ] ∈ I e . We

efine the function B : { 1 , . . . , |I e |} → { 0 , 1 } � log 2 (|I e | )  to be a map-

ing between the interval indices and a binary code according to 

he Gray code property, meaning that B (i ) and B (i + 1) must differ

y only one bit. The vertices of the domain is V (P ) = S 1 × · · · × S d 
nd d is the dimension. 

The first phase of the branching scheme uses the sets 

 

+ 
e,B,l 

:= { s ∈ S e : B (	e (I)) l = 1 , ∀I ∈ I e (s ) } and J 0 
e,B,l 

:= { s ∈ S e :
 (	e (I)) = 0 , ∀I ∈ I e (s ) } . The constraints which implement the
l 
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rst phase of the Log branching scheme are defined as follows: ∑ 

 ∈V + 
e,B,l 

λv ≤ x e,l , ∀ e ∈ { 1 , . . . , n } , l ∈ { 1 , . . . , � log 2 (|I e | ) } (58a) 

∑ 

 ∈V 0 
e,B,l 

λv ≤ x e,l , ∀ e ∈ { 1 , . . . , n } , l ∈ { 1 , . . . , � log 2 (|I e | ) } (58b) 

 e,l ∈ { 0 , 1 } , ∀ e ∈ { 1 , . . . , n } , l ∈ { 1 , . . . , � log 2 (|I e | ) } (58c) 

here V + 
e,B,l 

:= { v ∈ V (P ) : v e ∈ J + 
e,B,l 

} and V 0 
e,B,l 

:= { v ∈ V (P ) : v e ∈
 

0 
e,B,l 

} . The sets V + 
e,B,l 

and V 0 
e,B,l 

create the partitioning P in each 

oordinate e of the domain, and the intersection of the partition- 

ng in all coordinates will constrain the domain to a single active 

ypercube. 

The second phase selects a simplex of the hyper- 

ube obtained in phase one using the sets L r,s = { v ∈ 

 (P ) : v r is even and v s is odd } and R r,s = { v ∈ V (P ) :

 r is odd and v s is even } , ∀ r, s ∈ D = { 1 , . . . , d} , such that r < s .

he second branching phase can be implemented in Log with the 

ollowing constraints: ∑ 

v ∈L r,s 
λv ≤ y r,s , ∀ (r, s ) ∈ 
 (59a) 

∑ 

v ∈R r,s 

λv ≤ 1 − y r,s , ∀ (r, s ) ∈ 
 (59b) 

 r,s ∈ { 0 , 1 } , ∀ (r, s ) ∈ 
 (59c) 

here 
 := { (r, s ) ∈ { 1 , . . . , d} × { 1 , . . . , d} : r < s } is the

et of index pairs indicating which weighting variables 

re to be disabled in the convex combination. The sets 

 r,s := { v ∈ V : v r is even and v s is odd } and R r,s := { v ∈ V :
 r is odd and v s is even } create the partitioning responsible 

or scoping the active polytope to a simplex within the selected 

ypercube in phase 1. 

.3.1. PWL approximations using log 

Based on the Log model we propose PWL approximations for 

he non-linear functions (35), (36) , and (37) . The Log PWL approx- 

mation of G 

r 
p (t) defined in Eq. (35) is formulated as follows: 

 

 p 
r 
(t) = 

∑ 

k ∈K G 
ηr 

k (t) · f r G (k ) (60a) 

 

r 
p (t) = 

∑ 

k ∈K G 
ηr 

k (t) · N 

r 
p (k ) (60b) 

∑ 

 ∈K G 
ηr 

k (t) = 1 , ηr 
k (t) ≥ 0 (60c) 

∑ 

 ∈K + 
G , l 

ηr 
k (t) ≤ x Gp 

l 
, l ∈ { 1 , . . . , � log 2 (|I Gp | ) } (60d) 

∑ 

 ∈K 0 
G , l 

ηr 
k (t) ≤ 1 − x Gp 

l 
, l ∈ { 1 , . . . , � log 2 (|I Gp | ) } (60e) 

