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Abstract—Recently, 3D indoor positioning technology has
attracted wide attention in smart medical treatment, intelligent
robot and other application fields. Traditional 3D positioning
technology requires to utilize the special-dedicated infrastruc-
ture for large-scale deployment but with high labor-cost. With
advent of the high-density wireless networks deployment, WiFi
fingerprint-based localization system reduces the high cost of
large-scale device deployment and infrastructure, but is limited
by heavy site survey in the offline phase. Meanwhile, most
existing WiFi fingerprint-based localization systems are only
aimed at 2D indoor scenes. Designing and implementing a high-
precision and low-cost 3D indoor positioning system is still a
challenging task. Inspired by our previous work in fingerprint
augment method based on super-resolution (FASR), we design
the super-resolution (3D-FASR) framework and develop a novel
3D fingerprint augment method in this paper. The 3D-fingerprint
augment technology in the 3D indoor environment has achieved
an attractive trade-off between positioning accuracy, equipment
deployment costs and site survey labor costs, We first obtain
2D fingerprint data from the 3D fingerprint data by slicing
operations and then adopt FASR twice to complete the conversion
from sparse fingerprint to dense fingerprint, where we inter-
spersed a subsampling operation between two super-resolution
methods. The experimental results demonstrate the feasibility of
our proposed solution in 3D indoor localization.

Index Terms—3D, indoor WiFi localization, fingerprint aug-
ment, super-resolution, spare reconstruction, low cost.

I. INTRODUCTION

Wireless localization technology has become a key driving
factor for location-based services in a wide range of applica-
tions. 3D (3 Dimensions) indoor positioning relies on multi-
dimensional positioning information to enhance its ability
to empower applications, such as service-oriented localiza-
tion and navigation, unmanned aircraft positioning, intelligent
home, intelligent medical care and intelligent robotics [1]–
[3]. Recently, 3D indoor positioning has been recognized
by the Standardization Committee as an important aspect
of wireless indoor positioning. e.g., Federal Communications
Commission (FCC) [1] [4].

3D indoor localization can be defined as 3D locations
determination relative to nearby reference points with known
location in an interested indoor space. Traditionally, 3D indoor
positioning based on ultra-wideband (UWB) technology can
use measurement information such as time of arrival (TOA)
or time difference of arrival (TDOA) [4]–[6] to locate the
target. Due to the requirement of extremely high sampling rate

and strict time-synchronization between UWB transceivers,
it is difficult to widely deploy and apply the traditional 3D
indoor positioning in reality. In addition, radio frequency
identification devices (RFIDs) can be attached to the target
object for 3D localization with a larger-scale deployment [7]–
[9]. In indoor scenarios, complex multipath propagation will
severely weaken RFID signal, the positioning system provides
low location accuracy. To our best knowledge, existing 3D
localization systems are either limited by the special-dedicated
infrastructures or poor location accuracy, which results in
high cost, and thus make them unattractive in commercial
applications. Therefore, how to design and implement a 3D
localization system with low infrastructure cost while ensuring
high location accuracy is still a challenging task.

Fortunately, with the development of the big data appli-
cation of basic network [10] and the wide deployment of
WiFi equipment, the WiFi fingerprint-based indoor position-
ing system becomes high-profile owing to its low cost of
materials [11] and high location accuracy. Such a system
usually includes two stages: offline and online phases [2].
Specifically, the fingerprint database is constructed in the
offline phase. While in online phase, the positioning algorithm
gives the localization result by comparing the received signal
strength (RSS) vector collected at the unknown location with
the fingerprint database. However, the offline RSS acquisition
usually requires a lot of labor-cost [12]. Therefore, reducing
the density of field investigation is the development direction
of fingerprint-based positioning system. Existing solutions fall
into two main categories. One is based on user participation,
the tedious investigation into a small portion of each relevant
user reasonable work, such as explicit data collection based
on crowdsourcing [13], implicit data collection [14], and
partially-labeled fingerprints [15]. The other is to increase the
number of fingerprints by interpolation algorithm based on the
collected sparse fingerprint data to reduce the acquisition cost,
which is the so-called fingerprint augment [16]. Fingerprint
augment is used more widely than user engagement based
solutions, not only for general fingerprint data collection, but
also in combination with user engagement categories.

