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A B S T R A C T

The drainage of the non-Newtonian film between two approaching fluid particles are studied. The non-
Newtonian continuous phase is a generalized Newtonian fluid that obeys the power-law model, and the
deformable particle interfaces are allowed to have any degree of tangential mobility. The interaction is a
gentle collision with a constant relative approach velocity. The film equations are simplified by using the
lubrication theory in the thin film limit and combined with the boundary integral method. The effect of the
non-Newtonian behavior on the film drainage and on the coalescence time is investigated through the power
index. It is found that the non-Newtonian behavior significantly affects the number and type of the rims
emerging at the interfaces. At a given approach velocity, when there are no rims or when the interfaces are
fully mobile, the coalescence times for Newtonian and non-Newtonian fluids appear to be the same. Otherwise,
the coalescence time increases with the power index, i.e., it is faster for shear-thinning fluids and slower for
shear-thickening ones. This effect of the non-Newtonian behavior is found to amplify with the tangential
mobility of the interfaces and the relative approach velocity.
1. Introduction

The coalescence of fluid particles plays a crucial role in several
industrial fields such as cosmetics, food, pharmaceuticals, and petro-
chemical industries, where dispersed flows are commonly encoun-
tered. Within these industries, chemical and biochemical reactors are
frequently employed. In many processes, the continuous phase is a
Newtonian one; however, non-Newtonian fluids, for instance, polymer
solutions, crude oil, or biofluids, are also encountered. The rheological
complexity of the continuous phase may influence the interactions
between the fluid particles and heat and mass transfer in the unit,
influencing the coalescence process and playing a critical role in the
reactor performance. The detailed impact of fluids’ complex rheological
properties on coalescence is not yet fully understood. Thus, to better un-
derstand this concept, the single event of coalescence between two fluid
particles in a non-Newtonian continuous medium should be studied.

To describe the coalescence progression, the following steps are
suggested based on the observations of Shinnar and Church (1960):

1. The external flow brings the fluid particles close enough for them
to interact

2. A thin film of the continuous phase is entrapped between the
particles

3. The film drains until reaching a critical film thickness value

∗ Corresponding author.
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4. The film ruptures, and coalescence occurs as longs as the contact
time of the particles is longer than the time needed to reach the
critical film thickness value

Although these steps have been proposed through observations on
a Newtonian system, the same mechanisms can be expected to apply to
the systems involving non-Newtonian fluids.

Coulaloglou (1975) gives a statistical method for estimating the
coalescence efficiency, 𝜆𝑐 , based on the film drainage approach:

𝜆𝑐 = 𝑒𝑥𝑝
(

−
𝑡𝑑𝑟𝑎𝑖𝑛𝑎𝑔𝑒
𝑡𝑐𝑜𝑛𝑡𝑎𝑐𝑡

)

(1)

This model is restricted to gentle collisions, in which the radius
of the particle is significantly larger than the radius of the emerging
thin film. The drainage time is then estimated through hydrodynamic
modeling of the film drainage. A great number of film drainage models
which are built by considering various levels of complexity exist in
the literature for the Newtonian systems. A comprehensive overview
of these studies can be found in Chesters (1991) and Liao and Lucas
(2010). As the film between the particles is fairly thin, the lubrication
theory is often applied to simplify the hydrodynamic models. Further-
more, the film drainage models are commonly categorized based on
the particle interface’s deformability, and tangential mobility (Chesters,
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1991). The former categorization separates models with rigid spher-
ical (or spherical cap-shaped) fluid particles and the particles with
deformable interfaces, which can model the experimentally observed
dimple formation (Derjaguin and Kussakov, 1939). Moreover, the in-
terfaces of the particles are either immobile, partially mobile, or fully
mobile. When the interfaces are immobile, the film drainage is gov-
erned by the viscous forces, which results in a parabolic velocity
profile in the film. The complete immobilization of the interface may
stem from a significantly viscous dispersed phase (Bazhlekov et al.,
2000) or from surfactant presence, which creates Marangoni stresses
at the interface and also gives the interface viscous or viscoelastic
properties (Ozan and Jakobsen, 2019b, 2020). When the tangential
mobility of the interface completely controls the drainage, the velocity
profile in the film resembles a plug-flow, and the interfaces are said
to be fully-mobile. In this case, the parabolic component of the ve-
locity profile is insignificant. When neither the plug nor the parabolic
profiles are negligible, the interfaces are described as partially-mobile.
Here immobilizing factors, i.e., high dispersed phase viscosity and the
surfactant presence, play a key role in determining the extent of the
tangential mobility of the interfaces.

