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A compact formulation has been developed to efficiently optimize early-stage field development plan-
ning of multi-reservoir fields. The proposed formulation is a mixed-integer linear programming model
which employs piecewise-linear functions to approximate the model non-linearities. The project eco-
nomic value is maximized by optimizing the production allocation and the drilling schedule. The field
production profiles are estimated with production potential curves calculated from simulated data of an
integrated reservoir and surface facilities model. The novelties of this work are: a scalable model for
the well combination selection, a logarithmic piecewise-linear model to approximate the well production
potential curves, and the modeling and solution of realistic field development optimization problems.
Through simulation analysis of a real field case study, the logarithmic and standard SOS2 formulations
are compared in terms of computational performance and accuracy. The results show that the logarith-
mic formulation has significantly reduced the computational time and achieved improved accuracy over
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1. Introduction

The planning and development of oil and gas fields is a task
of high complexity as it involves multiple disciplines and a large
number of decisions. The field performance and project economics
are highly dependent on the decisions made by the asset man-
ager and the development planning team. In order to come up
with a good development plan, it is important to consider a large
range of possible scenarios involving the most relevant parame-
ters during the planning phase. However, because there are often
time constraints in the planning phase, the assessment of all pos-
sible scenarios is somewhat infeasible. For example, in Brazil, Ex-
ploration and Production (E&P) concession contracts stipulate that
the decisions regarding the development of a field must be taken
within the first 180 days after a commercial discovery is realized
(Rodrigues et al., 2016). Therefore, in field planning, there is often
the need to perform engineering calculations and sensitivity analy-
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sis to determine the most attractive design and quantify the effect
of uncertain parameters within a limited time span.

Mathematical modeling was introduced to solve field devel-
opment problems in the 1950s. To the best of our knowledge,
Lee and Aronofsky (1958) were the first to publish a paper em-
ploying linear programming (LP) to solve the well drilling schedul-
ing problem. After that, many works have been published in the
literature on the use of mathematical programming methodolo-
gies to solve field development problems. A review of this liter-
ature can be found in (Durrer and Slater, 1977; Sullivan, 1988;
Tavallali et al., 2016; Khor et al.,, 2017). The development of mathe-
matical modeling applications in field development problems fol-
lows the advancing of computing speed and algorithmic tech-
niques. Over all, the application of mathematical programming
progressed from linear programming (1960 - 1980s) (Aronofsky
and Williams, 1962; Attra et al., 1961; Lee and Aronofsky, 1958),
to nonlinear programming (1960 - 1980s) (Rowan et al., 1967; Mc-
Farland et al., 1984), to mixed-integer linear programming (1970
- 2010s) (Rosenwald et al., 1974; Sullivan, 1988; Haugland et al.,
1988; Nygreen et al., 1998; Iyer et al., 1998; Carvalho and Pinto,
2006), and the latest mixed-integer nonlinear programming (2000s
- now) (Goel et al., 2006; Goel and Grossmann, 2004; Humphries
and Haynes, 2015; Isebor et al., 2013; Lin and Floudas, 2003; van
den Heever et al., 2001; Van Den Heever and Grossmann, 2000).
Rosenwald et al. (1974) present a mathematical modeling proce-
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dure using mixed-integer programming for determining the op-
timum location of wells assuming a set of pre-designed possi-
ble sites for new wells. In the paper surveys conducted in 1977
(Durrer and Slater, 1977), the problem of non-linearities of reser-
voir behavior and production network was described as difficult to
handle. McFarland et al. (1984) used nonlinear programming tech-
niques to solve field development planning and management op-
timization problems by selecting wells number, production rates,
abandonment time and platform size. In their demonstrated cases,
the well productivity is defined as a function of nonlinear pres-
sure drop. In the work from Haugland et al. (1988), where they
tested and presented the computational performance of field de-
velopment optimization using mixed-integer programming, they
concluded that the problem is hard to solve and the size of prob-
lems is limited by the computational capacity. Even today, many
recently published papers report that mixed-integer nonlinear pro-
gramming remains challenging due to its high computational re-
quirements and unsatisfactory solution quality. The use of mathe-
matical programming under decision-dependent uncertainty is an-
other popular subject in recent years (Goel and Grossmann, 2004;
Grossmann et al., 2016; Gupta and Grossmann, 2014a,b, 2017;
Tarhan et al., 2009), but these problems are out of the scope of
the present study.

In most studies, after the development of a model of the field
value chain, some design parameters are optimized to improve
some key performance indicators. The resulting problems are typ-
ically of large scale, non-linear, combinatorial, and combine black-
box and analytical models. When formulating the optimization
problem, there two main directions typically followed: minimiza-
tion of the investment cost (Rodrigues et al., 2016; Grimmett et al.,
1987; Devine and Lesso, 1972; Hansen et al., 1992; Garcia-Diaz
et al, 1996), and maximization of the Net Present Value (NPV)
(Frair and Devine, 1975; Huppler, 1974; lyer et al., 1998; McFar-
land et al.,, 1984; Nygreen et al., 1998; Tavallali et al.,, 2013). In
general, the methods targeting investment cost minimization deal
with scheduling (e.g., drilling scheduling) and with how to place
the platforms, wells, manifolds, pipelines and other relevant pro-
duction facilities. Klose and Drexl (2005) reviewed and summa-
rized the location and distribution problem in 2005, their results
were extensively refereed and cited afterward. The methods that
target the maximization of the NPV are typically focused on in-
creasing the revenue and on cash flow analysis, mainly by improv-
ing the production planning and wells allocation.

In both investment cost minimization and NPV maximization
problems, there are different ways to represent the decision vari-
ables and model their inter-relations. Different formulations to the
same problem might be developed depending on the selection of
the decision variables of the problem and of its main features.
For instance, if it is desired to model the relation between the
number of wells and the drilling sequence in the field perfor-
mance, the influence of such decisions on the theoretical maxi-
mum production achievable must be included in the model, e.g.,
it is possible to produce higher rates if more wells are drilled.
Iyer et al. (1998) proposed a list of the main decision variables in-
volved in offshore field development problems:

(1) Number and location of production platforms, facilities and
their capacities;

(2) Number and location of wells;

(3) Facilities (mainly platform and well) installation scheduling;

(4) Drilling rig location and scheduling;

(5) Production rate allocation for each time period.

In our work we are focusing on three variables from the list:
the production rate allocation, the number of wells and the drilling
scheduling. The production profiles over time are used to compute
the revenue generation via cash flow analysis, and to compute the
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required capacity of processing facilities. The number of wells and
the drilling scheduling define the maximum production rates that
can be produced from the reservoir at each time step and this af-
fects significantly the investment costs. According to statistics from
the North Sea, the cost of well drilling accounts for about 40 - 50%
of the total investment expenditure in offshore subsea field devel-
opment projects (information compiled for the Norwegian Conti-
nental Shelf as of 2019) (Pavlov et al, 2020; NPD, 2020). As men-
tioned, the production allocation and the drilling schedule must
be decided at an early stage of the field planning with limited and
uncertain information. In subsequent stages of field development,
these decisions are often frozen despite the availability of new in-
formation that could lead to improvements on the base design.

Production rate allocation is a process of allocating and fore-
casting recoverable reserves into a number of time periods or
production horizons within the field’s lifetime. This is typically
performed with, e.g., three-dimensional reservoir models, de-
cline curves (or type curves), material balance models and in-
tegrated coupled models of reservoir and surface network. In-
tegrated coupled models of reservoir and surface network are
often considered the most realistic because they capture ade-
quately fluid energy losses from well bottom-hole to process-
ing facilities. Rahmawati et al. (2012) evaluated optimal produc-
tion strategies for an integrated field asset that coupled three
reservoirs, a surface facility model and an economic model.
Hepguler et al. (1997) present a study that couples a three-
dimensional reservoir simulator with a general-purpose network
simulator. Their study concludes that an integrated model gives
a much more complete description of field behavior. However, it
can be time-consuming and challenging to set up and run in-
tegrated models (Coats et al., 2003; Hepguler et al., 1997; Hoff-
mann et al., 2019). Some of the challenges are due to the com-
plexity and non-linearity of the fundamental equations used to
describe flow in reservoir and in surface network. Examples of
optimization using a coupled model of reservoir-network are the
works by Rahmawati et al. (2012), Hoffmann et al. (2019) and
Silva et al. (2019). Hoffmann et al. (2019) proposed a solution that
integrated the reservoir and network models built in commercial
software. Silva et al. (2019) proposed the model integration based
on an open-source fully implicit reservoir simulator such that the
gradients are made available to the optimization algorithm through
automatic differentiation. The well and network models are de-
scribed with mechanistic equations based on physical principles.

