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a b s t r a c t 

Measures of distance or how data points are positioned relative to each other are fundamental in pattern 

recognition. The concept of depth measures how deep an arbitrary point is positioned in a dataset, and 

is an interesting concept in this regard. However, while this concept has received a lot of attention in the 

statistical literature, its application within pattern recognition is still limited. 

To increase the applicability of the depth concept in pattern recognition, we address the well-known 

computational challenges associated with the depth concept, by suggesting to estimate depth using in- 

cremental quantile estimators . The suggested algorithm can not only estimate depth when the dataset is 

known in advance, but can also track depth for dynamically varying data streams by using recursive up- 

dates . The tracking ability of the algorithm was demonstrated based on a real-life application associated 

with detecting changes in human activity from real-time accelerometer observations. Given the flexibility 

of the suggested approach, it can detect virtually any kind of changes in the distributional patterns of the 

observations, and thus outperforms detection approaches based on the Mahalanobis distance. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Measures of distance or how data points are positioned relative 

o each other, are fundamental in pattern recognition. For example 

n anomaly detection [9] e.g using auto encoders [4,35] , clustering 

13,25] or classification [17,29] . 

To measure distance or how data points are positioned rela- 

ive to each other, data depth is an interesting concept. Data depth 

easures how deep an arbitrary point is position in a dataset. 

hile the concept has received a lot of attention in the statisti- 

al literature [27] , the application within pattern recognition is still 

imited. There are however some notable exceptions. For exam- 

le [14,18,19] applied the concept for classification and clustering. 

epth has also been applied to a wide range of disciplines such 

s economy [14,19,21] , health and biology [15,33] , ecology [3] and 

ydrology [5] to name a few. 

The earliest and most popular depth measure is Tukey depth 

32] . The Tukey depth of a point is defined as the minimum prob-

bility mass carried by any closed halfspace containing the point. 

owever, the computation of Tukey depth for higher dimensions or 
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or even moderate amounts of data is computationally demanding 

hich limits its applicability [23] . 

The main aim of this paper is to address these aforemen- 

ioned computational issues, and thus increase the applicabil- 

ty of the depth concept within pattern recognition . Our ap- 

roach takes advantage of the following result from Kong and Miz- 

ra [20] according to which the authors defined halfspaces such 

hat a specific portion of the data points are on one side of the 

alfspace. They further showed that contours with a specific Tukey 

epth can be estimated from the intersection of such halfspaces 

ver different directions. Such contours can again be used to esti- 

ate the depth of any point. In order to apply this result to esti- 

ate depth in dimension p, the positions of O (c p−1 ) , c > 1 halfs-

aces must be estimated requiring estimators that are both mem- 

ry and computationally efficient. In this paper, we therefore sug- 

est to use incremental quantile estimators to estimate the positions 

f the halfspaces [10,11] . These estimators only need to store a sin- 

le value in memory, i.e. O (1) , and only need to perform a single

peration per observation resulting in a computational complexity 

f O (n ) for n observations. As opposed to this, traditional quantile 

stimators have a memory requirement of O (n ) and a O (n log n )

omputational complexity. However, the computational efficiency 

omes with a price and traditional estimators provide more pre- 
ise estimates based on the same observations. 

nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Examples of three halfspaces (blue, green, red) containing the point x . The blue contours represent some probability distribution P. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 
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The second aim is to recursively update and even track 

ukey depth contours of streams of multivariate data in real 

ime . A remarkable advantage with incremental quantile estima- 

ors is that they not only can estimate quantiles when the data 

s known in advance, but can recursively update and even track 

uantiles of data streams. Thus, by using incremental quantile 

stimators to estimate halfspaces, Tukey depth contours can be 

racked in real time. We are not aware of any other method that 

an efficiently compute Tukey depth in real-time. 

Finally, the real-world applicability of computing Tukey 

epth in real-time settings is demonstrated where the developed 

ethods are used to detect changes in human activity in real-time 

rom accelerometer observations. Due the flexibility of the sug- 

ested approach, it can detect virtually any kind of changes in the 

istributional patterns of the accelerometer observation, and out- 

erforms popular approaches based on Mahalanobis distance. 