The boundary integral theory can be employed to determine the
tangential velocity of the interface (Davis et al., 1989). This method
permits the coupling of the dispersed and the continuous phase velocity
fields through the stress balances and the no-slip condition without
requiring the solution of the internal flow in the particles, thereby
considerably reducing the computational costs. Following Davis et al.
(1989), the use of the boundary integral method has been established
as a standard procedure in the literature and applied in many Newto-
nian film drainage studies where the interfaces are fully or partially
mobile (Yiantsios and Davis, 1991; Abid and Chesters, 1994; Klaseboer
et al., 2000; Bazhlekov et al., 2000; Ozan and Jakobsen, 2019a; Ozan
et al., 2021). Yiantsios and Davis (1991) investigated the interactions
between two fluid particles with deformable interfaces and found that
coalescence was not possible without attractive van der Waals forces. In
addition, they revealed that for strong van der Waals forces, the film
rupture occurs at the center, which they call a nose rupture. As the
van der Waals forces weaken, the capillary forces are allowed to act
first and cause the formation of the rims at the interface. The films
then eventually rupture from the rims, i.e., rim rupture is seen. Abid
and Chesters (1994) considered the centerline, constant approach ve-
locity collisions in the presence of the attractive intermolecular forces
by considering fully mobile interfaces and proposed a critical film
thickness expression, below which the film ruptures. Klaseboer et al.
(2000) investigated the film drainage with two different theoretical
models: one where the interfaces are immobile, i.e., the velocity profile
is parabolic, and one with fully mobile interfaces meaning the velocity
profile only has a plug flow contribution. Klaseboer et al. (2000) also
gathered experimental data by analyzing the constant velocity droplet
interactions and concluded that the immobile model represented the
experimental results better. Bazhlekov et al. (2000) established a model
suitable for all ranges of mobility, whose effect appears through the
dispersed to continuous phase viscosity ratio in the thinning equation.
They considered both constant velocity and constant interaction force
collisions and showed the immobilizing effect of the dispersed phase
viscosity on the interfaces. Via a similar model, Ozan and Jakobsen
(2019a) presented the coalescence time as a function of the relative ap-
proach velocity and the viscosity ratio by also taking the attractive van
der Waals forces into account. They identified three successive regimes
with increasing approach velocity. First, in the low-velocity drainage
regime, the coalescence time decreases with increasing approach ve-
locity following a power-law type relation. In this regime, nose rupture
occurs. Then, the dimple formation starts in the second regime, and
the rupture location switches to the rim. Here, the coalescence time
still decreases with the velocity but less and less dramatically. As the
last regime is reached, the coalescence time exhibits a minimum and
2

starts increasing, which coincides with the emergence of secondary
rim structures at the interface. In a recent study, Ozan et al. (2021)
incorporated a force balance to the film drainage model to represent the
time-dependent behavior of the approach velocity instead of assuming
a constant velocity or a constant interaction force. This force balance
included the buoyancy and the drag forces, as well as the added mass
effects and the resistance of the film to the drainage. The resistance was
found to be capable of slowing down the approach considerably and
even reverse the process to result in the particles to rebound instead of
coalesce.

On the other hand, far less research is dedicated to coalescence
within non-Newtonian continuous media in the literature, most of
which focused on the factors influencing in-line coalescence of rising
bubbles. Acharya et al. (1978) reported through experimental observa-
tions that the elasticity in the continuous phase tends to hinder film
drainage and thereby delay coalescence. Dekee et al. (1986) investi-
gated experimentally the effect of the bubble wake and the approach
velocity on the bubble coalescence features within a vertical arrange-
ment in purely shear-thinning and viscoelastic polymer solutions. In
several works, Li and coworkers (Li et al., 1997; Li, 1999; Li et al.,
2001) studied the interactions and the coalescence of rising bubbles
in non-Newtonian fluids. Some of their key findings were that the
stress created by the passage of bubbles and their relaxation due to the
fluid’s memory are central to bubble interactions and coalescence. Lin
and Lin (2009) reported that the drag force and pushing force cause
acceleration of the trailing bubble to the leading one. Al-Matroushi
and Borhan (2009) found that the flow disturbance behind the leading
bubble and the viscoelastic nature of the continuous phase appear to
hinder bubble coalescence. Sun et al. (2017) investigated the effects
of operation conditions on bubble minimum in-line coalescence height
in non-Newtonian fluid described by the power-law. Zhu et al. (2018)
studied the velocity evolution for the coalescence of two in-line bubbles
rising in non-Newtonian fluids experimentally and also developed a
theoretical model based on Newton’s second law. Although these stud-
ies offer much in understanding the overall coalescence behavior in a
column, they do not provide precise control over some key parameters,
such as the approach velocity, which makes it near impossible to isolate
the effects of these parameters from others. The experiments studying
the so-called parallel bubbles’ growth, e.g. Fan et al. (2020), enable
the investigation of the effect of the approach velocity. Furthermore, in
such experiments, as the velocity can be fixed to a precisely-controlled
value, it is possible to examine the impact of other parameters, e.g., the
rheological properties, on the coalescence without the interference of
the changes and fluctuations in the velocity itself. In contrast to the
in-line studies, there have been far fewer looking into the coalescence
process of parallel bubbles growing side-by-side in non-Newtonian
fluids. Fan et al. (2020) investigated the coalescence dynamics of twin
bubbles growing from two adjacent nozzles in CMC-solutions described
by the power-law. They concluded that for high enough gas flow, the
coalescence efficiency increases with the CMC concentration, i.e., the
coalescence time is lower when the solution is more shear-thinning.

In the current work, the film drainage behavior and the coalescence
time for fluid particles in non-Newtonian media are investigated by
employing a hydrodynamic film drainage model. The non-Newtonian
film is assumed to follow the power-law, and the interfaces are modeled
as deformable ones that are allowed to be of any degree of tangential
mobility.