Despite being more accurate, when it comes to optimization,
the computational time required for achieving a solution using
non-linear coupled reservoir-network models is usually prohibitive.
Haugland et al. (1988) compared the computational performance -
CPU time - in terms of numbers of integer and continuous vari-
ables, the computation is extremely time-consuming even with
only 23 integer variables and 60 continuous variables, demonstrat-
ing that problems including integer decision variables are hard
to solve. Furthermore, models are often created using commercial
software that are black-box, which significantly limits the avail-
ability and effectiveness of optimization tools. Therefore, many re-
search studies have been focusing on the development of meth-
ods that utilize reduced computational resources. For instance,
Sullivan (1988) discussed and illustrated a method to convert im-
plicit production behavior to explicit models to solve much larger
problems effectively. Goel et al. (2006) present a dual Lagrangian-
based branch-and-bound algorithm to achieve a significant reduc-
tion in the model size. Gupta and Grossmann (2012) compared dif-
ferent solvers used in the optimization, and pointed out that refor-
mulating MINLP into an MILP can solve the problem in an efficient
way.

An alternative to full-fledged models is the use of low-order
and reduced-complexity models, also known as proxy models. Be-
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cause of its computational advantages, proxy models are often
used to perform production scheduling with varying degrees of
complexity and accuracy. A simple approach, for example, is as-
signing a production profile to each well. With such proxies, it is
possible to model the drilling schedule, where wells are drilled at
different points in time, but the well inter-dependency with vary-
ing target rates is not captured in the field performance. An exam-
ple of this approach is the work of Wang et al. (2019), where they
apply linear superposition of base production curves for each pro-
ducer. Such methods are often used in facility placement and rout-
ing optimization problems since the main focus is on minimizing
the investment cost, see Rodrigues et al. (2016).

Another approach to model production scheduling is a hy-
brid method where proxy models are used only for specific parts
of the production system. For example, in the work by Iyer
Iyer et al. (1998) and Van Den Heever and Grossmann (2000),
reservoir pressure, producing gas-oil ratio and water cut are rep-
resented as a non-linear function of the cumulative production,
which is extracted from the output of a reservoir simulation.
Well deliverability, pressure drop in wellbore and flowlines were
solved using mechanistic equations based on physical principles.
Iyer et al. (1998) proposed a sequential decomposition strategy us-
ing aggregation and disaggregation technique for the planning and
scheduling of investment and operation in offshore oil field facil-
ities. Carvalho and Pinto (2006) used the algorithm of Iyer et al.
on an offshore oilfield infrastructure planning problem but modify-
ing the branching priorities and solver parameters to decrease the
computation cost. Lin and Floudas (2003) used a similar method to
characterize the non-linear reservoir performance of gas fields and
included it into the well platform planning problem.

A field-level proxy method that allows to represent the well
inter-dependency and variations in the wells and field target
rates are the production potential curves. The production potential
curves can be seen as an upper bound to the oil or gas rates, which
are feasible to be produced by the production system at a spe-
cific depletion state. At any given time, one can decide to produce
at the potential or at any value below it. Goel et al. (2006) and
Goel and Grossmann (2004) assume a linear relationship between
the field’s deliverability and the recovered amount of hydrocar-
bons. By changing the end points of the curve they represented
the uncertainties in reservoir size and field productivity.

Gonzalez et al. (2019) and Angga (2019) performed mixed
integer-piecewise linear optimization of drilling and production
scheduling in early-phase field planning using a collection of pro-
duction potential curves. The curves were generated with a cou-
pled reservoir-network model and depended on the number of
wells, reservoir size, network layout, artificial lift mechanism and
reservoir recovery method. One of the drawbacks of their approach
is that the process to generate production potential curves might
be time-consuming when there are many variables to consider.

Stanko (2021) further developed this method and introduced
the use of dimensionless production potential curves by dividing
cumulative production values by reservoir size and production po-
tential by their upper bound. Stanko showed that, in many cases,
the dimensionless production potential curve is not affected sig-
nificantly by network layout, heterogeneity in the well and gath-
ering network, well count, reservoir size, separator pressure and
artificial lift method. Therefore, in such cases, production potential
curves can be generated by scaling dimensionless production po-
tential curves with the maximum production potential and reser-
voir size of the case. Alkindira (2020) used this scaling technique
in an early-phase field development optimization problem while
considering uncertainties in-place volumes and scheduling of wells
with distinct performance.

Special Ordered Set 2 (SOS2) is used to piecewise-linearize
production potential curves yielding Mixed-Integer Linear Pro-
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gramming formulations (Angga, 2019; Alkindira, 2020; Gonzalez
et al, 2019). This approach of using Special Ordered Sets on
piecewise linearization has been used extensively in the past by
e.g., Sullivan (1988); Hoffmann et al. (2019); Gupta and Gross-
mann (2012); Gunnerud et al. (2012); Gunnerud and Foss (2010);
Epelle and Gerogiorgis (2020); Rosa et al. (2018), often to approxi-
mate the well and pipe flow behavior for a hydrocarbon produc-
tion system. For instance, Sullivan (1988) used Special Ordered
Sets (SOS) to identify reservoir production alternatives when for-
mulating the optimization problem as an MIP model. Epelle and
Gerogiorgis (2020) used SOS2 to piecewise-linearize the pressure-
rate responses in a production system encompassing the wells,
routing in the gathering network and pipelines. In this paper,
they did an extensive computational analysis to compare MILP
and MINLP formulations through 3 case studies. All these studies
show improvements in computational efficiency after using SOS2
to convert the Mixed-Integer Non-Linear Programming (MINLP)
problems into Mixed-Integer Linear Programming (MILP) problems.
However, other studies indicated that in more complex cases the
performance of SOS2 might not be satisfactory. Silva and Cam-
ponogara (2014) compared different algorithms used to piecewise-
linearize a gas lift optimization problem. In their study, it is shown
that even though the formulation using SOS2 variables can find
the global optimal, it struggles when applied to complex problems
involving fine multidimensional nonlinear approximations. This is
consistent with the observations provided by Brito et al. (2020) in
a hydro unit commitment problem, where they concluded that
SOS2 is not as efficient as the Logarithmic Convex Combination
(Log) model (Vielma et al., 2010).

1.1. Paper objective

In this paper, we formulate the early-phase offshore oil field de-
velopment problem with a mathematical programming model fo-
cusing on production allocation and well drilling scheduling. We
first list all relevant well combinations and compute their max-
imum production potential using an integrated reservoir-facility
model. In our mathematical model, we propose a novel formula-
tion for the selection of the well combination that is scalable to
fields with a large number of wells because only one binary vari-
able per well is required. We propose the use of Log, a compact
piecewise-linear model, to approximate the non-linear functions
representing the production potential, the field water and gas pro-
duction. The efficiency and accuracy of the resulting MILP formu-
lation with Log are assessed in a case study of a real hydrocar-
bon field, where the results obtained with the proposed formula-
tion are compared against standard SOS2-based models. The dis-
tinct features of our work are as follow:

(1) We propose a formulation for the well combination selection
and activation that is easy to expand to fields with a large
number of wells as it only requires one binary variable per
well.

(2) Although the Log model has been used in the past in
production optimization problems to approximate pressure
drop and well production curves Silva and Camponog-
ara (2014), to the best of our knowledge, despite its promis-
ing computational efficiency, our work is the first to employ
a Logarithmic-based piecewise-linear model to represent the
nonlinear functions of field development optimization prob-
lems. In this work, detailed piecewise-linear formulations
of the standard SOS2 and the Log model are presented for
a field development optimization problem of considerable
complexity.

(3) After a comprehensive comparison between the standard
S0S2 model and the proposed Logarithmic model, We
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demonstrate using a real-world case study that the opti-
mization with Log is considerably more efficient, mainly be-
cause of its compactness and the strength of the result-
ing relaxations, as it was also described by Vielma and
Nemhauser (2011). Furthermore, the proposed approxima-
tions with Log have improved accuracy compared to stan-
dard SOS2 techniques because of the higher resolution ap-
proximations yielded through the use of simplices (instead
of hypercubes) in the domain partitioning.

(4) We demonstrate the effectiveness of the new model for field
development optimization problems, which combines a scal-
able formulation for well combination selection and a Log-
arithmic model for the piecewise-linear approximations, by
applying it on a real-world case study of an early-phase off-
shore field development planning problem. The case investi-
gated in the paper is more realistic than others found in the
literature, which can also be regarded as a contribution in
terms of modeling and application in the field development
research area.

1.2. Paper structure

This paper is organized as follows. Section 2 and
Section 3 present the problem description and a mathemat-
ical model, respectively. Then, in Section 4, an approximate
mixed-integer linear programming model is proposed using piece-
wise linear (PWL) models. In Section 5, we demonstrate the
advantages of our approach with a set of illustrative examples and
a real-world case study. The conclusions are presented in the last
section of the paper.