The existing wireless fingerprint augment methods either
adopt a propagation model [17] or regression estimation
[18]. RSS estimation methods based on propagation models
attempt to estimate RSS in non-line-of-sight (NLOS) regions



to create virtual fingerprints through propagation models.
However, getting accurate virtual fingerprints is not easy to
adapt to different environments and indoor layouts. The RSS
estimation method based on regression uses the collected RSS
data to calculate the parameters of the regression model, and
then realizes the RSS estimation in each position. Gaussian
Process Regression (GPR) [19] is the most common finger-
print augment method based on regression. Due to its various
forms of mean function and covariance function, this method
is precarious. Existing works like [20], [21] have discussed
the design of these two functions, but it is difficult to find the
optimal functional form of fingerprint augment. At present,
the fingerprint augment challenge is how to find the optimal
mapping function between the original sparse fingerprint
database and augmented dense fingerprint database.

Single image super-resolution aims at reconstructing high
resolution image from a single low resolution image [22].
Recently, the super resolution based on deep neural network
has achieved remarkable results [23]. Inspired by the nonlinear
mapping ability of deep neural network in image super-
resolution, Wang et al. [24] innovatively introduce the super-
resolution in image processing into indoor WiFi fingerprint
augment and design the Fingerprint-To-Image conversion
method to transform the WiFi fingerprint database into fin-
gerprint images. Their numerical simulations and compara-
tive experiments on the test platform verified the improved
fingerprint enhancement and positioning accuracy.

Motivated by the FASR in 2D indoor localization, we
proposed a 3D fingerprint augment framework based on
super-resolution (3D-FASR) for indoor 3D WiFi localization.
Except for the existing FASR, there are three key components
designed in our 3D-FASR, including Slicing, Reconstruction
and Decimation (detailed in Section II).

The main contribution of this paper is, we innovatively
propose the 3D-FASR to perform the 3D fingerprint augment
based on the FASR for 3D indoor positioning. We then
conduct the extensive experiments in numeric simulation to
validate the performance improvement of fingerprint augment
error and localization accuracy brought by the 3D-FASR.

II. THE 3D-FASR FRAMEWORK AND IMPLEMENTATION

Fig. 1 shows the proposed 3D-FASR framework, which
comprises the following four modules. The Slicing module
describes the generation of 2D-fingerprint slice database from
the 3D-fingerprint database. The FASR module explains the
super-resolution based 2D fingerprint augment, which finishes
2D-fingerprint super-resolution from sparse fingerprint data to
dense fingerprint data. The Reconstruction module interprets
the reconstruction of 3D-fingerprint database from the 2D-
fingerprint database which can be considered as the reverse
process of the Slicing. The Decimation module describes
the dowmsampling process of the 3D-fingerprint matrix in
a specific selected direction.

Fingerprint-based localization approaches employ a finger-
print database to record the RSS measurements. In a typical
indoor 3D localization scheme, suppose there are a set of K

Fig. 1: The 3D-FASR Framework. (here the set Ω is initialized
as Ω = {X axis, Y axis, Z axis}, the function φ(Ω) is defined as
operations which randomly select the direction ω from Ω and updates
the Ω = Ω− {ω} )

WiFi access points (APs) in several fixed positions, where the
monitoring area is equally divided into G location grids. We
can collect the RSS values of K APs on the G grids during a
period of T consecutive timestamps, which further form the
so called RSS 3D-fingerprint matrices R, whose element can
be expressed as

r ∈ Rl×m×n, (1)

where l,m and n represent the number of grid in X axis, Y
axis and Z axis directions of indoor 3D localization scenario,
respectively. The index of element in r represents the relative
position of the 3D indoor space, while the RSS of the
corresponding location is denoted by the value of element.
Therefore, the 3D-fingerprint database R contains K × T
fingerprint matrices r.