The article outlines the following: The mathematical model em-
ployed and the physical configuration are presented in Section 2. A
description of the numerical procedure and its validation are given
in Section 3.1. Section 3.2. presents the results consisting of the film
drainage behavior and the coalescence time, together with their dis-
cussion. Finally, the conclusions derived throughout the study are

summarized in Section 4.
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Fig. 1. Physical system consisting of two approaching fluid particles in non-Newtonian medium with viscosity 𝜂, and the thin deformable film entrapped by them.
2. Theory

This work studies the axisymmetrical interactions between two fluid
particles in non-Newtonian continuous media. The physical configura-
tion is depicted in Fig. 1. The particles are considered to approach each
other with constant relative approach velocity, 𝑉𝑎𝑝𝑝 = 𝑉2 − 𝑉1, along
their center lines. Moreover, the particles are allowed to have different
radii, i.e., 𝑅1 is not necessarily equal to 𝑅2, as marked in Fig. 1. The
particles entrap a thin film of the non-Newtonian continuous phase,
whose viscosity 𝜂 follows the power-law model. This film eventually
starts to drain and has a thickness, ℎ = ℎ(𝑟, 𝑡). The flow is assumed to
be incompressible, while the interfaces between the continuous and the
dispersed phases are modeled as deformable surfaces, and the surface
tension, 𝜎, is constant. Furthermore, it is assumed that the particles
collide gently, such that both particles’ radii are much larger than the
radius of the entrapped film. Consequently, the equivalent radius , 𝑅𝑝
defined by Abid and Chesters (1994):

1
𝑅𝑝

= 1
2

(

1
𝑅1

+ 1
𝑅2

)

, (2)

can be used to describe both particle sizes. Then it is possible to model
the collision between unequal-sized particles as the collision of equal-
sized ones with a radius of 𝑅𝑝. Hence, the system becomes symmetric
around the radial axis. Then, the thin film sketch in Fig. 1 can be
divided into four equal quadrants, where it is only necessary to obtain
the solution for one of them. The quadrant with 𝑟 ≥ 0 and 𝑧 ≥ 0, where
the interface can be described by 𝑧 = ℎ∕2, is chosen. Furthermore, the
film is described in cylindrical coordinates, and the particle interfaces
are allowed to deform under the collision.

2.1. Governing equations and interface conditions

Due to the assumption of a thin film, the lubrication theory is
applied. The relation between characteristic scales of film thickness, ℎ̄,
and the radial coordinate, 𝑟̄, is given as:

ℎ̄
𝑟̄
= 𝜖 ≪ 1. (3)

In addition, for a gentle collision, ℎ̄ and 𝑟̄ can be expressed in terms
of the equivalent particle radius (Ozan and Jakobsen, 2019a):

ℎ̄ = 𝜖2𝑅𝑝, 𝑟̄ = 𝜖𝑅𝑝 (4)

Notice that initially the thin film and the gentle collision assump-
tions yield two different small parameters. However, for the particular
configuration studied here, it is possible to manipulate these small
parameters to end up with a single 𝜀 as described in Eqs. (3)–(6) of Ozan
and Jakobsen (2019a).

The continuity equation and the equation of motion govern the film
flow. Here, the dominant terms in the equations are given directly in
3

the thin film limit without discussing the order of magnitude of each
term, as the simplification process and the resulting sets of equations
are well-established in the literature, e.g., by Chan et al. (2011). The
dominant terms are the same as the Newtonian case, except for the
non-constant viscosity 𝜂. Then, in the thin film limit, the governing
equations read

1
𝑟
𝜕
𝜕𝑟

(𝑟𝑣𝑟) +
𝜕𝑣𝑧
𝜕𝑧

= 0 (5)

and
𝜕𝑃
𝜕𝑟

= 𝜕
𝜕𝑧

(

𝜂
𝜕𝑣𝑟
𝜕𝑧

)

, 𝜕𝑃
𝜕𝑧

= 0 (6)

where 𝑣𝑟 and 𝑣𝑧 denote the 𝑟 and 𝑧 components of the velocity,
and 𝑃 is the excess pressure in the film. Note that the 𝜃-component
of the equation of motion is not required due to the axisymmetry.
Furthermore, 𝜂 is the non-Newtonian viscosity obeying the power-law:

𝜂 = 𝑚𝛾̇𝑛−1 = 𝑚
|

|

|

|

𝜕𝑣𝑟
𝜕𝑧

|

|

|

|

𝑛−1
(7)

Here, 𝑚 is the flow consistency index, 𝑛 is the power index and 𝛾̇ is
the magnitude of the rate of deformation tensor, γ̇ = ∇𝐯+ (∇𝐯)⊺, where
𝐯 is the velocity vector in the film. Note that originally the magnitude
𝛾̇ includes other velocity components as well, but in the thin film limit
these components are negligible compared to 𝜕𝑣𝑟

𝜕𝑧 . The power-law is
further inserted into the equation of motion, which yields:

𝜕𝑃
𝜕𝑟

= 𝜕
𝜕𝑧

(

𝑚
|

|

|

|

𝜕𝑣𝑟
𝜕𝑧

|

|

|

|

𝑛−1 𝜕𝑣𝑟
𝜕𝑧

)

, 𝜕𝑃
𝜕𝑧

= 0 (8)