 

Gp 

l 
∈ { 0 , 1 } , l ∈ { 1 , . . . , � log 2 (|I Gp | ) } (60f) 

here K 

+ 
G , l 

and K 

0 
G , l 

are the first-phase branching sets for the set 

f ordered breakpoints K G , and I Gp is the set of intervals contain- 

ng the ordered pair of breakpoints in K 

0 
G , l 

. These sets are defined 

nalogously to the sets used in the first branching phase formu- 

ated with Eqs. (58a) , (58b) , and (60f) . 
11 
Next, we formulate an approximation using Log for the func- 

ion f W 

(N 

r 
p (t)) defined in Eq. (36) with the following set of equa-

ions: 

˜ 

 p 
r 
(t) = 

∑ 

k ∈K W 
σ r 

k (t) · f r W 

(k ) (61) 

 

r 
p (t) = 

∑ 

k ∈K W 
σ r 

k (t) · N 

r 
p (k ) (62) 

∑ 

 ∈K W 
σ r 

k (t) = 1 , σ r 
k (t) ≥ 0 (63) 

∑ 

 ∈K + 
W , l 

σ r 
k (t) ≤ x Wp 

l 
, l ∈ { 1 , . . . , � log 2 (|I Wp | ) } (64) 

∑ 

 ∈K 0 
W , l 

σ r 
k (t) ≤ 1 − x Wp 

l 
, l ∈ { 1 , . . . , � log 2 (|I Wp | ) } (65) 

 

Wp 

l 
∈ { 0 , 1 } , l ∈ { 1 , . . . , � log 2 (|I Wp | ) } (66) 

ith K 

+ 
W , l 

and K 

0 
W , l 

being the first-phase branching sets, and I Wp 

he set of intervals containing the ordered pair of breakpoints of 

 W 

. Notice that the Log approximations of both (35) and (36) use 

nly the first branching phase. This is because the function do- 

ains are unidimensional, thus the active polytopes will be an in- 

erval belonging to I Gp and I Wp . 

The last function to be approximated with Log is the produc- 

ion potential f q . As this function is present in a nonlinear multi- 

lication of variables in Eqs. (37) and (38) , we approximate these 

elations with a two-dimensional PWL approximation using Log as 

ollows: 

 

r 
o,pot (t) = 

∑ 

j∈K F 

∑ 

k ∈K Q 
�r 

j,k,t · f r q (k ) (67) 

f n 

r = 

∑ 

j∈K F 

∑ 

k ∈K Q 
�r 

j,k,t · f n 

r ( j) (68) 

∑ 

j∈K + 
F , l 

∑ 

k ∈K Q 
�r 

j,k,t ≤ x F ,r 
t,l 

, l ∈ { 1 , . . . , � log 2 (|I F | ) } (69) 

∑ 

j∈K 0 
F , l 

∑ 

k ∈K Q 
�r 

j,k,t ≤ 1 − x F ,r 
t,l 

, l ∈ { 1 , . . . , � log 2 (|I F | ) } (70) 

 

F ,r 
t,l 

∈ { 0 , 1 } , l ∈ { 1 , . . . , � log 2 (|I F | ) } (71) 

∑ 

j∈K F 

∑ 

k ∈K + 
Q , l 

�r 
j,k,t ≤ x Q ,r 

t,l 
, l ∈ { 1 , . . . , � log 2 (|I Q | ) } (72) 

∑ 

j∈K F 

∑ 

k ∈K 0 
F , l 

�r 
j,k,t ≤ 1 − x Q ,r 

t,l 
, l ∈ { 1 , . . . , � log 2 (|I Q | ) } (73) 

 

Q ,r 
t,l 

∈ { 0 , 1 } , l ∈ { 1 , . . . , � log 2 (|I Q | ) } (74) 

∑ 

j,k ) ∈L j,k 
�r 

j,k,t ≤ y r j,k,t , ∀ ( j, k ) ∈ 
r 
t (75) 

∑ 

j,k ) ∈R j,k 

�r 
j,k,t ≤ 1 − y r j,k,t , ∀ ( j, k ) ∈ 
r 

t (76) 
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Table 6 

Parameters of the reservoir and network model. 