A. Slicing

In order to apply the FASR into our proposed 3D-FASR,
we first need to acquire 2D-fingerprint database from 3D-
fingerprint database. The above procedure is completed by
slicing, i.e., it first selects a specific coordinate axis, cross-cuts
the 3D matrices according to a certain granularity along the
coordinate axis, and finally obtains the 2D matrices. Here the
slicing operations and the generated 2D fingerprint databases
along X, Y, Z axis are denoted by gX , gY , gZ and SX ,SY and
SZ , respectively .

Each 2D-fingerprint matrix belonging to the database can
be expressed by sx ∈ Rm×n, sy ∈ Rl×n and sz ∈ Rl×m.
Then, we have

gX : R
X−→ SX , (2)

gY : R
Y−→ SY , (3)

gZ : R
Z−→ SZ . (4)



In our 3D-FASR framework, SX ,SY and SZ representing
the sparse 2D-fingerprint database will be fed into FASR to
acquire super-resolution.

B. FASR

FASR framework is proposed to finish super-resolution
recovery of 2D-fingerprint data based on EDSR networks. For
more details, please refer to [24].

In our work, we assign coordinates for newly generated
reference points (RPs) in dense database RHR according to
the sparse database RLR. The RPs are uniformly distributed
along the X axis, Y axis, Z axis directions and the distances of
adjacent RPs over each directions are consistent. We denote
the minimum distance of different RPs in RLR and RHR as
λLR and λHR. Then we can describe the factor of fingerprint
augment by µ

µ =
λLR
λHR

, (5)

Clearly, if the grid numbers in the X axis direction under the
sparse condition are l, then the grid numbers in this direction
of the enhanced dense fingerprint are µl.

Before the 3D-FASR, we separately generate three different
axes training slice database to finish the train of FASR, in
which the factor of fingerprint augment is set as µ. Then
we can obtain different directional super-solution augment
networks denoted by X-FASR, Y-FASR and Z-FASR.

In the 3D-FASR, we choose and feed the slice databases
SX , SY and SZ into X-FASR, Y-FASR and Z-FASR, respec-
tively. Then, we can separately acquire the same amount
of augmented 2D fingerprint databases denoted by S′X , S′Y
and S′Z , and each 2D-fingerprint matrix belonging to the
database can be expressed by s′x ∈ Rµm×µn, s′y ∈ Rµl×µn
and s′z ∈ Rµl×µm. The processing can be represented as

X-FASR : SX−→S′X , (6)

Y-FASR : SY−→S′Y , (7)

Z-FASR : SZ−→S′Z . (8)

After this, we can obtain the augmented 2D-fingerprint
databases along different axes, which are further used for 3D
fingerprint reconstruction.

C. Reconstruction

In order to make sure a correct dimension of the output in
our solution, the reconstruction from 2D to 3D fingerprint is
needed. Thus, to reverse the process of slicing, we reconstruct
the augmented 3D-fingerprint database from the augmented
2D-fingerprint database. The reconstruct operations and 3D-
fingerprint databases along X, Y, Z axis are respectively
denoted by g′X , g′Y , g′Z and R′X ,R

′
Y and R′Z . Each 3D-

fingerprint matrix belonging to the database can be expressed
by rx ∈ Rl×µm×µn, ry ∈ Rµl×m×µn and rz ∈ Rµl×µm×n.
The reconstruction processes are recorded as

g′X : S′X
X−→ R′X , (9)

g′Y : S′Y
Y−→ R′Y , (10)

g′Z : S′Z
Z−→ R′Z . (11)

After the reconstruction, the obtained reconstructed 3D-
fingerprints are put into the Decimation.