Since the model is only solved for the 𝑟 ≥ 0, 𝑧 ≥ 0 quadrant,
where 𝑣𝑟 decreases with 𝑧, the velocity gradient in the viscosity model
is negative. As also 𝑚 is a constant, then, Eq. (8) is rewritten as:

𝜕𝑃
𝜕𝑟

= −𝑚 𝜕
𝜕𝑧

[(

−
𝜕𝑣𝑟
𝜕𝑧

)𝑛]

(9)

The continuous and the dispersed phase flows are coupled via
boundary conditions valid at the interface, 𝑧 = ℎ∕2: the no-slip con-
dition, the kinematic condition, and the normal and the tangential
components of the stress balance. In the thin film limit, these conditions
respectively yield:

𝑣𝑟 = 𝑈𝑡, (10)

𝑣𝑧 −
1
2
𝜕ℎ
𝜕𝑟

𝑣𝑟 =
1
2
𝜕ℎ
𝜕𝑡

, (11)

𝑃 = 2𝜎 − 1 𝜕 (

𝑟 𝜕ℎ
)

, (12)
𝑅𝑝 2𝑟 𝜕𝑟 𝜕𝑟
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and

−𝜂
𝜕𝑣𝑟
𝜕𝑧

= 𝜏𝑑 , (13)

here 𝑈𝑡 is the tangential velocity of the interface, 𝜎 is the surface
ension and 𝜏𝑑 is the particle side tangential stress evaluated at the
nterface. Due to the assumption of gentle collision, the particle side
ressure deviations are neglected in Eq. (12). Moreover, at a consider-
ble radial distance, 𝑟∞, it is presumed that the shape of the interface
nd the approach velocity are unaffected by the collision. Thus, the
ollowing boundary conditions hold:
𝜕ℎ
𝜕𝑡

|

|

|𝑟∞
= −𝑉𝑎𝑝𝑝, (14)

and

𝑃 |𝑟∞ = 0. (15)

Whereas the axisymmetry implies:
𝜕ℎ
𝜕𝑟

|

|

|𝑟=0
= 0, (16)

nd
𝜕𝑃
𝜕𝑟

|

|

|𝑟=0
= 0, (17)

The initial film thickness is described as:

= ℎ00 +
𝑟2

𝑅𝑝
(18)

to resemble the curvature of a sphere.
Moreover, following Davis et al. (1989), the boundary integral of

the Stokes flow is employed to calculate the tangential velocity of the
interface:

𝑈𝑡 =
1
𝜇𝑑 ∫

𝑟∞

0
𝜙 𝜏𝑑 d𝜌, (19)

where

𝜙 = 1
2𝜋

𝜌∫

𝜋

0

cos 𝜃
√

𝑟2 + 𝜌2 − 2𝑟𝜌 cos 𝜃
d𝜃 (20)

2.2. Dimensionless equations

Based on the relationship between the characteristic film thickness
and radius scales, as shown in Eq. (3), the following transformations:

𝑟 = 𝜖𝑅𝑝𝑟, ℎ = 𝜖2𝑅𝑝ℎ̃, 𝑃 = 𝜎
𝑅𝑝

𝑃 , 𝑣𝑟 =
𝜖3𝜎
𝜂0

𝑣̃𝑟,

𝑣𝑧 =
𝜖4𝜎
𝜂0

𝑣̃𝑧, 𝑡 =
𝑅𝑝𝜂0
𝜖2𝜎

𝑡, 𝜏𝑑 = 𝜖𝜎
𝑅𝑝

𝜏𝑑 (21)

re employed to make the model equations dimensionless. Notice that
he transformations for 𝑣𝑟 and 𝑣𝑧 also apply to 𝑈𝑡 and 𝑉𝑎𝑝𝑝, respectively.
ere, 𝜂0 is the characteristic viscosity scale which is obtained by
on-dimensionalizing the power-law given in Eq. (7):

0 = 𝑚
1
𝑛

(

𝜖𝜎
𝑅𝑝

)1− 1
𝑛

(22)

The dimensionless governing equations are written as:

1
𝑟
𝜕
𝜕𝑟

(𝑟𝑣̃𝑟) +
𝜕𝑣̃𝑧
𝜕𝑧̃

= 0 (23)

and
𝜕𝑃
𝜕𝑟

= − 𝜕
𝜕𝑧̃

[(

−
𝜕𝑣𝑟
𝜕𝑧̃

)𝑛]

, 𝜕𝑃
𝜕𝑧̃

= 0 (24)

The interface conditions become

𝑣𝑟 = 𝑈̃𝑡 (25)

𝑣 − 1 𝜕ℎ̃ 𝑣 = 1 𝜕ℎ̃ (26)
4

𝑧 2 𝜕𝑟 𝑟 2 𝜕𝑡
nd

𝑃 = 2 − 1
2𝑟

𝜕
𝜕𝑟

(

𝑟 𝜕ℎ̃
𝜕𝑟

)

, −𝜂̃
𝜕𝑣𝑟
𝜕𝑧̃

= 𝜏𝑑 (27)

where

̃ =
|

|

|

|

𝜕𝑣̃𝑟
𝜕𝑧̃

|

|

|

|

𝑛−1
(28)

Finally, the dimensionless boundary and initial conditions read:

𝜕ℎ̃
𝜕𝑡

|

|

|𝑟∞
= −𝑉𝑎𝑝𝑝, 𝑝̃|𝑟∞ = 0 𝜕ℎ̃

𝜕𝑟
|

|

|𝑟=0
= 0

𝜕𝑝̃
𝜕𝑟

|

|

|𝑟=0
= 0

(29)

nd

̃ = ℎ̃00 + 𝑟2 (30)

Solving the radial component of the equation of motion in Eq. (24)
hile employing the assumption of symmetry around the radial axis
nd the no-slip condition in Eq. (25), yields:

𝑣𝑟 = 𝑈̃𝑡 +
1

1
𝑛 + 1

(

− 𝜕𝑃
𝜕𝑟

)1∕𝑛 ⎡
⎢

⎢

⎣

(

ℎ̃
2

)
1
𝑛+1

− 𝑧̃
1
𝑛+1

⎤

⎥

⎥

⎦

(31)

Here, the first term gives rise to a plug-flow velocity profile while
he second term results in a parabolic-like flow. By taking the derivative
ith respect to 𝑧 of Eq. (31), the following expression for the tangential

tress balance is obtained:

− ℎ̃
2
𝜕𝑃
𝜕𝑟

= 𝜏𝑑 (32)

Inserting 𝜏𝑑 and Eq. (20) into the boundary integral equation given
in Eq. (19), yields in dimensionless form:

𝑈̃𝑡 = − 1
2𝜋𝜆∗ ∫

𝑟∞

0 ∫

𝜋

0

ℎ̃
2
𝜕𝑃
𝜕𝑟

cos 𝜃
√

𝑟2 + 𝜌̃2 − 2𝑟𝜌̃ cos 𝜃
d𝜃 d𝜌̃ (33)

where 𝜆∗ is the dispersed to continuous viscosity ratio, given as: 𝜆∗ =
𝜖𝜇𝑑
𝜂0

.
Eq. (31) is then inserted into the continuity equation given in

Eq. (23), which is solved for 𝑣𝑧. By inserting both 𝑣𝑟 and 𝑣𝑧 into the
kinematic condition in Eq. (26), it can be manipulated to give the
thinning equation:

𝜕ℎ̃
𝜕𝑡

= −1
𝑟
𝜕
𝜕𝑟

[

𝑟
(

− 𝜕𝑃
𝜕𝑟

)1∕𝑛
ℎ̃2𝑛+1

]

𝑛
(1 + 2𝑛)21∕𝑛+1

− 1
𝑟
𝜕
𝜕𝑟

(𝑟𝑈̃𝑡ℎ̃) (34)

Moreover, adding a term accounting for the attractive van der Waals
forces, which is used to estimate the film rupture, to the normal stress
balance in Eq. (27), the pressure equation is obtained:

𝑃 = 2 − 1
2𝑟

𝜕
𝜕𝑟

(

𝑟 𝜕ℎ̃
𝜕𝑟

)

+ 𝐴∗

ℎ̃3
(35)

where 𝐴∗ is the dimensionless Hamaker constant that is defined as
𝐴∗ = 𝐴

6𝜋𝜖6𝑅2
𝑝𝜎

.
The thinning, the pressure, and the boundary integral equations

are solved simultaneously with the boundary conditions in Eq. (29),
starting with the initial condition in Eq. (30). In this general case, the
particle interfaces are considered partially mobile.

2.2.1. Immobile interfaces
When 𝜆∗ is very large, it can be seen from Eq. (33) that the

contribution of the tangential velocity is negligible, thus the thinning
equation reduces to:

𝜕ℎ̃
𝜕𝑡

= −1
𝑟
𝜕
𝜕𝑟

[

𝑟
(

− 𝜕𝑃
𝜕𝑟

)1∕𝑛
ℎ̃2𝑛+1

]

𝑛
(1 + 2𝑛)21∕𝑛+1

(36)

As the tangential velocity does not appear in the model when the
interfaces are immobile, the boundary integral equation is omitted, and
only the thinning and the pressure equations are solved.



International Journal of Multiphase Flow 144 (2021) 103787M. Fanebust et al.
Fig. 2. Figure 5 of Ozan and Jakobsen (2019a) recreated to validate the non-Newtonian solver. Time development of film thickness as a function of 𝑟 with 𝑛 = 1 for different
approach velocities. The profiles are obtained for immobile interfaces, 𝐴∗ = 10−4, 𝑟∞ = 15 and ℎ00 = 10.
2.2.2. Fully mobile interfaces
As 𝜆∗ approaches zero, the interfaces become fully mobile and the

plug-flow term dominates the thinning equation:

𝜕ℎ̃
𝜕𝑡

= −1
𝑟
𝜕
𝜕𝑟

(𝑟𝑈̃𝑡ℎ̃) (37)

Provided that 𝜆∗ is small enough to render the interfaces fully
mobile, its effect on the drainage behavior disappears. By defining
a new tangential velocity 𝑈̂𝑡, the boundary integral equation can be
rewritten as:

𝑈̂𝑡 = 𝜆∗𝑈̃𝑡 = − 1
2𝜋 ∫

𝑟∞

0 ∫

𝜋

0

ℎ̃
2
𝜕𝑃
𝜕𝑟

cos 𝜃
√

𝑟 + 𝜌̃ − 2𝑟𝜌̃ cos 𝜃
d𝜃 d𝜌̃ (38)