The main contributions of the paper are as follows: 

• We present a new, simple and computationally efficient method 

to compute Tukey depth. 
• The method can even be used to compute Tukey depth in real- 

time, and is to the best of our knowledge the first method with 

this ability. 
• The method is applied to detect changes in human activity in 

real-time which demonstrates its usefulness and applicability in 

real-world scenarios. 

The paper is organized as follows. In Section 2 , the concept 

f depth is introduced including some theoretical fundamentals to 

ompute Tukey depth. Section 3 provides an efficient procedure to 

stimate Tukey depth. Section 4 presents performance metrics that 

ill be used to evaluate the algorithm and Sections 5 and 6 pro- 

ide synthetic and real-life data experiments. 

. The concept of depth 

Let X = (X 1 , . . . , X p ) 
T represent a p-dimensional stochastic vec- 

or with probability distribution P . Let D (x, P ) denote the depth 

unction of a point x with respect to the probability distribution P . 

 high (low) value of the depth function refers to a central (outly- 

ng) point of the probability distribution. A general depth function 

s defined by satisfying the natural requirements of affine invari- 

nce, maximality at center, monotonicity relative to deepest point 

nd vanishing at infinity [36] . 

The most used depth function is Tukey depth. 

efinition 1 (Tukey depth) . Let U refer to the set of all vectors 

ith unit length. Tukey depth is the minimum probability mass 

arried by any closed halfspace containing the point 

 (x, P ) = inf 
u ∈U 

P 
(
u 

T X ≤ u 

T x 
)

(1) 

Fig. 1 shows three halfspaces containing the point x . The prob- 

bility mass carried by the red and blue halfspaces are larger than 
2 
or the green halfspace. Thus the probability mass carried by the 

reen halfspace is closer to the Tukey depth, which is the mini- 

um probability mass over all half spaces containing x . Intuitively, 

his is a reasonable and general measure for the centrality of x 

ith respect to P . 

Define α-depth region, directional quantile and directional 

uantile halfspace. 

efinition 2 (. α-depth region) The α-depth region with respect 

o Tukey depth, D (α) , is defined as the set of points whose depth

s at least α

 (α) = { x ∈ R 

p : D (x, P ) ≥ α} (2) 

he boundary of D (α) is known as the α-depth contour. 

The α-depth regions are closed, convex, and nested for increas- 

ng α. 

efinition 3 (Directional quantile) . For any unit directional vector 

 ∈ U , define the directional quantile as 

(α, u 

T X ) = F −1 
u T X 

(α) (3) 

here F −1 
u T X 

(x ) refers to the inverse of the univariate cumulative 

istribution function of the projection of X on u . 

efinition 4 (Directional quantile halfspace) . The directional quan- 

ile halfspace is defined as 

(α, u ) = 

{
x ∈ R 

p : u 

T x ≥ Q(α, u 

T X ) 
}

(4) 

hich is bounded away from the origin at distance Q(α, u T X ) by 

he hyperplane with normal vector u . 

Consequently P (X ∈ H(α, u )) = 1 − α for any u ∈ U . 

The estimation procedures in this paper builds on the following 

heorem from [20] . 

heorem 1. The α-depth region in (2) equals the directional quantile 

nvelope 

 (α) = 

⋂ 

u ∈U 
H(α, u ) (5) 

Tukey depth may not be defined for depths above some thresh- 

ld and the intersection becomes empty. 

. Efficient estimation of tukey depth 

Given a multivariate dataset, in this section we suggest a simple 

rocedure to estimate whether an arbitrary point is within or out- 

ide an α-depth region. The procedure uses Theorem 1 , and con- 

ists of three parts. 

1. Unit length directional vectors. The generation of uniformly 

istributed directional vectors is simple: Let Z 1 , . . . , Z p be inde- 

endent standard normally distributed stochastic variables and 

efine Z = (Z 1 , . . . , Z p ) 
T . Then U = Z/ ‖ Z‖ 2 will be uniformly dis-

ributed on the unit sphere, where ‖ · ‖ refers to the Euclidean 
2 
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Algorithm 2 Compute if a point w is within the α-depth region. 