Reservoir & Well 

Parameter Reservoir-1 Reservoir-2 

Reservoir Pressure, (bara) 195 243 

Reservoir Temperature, ( o C) 70 90 

Oil in place, (MSm 

3 ) 56.25 39.25 

Solution gas-oil ratio, (Sm 

3 /Sm 

3 ) 115 150 

Initial water saturation, (fraction) 0.05 0.05 

Number of wells 6 3 

Productivity index, (Sm 

3 /d/bar) 1500 500 

Tubing size, (inch) 5.5 5.5 

Surface Network 

System type Production 

Seabed Temperature, ( o C) 4 

Pipeline diameter, (inch) 6 - 10 

Pipeline Length, (Km) 17.5 

Separator Pressure, (bara) 20 
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Table 7 

Performance Comparison of SOS2 vs. Log (with 5% dual gap stopping criteria). 

Model No. Production horizon CPU Gap NPV 

SOS2/LOG year second % USD 

SOS2 1 3 1.35 5.00 3,291,430,000 

2 4 43.80 5.00 3,666,370,000 

3 5 115.98 5.00 4,209,920,000 

4 6 1,540.57 5.00 4,617,210,000 

5 7 2,760.23 5.00 4,953,380,000 

6 8 20,851.39 5.00 5,220,280,000 

LOG 7 3 2.13 4.98 3,291,430,000 

8 4 4.95 4.87 3,666,370,000 

9 5 9.94 4.76 4,209,920,000 

10 6 11.66 4.90 4,612,050,000 

11 7 14.45 4.97 4,953,380,000 

12 8 53.35 4.91 5,234,550,000 

Table 8 

Performance Comparison of SOS2 vs. Log (with 500 seconds stopping criteria) 

Model No. Production horizon CPU Gap NPV 

SOS2/LOG year second % USD 

SOS2 1 3 25.26 0.0 3,291,430,000 ∗

2 4 176.71 0.0 3,666,370,000 ∗

3 5 500.00 2.04 4,209,920,000 ∗

4 6 500.00 5.30 4,617,210,000 ∗

5 7 500.00 6.59 4,914,570,000 ∗∗

6 8 500.00 7.21 5,177,310,000 ∗∗

LOG 7 3 3.88 0.0 3,291,430,000 ∗

8 4 7.15 0.0 3,666,370,000 ∗

9 5 15.32 0.0 4,209,920,000 ∗

10 6 52.15 0.0 4,617,210,000 ∗

11 7 67.14 0.0 4,953,800,000 ∗∗

12 8 98.81 0.0 5,238,500,000 ∗∗
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r 
j,k,t ∈ { 0 , 1 } , ∀ ( j, k ) ∈ 
r 

t (77) 

here Eqs. (69) –(71) implement the first branching phase of the 

og for the set K F , whereas Eqs. (72) –(74) are responsible for 

he first phase branching for set K Q . The second phase branching 

cheme is implemented by Eqs. (75) –(77) . Notice that the sets K 

+ 
F , l 

,

 

0 
F , l 

, K 

+ 
Q , l 

, K 

0 
F , l 

, I F , and I Q are defined analogously to the defini-

ions of the first phase branching in Eqs. (58a) –(58c) . The sets L j,k ,

 j,k , and 
r 
t on its turn are defined analogously to the definitions 

sed in the second phase branching scheme denoted by Eqs. (59a) –

59c) . 