Then, by manipulating the transformation given for the time in
Eq. (21) as

𝑡 =
𝑅𝑝𝜂0
𝜖2𝜆∗𝜎

𝑡𝜆 (39)

the thinning equation for the fully mobile interfaces is found:

𝜕ℎ̃
𝜕𝑡𝜆

= −1
𝑟
𝜕
𝜕𝑟

(𝑟𝑈̂𝑡ℎ̃) (40)

The new transformation applied for the fully mobile case also
changes the first boundary condition in Eq. (29) into:

𝜕ℎ̃
𝜕𝑡𝜆

|

|

|𝑟∞
= −𝜆∗𝑉𝑎𝑝𝑝 (41)

3. Results and discussion

The non-Newtonian drainage model obtained in Section 2 is solved
for various degrees of interfacial mobility. The numerical procedure
and the solver validation are presented in Section 3.1. The simulation
results, then, are given and discussed in Section 3.2. The effect of the
5

non-Newtonian behavior on the film drainage is examined through
the film thickness, the excess pressure, the tangential stress and the
viscosity profiles. Even though the drainage model cannot simulate the
coalescence phenomena in full, it is possible to estimate the onset of
coalescence, which is indicated by the rupture of the thin film. The
time from the beginning of the drainage until the rupture is taken as the
coalescence time, and presented as a function of the power-index, the
relative approach velocity and the viscosity ratio. As all the variables
are in dimensionless form, the tildes are excluded hereafter.

3.1. Numerical procedure and validation

The boundary integral, the thinning, and the pressure equations,
respectively Eqs. (33)–(35) are solved simultaneously in the partially
mobile case, and the boundary and initial conditions given in Eqs.
29 and 30 are employed. When the interfaces are immobile, Eq. (33)
becomes redundant as the tangential mobility is zero, and Eq. (36) is
used as the thinning equation. The fully mobile solver, on the other
hand, employs Eqs. (40) and (41) together with the pressure equation
as given in Eq. (35). In all solvers, the time derivatives discretized using
a second order backward finite differentiation, and a Chebyshev-based
spectral method is used in spatial discretization as described by Guo
et al. (2013).

Although the boundary integral equation significantly decreases
the computational costs by providing the tangential velocity at the
interface without requiring the particle side flow fields to be solved, it
has an inherent singularity that must be addressed. The methodology
suggested by Ozan and Jakobsen (2019a) is followed for the treatment
of this singularity, and the boundary integral equation is rewritten in
discretized form as:

𝑈̂ = 𝜆∗𝑈̃ = [𝐴 ]𝜏 (42)
𝑡 𝑡 𝑖𝑛𝑡 𝑑
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Fig. 3. Time development of film thickness as a function of 𝑟 for immobile interfaces obtained with 𝑉𝑎𝑝𝑝 = 0.05, 𝐴∗ = 10−4, 𝑟∞ = 30 and ℎ00 = 2.
where [𝐴𝑖𝑛𝑡] is a matrix that numerically carries out the double integra-
tion in Eqs. 33 and 38. Further description of the matrix can be found
in Ozan and Jakobsen (2019a). To test the validity of the singularity
treatment and the solvers, Fig. 5 of Ozan and Jakobsen (2019a) is
reproduced, where the time evolution of the film thickness is presented
for four different velocities by considering immobile interfaces. Their
figure is recreated in Fig. 2 by setting 𝑛 = 1 in the corresponding
non-Newtonian solver. The results in Fig. 2 agree well with theirs.

A final comment should be made on the validity of the gentle
collision assumption during the simulations. This assumption requires
the deformed film radius to be much smaller than the particle radius.
Thus, to ensure that this condition is satisfied, the largest radial rim
position reached during the simulations is limited to 0.1 ∼ 0.2 of the
computation domain size 𝑟∞.

3.2. Non-Newtonian film drainage

In Fig. 3, the time evolution of the film thickness for different values
of the power index 𝑛 is given at a constant value of 𝑉𝑎𝑝𝑝. The three
different drainage regimes Ozan and Jakobsen (2019a) detected while
investigating the effect of 𝑉𝑎𝑝𝑝, are also present in Fig. 3. In their work,
the transitions between these regimes were found to occur with 𝑉𝑎𝑝𝑝.
In the current work, it is seen that these transitions can also stem from
the value of 𝑛. Fig. 3(a), where 𝑛 = 0.725, displays the low-velocity
regime. In this regime, the film ruptures from the center of the fluid
particle interface, i.e., at 𝑟 = 0, which is called nose rupture. This type
of rupture happens when the attractive van der Waals forces become
significant before the capillary forces can act substantially and change
the interfaces’ shape visibly. Increasing the power index to 1.000 yields
case (b). Here, a dimple shape can be observed, meaning that the
dimpled drainage regime is reached. The formation of a dimple also
implies that the capillary forces are now more significant compared
to the case in Fig. 3(a). This can be explained through the effect of
6

𝑛 on the viscosity. As 𝑛 increases, for similar magnitudes of shear rate,
the viscosity is expected to increase, which can be associated with a
decrease in the drainage rate. Then, the critical film thickness at which
the intermolecular forces act significantly and result in film rupture, is
reached in a longer time. Notice that this thickness is governed by the
value of 𝐴∗ only. As the collision is a constant velocity one, this results
in the pressure in the film to build up continuously for longer time
as well. In response to the pressure build-up, the interfaces deform to
a larger radial extent and even start supporting rim structures. Further
increasing 𝑛 to 1.075 results in the emergence of a secondary rim to the
right of the main rim as seen in Fig. 3(c), indicating the onset of the
multiple rim drainage regime. Finally, for even higher 𝑛, as presented
in Fig. 3(d), multiple local maxima and minima in the film thickness
profiles can be observed right before the film rupture. As 𝑛 increases,
the radial position at which rupture occurs moves further away from
𝑟 = 0. Also, the estimated coalescence time increases due to the rim
formation, which tends to delay the film drainage.