Input: ̂ Q (α, u T 
i 

X n ) , i = 1 , . . . , n u // Dir. quantile estimates from Algorithm 

1. 

w , i = 1 

InAlphaDepthRegion = True // True (False) if w is within (outside) 

the α-depth region 

Method: 

1: while InAlphaDepthRegion and i ≤ n u do 

2: if u T 
i 

w < 

̂ Q (α, u T 
i 

X n ) then 

3: InAlphaDepthRegion = False 

4: end if 

5: i ← i + 1 

6: end while 

7: Print(”Point w in α-depth region?”, InAlphaDepthRegion) 

Fig. 2. Figure illustrating the approach to measure α-depth contour estimation er- 

ror. The black and blue curves show the true α-depth regions and the envelope 

estimate. The lines with directions v i , i = 1 , . . . , n v are shown in red. (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
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orm. This is the procedure used in most of the experiments in 

his paper. However, intuitively, using directional vectors that are 

ore equidistantly spread on the unit sphere would be more ef- 

cient. We thus also considered the following approach accord- 

ng to which we generate many uniformly distributed directional 

ectors, N u , and secondly filter out directional vectors that are 

loser than some threshold. The approach is however computa- 

ionally demanding, O (N 

2 
u p 

2 ) . There are other algorithms to gen- 

rate fairly equidistantly spread direction vectors, see e.g spiral al- 

orithms [30] . We have not evaluated the potential of these algo- 

ithms. 

2. Directional quantiles estimates. The next part is to estimate 

irectional quantiles for each directional vector generated above. 

s pointed out in the introduction, we use incremental quantile 

stimators. A prominent example is the DUMIQE algorithm which 

ecursively updates directional quantile estimates as follows for ev- 

ry observation u T 
i 

x j−1 [34] 

̂ 

 (α, u T 
i 

X j ) ← (1 + λα) ̂  Q (α, u T 
i 

X j−1 ) , if u T 
i 

x j > 

̂ Q (α, u T 
i 

X j−1 ) ̂ 

 (α, u T 
i 

X j ) ← (1 − λ(1 − α)) ̂  Q (α, u T 
i 

X j−1 ) , if u T 
i 

x j < 

̂ Q (α, u T 
i 

X j−1 ) 

(6) 

The update is quite intuitive. If the sample u T 
i 

x j is above (re- 

pectively below) the current estimate, increase (respectively re- 

uce) the corresponding directional quantile estimate. The tuning 

arameter λ > 0 controls the update size. If the data is known be- 

orehand or it comes in the form of a stationary data stream, it 

akes sense to let the value of λ be reduced with time. For non- 

tationary data streams a constant value of λ is more suitable to 

radually forget old and outdated data [34] . The procedure is de- 

ailed in Algorithm 1 . 

lgorithm 1 Estimating directional quantiles. 

nput: 

 1 , . . . , u n u // Unit length directional vectors 

 1 , x 2 , . . . , x n // Dataset 

, λ̂ 

 (α, u T 
i 

X 0 ) // Initial value 

ethod: 

1: for j ∈ 1 , 2 , . . . , n do 

2: for i ∈ 1 , 2 , . . . , n u do 

3: if u T 
i 

x j > 

̂ Q (α, u T 
i 

X j−1 ) then 

4: ̂ Q (α, u T 
i 

X j ) ← (1 + λα) ̂  Q (α, u T 
i 

X j−1 ) 

5: else 

6: ̂ Q (α, u T 
i 

X j ) ← (1 − λ(1 − α)) ̂  Q (α, u T 
i 

X j−1 ) 

7: end if 

8: end for 

9: end for 

3. Compute if a point w is within the α-depth region. The di- 

ectional quantile estimates from Algorithm 1 can be used to com- 

ute if w is within all the directional quantile halfspaces and thus, 

ccording to Theorem 1 , being within the α-depth region. The pro- 

edure is detailed in Algorithm 2 . The condition in line 2 is based

n Equation (4) and checks if w is outside of the estimated direc- 

ional quantile halfspace. 