2. Field development optimization

In offshore field development projects, it is often common to
commingle the production of multiple neighboring reservoirs into
the same platform and facilities. These multi-reservoir fields are
become more and more common not only because of technological
advances but also for economic reasons, i.e., in some cases is not
profitable to develop a small size reservoir independently. Multi-
reservoir fields can also be developed when the new discovery is
made in nearby regions of mature fields, which often have an ex-
tra capacity of processing and transportation. In either of the cases,
the oil company chooses the most financially beneficial develop-
ment concept that can including all discovered reservoirs in their
asset region.

2.1. Problem statement

The case study for this paper is a field with two reservoir units,
subsea wells and gathering network producing to a production
platform as illustrated in Fig. 1. The production from the wells in
each reservoir unit goes through their wellhead to a subsea man-
ifold, where it is commingled into a pipeline network. Reservoir 1
has a total of 6 wells and Reservoir 2 has a total of 3 wells.

The variables to determine using mathematical maximization
of project value are production rate allocation per year, the total
number of wells required in each reservoir and drilling scheduling.
More wells and higher production increase the revenue stream due
to hydrocarbon sales, but they also increase the operational and
capital expenditures, e.g., topside facilities need to be bigger and
more wells cost more.

For a given reservoir size, the maximum producible reserves (or
the fraction of the hydrocarbon initial in place) are fixed depend-
ing both on the recovering strategy and production mechanism. In
this paper, we assume the reservoir production is driven by natu-
ral depletion, which means that no secondary recovery mechanism
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such as water injection or gas injection is employed. We also as-
sume that the location of the production platform, the well-heads,
the manifolds are known and fixed a priori and have been deter-
mined by layout optimization methodologies and seabed geologi-
cal survey studies. Additionally, we assume that the initial oil in
place of both reservoirs is deterministic and known. Furthermore,
the following extra assumptions and considerations are made:

(1) There is no underground flow communication between the
reservoirs.

(2) The production from reservoir 1 is hydraulically decoupled
from the production from reservoir 2.

(3) The field’s main product is oil, but it also produces some as-
sociated gas and water. The producing gas-oil ratio and wa-
ter cut are a function of cumulative oil production.

(4) The production performance is unique for each well and for
the overall field for different well combinations.

(5) Production potential curves are used to define the upper
bound of production profiles.

The usage of production potential curves to constrain the
optimal production rates is widely adopted, as seen in previ-
ous works from Gupta and Grossmann (2012, 2017); Lin and
Floudas (2003); Goel et al. (2006); Goel and Grossmann (2004);
Tarhan et al. (2009); Gonzélez et al. (2019); Stanko (2021). Basi-
cally, it is a numerical representation based on the material bal-
ance of the production performance of a production system. The
production system can comprise of reservoir and wells or an in-
tegrated system including reservoir, wells and gathering network
to the processing facilities. It is derived from the rate-pressure-
volume relation to a rate vs. cumulative production or recovery
factor. Curve’s shape in linear or nonlinear, convex or non-convex
indicates the degree of complexity and understanding of the sys-
tem.

In this paper, production potential curves (field production
potential versus oil cumulative production) were extracted for
each reservoir and subsea system from simulations of coupled
reservoir-network models. The simulations consider all wells in
each reservoir are active and produce as much as possible. To de-
termine the production potential when only a particular combi-
nation of wells is active, we use a variation of the method de-
scribed by Stanko (2021): 1) perform steady-state well and net-
work model simulations of the particular well combination w; at
initial time and record rate qlgot,max(wj) of reservoir r; 2) scale
the production potential values of the curve by the factor fn=
qgotymax(wj)/q;ggmax, where qgggmax is the production potential of
the curve considering all wells from reservoir r are active at ini-
tial conditions. This procedure assumes that the curve of current
dimensionless production potential of a given reservoir and sub-
sea system is not affected significantly by well combination. Please
note that our model does not track how much is produced by each
well, it only considers what a set of wells produces. Therefore, in
our formulation, it is usually not possible to apply rate constraints
on a well level, only on a field level (unless there is only one
well producing). Nevertheless, different field production potentials
are considered depending on which wells are drilled and produced
from (well combination) over the field life time.

Fig. 2 shows the field production potential of reservoir 1 with 3
producers and for 3 distinct well combinations. As it can be seen,
the field production potential is scaled up or down depending on
the well combination. The combination of wells w3, w4, w5 gives
higher production than w1, w4, w5 and w1, w2, w3. However, to-
wards the right of the curve, all wells combinations converge to
similar values of oil cumulative production. Using wells w3, w4, w5
allows to produce higher rates at early times, but the processing
capacity of the production platform must also be increased, which
costs more and may reduce the value of the project.
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Fig. 1. Field layout.
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Production potential from reservoir

Cummulative production from reservoir

Fig. 2. Curves of production potential versus cumulative production of a reservoir
using 3 distinct well combinations.

The produced gas and water rates of each reservoir are fore-
casted from curves of cumulative gas production and cumulative
water production versus cumulative oil production. This approach
assumes that GOR and WC are functions of cumulative oil produc-
tion only and are not affected by well combination. However, the
arithmetic operations between oil rate, GOR and WC to obtain gas
and water rates are non-linear, and must then be linearized to be
compatible with a MILP formulation. Angga (2019) compared two
methods to compute water and gas rates: 1) a bi-linearization of
the arithmetic operations and 2) computing oil and gas rates from
curves of cumulative gas production and cumulative water produc-
tion versus cumulative oil production. He showed that the latter
approach is significantly more computationally efficient. A similar
observation is provided by Gupta and Grossmann (2012). The pro-
duced gas and water rates also impact the capacity, design and ul-
timately the cost of topside facilities.

In addition to the well combination, the drilling sequence also
impacts the field production potential. Fig. 3 illustrates the pro-
duction potential curve of Reservoir 1 where the well combination

is varied at specific cumulative oil production values, i.e., specific
wells are drilled and start production at each point. At initial time,
wells wl,w2 and w3 are active. The production potential curve
will change when one chooses different wells to be drilled in each
decision node. If, for example, one wishes to produce the field at
an oil high plateau rate, scenario 3 gives the longest plateau dura-
tion from all scenarios. If, alternatively, one wishes to produce the
field at a long oil plateau rate, scenario 4 gives the longest plateau
duration from all scenarios.

The drilling schedule and well combination affect not only the
production profile but also the investment profile (drilling expen-
ditures and facilities expenditures). Thus, the production schedule,
drilling schedule and well combination must be determined such
that the overall economic value of the project is maximized. In
this work we use the Net Present Value (NPV) as an economic in-
dicator, which includes the discounted revenue obtained with the
products’ sales and the overall expenditures required to develop
the field.

3. Mathematical formulation

In this section we present a mathematical programming model
for multi-reservoir field development optimization. The objective
is to maximize the net present value of the project and the main
decision variables are the drilling and production schedule. We in-
troduce a novel approach to determine the well combination and
the total number of active wells over the field producing time. The
proposed formulation is as generic as possible, such that it will
be possible to expand it to deal with more reservoir units, adding
more wells, studying complex drilling scenarios, and including dif-
ferent cost functions, among others. Several equality and inequal-
ity constraints are formulated to represent physical limitations of
the system. For instance, the field production is constrained by
the process capacity limitations, the number of drilling wells is re-
stricted by the maximum drilling capacity (e.g., the window to drill
wells in Artic areas is usually less than 5 months per year).

The description of the model is divided into notation, objec-
tive function, and constraints. The following section introduces the
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Scenario Decision Node 0 Decision Node 1 Decision Node 2 Decision Node 3
1 (wl,w2,w3) (wl,w2,w3) (wl,w2,w3,w4) (wl,w2,w3,w4,w5)
2 (wl,w2,w3) (wl,w2,w3,w5) (wl,w2,w3,w5) (wl,w2,w3,w4,w5)
3 (wl,w2,w3) (wl,w2,w3,w4,w5) (wl,w2,w3,w4,w5) (wl,w2,w3,w4,w5)
4 (wl,w2,w3) (wl,w2,w3,w4) (wl,w2,w3,wé4,w5,w6) (wl,w2,w3,wé,w5,w6)

Fig. 3. Curves of production potential versus cumulative production when different well combinations are enforced at specific values of cumulative production .

Table 1
Sets and indices.
T Set of all time steps
R Set of reservoirs
wr Set of wells in reservoir r
KG Set of breakpoints in the cumulative gas production(Gp)

KW Set of breakpoints in the cumulative water production(Wp)

KF Set of oil rate breakpoints g, in the domain of the potential Nppe
KQ Set of oil rate breakpoints g, in the domain of the function fnpy,
(i) Well indicesie{1,..., wr}

() Well permutations j € {1,..., 2wy

Table 2
Continuous variables.

qo(t) Qil production in period t

qg(t) Gas production in period t

qw(t) Water production in period t
Table 3

Integer Variables.

Ny, eZ Number of wells of reservoir r
N{V €z Number of wells of field f
x{ €[0,1]  Status of well i in reservoir r

model notation. Section 3.2 presents the objective function, and
Section 3.3 presents the model constraints.