Fig. 4 presents the time development of the excess pressure profiles
in the film corresponding to the film thicknesses in Fig. 3. Regardless
of the value of 𝑛 or the type of the interfacial deformations, in all
results, the excess pressure in the film builds up with time. For case (a),
where a nose rupture occurs, the excess pressure attains a maximum
always at 𝑟 = 0, which eventually shows an asymptotic trend as the
film ruptures. In the other cases, the excess pressure also builds up
more at the center during the early stages of the drainage. However,
after some time, the maximum shifts to the position of the rim, as can
be seen by comparing Figs. 3 and 4. Upon reaching the final time step
before the film ruptures, a sharp peak is observed for each case. This
peak occurs due to the attractive intermolecular forces, which dominate
the pressure profile around the rims where the film thickness is the
smallest. In Fig. 4(d), a local maximum is detectable in the last excess
pressure profile corresponding to the secondary rim visible in Fig. 3(d).

The time evolution of the particle side tangential stress (Eq. (32))
and the corresponding viscosity profiles evaluated at the interface are
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Fig. 4. Time development of excess pressure as a function of 𝑟 for partially mobile interfaces obtained with 𝜆∗ 𝑉𝑎𝑝𝑝 = 0.05, 𝐴∗ = 10−4, 𝑟∞ = 30 and ℎ00 = 2.
given in Fig. 5, for a shear-thinning film with 𝑛 = 0.9 and for a shear-
thickening film with 𝑛 = 1.1. In Fig. 5(a), the tangential stress profiles
form a maximum that increases with time, whereas the corresponding
viscosity profiles in Fig. 5(b), form a more and more evident minimum
with time, whose position is the same as the location of the maximum
𝜏𝑑 . The opposite trend is observed for the shear-thickening fluid in
Figs. 5(c) and (d). Here, the tangential stress maxima coincide with
viscosity’s maxima. Just as the excess pressure build-up, the increase
in the tangential stress is also a result of the interfacial deformations,
and the maximum of 𝜏𝑑 closely follows the rim position. Then, since
this position coincides with the minimum and the maximum of 𝜂
respectively for the shear-thinning and the shear-thickening case, the
resistance to the film drainage around the rim is the lowest for shear-
thinning films and the largest for shear-thickening ones. In other words,
a rim can more easily travel in the positive 𝑟 direction when the film
is shear-thinning.

The maximum tangential velocity is presented as a function of time
for different values of 𝑛 in Fig. 6. This value can be taken as an indicator
of the tangential mobility of the interface, which is of key importance
in coalescence studies. In the early stages of the drainage process, from
𝑡 = 0 to about 𝑡 ≈ 25 for the particular parameter set, the maximum
tangential velocity (thus the mobility of the interface) is larger for lower
values of 𝑛. As 𝑛 indicates how viscous the film is, for a given shear
rate, when it is low, the drainage is easier, and the interfaces are more
mobile. After this stage, some crossover is seen between the different
curves, as the extent of the interfacial deformations at a given time is
different for different 𝑛. Then, the asymptotic incline at the end of each
curve indicates the rupture of the film. The results show that the fluid
particles coalesce more quickly when 𝑛 is lower, as the drainage rate is
faster.

Although not presented here explicitly, the simulations with finite
values of 𝜆∗ indicate that the observations obtained by considering
7

immobile interfaces are also valid when the interfaces are fully or par-
tially mobile. In other words, regardless of the extent of the tangential
mobility, the power index 𝑛 affects the system in the same way, and
the same three types of interfacial deformations/drainage regimes are
encountered.