. Simulations 

In this section, we present a computational analysis assessing 

he accuracy and performance of the proposed formulations, both 

OS2 and Logarithmic, in field development optimization prob- 

ems, and a case study of real field producing from 2 reservoirs 

or 20 years. The production potential curves for the different 

ell combinations were generated using the commercial software 

etroleum Expert IPM Experts (2008) with a material balance model 

or the reservoir using MBAL coupled to a network model repre- 

ented with GAP. Reservoir and network parameters of the coupled 

imulations are listed in Table 6 . The simulation results of frac- 

ional factors with different well combinations are provided in the 

ppendix. The computational analysis compares the performance 

nd approximation accuracy of the PWL models for field develop- 

ent problems of different complexities in order to demonstrate 

ow such models scale with the number of variables and con- 

traints. The case study aims to demonstrate the effectiveness of 

he Log model in large-scale field development problems both in 

erms of efficiency and in terms of approximation accuracy of the 

nal results. 

.1. Performance and accuracy study of PWL models 

In order to assess the effectiveness of the SOS2 and the Log 

odels applied to field development optimization, we perform a 

omputational study with some representative problems and com- 

are the performance of both models in terms of accuracy and effi- 

iency on a ThinkPad of Intel(R) Core(TM) i7-8565U CPU @ 1.80 Hz 

.99 GHz 64 bytes. It is expected the objective function to exhibit 

ome differences when using Log (simplices) or SOS2 (hypercubes) 

or the PWL approximation (In Section 4 ) but the values should 

till be comparable. Also, when the production horizon of the field 

s increased, the optimization problem becomes harder, and the 
12 
ptimal solution with 0% of dual gap (optimality certificate) might 

ot be obtained within a reasonable time. 

Two batches of simulations were performed to test the perfor- 

ance of the PWL formulations. In the first we set a dual gap of 

 5% as the stopping criteria for the algorithms, and compare the 

PU time for the optimization with both PWL models. For the sec- 

nd set of simulations, a time limit of 500 seconds is set to be the

topping criteria, and the dual gap of the final solution obtained by 

he different PWL models are compared. 

The results of the tests using a dual gap value of 5% as stopping

riteria are shown in Table 7 . The table presents the optimization’s 

unning time (in CPU seconds), the value of the objective func- 

ion (NPV) and the value of the gap for six values of production 

orizons and when using the SOS2 and Log model. The production 

orizon was varied between 3 and 8 years. 

When using the SOS2 model to solve the 3 years production 

orizon problem, an optimal solution is obtained in 1.35 CPU sec- 

nds, while it takes 2.13 CPU seconds using the Log model, which 

s a small difference. However, for longer production horizons the 

ifference becomes substantial, i.e., for 8 years the SOS2 model 

akes 20,851.39 CPU seconds (ca. 348 minutes) and the Log model, 

akes 53.35 CPU seconds (ca. 1 minute). The comparison clearly in- 

icates the Log model is more efficient to solve the optimization 

roblem. 

In the second batch of simulations, a stopping criteria of 500 

PU seconds was used. The computational results are presented in 

able 8 . The objective values marked with a single asterisk ( ∗) in-

icate that simulations using SOS2 and Log models computed the 

ame optimum. However for some cases the results using the SOS2 

odel have a gap greater than zero at the end of the run. When 

sing the SOS2 model, a longer production horizon positively cor- 

elated to a higher value of the gap (e.g., 2.04% gap in 5 years life-

ime and 5.30% gap in 6 years lifetime). 
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Fig. 4. Optimal searching process using SOS2 and Log algorithm. 
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Table 9 

Constraints information. 

Constraints Value: 

Lifetime: 20 years 

Oil price P o : 60 USD/bbl 

Gas price P g : 2 USD/M M BT U 

Maximum drilling capacity N Dmax 
w : 3 wel l s/year

Maximum oil processing capacity q max 
o : 3650 × 10 3 m 

3 /year

Maximum Gas processing capacity q max 
g : 2 . 2 × 10 9 m 

3 /year

Capital return period N D : 4 years 

Table 10 

Formulation size & computa- 

tional performance. 