3.1. Notation

All the sets and indices used in the mathematical formulation
are presented in Table 1. The continuous and integer variables can
be found in Tables 2 and 3, respectively. The parameters used in
the mathematical formulation are shown in Table 4. Finally, the su-
perscripts utilized in the formulation appear in Table 5.

3.2. Objective function

The objective function to be maximized is the Net Present Value
(NPV) formulated in Eq. (1), which is the sum of yearly cash flows
discounted to time "zero”. The yearly cash flow includes the rev-
enue obtained from oil and gas sales subtracted by the costs of

investment in facilities, drilling and operation of the field:

' Revenue/ (t) — Costf (t)
max NPV:Xt: d1D) 1)
Revenue! (t) = Py(t) x g} (t) + Pe(t) x g} (1) )
Cost/ (t) = CAPEX/ (t) + OPEXS (t) (3)

The yearly cash flow is discounted to its present value using the
discount factor D, which is a decimal number. The commodity
price P, and Py are used as inputs in the revenue calculation Eq. (2).
We assume the commodity price is constant during the lifetime
of the field, but the formulation can be extended to consider a
varying commodity price. The cost is split into capital expenditure-
CAPEX(the cost associated with drilling, facilities construction and
installation, etc.) and operation expenditure-OPEX(the cost associ-
ated with production operations) in Eq. (3).

3.3. Constraints

In this section we present the model constraints. The con-
straints are split into production rate, cumulative production, well,
CAPEX, OPEX and well scheduling constraints.

3.3.1. Production rate constraints

Assuming that reservoirs r € R in the field f are independent,
the total oil, gas and water production in the field are calculated
as the sum of the production coming from all reservoirs, as for-
mulated in Eqs. (4), (5) and (6). These total production rates are
constrained by the respective capacities of the processing facilities
at the production platform, as stated in Eqs. (7), (8) and (9), where
qg(t), q£ (t), and qva(t) are respectively the total oil, gas, and water
rates produced by the field, which are bounded by the correspond-
ing topside capacities q7'*, qg'*, and gy®. The field’s production
rate must be selected such that the revenue due to hydrocarbon
sales out-weights the costs of facilities, see Jahn et al. (2008).

The third constraint is the production potential curve. The oil
production rate of each reservoir r is bounded by its production
potential at a given point in time in Eq. (10), where gg(t) is a vari-
able denoting the production rate from reservoir r at time/year t,
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Table 4
Parameters.
D Discount factor
qmex Maximum oil rate in the production platform
qg™ Maximum gas rate in the production platform
qmax Maximum water rate in the production platform
NEStart Pre-drilled well in field f
NDmax Maximum drilling capacity per year
Np Total number of years in which the initial CAPEX is distributed
Li. . Length of pipeline
Nﬁim Number of subsea joints-template,manifold,pump etc.
P, Qil price
P, Gas price
o CAPEXpyiijing linear coefficient of single well drilling expenditure
o, 03 CAPEXgyse, linear coefficient of pipeline length expenditure & subsea joint expenditure
oy, U5, Olg CAPEXropsige linear coefficient of maximum oil, gas and water processing capacity
o7, g, Og OPEX;qt. linear coefficient of the oil, gas and water rate
o, 011, 012 OPEXnonrate linear coefficient of the well number, pipeline length and joints number

B, B2, B3, Ba, Bs

Constant term in the linear function of CAPEXpyijjing: CAPEXsypsea: CAPEXropside: OPEXrate and OPEXnonrate

Table 5
Superscripts.
) Field
(r) Variables associated with reservoir r e R
(0) Qil
(€3] Gas
(w) Water

(t) Time periods

and 6, por (£) is the production potential of reservoir r at time/year
t. Eq. (10) ensures that the production does not exceed the maxi-
mum feasible oil production rate of the reservoir.

q}(t) = ilqza) (4)
R

q5(t) = gqgw (5)
R

ah () = ;qm (6)

@ (t) < g (7)

qg(t) < g (8)

ah () < g™ (9)

q6(€) < g por (1) (10)

3.3.2. Cumulative production constraints

The cumulative production of oil, gas, and water for each reser-
voir are calculated based on the cumulative production of the pre-
vious time step or at the start of the production phase, and the
production in the previous time step (backward approximation). In
order to simplify the calculations, the time step is assumed to be
1 year, and the unit used for the cumulative production Ny, G, and
W, is 103 Sm3, whereas the unit for the oil (o), water (qw) and gas
rate (qg) is 10° Sm3/Year. We chose a time step of 1 year because
of 4 reasons: 1. In early phases of field development, the industry
typically performs discounted cash flow calculations on a yearly
basis; 2. Most past and recent previous works in the literature

also use a time step of a year (e.g. Epelle and Gerogiorgis, 2019;
Wang et al, 2019; (Gupta and Grossmann, 2012); 3. Our prob-
lem has some constraints that only make sense in a time frame
of a year, for example the maximum number of wells that can be
drilled in a year; 4. Decreasing the time step length will increase
dramatically the running time of the model and will make it chal-
lenging to run uncertainty analyses with it. Both the gas and the
water rates are back calculated from the cumulative gas and wa-
ter production, which are a function of the actual cumulative oil
production, as formulated in Eqs. (13) and (15).
The cumulative oil production from reservoir r is defined as:

Ny(®) =Nt = 1) + gt - 1), t > 1 (11)
N, (0) =0, (12)
as the cumulative gas production from reservoir r is:

Go(&) =Gt —1) +qet —1),t > 1 (13)
G,(0)=0 (14)

and finally the cumulative water production from reservoir r is de-
fined as:

Wi =Wt -1 + gt —1),t=1 (15)

W (0) =0 (16)

3.3.3. Well constraints

The wells activation and the corresponding number of drilled
wells in each time step t are formulated with the following equal-
ity constraint of Eq. (17). The total number of wells in reservoir r
is NI,(t) and the total number of well of the field is denoted by

NI (t) in Eq. (18):

Wr

NG (6) = > % (0) (17)
R

N, (6) =Y N, (0) (18)
r=1

where x{ (t) is a binary variable representing the well status, which
takes on value 1 in case the well is opened at time step t, and 0
otherwise.

The number of wells is constrained by physical limitations both
at the reservoir and field levels, e.g., the maximum number of
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wells allowed to be connected to the template and production
platform (Egs. (19) and (20)). In some types of offshore production
structures, such as steel jackets and SPAR floaters, there is usually
a limited number of well slots available on the deck.

NL(0) < N (8) < NE™ £ > 1 (19)

N, (0) < Ny, (t) < Nj™™, t =1 (20)

The number of pre-drilled wells is defined as N,{,‘Sta", and it is
equal to the number of wells at the beginning of the first year of
the production, when t =0, as formulated in Eq. (21). Once the
production starts, there is a limit on the number of yearly wells
that can be drilled in the field ND™® (see Eq. (22)), e.g., no more
than 3 wells can be drilled per year. Eq. (23) ensures that, after a
well is drilled, it can not be "shut-in” (un-drilled or abandoned).

R
NJ,(0) = N = 3 NL(0).t =0 (21)
r=1
0 < NL(t) — NL(t —1) < NPmex ¢ > 1 (22)
X(E+1) =X () (23)

In some cases, pre-drilling some wells before producing the first
oil improves the project cash flow in an offshore oil/gas field, see
Jahn et al. (2008).

3.3.4. CAPEX constraints

Linear equations were employed in the cost models for drilling,
facilities, and operational expenditures. Despite being linear, the
model is flexible and allows extensions to more complex cost mod-
els. The cost model depends on the yearly and maximum oil, gas
and water flow rates and the number of wells.

The field CAPEX costs are be defined as:

CAPEXf(t) = CAPEXDrilling(t) + CAPEXSubsea (t) + CAPEXTopside (t)
(24)

where CAPEXp,jjing(t) is the drilling cost, which is a function of

the number of wells N\fv drilled at a given time t. CAPEXs,pseq(t)
includes the costs of pipelines, manifolds and any other subsea
layout structures. The cost of topside facilities CAPEXr,psige (£) is @
function of the maximum installed capacity for processing oil, gas
and water rates. All expenditure of the facilities’ fabrication and
installation can be allocated to CAPEXg, e, (£) OF CAPEXpsige ().

The drilling CAPEX is defined as a linear relation of the number
of drilled wells N‘{, at a given time t multiplied by the expenditure
of drilling a single well o1:

CAPEXpyiting () = a1 x (N§,(£) = NJ,(t = 1)) + (25)

where B are is a constant. Wellhead costs can be included into
the parameter «; as they are proportional to the number of wells.
The subsea facilities CAPEX are defined as:

(XzXLf

f
o3 x N+ B
CAPEXgpsea (t) = pipe joint v

tef{l.. ..
Np e

. Np}
(26)

Notice that the joints can be regarded as manifolds that connect
the wells and the pipes, but also flowline joints or subsea pumps.
The length of the pipelines are defined as Lﬁipe, and Np is the to-
tal number of years in which the initial CAPEX is uniformly dis-
tributed. The value of Np partly depends on the tax regulation of
the country and may vary from project to project. Values of 3 - 4
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pipe and N{Omt can be defined as

variables or parameters, depending on the particular case.