D. Decimation

After the above three modules, it accomplishes the 2D
fingerprint augmentation of pre-selected axis vertical section.
Nevertheless, the number of pre-selected axis directional
RPs is remain unchanged. To address it, a feasible way is
to perform the above steps again. To meet the requirement
of the second FASR, we arbitrarily choose another direction
which is different from the already selected axis in the first
time to perform decimation, and deal with the 3D-fingerprint
database by downsampling factor µ. The new 3D-fingerprint
matrix belonging to three different axes directions are denoted
by rx1 ∈ Rl×m×µn or rx2 ∈ Rl×µm×n (if X axis is selected
for the first FASR), ry1 ∈ Rl×m×µn or ry2 ∈ Rµl×m×n (if
Y axis is selected for the first FASR), rz1 ∈ Rl×µm×n or
rz2 ∈ Rµl×m×n (if Z axis is selected for the first FASR).

When the decimation operation is accomplished, we should
select the remaining axis directions and dispose them sequen-
tially by slicing, FASR and reconstruction for the second time.
In the practical implementation of 3D-FASR, we can select
the order direction of the axis in advance, so that only two
given FASR networks can be trained to reduce the workload.

After the above modules, 3D-FASR accomplishes the con-
version from the 3D-fingerprint matrices r ∈ Rl×m×n to
dense 3D-fingerprint matrices rHR ∈ Rµl×µm×µn.

III. EXPERIMENTAL RESULTS AND EVALUATION

In this section, the proposed 3D-FASR is verified in a
simulated scenario, and the performance of fingerprint aug-
ment and localization are presented and discussed. In our
implementation, we sequentially select the Z axis, Y axis
and X axis. The downsampling factor of the FASR in super-
resolution is set as µ = 3. As for the baseline, we select the
basic GPR (B-GPR) [25] with zero-mean function and squared
exponential kernel covariance function [20] for fingerprint
augment comparison. This paper adopts standard weighted k-
nearest neighbor (WKNN) as localization algorithm [21].

A. Experimental Settings

In localization scenario, the space has a volume 8m×8m×
8m, 7 APs with fixed locations are posted, a total number of
3,375 RPs are divided with λHR = 0.5m and each direction
has l = m = n = 15 grid points, the position indexes on the
correlation axis are 0.5 : 0.5 : 7.5 1.

Time-invariant multipath channels are used to obtain ex-
perimental data [26] and RSS values from APs are generated

1Here the 0.5 : 0.5 : 7.5 represents for the geo-distribution of RPs in
the room. The three parameters represent the left endpoint, the sampling
interval and the right endpoint values, respectively. 0.5 : 0.5 : 7.5 equals to
[0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5]



using raytracing technology [27]. For each AP, the RSS value
at each location is obtained by superposing the signal from a
direct path and six signals reflected from the walls. The Log-
Distance path loss model in free space is used to calculate the
RSS value of each path.

For the training dataset, we simulate the generation of fin-
gerprint data matrix with T=3,000 different timestamps. Since
7 APs are placed in the localization scene, we could obtain 7
3D-fingerprint matrices at each timestamp, which comprises
a total of 21,000 3D-fingerprint matrices of λHR = 0.5m,
i.e., the training data. For simulated scenario, the 21,000 3D-
fingerprint matrices with λHR = 0.5m are seen as the R, the
size of each 3D-fingerprint matrix in the R is 15× 15× 15.
We generate different directional slice database SX , SZ by
(2)(4), which are used as the ground truth. The dataset in
each direction contains 21, 000×15 = 315, 000 2D-fingerprint
matrices with size 15× 15.

While for the test dataset, we generate fingerprint data with
λHR = 0.5m and T = 100 to form a test set. Each segment
of RPs is extracted with λLR = 1.5m to build a sparse WiFi
fingerprint database. The sparse 3D-WiFi fingerprint database
is converted into 7 low-resolution fingerprint matrix, where
λLR = 1.5m and the super-resolution is IHR. In addition,
1,000 location test points are randomly selected to evaluate
the performance of the localization.