Convergence. The procedure consists of two approximations 1) 

he finite number of directional vectors and 2) the estimates of 

he true directional quantiles. To ensure convergence, the direc- 

ional vector selection procedure must cover the unit sphere when 

he number of directional vectors goes to infinity and, secondly, 

he directional quantile estimates must converge to the true direc- 

ional quantiles, when the number of observations goes to infin- 

ty. By using the simple procedure above to select uniformly dis- 

ributed directional vectors, the first requirement is satisfied. Fur- 

her, [34] and [11] prove the second requirement. 
3 
. Performance metrics 

We suggest to measure error along lines l i , i = 1 , . . . , n v going

hrough the center of the true distribution and outward in uni- 

ormly distributed directions v i , i = 1 , . . . , n v ( Fig. 2 ). This approach

cales well with dimension p. 

We suggest two error measures: 

Depth error: Let ˜ w i,k denote the point of intercept between the 

ine, l i , and the envelope and compute the true depth at this point, 

 ( ̃  w i,k , P ) . The error is computed using mean absolute depth error

MADE) over all the lines l i , i = 1 , . . . , n v 

ADE k = 

1 

n v 

n v ∑ 

i =1 

| αk − D ( ̃  w i,k , P ) | 

nd again average over envelopes 

ADE = 

1 

K 

K ∑ 

k =1 

MADE k (7) 

o compute MADE for higher dimensions, the true depth must be 

omputed for a large set of points ˜ w i,k . For non-elliptic distribu- 

ions this is computationally demanding and was limited to p ≤ 6 

n the experiments. For elliptic distributions, and in particular mul- 

ivariate normal distributions, the true depth of any point can be 

omputed analytically and thus MADE was computed up to dimen- 

ion p = 10 in the experiments. Details are given in supplementary 

aterial S.1. Obviously, if we knew that the observations were mul- 
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Table 1 

Multivariate standard normal distribution case: The second and third columns 

show the CPU time (in seconds) and the number of directional vectors used 

to obtain MADE less than 0.05. The other columns show the same to obtain 

MADE less than 0.02 and 0.01, respectively. 

MADE < 0 . 05 MADE < 0 . 02 MADE < 0 . 01 

CPU time n u CPU time n u CPU time n u 

p = 2 0.00013 8 0.00174 12 0.00942 18 

p = 3 0.00023 12 0.00429 27 0.04488 40 

p = 4 0.00023 16 0.00958 81 0.11631 122 

p = 5 0.00043 20 0.02991 153 0.35146 345 

p = 6 0.00054 24 0.07419 274 0.90636 1386 

p = 8 0.00334 72 0.34695 1228 9.83845 9324 

p = 10 0.01361 90 1.54246 3450 104.45206 88412 
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o

ivariate normally distributed, other depth measures such as Ma- 

alanobis depth would be more natural, but the computations are 

nly used to evaluate the performance of the algorithm for high 

imensions. 

Euclidean distance: Along each line, l i , compute the point of 

ntercept between the line and the true α-depth contour of depth 

k , denoted w i,k . Compute the error as the average Euclidean dis- 

ance (ED) 

D k = 

1 

n v 

n v ∑ 

i =1 

‖ w i,k − ˜ w i,k ‖ 2 

here ˜ w i,k still refers to the intercept between line l i and the en- 

elope. Further take the average over envelopes 

D = 

1 

K 

K ∑ 

k =1 

ED k (8) 

. Synthetic experiments 

In this section, the performance of the algorithms in 

ection 3 are evaluated in several synthetic experiments. The 

xperiments focus on streaming data, except in Section 5.2 . In 

ection 6 , the algorithms are demonstrated in a real-life data ex- 

mple. 

All computations were run on a Dell PowerEdge R815 server 

ith 64 1.8 GHz AMD CPU processors and Linux Ubuntu operat- 

ng system version 16.04. The experiments were implemented in R 

28] , but with the most computer intensive parts in C++ integrated 

sing Rcpp [7,8] . 

.1. Synthetic experiments - Static data stream 

Figs. 3 show results of estimating the α = 0 . 1 depth contour for 

 multivariate normally distributed data stream with parameters 

= 

[
0 

0 

]
, � = 

[
1 0 . 82 

0 . 82 1 

]
(9) 

irectional quantiles were estimated using DUMIQE with decreas- 

ng values of the tuning parameter, λn = 1 /n . 