The topside CAPEX costs are modeled as a function of the de-
signed maximum rates of oil (gg'™), gas (qg™) and water (gi3™) at
the processing unit:

are common in the North Sea. L/,

Qg X g + o5 X @ + g x g™ + B3
Np ’
Vte{1,...,Np} (27)

CAPEXTopSide (t) =

3.3.5. OPEX constraints
The operation costs (OPEX) can be divided into rate-dependent
costs and non-rate costs:

OPEX/ (t) = OPEX.,(t) + OPEX]  ..(t) (28)
with the rate-dependent OPEX being defined as:

OPEX[,(t) = a7 x g} (£) + s x qf(£) + ot x qhy(6) + Bs (29)
and the non-rate OPEX as:

OPEX/

Nonrate

+opp X Njfm.n[ + Bs
(30)

The rate-dependent OPEX is a function of the oil, gas, and water
rates, whereas the non-rate costs are not. For rate-related costs,
usually higher production rates lead to increased operational costs.
Non-rate costs are typically costs involved in operations of main-
tenance, inspections and offshore personnel, transport, insurance.
They are often dependent on the number of wells, the length of
the pipelines and the subsea layout.

(t) = 10 x N () +ar x L{,,-pe

3.3.6. Well scheduling and status

In the formulation, the production potential depends on the ac-
tive wells in the field, i.e., the well combination. We decided not
to track all combinations (and field potentials) by assigning one
binary variable per combination because the number of possible
combinations grows exponentially with the number of wells, mak-
ing the method non-scalable, i.e., the computational cost will be
prohibitive for large systems. Instead, we utilize mapping and a set
of disjunctions that yield a formulation which requires only one
binary variable per well but still accounts for the different poten-
tials of each well permutation. The compactness of the formulation
contributes to its computational efficiency and also allows dealing
with early-phase field development planning for longer producing
time and a larger number of wells.

In order to account for the effect of well combinations on the
production potential, we define the production potential for each
reservoir r at time ¢t as follows:

o, por (1) = f"(t) x fq(N,(t)) (31)

where fn'(t) is a factor that varies continuously in the interval
[0,1] that indicates the actual production potential of the field r for
a selected subset of producing wells among all the possible well
permutations j e {1,..., 2"}, The actual production of reservoir
r also depends on the maximum production potential fg(Np(t)),
which is a function of the cumulative oil production N of reservoir
r at time t.

The well status is represented by the variable x] € {0, 1}, where
0 means that the well is shut-in, and 1 means that it is produc-
ing. The well permutation is therefore denoted by a tuple w; =<
X, x5, ..., x, > describing the status of the wells i € {1,..., n} with
n being the total number of wells (active and/or inactive) in reser-
voir r € R.

One straightforward way to model the selection of a well com-
bination from all possible permutations W; of reservoir r is to as-
sign one binary variable per permutation j. However, this would
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require a total of 2"l binary variables, which can be intractable
for fields with a large number of wells. As the number of bi-
nary variables in a mixed-integer formulation affects considerably
the computational time to obtain optimal solutions, we propose a
novel modeling approach that requires only |W'| binary variables
to model the well combination selection.

We start by defining a function g": {1,...,2M'1} > W" that
maps an index j from all permutations of well combinations w;
to the set of wells W such that:

g ={iew :wii)=1}, Vje(l,... 2" (32)

where w;(i) denotes the i-th element of the tuple W;. This function
indicates which wells i € W' are active in reservoir r for the j-th
well combination. A table with a map generated by function g’ (-)
is calculated off-line and used in the constraints regarding the well
combination selection as follows:

Forall reRw,je{l,....,2M1}:
@) < ff+ > (1 -x{(6)

ieg (j)
+ > X(®),Viefl,....n} (33)

iewn\g (j)

@) = = 3" A-x)- > X,
icg' (j) ieWr\gr(j)
Vie{l,...,n} (34)

Egs. (33) and (34) create a set of disjunctions such that, depending
on the selection of the active wells through the binary variables
xi, the potential factor of the reservoir fn"(t) will be set to the
potential factor fng corresponding to the correct well combination
w; from all permutations.

4. Piecewise-Linear approximations

The field development optimization problem formulated with
Egs. (1) - (34) is a Mixed-Integer Non-Linear Programming
(MINLP) problem. It is mixed-integer because it contains both con-
tinuous variables regarding the well and field rates, and inte-
ger variables related to the status of the wells and the number
of drilled wells. The nonlinearities of the problem appear in the
production potential curves, including the actual potential based
on the wells permutation, but also in the cumulative production
rates for all the phases. The presence of discrete variables com-
bined with the non-linear curves makes the optimization prob-
lem hard to solve. Our approach is to transform the MINLP prob-
lem into a Mixed-Integer Linear Programming (MILP) one by uti-
lizing Piecewise-Linear (PWL) functions to approximate the non-
linearities, which is similar to the approach used in Silva and Cam-
ponogara (2014) for production optimization problems.

In the optimization problem formulated in this work, there are
a total of 3 non-linear functions, which are actually not available
in an explicit form, and will be sampled from simulations and
interpolated with PWL functions. Among such functions are the
cumulative gas G}, and water production W}, which are a one-
dimensional function of the cumulative oil production Nj. The
other non-linear function is the oil production potential g .
which is a two-dimensional function of both the cumulative oil
production Nj, and the field potential factor fn'.

4.1. Problem reformulation
The non-linear functions Gj,, W} and q{)’pot will be sampled from

simulators and replaced with PWL approximations built from the
sampled data. The simulated data are the outputs of the integrated
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reservoir-production model. The following functions will be ap-
proximated with PWL models:

Gp(t) = fo(NL (1)) (35)
Wy (t) = fw (N, (1)) (36)
Qo.por () = f1" (t) x fq(N,(1)) (37)

Further, notice that the multiplication of continuous variables in
Eq. (37) yields a nonlinear constraint. To circumvent such non-
linearities, we approximate this multiplication also with the use
of PWL functions.

The equations used in the multiplication linearization are the
following:

o, por (£) = [ () x fq(N,(t)) (38)

Notice that the production potential equation is presented twice,
both in Eq. (37) and in Eq. (38). The reason for that is the presence
of both the implicit function fq(Nj(t)) and the multiplication term
far(e) x fq(Np ().

Gas and water rate in time are computed by reformulating
Egs. (13) and (15) to Egs. (39) and (40).

Gg(t) = Gp(t +1) = G, (t) (39)

G () =Wt +1) —Wi(t) (40)
4.2. SOS2 Formulation

A continuous non-linear function f(x): D — RY with a com-
pact domain D can be approximated with a set of linear functions,
which are valid in a family of polytopes P with corresponding
vertices V(P), such that Up.pP =D, {mp}pep €RY, and {cp}pcp,
where:

f)=mx+c,, VxeP,PeP (41)

There are several different mathematical formulations for mod-
elling PWL functions, see Vielma et al. (2010) for a review. A PWL
formulation that has become popular for its efficiency and sim-
plicity is known as Specially Ordered Sets of Type 2 (SOS2), see
Beale and Tomlin (1970) and Beale (1980). The SOS2 model is
based on a convex combination of weighting variables associated
to breakpoints in the domain of the function of interest. The SOS2
formulation works by ensuring that at most two of such weighting
variables can be nonzero simultaneously and, when that happens,
they need to be consecutive for a given ordering of vertices in
the domain. These constraints are typically imposed in the branch-
and-bound algorithm by demand, and many off-the-shelf solvers
have native support for SOS2 constraints.

4.2.1. PWL approximations using SOS2

We assume the function f(Nj(¢t)) is sampled over the domain
Nj(t) for a set of breakpoints K¢ in G},(t) and the corresponding
function values are denoted as f{ (k). The PWL approximation of
the non-linear function in Eq. (35) is formulated as follows:

Gp ()= Y mi(®) - fE (k) (42)
kekg

Ny () = Z ne(6) - N (k) (43)
keKg

Dm0 =1 m() =0 (44)

keKg
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(M(8) e 1s @ SOS2 (45)

where 7}, are weighting variables used in the PWL approximation,
and Eq. (45) are the SOS2 constraints which are imposed by the
solver.

Analogously we sample the function fiw(Np(t)) in a set of
breakpoints Ky over the domain N}, (t), and store the correspond-
ing function values f{, (k). The PWL linearization of Eq. (36) is then
defined as follows:

Wy (6) = k; oy () - fy (k) (46)
Ny (8) = 1; oy (t) - Ny (k) (47)
’XK: of(t)=1,00(t)=0 (48)
(a,{(r))keKW is a SOS2 (49)

where o" are the weighting variables used in the PWL approxima-
tion, and Eq. (49) are the corresponding SOS2 constraints.