Variables 

Binary variables: 770 

Integer variables: 60 

Linear variables: 7960 

Constraints 

Equality constraints: 782 

Inequality constraints: 3469 

Range constraints: 19 

Solving information 

Solver: Gurobi 

CPU time: 2161.75 seconds 

GAP: 0% 

b

b  

s

i

a

c

fi

a

t

o

Objective values marked with two asterisks ( ∗∗) represent cases 

here large differences were detected in the objective function at 

he end of the run when using the SOS2 and Log models. Simula- 

ions performed with the Log model achieved higher values of the 

bjective function with zero gaps. 

Based on the results presented in Table 7 and Table 8 , it is pos-

ible to conclude that the Log model enables solving the field de- 

elopment problem more efficiently than the SOS2 model. 

Fig. 4 shows the value of the gap and the objective function 

ersus CPU time when using SOS2 and Log models and using a 

roduction horizon of 4 years. The formulation using SOS2 models 

equires around 176.71 CPU seconds to find a solution with 0% of 

ual gap. In contrast, the formulation using Log models required 

.15 CPU seconds only to reach a dual gap value of 0%, i.e., 24 times

aster. Even though the optimal solution with the SOS2 model was 

btained within around 20 CPU seconds, close to the time spent 

y Log (7.15 CPU seconds), it takes a long time to prove optimality 

f the solution, i.e, to close the dual gap upper-bound (the black 

ashed line). 

.2. Case study: real-world multi-reservoir field development 

ptimization 

The Log model was applied to the study case in offshore oil 

eld development presented in Section 2 . This case study aims to 

est the effectiveness of the logarithmic formulation in a realis- 

ic, large-scale model. Some parameters and information about the 

tudy case are provided next. 

The field has 2 independent reservoirs and is designed to 

roduce for 20 years. After performing geology and petroleum 

ngineering studies, 9 wells with pre-specified paths and 

lacement positions are considered as drilling candidates, of 

hich (w 1 , w 2 , w 3 , w 4 , w 5 , w 6) are placed in Reservoir 1 and

w 7 , w 8 , w 9) placed in Reservoir 2. A black-box simulation model

as built considering the reservoir and the production facilities. 

roduction potential curves were generated using this model for 

ll possible well combinations. 

The decision variables of the optimization problem are the well 

llocation and drilling schedule of the field for its lifetime such 

hat its NPV is maximized. 
13 
Three wells from Reservoir 1 are considered to be pre-drilled 

efore production in the first year. The number of wells that can 

e drilled each year should be less or equal to 3. All the other con-

traints are presented in Table 9 . The objective function is the max- 

mization of the NPV, accounting for the revenue obtained from oil 

nd gas sales, and the cost from drilling the wells, and with the fa- 

ilities construction and operations costs which in function of the 

eld production rates (oil, gas and water). 

Table 10 presents a summary of number and type of vari- 

bles and constraints employed in the model and the solver de- 

ails and stopping criteria. The overall optimization model consists 

f 8790 variables and 4270 constraints. The problem is formulated 
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Fig. 5. Optimal drilling schedule. 

Table 11 

Drilling well sequence. 

Year Well in production Reservoir-1 Reservoir-2 

1 3 w 1 , w 4 , w 5 / 

2 4 w 1 , w 3 , w 4 , w 5 / 

3 7 w 1 , w 2 , w 3 , w 4 , w 5 , w 6 w 9 

4 8 w 1 , w 2 , w 3 , w 4 , w 5 , w 6 w 8 , w 9 

... ... ... ... 

20 8 w 1 , w 2 , w 3 , w 4 , w 5 , w 6 w 8 , w 9 
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Fig. 6. Production potential Vs. optimal production. 

Fig. 7. Production potential Vs. optimal production. 

d

p

6

f

h

d

f

sing AMPL ( Fourer et al., 2003 ) and solved with Gurobi Optimiza- 

ion (2020) . The CPU time used to run the optimization problem 

nd obtain the optimal solution (with 0% of dual gap) was 2161.75 

econds. 