We see that a fairly good estimate is achieved with 200 obser- 

ations and that the error is minimal with 20 0 0 observations. A 

imilar visualization for the highly non-elliptical and heavy tailed 

ognormal distribution is shown in Figure 7 in supplementary ma- 

erial S.2. Due to the flexibility of the depth concept, the method 

erforms equally well for such a distribution. Further, in supple- 

entary material S.2, a few examples of joint estimation of multi- 

le α-depth regions using the ShiftQ algorithm are shown. The re- 

ults show that multiple depth regions can efficiently be estimated 

or both Gaussian and non-Gaussian distributions. 

Considered now joint estimation of α-depth regions for α = 

 . 05 , 0 . 2 and 0.4 and for p > 2 . Table 1 shows results for stan-

ard multivariate normally distributed observation. More detailed 

esults are given in Figures 12 and 13 in supplementary material 

.2. CPU time refers to the computational time needed per α-depth 

egion to obtain estimates with a given precision using a single 

PU core. 

The number of directional vectors (and thus CPU time) in- 

reases with p and estimation precision. The algorithm performs 

ery well. For example, for dimension p = 10 , MADE less than 0.02 

s obtained in about 1.5 seconds. MADE < 0 . 01 could be reached

n shorter CPU time than what is shown in Table 1 using a higher

umber of directional vectors, but this is not explored. 

Now, assume that X = (X 1 , . . . , X p ) 
T is a multivariate normally

istributed variable with zero expectation vector and strong de- 

endencies 

ov (X i , X j ) = exp (−0 . 2 | i − j| ) , i, j = 1 , . . . , p (10) 
4 
he results are shown in Table 2 . More detailed results are given 

n Figures 14 and 15 in supplementary material S.2. By comparing 

ables 1 and 2 , we see that the number of directional vectors and

PU time needed increase when the variables of X are dependent. 

Let X still represent the multivariate normally distributed vari- 

ble with covariances (10) . Table 3 shows results for the multivari- 

te lognormal distribution Y = exp (X ) . More detailed results are 

iven in Figures 16 and 17 in supplementary material S.2. 

Tables 2 and 3 show that a specific level of MADE is reached 

aster for the lognormal distribution than for the multivariate dis- 

ribution documenting that the procedure efficiently can character- 

ze non-Gaussian distributions. 

To the best of our knowledge, the algorithm by [23] is the most 

fficient algorithm in the literature to estimate Tukey α-depth re- 

ions. The authors focus on estimating exact trimmed α-depth re- 

ions resulting in complex combinatorial algorithms and the com- 

utation burden explodes with the number of samples. In compar- 

son, the computational complexity of our algorithm increases lin- 

arly with the number of samples. The authors can document esti- 

ation results up to dimension p = 9 , but only when the number 

f samples are restricted to less than 80. The algorithm by [23] is 

ot constructed to handle streaming data. 

.2. Synthetic experiments - Offline setting 

In this section, we compare the performance of the incremen- 

al quantile estimator, DUMIQE, with state-of-the-art offline quan- 

ile estimators to estimate α-depth regions when data is known in 

dvance. State-of-the-art offline quantile estimators are based on 

sing weighted averages of consecutive order statistics 

(α) = (1 − δ) y [ j] + δy [ j + 1] 

here j−m 

N ≤ α < 

j−m +1 
N , y [ j] is the jth order statistic of the 

ample, m a constant and N the sample size. We use m = 

α+1 
3 

nd δ = Nα + m − j and define α[ k ] = 

k −1 / 3 
N+1 / 3 . The sample quan-

iles can be read from a linear interpolation between the points 

α[ k ] , y [ k ]) , k = 1 , . . . , N. The resulting quantile estimates are ap-

roximately median-unbiased regardless of the distribution of the 

ata. This is the method referred to as Type 8 in the quantile 
unction in R and is the one recommended by [16] . 

We consider the multivariate normal distribution case with co- 

ariance matrix as given in (10) , sample sizes N = 50 0 , 20 0 0, 10 4 

nd 5 · 10 4 and dimensions p = 2 and p = 3 . For p = 2 and p = 3 ,

e used 1500 and 7500 directional vectors, respectively, which 

ere sufficiently many to obtain satisfactory performance. 