Further, the function fq is sampled in a set of breakpoints Kq
over the domain Ny(t), and the corresponding function values
fé(k) are stored in table format. Since this function is used in the
nonlinear multiplication in Eqs. (37) and (38), we linearize this re-
lation using a 2-dimensional PWL function as follows:

qg,pot (t) = Z Z Q;’,k.t : fé(k) (50)
JeKr keKq

fir=3"%" Q0 - () (51)
JjeKr keKq

DD Y =19, 20 (52)

JjeKr keKq

;= Z Qg.k‘t, Vje Kg (53)
kekq

b= Q. Viekq (54)
JjeKr

(¢j)j6KF is a SOS2 (55)

(D1)erc, s @ SOS2 (56)

where the function fn" is sampled in a set of breakpoints K, ngk_t
are the weighting variables for the PWL approximation, and ¢; and
¢y are auxiliary variables which are required in the PWL multidi-
mensional approximation using SOS2. Egs. (55) and (56) are the
SOS2 constraints which are implemented by the solver.

4.3. Logarithmic formulation

The PWL function (41) can be described with several formula-
tions other than the SOS2 formulation. These formulations vary in
the way they represent the polytopes P € P in the domain and the
function approximation itself. Although all the different PWL for-
mulations are equivalent in terms of accuracy for the same domain
partitioning P € D, they can vary significantly in terms of size and
efficiency. One crucial aspect of such formulations is the number of

10
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additional variables and constraints required to construct the ap-
proximation. The SOS2 formulation does not require any additional
variables and constraints, but its performance tends to degrade for
multidimensional approximations with a large number of break-
points (Silva and Camponogara, 2014; Vielma et al., 2010).

A formulation which has promising properties for modeling
multidimensional functions with numerous breakpoints is the
Logarithmic formulation, also known as Log, see Vielma and
Nemhauser (2011). Log is a variation of the aggregated convex
combination (CC) model Keha et al. (2004); Lee and Wilson (2001);
Padberg (2000) that requires an additional number of binary vari-
ables and constraints that grow logarithmically with respect to
the number of breakpoints. Because of the compactness of the
resulting formulation and the strength of its linear relaxations,
Log generally enables considerable improvements in terms of ef-
ficiency compared to other PWL formulations. As Log relies on a
convex combination of breakpoints of the function domain, one
weighting variable is assigned to each vertex v € V(P) of the do-
main such that the point in the graph of the function is de-
scribed through a convex combination of the function values at the
vertices, i.e, (X, f(X)) = YXyeyp) Mv(V, F(V)), {Avlyey(py C Ry such
that ZVEV('P) )\v = ]

Although both SOS2 and Log rely on a convex combination of
breakpoints of the domain, they differ significantly on how they
create the domain partitioning P € D. SOS2 selects a single active
polytope P € P using on-demand constraints imposed by the opti-
mization solver directly in the branching algorithm (Beale, 1980).
On the other hand, Log utilizes a logarithmic number of additional
binary variables and constraints to create a branching scheme that
will select the active polytope within the domain. In other words,
Log relies on an injective function B : P — {0, 1}1°&21PI1 such that
B(P) =y to map each polytope P e P with a binary vector y e
{0,1}M°82 1”11, The only requirement for the function B is that it
must be compatible with SOS2 constraints, i.e., the non-zero A
variables need to be associated with the vertices of at least one
polytope P of P:
3P € P such that {ve V(P) : Ay > 0} CV(P) (57)
whereas the other A variables that lie outside the active poly-
tope P are equal to zero. For a 2D illustrative example of Log, see
(Silva et al., 2012).

In Vielma and Nemhauser (2011) a branching scheme for Log
is proposed for a valid injective function B. The proposed scheme
generates a domain partitioning P that is topologically equivalent
to a triangulation known as J1 or "Union Jack”. This domain par-
titioning is created through a set of additional constraints, which
consists of two phases. The first phase constrains the active poly-
tope to a single hypercube using disjunctive sets. Then, in a second
stage, certain vertices within the selected hypercube are disabled
such that the convex combination is restricted to a single simplex.

The implementation of the branching scheme proposed by
Vielma and Nembhauser (2011) requires new concepts and defini-
tions. Let Se = {sg....,sn} be the set of ordered breakpoints on
the coordinate e, and Z, := {[Sg,S1]. ..., [Sn_1,Sn]} be the intervals
containing pairs of consecutive breakpoints. Let Z.(s) :={Z € Z :
s eI} be a set of the intervals containing the breakpoint s, and
De([si.Siy1]) =i+ 1 be the index of an interval [s;, s;,1] € Z. We
define the function B: {1,...,|Ze|} — {0, 1}M1°82(ZD1 to be a map-
ping between the interval indices and a binary code according to
the Gray code property, meaning that B(i) and B(i + 1) must differ
by only one bit. The vertices of the domain is V(P) =Sy x --- x S4
and d is the dimension.

The first phase of the branching scheme wuses the sets
Fpi={s€8 1 B(Pe(D)); =1,V € Ze(s)} and ]2&1 =1{seS:
B(®(Z)); = 0,VT € Ze(s)}. The constraints which implement the
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first phase of the Log branching scheme are defined as follows:

D Av<xen Vee{l,....on} le{l,... Tlog (7))}  (58a)
VeV,

> Avsx. Veefl.....on} le{1,... log(|Z[)]}  (58b)
vevd,,
Xe;€{0,1}, Vee {1,...,n}, L e {1,..., [log,(|Ze|)1} (58¢)

where VI :={veV(P):veeJ', } and VgB_, ={veV(P): Ve e
]SBI}. The sets V:Bl and VEB, create the partitioning P in each
coordinate e of the domain, and the intersection of the partition-

ing in all coordinates will constrain the domain to a single active

hypercube.

The second phase selects a simplex of the hyper-
cube obtained in phase one using the sets L;s={ve
V(P) : v is even and v; is odd} and Rrs={veV(P):
v; is odd and v; is even},Vr,se D={1,...,d}, such that r<s.

The second branching phase can be implemented in Log with the
following constraints:

Y A<y, Y(rs)el (59a)
VeLyrs

Y = 1-ys V(rs) el (59b)
VER; s
yrs €{0,1}, V(r,s) e T (59¢)
where F:={rs)e{l,....d} x{1,....d} :r < s} is the
set of index pairs indicating which weighting variables

in the convex combination. The sets
Lrs:={veV:vis even and vs is odd} and Rrs:={veV:
v; is odd and v is even} create the partitioning responsible
for scoping the active polytope to a simplex within the selected
hypercube in phase 1.

are to be disabled

4.3.1. PWL approximations using log

Based on the Log model we propose PWL approximations for
the non-linear functions (35), (36), and (37). The Log PWL approx-
imation of GJ,(t) defined in Eq. (35) is formulated as follows:

Gy (D) = ,ZK m(6) - f ) (60a)
N, (t) = IZ () - Ny (k) (60Db)
’ZK: n(t) =1, ni(t) =0 (60¢)
’Z me(6) =xP. Le {1, Tlog, (1Zcp|) 1} (60d)
kekCE,

’Z M) <1-xP. 1efl,.... log,(|Zcp]) T} (60e)
kek?,

XPe{0.1}, L e {1,.... [logy(|Zcp]) 1} (60f)

where Kgl and Icgl are the first-phase branching sets for the set
of ordered breakpoints K¢, and Zg, is the set of intervals contain-
ing the ordered pair of breakpoints in ICg - These sets are defined

analogously to the sets used in the first ’branching phase formu-
lated with Eqgs. (58a), (58b), and (60f).
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Next, we formulate an approximation using Log for the func-
tion fyy (N (t)) defined in Eq. (36) with the following set of equa-
tions:

Wo' (©) = Y {0 fiy () (61)
kekw

Ny(t) = > oy (t) - Ny (k) (62)
keKw

Y opt)=1,00(t)=0 (63)

keKw

> op) =x. e {1, [log,(IZwp DT} (64)

keky, |

Y oi®) =1-x" 1e{1,..., log,(ITwp)1} (65)

kelcevJ

X" e{0.1}, Lef1..... Tlog, (1Zwp )1} (66)

with IC\J;\Ll and ICS\,’l being the first-phase branching sets, and Zy,
the set of intervals containing the ordered pair of breakpoints of
Kw. Notice that the Log approximations of both (35) and (36) use
only the first branching phase. This is because the function do-
mains are unidimensional, thus the active polytopes will be an in-
terval belonging to Zg, and Zyy,.