Fig. 7 presents the coalescence time, 𝑡𝑐 , as a function of 𝑉𝑎𝑝𝑝 and 𝑛
for 𝜆∗ = 10, where the interfaces are partially mobile in each data-set.
For all 𝑛 values investigated in Fig. 7, three drainage regimes can be
identified. At low velocities, the relation between log(𝑡𝑐 ) and log(𝑉𝑎𝑝𝑝)
decreases linearly. In this region, the 𝑡𝑐 curves for different power
index values lay approximately on the same line, showing that the non-
Newtonian behavior is not significantly influential on the drainage in
the low-velocity regime. The transition to the dimpled drainage regime
occurs when the 𝑡𝑐 curves start to deviate from the linear trend. Note
that the higher the value of 𝑛, the earlier the transition occurs, as
larger 𝑛 implies a stronger resistance to the flow within the film, which
enables the capillary forces to act more significantly before the rupture
and results in rim formation. Within this regime, the 𝑡𝑐 curves begin
to separate, indicating that the non-Newtonian behavior of the film
starts influencing the drainage behavior and the estimated coalescence
time. Once this regime is reached, 𝑡𝑐 increases with 𝑛, implying that
coalescence becomes easier as the film gets more shear-thinning. This
is in agreement with the conclusions of Fan et al. (2020) from their
experiments, where the coalescence efficiency was found to be larger
for higher CMC-concentrations, i.e., for lower 𝑛. The coalescence time,
then, at a larger 𝑉𝑎𝑝𝑝 passes through a minimum and starts increasing
with 𝑉𝑎𝑝𝑝, which is associated with the emergence of additional rims at
the interface. Thus, the multiple-rim drainage regime is reached. The
increasing 𝑡𝑐 trend seen in this regime was not observed in experiments
when it was first suggested by Ozan and Jakobsen (2019a). In a recent
study, however, Aarøen et al. (2021) encountered the same trend for
high approach velocities in their experiments with oil-in-water emul-
sions. As, in this regime, the separations between the 𝑡 curves grow
𝑐
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Fig. 5. Time evolution of the particle side tangential stress and viscosity evaluated at the interface. The profiles are obtained with 𝑉𝑎𝑝𝑝 = 0.09, 𝐴∗ = 10−4, 𝑟∞ = 30 and ℎ00 = 2.
even larger, the effect of the power index is more prominent. Overall,
the impact of the non-Newtonian film behavior on the film drainage
amplifies with the approach velocity. As with the transitions into the
dimpled drainage regime, the transitions into the multiple-rim regime
occur at lower velocities for larger values of 𝑛.

Fig. 8 shows the coalescence time, 𝑡𝑐 , as a function of the dispersed
to continuous phase viscosity ratio, 𝜆∗, for different values of 𝑛. The
results are obtained by considering partially mobile interfaces, i.e. the
thinning equation is solved without any further simplifications as given
in Eq. (34). These results are then combined with the ones obtained
for the fully mobile and the immobile cases for the lower and upper
limits of 𝜆∗, respectively. It can be observed that the effect of the power
index is very prominent in the high 𝜆∗ limit, where the interfaces are
tangentially immobile. As 𝜆∗ decreases, the effect of 𝑛 diminishes and
eventually completely disappears for 𝜆∗ values that are low enough to
render the interfaces fully mobile. Fig. 8 reveals that the interfaces are
fully mobile when 𝜆∗ ≤ 0.1 for all 𝑛, while the 𝜆∗-limit after which the
interfaces are completely immobilized seem to increase with 𝑛, e.g. 103
for 𝑛 = 0.8 and 105 for 𝑛 = 1.1.

The Hamaker constant, 𝐴∗, decreases the coalescence time for the
Newtonian films, as can be seen in Fig. 4 of Ozan and Jakobsen (2019a).
It is found to affect the system in the same way for the shear-thinning
and the shear-thickening films as well, even though the results are not
presented here. Since the critical film rupture thickness increases with
𝐴∗, the coalescence occurs at a larger minimum film thickness, resulting
in lower 𝑡𝑐 .

4. Conclusions

In this work, the drainage of a thin non-Newtonian film bounded by
two fluid particles is analyzed. The non-Newtonian continuous phase is
taken as a generalized Newtonian fluid, i.e., only viscous, obeying the
power-law. The effect of the power-index 𝑛, thus of the non-Newtonian
behavior itself, on the drainage behavior and the coalescence time
8

Fig. 6. The maximum value of the tangential velocity of the interface as a function of
time for different values of 𝑛. All results are obtained with 𝜆∗ = 10, 𝐴∗ = 10−4, ℎ00 = 2
and 𝑟∞ = 30.

𝑡𝑐 is investigated. The results revealed no dimple formation during
the drainage for low enough values of 𝑛. Increasing the power-index
to larger values first results in a single rim formation, i.e., dimple
formation, and then causes multiple rim structures to appear at the
interfaces. It is also seen that the rims can travel further in the radial
direction when 𝑛 is smaller, as the viscosity attains its lowest value
around the rim for shear-thinning fluids. When the interfaces are not
deformed enough to exhibit rim formation (typically at low 𝑉𝑎𝑝𝑝), the
non-Newtonian behavior is found to have only a negligible impact on
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Fig. 7. Coalescence time as a function of relative approach velocity for varying 𝑛-values
with 𝐴∗ = 10−4, 𝑟∞ = 30, 𝜆∗ = 10 and ℎ00 = 2.

Fig. 8. Coalescence time as a function of dispersed to continuous phase viscosity ratio
for varying values of the power index with 𝐴∗ = 10−4, 𝑉𝑎𝑝𝑝 = 0.09, ℎ00 = 2 and 𝑟∞ = 30.

𝑡𝑐 . As the rims begin to emerge with increasing 𝑉𝑎𝑝𝑝 on the other hand,
the coalescence time is affected by the value of 𝑛 considerably. At a
given 𝑉𝑎𝑝𝑝, the drainage rate slows down with 𝑛, and consequently 𝑡𝑐
increases. The extent of this increase in 𝑡𝑐 is found to scale with the
value of 𝑉𝑎𝑝𝑝. Finally, 𝑡𝑐 is affected by the non-Newtonian behavior
the most when the interfaces are immobile. As the tangential mobility
increases, the gap between the 𝑡𝑐 values for different 𝑛 narrows down
and eventually vanishes when the fully mobile limit is reached.
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