The results are shown in Table 4 . We see that the estimation er- 

ors using DUMIQE are about 1.5 time that of the offline estimator. 

f fewer directional vectors were used, the differences in estimation 

rror were substantially reduced. Further, the computational time 

f the offline estimator is about ten times larger than the DUMIQE 
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Fig. 3. Multivariate normal distribution case. Estimation of α-depth region for α = 0 . 1 using n u = 50 directional vectors. The rows from top to bottom show the estimates 

for 20, 200 and 2000 observations. The left and right column show all the half planes and the resulting envelopes in blue, respectively. The black curves show the true 

α-depth contour. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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stimator. In other words, if computational time or memory us- 

ge are not an issue, the offline estimator combined with a large 

mount of directional vectors will give the most precise estimates 

rom the samples. Otherwise, incremental quantile estimators are 

referable even for offline settings. 

.3. Synthetic experiments - Dynamically changing data streams 

In this section, we consider the problem of tracking α-depth 

egions of dynamically varying data streams. Fig. 4 illustrates the 
5 
roblem. In each panel, the expectation vector of the data stream 

istribution moved from the bottom left to the upper right. At 

he same time the correlation, changed from strongly positive, 0.8, 

o strongly negative, −0 . 8 . For the 10 3 samples case (first row), 

he algorithm was able to track the α-depth regions satisfactory. 

ith 10 4 samples, the estimates improve significantly and with 

0 5 observations, the estimates are very close to the true contours. 

ith 10 4 and 10 5 samples, 50 directional vectors give better and 

moother estimates than 10 directional vectors. 
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Table 2 

Multivariate normal distribution case: The second and third columns show the CPU 

time (in seconds) and the number of directional vectors used to obtain a mean abso- 

lute depth error (MADE) less than 0.05, respectively. 

MADE < 0 . 05 MADE < 0 . 02 MADE < 0 . 01 

CPU time n u CPU time n u CPU time n u 

p = 2 0.00034 18 0.00622 40 0.03734 40 

p = 3 0.00095 27 0.03003 135 1.38903 135 

p = 4 0.00238 54 0.13145 274 7.47343 616 

p = 5 0.01275 102 0.43698 777 8.47334 3936 

p = 6 0.03603 183 1.81652 3118 45.88106 15,786 

p = 8 0.17285 819 23.21460 20,979 988.12085 358,438 

p = 10 0.68053 2300 245.91893 198,927 - - 

Fig. 4. Tracking of α-depth contours for α = 0 . 05 , 0.2 and 0.4: In each panel the gray dots are outcomes from the data stream. The first observations from the data stream 

are shown in dark gray and the dots become lighter gray as time progresses. The left and right column show cases with n u = 10 and 50 directional vectors, respectively. The 

rows from top to bottom show cases with a total for 10 3 , 10 4 and 10 5 observations, respectively. 

b

t

(

μ

w

a

t

C

Evaluation for p > 2 is given below. Due to the computational 

urden of evaluating estimation error of non-elliptic distributions, 

he analysis was restricted to Gaussian distributions. Let X n = 

X n, 1 , . . . , X n,p ) 
T be multivariate normally distributed with 

n,i = E(X n,i ) = sin 

(
2 π

T 
n + ψ i 

)
, i = 1 , . . . , p (11) 
w

6 
here ψ i , i = 1 , . . . , p are independent uniformly distributed vari- 

bles on the interval [0 , 2 π ] ensuring that the marginal expecta- 

ions are out of phase. Covariance between X n,i and X n, j is 

ov (X n,i , X n, j ) = 

(
0 . 4 sin 

(
2 π

T 
n + ψ 

)
+ 0 . 4 

)| i − j| 
(12) 

here ψ is uniformly distributed on the interval [0 , 2 π ] . 
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Table 3 

Multivariate lognormal distribution case: The second and third columns 

shows the CPU time (in seconds) and the number of directional vectors 

used to obtain a mean absolute depth error (MADE) less than 0.05, respec- 

tively. The fourth and fifth and the sixth and seventh columns show the 

same to obtain MADE less than 0.02 and 0.01, respectively. 