The last function to be approximated with Log is the produc-
tion potential fq. As this function is present in a nonlinear multi-
plication of variables in Eqs. (37) and (38), we approximate these
relations with a two-dimensional PWL approximation using Log as
follows:

Topot ) =D > Q- fok) (67)
JeKr keKq
fnr = Z Z Q;,k.t ' fnr(]) (68)
JeKr keKq
Yoy, <K le {1, [log,(IZe) 7} (69)
jE)C;r.] keKq
Do D Qe s1-x7 Le{l... Tlog(IZe)T} (70)
Jje, kekq
xEe{0.1}. Lef1..... [log, (|1Z¢])1} (71)
DY Qe < X&' Lef{1,.... Tlog,(IZo))1} (72)
JjeK keKa]
S, <1-xY. le{l..... [log,(Zo))1} (73)
JjeKr ke)C‘FJ.l
X% e {01}, Te {1..... [log, (1Zo)) 1} (74)
Z Qe <Vike YUK) €Ty (75)
(J.k)eLly
Y D=1V YUk eIy (76)

(k) eR
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Table 6
Parameters of the reservoir and network model.

Reservoir & Well

Parameter Reservoir-1 Reservoir-2
Reservoir Pressure, (bara) 195 243
Reservoir Temperature, (°C) 70 90

0il in place, (MSm3) 56.25 39.25
Solution gas-oil ratio, (Sm3/Sm3) 115 150

Initial water saturation, (fraction)  0.05 0.05

Number of wells 6 3

Productivity index, (Sm3/d/bar) 1500 500
Tubing size, (inch) 5.5 5.5
Surface Network
System type Production

Seabed Temperature, (°C) 4

Pipeline diameter, (inch) 6-10
Pipeline Length, (Km) 17.5
Separator Pressure, (bara) 20

Vige € (0.1}, V(i k) e TY (77)

where Egs. (69)-(71) implement the first branching phase of the
Log for the set Kp, whereas Eqs. (72)—(74) are responsible for
the first phase branching for set Kq. The second phase branching
scheme is implemented by Eqs. (75)—(77). Notice that the sets IC;r_l,
KR, K§ 1 IC(F)J, Ir, and Iy are defined analogously to the defini-
tions of the first phase branching in Egs. (58a)-(58c). The sets £,
Rk and I'{ on its turn are defined analogously to the definitions
used in the second phase branching scheme denoted by Eqs. (59a)-
(59c).

5. Simulations

In this section, we present a computational analysis assessing
the accuracy and performance of the proposed formulations, both
SOS2 and Logarithmic, in field development optimization prob-
lems, and a case study of real field producing from 2 reservoirs
for 20 years. The production potential curves for the different
well combinations were generated using the commercial software
Petroleum Expert IPM Experts (2008) with a material balance model
for the reservoir using MBAL coupled to a network model repre-
sented with GAP. Reservoir and network parameters of the coupled
simulations are listed in Table 6. The simulation results of frac-
tional factors with different well combinations are provided in the
Appendix. The computational analysis compares the performance
and approximation accuracy of the PWL models for field develop-
ment problems of different complexities in order to demonstrate
how such models scale with the number of variables and con-
straints. The case study aims to demonstrate the effectiveness of
the Log model in large-scale field development problems both in
terms of efficiency and in terms of approximation accuracy of the
final results.

5.1. Performance and accuracy study of PWL models

In order to assess the effectiveness of the SOS2 and the Log
models applied to field development optimization, we perform a
computational study with some representative problems and com-
pare the performance of both models in terms of accuracy and effi-
ciency on a ThinkPad of Intel(R) Core(TM) i7-8565U CPU @ 1.80 Hz
1.99 GHz 64 bytes. It is expected the objective function to exhibit
some differences when using Log (simplices) or SOS2 (hypercubes)
for the PWL approximation (In Section 4) but the values should
still be comparable. Also, when the production horizon of the field
is increased, the optimization problem becomes harder, and the
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Table 7
Performance Comparison of SOS2 vs. Log (with 5% dual gap stopping criteria).
Model No.  Production horizon = CPU Gap NPV
S0S2/LOG year second % usD
S0s2 1 3 1.35 5.00  3,291,430,000
2 4 43.80 5.00  3,666,370,000
3 5 115.98 5.00  4,209,920,000
4 6 1,540.57 5.00 4,617,210,000
5 7 2,760.23 5.00  4,953,380,000
6 8 20,851.39 5.00 5,220,280,000
LOG 7 3 2.13 498  3,291,430,000
8 4 4.95 4.87  3,666,370,000
9 5 9.94 4.76  4,209,920,000
10 6 11.66 490  4,612,050,000
11 7 14.45 497  4,953,380,000
12 8 53.35 4.91 5,234,550,000
Table 8
Performance Comparison of SOS2 vs. Log (with 500 seconds stopping criteria)
Model No.  Production horizon = CPU Gap NPV
SOS2/LOG year second % usD
S0S2 1 3 25.26 0.0 3,291,430,000*
2 4 176.71 0.0 3,666,370,000*
3 5 500.00 2.04  4,209,920,000*
4 6 500.00 530 4,617,210,000*
5 7 500.00 6.59  4,914,570,000**
6 8 500.00 7.21  5,177,310,000%*
LOG 7 3 3.88 0.0 3,291,430,000*
8 4 7.15 0.0 3,666,370,000*
9 5 15.32 0.0 4,209,920,000*
10 6 52.15 0.0 4,617,210,000*
11 7 67.14 0.0 4,953,800,000**
12 8 98.81 0.0 5,238,500,000**

optimal solution with 0% of dual gap (optimality certificate) might
not be obtained within a reasonable time.

Two batches of simulations were performed to test the perfor-
mance of the PWL formulations. In the first we set a dual gap of
< 5% as the stopping criteria for the algorithms, and compare the
CPU time for the optimization with both PWL models. For the sec-
ond set of simulations, a time limit of 500 seconds is set to be the
stopping criteria, and the dual gap of the final solution obtained by
the different PWL models are compared.

The results of the tests using a dual gap value of 5% as stopping
criteria are shown in Table 7. The table presents the optimization’s
running time (in CPU seconds), the value of the objective func-
tion (NPV) and the value of the gap for six values of production
horizons and when using the SOS2 and Log model. The production
horizon was varied between 3 and 8 years.

When using the SOS2 model to solve the 3 years production
horizon problem, an optimal solution is obtained in 1.35 CPU sec-
onds, while it takes 2.13 CPU seconds using the Log model, which
is a small difference. However, for longer production horizons the
difference becomes substantial, i.e., for 8 years the SOS2 model
takes 20,851.39 CPU seconds (ca. 348 minutes) and the Log model,
takes 53.35 CPU seconds (ca. 1 minute). The comparison clearly in-
dicates the Log model is more efficient to solve the optimization
problem.

In the second batch of simulations, a stopping criteria of 500
CPU seconds was used. The computational results are presented in
Table 8. The objective values marked with a single asterisk (*) in-
dicate that simulations using SOS2 and Log models computed the
same optimum. However for some cases the results using the SOS2
model have a gap greater than zero at the end of the run. When
using the SOS2 model, a longer production horizon positively cor-
related to a higher value of the gap (e.g., 2.04% gap in 5 years life-
time and 5.30% gap in 6 years lifetime).
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Fig. 4. Optimal searching process using SOS2 and Log algorithm.
Objective values marked with two asterisks (**) represent cases Table9 )
where large differences were detected in the objective function at Constraints information.
the end of the run when using the SOS2 and Log models. Simula- Constraints Value:
tiqns performgd with the Log model achieved higher values of the Lifetime: 20 years
objective function with zero gaps. 0il price P,: 60 USD/bbl
Based on the results presented in Table 7 and Table 8, it is pos- Gas price Py 2 USD/MMBTU
sible to conclude that the Log model enables solving the field de- Maximum drilling capacity Ng"o: 3 wells/year

velopment problem more efficiently than the SOS2 model.

Fig. 4 shows the value of the gap and the objective function
versus CPU time when using SOS2 and Log models and using a
production horizon of 4 years. The formulation using SOS2 models
requires around 176.71 CPU seconds to find a solution with 0% of
dual gap. In contrast, the formulation using Log models required
7.15 CPU seconds only to reach a dual gap value of 0%, i.e., 24 times
faster. Even though the optimal solution with the SOS2 model was
obtained within around 20 CPU seconds, close to the time spent
by Log (7.15 CPU seconds), it takes a long time to prove optimality
of the solution, i.e, to close the dual gap upper-bound (the black
dashed line).

5.2. Case study: real-world multi-reservoir field development
optimization

The Log model was applied to the study case in offshore oil
field development presented in Section 2. This case study aims to
test the effectiveness of the logarithmic formulation in a realis-
tic, large-scale model. Some parameters and information about the
study case are provided next.

The field has 2 independent reservoirs and is designed to
produce for 20 years. After performing geology and petroleum
engineering studies, 9 wells with pre-specified paths and
placement positions are considered as drilling candidates, of
which (w1, w2, w3, w4, w5, w6) are placed in Reservoir 1 and
(w7, w8, w9) placed in Reservoir 2. A black-box simulation model
was built considering the reservoir and the production facilities.
Production potential curves were generated using this model for
all possible well combinations.