B. 3D-FASR Training

In this phase, we use 15×15 fingerprint matrix and set the
µ = 3 to obtain the 5×5 low-resolution fingerprint matrix with
λLR = 1.5m and the corresponding 15 × 15 high-resolution
fingerprint matrix with λHR = 0.5m. We train the FASR
network with ADAM optimizer [22] and set minibatch size
as 100.

C. Performance of Fingerprint Augment

As for fingerprint augment performance, the RSS estimation
error et of t-th segment is defined as follows

et =
1

l ×m× n

l∑
k=1

m∑
j=1

n∑
i=1

|Rti,j,k −R
′t
i,j,k|, (12)

where Rti,j,k, R
′t
i,j,k repectively denotes the original RSS value

and the augmented RSS value in coordinates (i, j, k). Fig. 2
shows the error of fingerprint augment using 3D-FASR and
B-GPR in simulated scenarios.

TABLE I: Comparison of RSS Augmentation Errors (dBm).

Simulate 3D-FASR B-GPR
mean 1.005600 1.569000
var 0.000019 0.073289

As shown in Fig. 2, when comparing with B-GPR, 3D-
FASR has the smaller error of fingerprint augment. Mean-
while, the experimental result also shows that B-GPR is not
robust, and the performance is less stable than 3D-FASR.

Fig. 2: Performance comparison of fingerprint augment (3D-FASR,
B-GPR.

TABLE II: Comparison of Average Localization Errors (m).

Simulate LR HR-ORIG 3D-FASR B-GPR
mean 1.4152 1.0271 1.1237 1.1919
var 0.6896 0.4600 0.4846 0.5485

To better demonstrate the fingerprint augment performance,
we also compare the mean value and variance of the RSS
augmented by our 3D-FASR with that by B-GPR, which is
shown in TABLE I. Clearly, we can see that our solution
gets a smaller mean value and variance comparing to B-GPR,
which suggests that our solution harvests a better fingerprint
augmentation performance.

D. Performance of Localization

As for localization performance, the localization error eLi
of i-th positioning test points is defined as follows

eLi = ‖Si − S′i‖2, (13)

where Si and S
′

i represent the real physical position and
the estimation location. The cumulative distribution function
(CDF) for location error is shown in Fig. 3. We can find that
3D-FASR is obviously better than B-GPR and has a closer
localization performance to HR-ORIG. In addition, the local-
ization performance after fingerprint augment is better than
LR, which further indicates the effectiveness of fingerprint
augment.

Similarly, we also calculate the mean and variance of the
positioning error and show them in Tabel II. In the experiment,
3D-FASR performs better than B-GPR and LR with its av-
erage localization error 5.71% lower than B-GPR and 20.5%
lower than LR, and the stability of 3D-FASR’s localization
performance is only slightly worse than to HR-ORIG. With
the only 1/27 cost of manual acquisition comparing to the
HR-ORIG, we can get an acceptable localization performance
of 3D-FASR which is only 9.4% lower than the performance
of ORIG.



Fig. 3: Performance comparison of localization.‘LR’ means the
positioning result without fingerprint augment. ‘HR–ORIG’ means
the original dense fingerprint database obtained by simulation. The
others represent the localization results of the augmented fingerprint
database which is constructed by 3D-FASR and B-GPR.

IV. CONCLUSION

In order to improve the accuracy of 3D indoor localization
based on WiFi fingerprint under the condition of limited
fingerprint and workload of on-site measurement, we propose
a 3D-FASR solution in this work. To verify the performance
of 3D-FASR, we carry out the experiments in the simulation
scene, and compare the RSS augmentation and positioning
accuracy of our solution with B-GPR. The experimental
results confirm the effectiveness of 3D-FASR in improving
fingerprint augment and localization accuracy.
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