Fig. 5 and Table 11 show the optimal drilling schedule. As it can 

e seen, 3 specified wells ( w 1 , w 4 , w 5 ) from Reservoir 1 are set to

tart producing from the first year. A new well ( w 3 ) from Reser-

oir 1 is planned to start producing from the second year. In order 

o maintain the production plateau of the field, 3 new wells are 

lanned to start producing from the third year, 2 wells ( w 2 , w 6 )

rom Reservoir 1 and 1 well ( w 9 ) from Reservoir 2. In the fourth

ear, another well ( w 8 ) from Reservoir 2 is scheduled to start pro-

ucing. In total, 8 wells are planned to be drilled and to produce 

rom this field from the 9 available candidates. The optimization 

odel determines the number of wells to be drilled in each year 

nd which wells are to drill. The optimal solution consisted of 8 

ells for the offshore field development, where the candidate well 

 w 7 ) from Reservoir 2 is decided not to be drilled. The optimal

ell schedule honors all drilling-related constraints for the given 

arameters listed in Table 9 . 

Fig. 6 depicts the field yearly oil rates obtained by the optimiza- 

ion. The dashed lines represent the production potential and the 

olid lines represent actual oil yearly rates. It can be seen that this 

eld has a production plateau of 4 years (black solid line). Most 

f the field production comes from Reservoir 1 (green solid line), 

lthough its production drops below that of Reservoir 2(red solid 

ine) in the fourth year. All recoverable reserves in Reservoir 2 are 

xpected to be produced after 17 years, whereas the production is 

xpected to last 19 years in Reservoir-1. 

Fig. 7 shows the optimum production rate and potential curves 

n function of cumulative oil production. The optimum oil produc- 

ion rate (solid lines) is below the maximum feasible value (pro- 
14 
uction potential, in dashed lines). The production potential de- 

ends on the drilling schedule presented in Table 11 . 

. Conclusions 

We proposed a formulation using mathematical programming 

or field development optimization in early-phase of an offshore 

ydrocarbon field. The optimization consists in determining the 

rilling and production schedules that maximize the project value 

or a multi-reservoir field. 
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The model is formulated in a flexible manner such that it can 

e extended and customized to other field development problems. 

he main contribution of this work is two-fold. First we proposed 

 novel way to represent the drilling schedule and the well com- 

ination selection from all possible well permutations in the field. 

s the efficiency of the optimization is significantly impacted by 

he number of binary variables, we formulated the well combina- 

ion selection with a set of constraints that require only a reduced 

umber of binary variables, equal to the number of wells. This al- 

ows to scale the problem to larger fields with numerous wells. 

Secondly we propose the use of a Logarithmic model to trans- 

orm the field development MINLP problem into a MILP formu- 

ation. We demonstrate through a real-world case study that the 

ogarithmic formulation is substantially more efficient than the 

raditional SOS2 models, specially when the production horizon is 

ore than just a few years. The logarithmic formulation also al- 

ows to reach lower dual gap values in a shorter time. Based on 

imulation analysis, we have the following specific conclusions: 

• Both SOS2 and Log models have been applied to solving field 

development problems and the results show significant im- 

provements in computational efficiency when using the Log 

model. 
• More computational time is required to find optimal solutions 

when increasing the production horizon (field lifetime). The re- 

quired computational time increased dramatically in the SOS2 

model when compared to the Log model. 
• The Log algorithm takes less than 1 h to find the optimal solu- 

tion to a real field planning problem with a production horizon 

of 20 years. 

The authors believe that the proposed optimization model us- 

ng production potential curves is appropriate for field develop- 

ent of early phases when limited data is available, and reser- 

oir models are highly uncertain, under construction, or unavail- 

ble. The model is suitable to run extensive analyses to evaluate 

ncertainty with a reduced computational budget. However, this 

pproach may not be appropriate for later stages of the field de- 

elopment process when more complex models are used, such as 

ompartmentalized, highly heterogeneous reservoirs, or capturing 

ell placement issues. 