The decision variables of the optimization problem are the well
allocation and drilling schedule of the field for its lifetime such
that its NPV is maximized.
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3650 x 10° m3/year
2.2 x 10° m3/year
4 years

Maximum oil processing capacity qr*:
Maximum Gas processing capacity gg'®*:
Capital return period Np:

Table 10
Formulation size & computa-
tional performance.

Variables
Binary variables: 770
Integer variables: 60
Linear variables: 7960
Constraints
Equality constraints: 782
Inequality constraints: 3469
Range constraints: 19

Solving information

Solver: Gurobi
CPU time: 2161.75 seconds
GAP: 0%

Three wells from Reservoir 1 are considered to be pre-drilled
before production in the first year. The number of wells that can
be drilled each year should be less or equal to 3. All the other con-
straints are presented in Table 9. The objective function is the max-
imization of the NPV, accounting for the revenue obtained from oil
and gas sales, and the cost from drilling the wells, and with the fa-
cilities construction and operations costs which in function of the
field production rates (oil, gas and water).

Table 10 presents a summary of number and type of vari-
ables and constraints employed in the model and the solver de-
tails and stopping criteria. The overall optimization model consists
of 8790 variables and 4270 constraints. The problem is formulated
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Table 11 L6000+  aaaa. Field-total-Potential
Drilling well sequence. g \ Field-total-Production
Year  Well in production  Reservoir-1 Reservoir-2 E \\\ SN T Reservoir-1-Potential
o N Reservoir-1-Production
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4 8 w1, w2, w3, wd, w5, w6 w8, w9 < \
20 8 wl, w2, w3, w4, w5, w6 w8, w9 3 2000 - A
2 IR
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tion (2020). The CPU time used to run the optimization problem
and obtain the optimal solution (with 0% of dual gap) was 2161.75
seconds.

Fig. 5 and Table 11 show the optimal drilling schedule. As it can
be seen, 3 specified wells (w1, w4, w5) from Reservoir 1 are set to
start producing from the first year. A new well (w3) from Reser-
voir 1 is planned to start producing from the second year. In order
to maintain the production plateau of the field, 3 new wells are
planned to start producing from the third year, 2 wells (w2, w6)
from Reservoir 1 and 1 well (w9) from Reservoir 2. In the fourth
year, another well (w8) from Reservoir 2 is scheduled to start pro-
ducing. In total, 8 wells are planned to be drilled and to produce
from this field from the 9 available candidates. The optimization
model determines the number of wells to be drilled in each year
and which wells are to drill. The optimal solution consisted of 8
wells for the offshore field development, where the candidate well
(w7) from Reservoir 2 is decided not to be drilled. The optimal
well schedule honors all drilling-related constraints for the given
parameters listed in Table 9.

Fig. 6 depicts the field yearly oil rates obtained by the optimiza-
tion. The dashed lines represent the production potential and the
solid lines represent actual oil yearly rates. It can be seen that this
field has a production plateau of 4 years (black solid line). Most
of the field production comes from Reservoir 1 (green solid line),
although its production drops below that of Reservoir 2(red solid
line) in the fourth year. All recoverable reserves in Reservoir 2 are
expected to be produced after 17 years, whereas the production is
expected to last 19 years in Reservoir-1.

Fig. 7 shows the optimum production rate and potential curves
in function of cumulative oil production. The optimum oil produc-
tion rate (solid lines) is below the maximum feasible value (pro-
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Fig. 7. Production potential Vs. optimal production.

duction potential, in dashed lines). The production potential de-
pends on the drilling schedule presented in Table 11.

6. Conclusions

We proposed a formulation using mathematical programming
for field development optimization in early-phase of an offshore
hydrocarbon field. The optimization consists in determining the
drilling and production schedules that maximize the project value
for a multi-reservoir field.
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The model is formulated in a flexible manner such that it can
be extended and customized to other field development problems.
The main contribution of this work is two-fold. First we proposed
a novel way to represent the drilling schedule and the well com-
bination selection from all possible well permutations in the field.
As the efficiency of the optimization is significantly impacted by
the number of binary variables, we formulated the well combina-
tion selection with a set of constraints that require only a reduced
number of binary variables, equal to the number of wells. This al-
lows to scale the problem to larger fields with numerous wells.

Secondly we propose the use of a Logarithmic model to trans-
form the field development MINLP problem into a MILP formu-
lation. We demonstrate through a real-world case study that the
Logarithmic formulation is substantially more efficient than the
traditional SOS2 models, specially when the production horizon is
more than just a few years. The logarithmic formulation also al-
lows to reach lower dual gap values in a shorter time. Based on
simulation analysis, we have the following specific conclusions:

e Both SOS2 and Log models have been applied to solving field
development problems and the results show significant im-
provements in computational efficiency when using the Log
model.

More computational time is required to find optimal solutions
when increasing the production horizon (field lifetime). The re-
quired computational time increased dramatically in the SOS2
model when compared to the Log model.

The Log algorithm takes less than 1 h to find the optimal solu-
tion to a real field planning problem with a production horizon
of 20 years.

The authors believe that the proposed optimization model us-
ing production potential curves is appropriate for field develop-
ment of early phases when limited data is available, and reser-
voir models are highly uncertain, under construction, or unavail-
able. The model is suitable to run extensive analyses to evaluate
uncertainty with a reduced computational budget. However, this
approach may not be appropriate for later stages of the field de-
velopment process when more complex models are used, such as
compartmentalized, highly heterogeneous reservoirs, or capturing
well placement issues.

Moreover, in the proposed optimization model, it is impossi-
ble to enforce constraints on the reservoir pressure and individ-
ual well rates as these variables are not tracked. This is an inter-
esting aspect to be investigated in future works, as in real-world
fields there are often constraints that need to be imposed on spe-
cific wells due to physical limitations or operational issues.

Further, we have used a time-step of one year based on pre-
vious works and to ensure compatibility with drilling constraints
in our work. However, we believe it is important to evaluate the
effect of the time step on the optimization results output by the
model, and we suggest this as future work.

Another assumption made in this work is that the wells can
produce at their potential rate. However, in some cases, this might
not be possible due to technical constraints (e.g., sand production).
As a workaround, it is possible to add additional constraints to
the formulation to avoid field production reaching undesirably high
levels.

We believe the proposed methodology can be a valuable
decision-support tool for field planners, capturing first-order mag-
nitude effects and output variability considering several uncertain
parameters. Possible extensions of this work are to perform the
planning and scheduling of multiple fields in the same area, de-
termine the optimal location of subsea and topside facilities, and
study staged developments, where decisions are taken sequentially,
and models are updated with new information.
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Appendix A
Table 12
Fractional Factors of Different Well Combinations.

Reservoir-1

Well combinations f Well combinations  f!

wil 0.166 w2 0.249
w3 0.195 w4 0.293
w5 0.198 w6 0.113
wil,w2 0.332  wlw3 0.357
wil,w4 0413  wl,w5 0.365
w1l,w6 0279  w2,w3 0.436
w2,w4 0.467  w2,w5 0.448
w2,w6 0.362 w3,w4 0.477
w3,w5 0.393  w3,w6 0.308
w4,w5 0492  w4,w6 0.406
w5,w6 0.304  wl,w2,w3 0.516
wl,w2,w4 0.524 wl,w2,w5 0.530
wl,w2,w6 0.445 wl,w3,w4 0.591
wl,w3,w5 0.556 wl,w3,w6 0.470
wl,w4,w5 0.611 w1,w4,w6 0.526
wl,w5,w6 0.470 w2,w3,w4 0.642
w2,w3,w5 0.635 w2,w3,w6 0.549
w2,w4,w5 0.665  w2,w4,w6 0.580
w2,w5,w6 0.553 w3,w4,w5 0.676
w3,w4,w6 0.590 w3,w5,w6 0.499
w4,w5,w6 0.597 w3,w4,w5,w6 0.781
w2,w4,w5,w6 0.771 w2,w3,w5,w6 0.740
w2,w3,w4,w6 0.755 w2,w3,w4,w5 0.841
w1l,w4,w5,w6 0.717 wl,w3,w5w6 0.661
w1,w3,w4,w6 0.704 w1,w3,w4,w5 0.790
wl,w2,w5,w6 0.636 wl,w2,w4,w6 0.637
wl,w2,w4,w5 0.722 wl,w2,w3,w6 0.629
wil,w2,w3,w5 0.714 wl,w2,w3 w4 0.696
w1,w2,w3,w4,w5 0.895 w1l,w2,w3,w4,w6 0.809
wl,w2,w3,w5w6 0.820 wl,w2,w4,w5w6 0.828
w1,w3,w4,w5,w6 0.895 w2,w3,w4,w5,w6 0.946

w1,w2,w3,w4,w5,w6 1.000

Reservoir-2

Well combinations  f? Well combinations  f?
w7 0.527 w8 0.606
w9 0.644 w7,w8 0.807
w7,w9 0.878 w8,w9 0.907
w7,w8,w9 1.000
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