MADE < 0 . 05 MADE < 0 . 02 MADE < 0 . 01 

CPU time n u CPU time n u CPU time n u 

p = 2 0.00013 8 0.00957 27 0.11169 40 

p = 3 0.00024 27 0.01533 135 0.56418 202 

p = 4 0.00021 24 0.03214 274 1.64312 924 

p = 5 0.00043 45 0.14592 1166 6.16044 3936 

p = 6 0.00053 54 0.27431 2079 9.30407 15,786 

Table 4 

Offline experiment: Comparison of the DUMIQE estimator and the estimator 

recommended in [16] to estimate α-depth contours for α = 0 . 05 , 0.2 and 0.4. 

MADE, ED and CPU refers to the error measures in (7) and (8) (multiplied by 

10 3 ) and CPU time used (in seconds), respectively. N refers to the sample size. 

p = 2 p = 3 

N Method MADE ED CPU MADE ED CPU 

500 Offline 14.9 43.1 0.291 16.9 40.5 1.634 

DUMIQE 25.1 63.9 0.045 34.9 69.7 0.288 

2000 Offline 7.0 20.7 1.421 7.2 18.2 9.489 

DUMIQE 10.6 28.5 0.182 12.2 26.5 1.154 

10 4 Offline 3.0 9.0 8.761 3.0 7.7 55.12 

DUMIQE 4.4 12.1 0.908 4.6 10.6 5.769 

5 · 10 4 Offline 1.3 4.0 52.32 1.3 3.5 326.0 

DUMIQE 1.8 5.4 4.542 2.0 4.7 28.84 
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Tables 5 to 6 show results tracking α-depth regions for α = 

 . 05 , 0.2 and 0.4 for periods T = 10 3 and T = 10 4 under optimal

hoices of the tuning parameter 1 More detailed results are given 

n Figures 18 and 19 in supplementary material S.3. For T = 10 3 ,

ADE is around 0.05 and the estimation error does not decrease 

ith increasing number of directional vectors which may seem 

urprising. The reason is that if the quantile estimates are poor, 

he intersections of the resulting halfspaces do not necessarily be- 

ome better by adding more halfspaces. For T = 10 4 MADE is be- 

ween 0.02 and 0.03. The optimal number of halfspaces increases 

ith dimension, but not dramatically. 

The algorithm is computationally very efficient. For dimension 

p = 5 the algorithm can optimally process 10 4 to 10 5 observations 

rom a data stream every second on a single CPU processor. 

By using more equidistant directional vectors, we expect reduc- 

ion in the tracking error. Consider the dynamic case above ex- 

ept that the directional vectors are chosen more equidistantly. Di- 

ectional vectors were generated using the filtering procedure in 

ection 3 with N u = 10 n u . 

The results are shown in Table 7 and more detailed results are 

iven in Figure 21 in supplementary material S.3. 

By comparing Tables 5 and 6 with 7 , we see that for T = 10 3 

nd T = 10 4 , minimum MADE is reduced from 0.045 to 0.040 and

rom 0.0226 to 0.0216, respectively. However, more importantly, 

y using equidistant vectors, the best results are obtained using 

ewer directional vectors. For both T = 10 3 and T = 10 4 , the opti-

al number of vectors are reduced from 25 to 10. Finally, we ob- 

erve significant improvement if only five directional vectors were 

sed. Using equidistant directional vectors adds an additional com- 

utational cost in the initialization of the algorithm, but results 

nto gained peak performance and fewer directional vectors, and 
1 In a practical situation, the history of the data stream can be used to estimate 

or track) optimal values of the tuning parameters. We are currently working on 

uch procedures. 

7 
hus less computation time and memory are needed during track- 

ng. 

. Real-life data examples 

In this section, we use the algorithm on a real-life dataset re- 

ated to activity change detection. A second real-life data example 

elated to real-time event detection using Twitter data is given in 

upplementary material S.4. 

We demonstrate how the algorithm can be used to detect out- 

iers and events and perform classifications in dynamic settings. 

or example, related to event detection, by characterizing a data 

tream distribution with multiple depth contours, in practice any 

hange in the data stream distribution can be detected. Not only 

hanges in common properties such as expectation and covariance 

tructure, but also changes in shape such as a change from an el- 

iptic to a non-elliptic distribution. 