Moreover, in the proposed optimization model, it is impossi- 

le to enforce constraints on the reservoir pressure and individ- 

al well rates as these variables are not tracked. This is an inter- 

sting aspect to be investigated in future works, as in real-world 

elds there are often constraints that need to be imposed on spe- 

ific wells due to physical limitations or operational issues. 

Further, we have used a time-step of one year based on pre- 

ious works and to ensure compatibility with drilling constraints 

n our work. However, we believe it is important to evaluate the 

ffect of the time step on the optimization results output by the 

odel, and we suggest this as future work. 

Another assumption made in this work is that the wells can 

roduce at their potential rate. However, in some cases, this might 

ot be possible due to technical constraints (e.g., sand production). 

s a workaround, it is possible to add additional constraints to 

he formulation to avoid field production reaching undesirably high 

evels. 

We believe the proposed methodology can be a valuable 

ecision-support tool for field planners, capturing first-order mag- 

itude effects and output variability considering several uncertain 

arameters. Possible extensions of this work are to perform the 

lanning and scheduling of multiple fields in the same area, de- 

ermine the optimal location of subsea and topside facilities, and 

tudy staged developments, where decisions are taken sequentially, 

nd models are updated with new information. 
15 
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ppendix A 

Table 12 

Fractional Factors of Different Well Combinations. 

Reservoir-1 

Well combinations f 1 n Well combinations f 1 n 

w1 0.166 w2 0.249 

w3 0.195 w4 0.293 

w5 0.198 w6 0.113 

w1,w2 0.332 w1,w3 0.357 

w1,w4 0.413 w1,w5 0.365 

w1,w6 0.279 w2,w3 0.436 

w2,w4 0.467 w2,w5 0.448 

w2,w6 0.362 w3,w4 0.477 

w3,w5 0.393 w3,w6 0.308 

w4,w5 0.492 w4,w6 0.406 

w5,w6 0.304 w1,w2,w3 0.516 

w1,w2,w4 0.524 w1,w2,w5 0.530 

w1,w2,w6 0.445 w1,w3,w4 0.591 

w1,w3,w5 0.556 w1,w3,w6 0.470 

w1,w4,w5 0.611 w1,w4,w6 0.526 

w1,w5,w6 0.470 w2,w3,w4 0.642 

w2,w3,w5 0.635 w2,w3,w6 0.549 

w2,w4,w5 0.665 w2,w4,w6 0.580 

w2,w5,w6 0.553 w3,w4,w5 0.676 

w3,w4,w6 0.590 w3,w5,w6 0.499 

w4,w5,w6 0.597 w3,w4,w5,w6 0.781 

w2,w4,w5,w6 0.771 w2,w3,w5,w6 0.740 

w2,w3,w4,w6 0.755 w2,w3,w4,w5 0.841 

w1,w4,w5,w6 0.717 w1,w3,w5,w6 0.661 

w1,w3,w4,w6 0.704 w1,w3,w4,w5 0.790 

w1,w2,w5,w6 0.636 w1,w2,w4,w6 0.637 

w1,w2,w4,w5 0.722 w1,w2,w3,w6 0.629 

w1,w2,w3,w5 0.714 w1,w2,w3,w4 0.696 

w1,w2,w3,w4,w5 0.895 w1,w2,w3,w4,w6 0.809 

w1,w2,w3,w5,w6 0.820 w1,w2,w4,w5,w6 0.828 

w1,w3,w4,w5,w6 0.895 w2,w3,w4,w5,w6 0.946 

w1,w2,w3,w4,w5,w6 1.000 

Reservoir-2 

Well combinations f 2 n Well combinations f 2 n 

w7 0.527 w8 0.606 

w9 0.644 w7,w8 0.807 

w7,w9 0.878 w8,w9 0.907 

w7,w8,w9 1.000 

http://www.ntnu.edu/bru21
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