.1. Activity change detection 

Activity recognition is a highly active field of research where 

ensory information is used to automatically detect and identify 

ctivities of users. Activity recognition can help for example detect 

edentary lifestyle and prompt the user to perform healthy exer- 

ises. 

We consider an accelerometer dataset from the WISDM (Wire- 

ess Sensor Data Mining) project [22] . Accelerations in x , y and z

irections were observed, with a frequency of 20 observations per 

econd, while users were performing the activities walking, jog- 

ing, walking up a stairway and walking down a stairway. A to- 

al of 36 users were observed and the dataset contains a total of 

89 875 observations. 

Current research focuses on supervised approaches where his- 

oric and annotated activity observations are used to train an ac- 

ivity classification model. E.g [22] . trained models such as decision 

rees and neural networks. However, such an approach is highly 

ensitive to any temporal changes in the data, e.g. if the user 

witches to an activity that is not part of the training material 

s a consequence for example of becoming fitter, sick etc. In this 

xample we rather take an unsupervised approach and the goal 

s to detect whenever the user changes activity. Since we receive 

0 accelerometer observations per second, it is important that the 

treaming approach is computationally efficient. 

Fig. 5 shows in gray x , y and z acceleration for an arbitrary user. 

he red lines show when the user changed activity. Acceleration 

istributions are fairly stationary within an activity, but with some 

radual and abrupt changes. The users changed activities in many 

ases as often as every 30 seconds making this a challenging track- 

ng and change detection problem. Fig. 6 shows scatter plots for 

wo arbitrary sessions with minimal temporal trend. The simul- 

aneous acceleration distributions vary substantially between ses- 

ions and are often far from being elliptical. Further, even though 

he distributions are different, the mean and covariances are often 

uite similar making the change detection task based on elliptic 

istributions (Mahalanobis distance) challenging. We thus suggest 

he following depth based change detection procedure: 

1. Track α-depth contours of the simultaneous acceleration distri- 

bution by tracking n u directional quantiles using the DUMIQE 

algorithm with tuning parameter λ. 

2. Compute the Euclidean distance between the current α-depth 

contours and the contours h seconds back in time using 

Equation (8) , denoted ED t at time t . 

3. Track the expectation and standard deviation of ED t distribu- 

tion using exponential moving average 

E( ED t ) = (1 − δ) E( ED t−1 ) + δED t 
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Table 5 

Tracking of α-depth regions for α = 0 . 05 , 0.2 and 0.4 for the distribution characterized by 

(11) and (12) with a period T = 10 3 . The columns ’Freq’ refer to how many times per mil- 

lisecond the algorithm can update an α-depth region when running on a single 1.8 GHz 

CPU processor. 

p = 2 p = 3 p = 4 p = 5 

n u MADE Freq MADE Freq MADE Freq MADE Freq 

5 0.0559 972.7 - - - - - - 

10 0.0475 478.9 0.0577 486.7 - - - - 

25 0.0445 189.2 0.0457 189.7 0.0510 184.7 - - 

50 0.0474 95.2 0.0467 95.1 0.0492 93.3 0.0521 92.4 

100 0.0504 47.9 0.0502 47.4 0.0514 46.8 0.0523 46.4 

200 - - 0.0536 23.4 0.0546 22.6 0.0541 22.7 

500 - - - - 0.0590 9.1 0.0576 8.9 

1000 - - - - - - 0.0604 4.5 

Table 6 

Tracking of α-depth regions for α = 0 . 05 , 0.2 and 0.4 for the distribution characterized by 

(11) and (12) with a period T = 10 4 . The columns ’Freq’ refer to how many times per mil- 

lisecond the algorithm can update an α-depth region when running on a single 1.8 GHz 

CPU processor. 

p = 2 p = 3 p = 4 p = 5 

n u MADE Freq MADE Freq MADE Freq MADE Freq 

5 0.0439 976.3 - - - - - - 

10 0.0305 480.1 0.0499 484.3 - - - - 

25 0.0226 189.2 0.0318 188.5 0.0429 184.7 - - 

50 0.0227 95.4 0.0277 94.3 0.0342 93.6 0.0395 91.1 

100 0.0236 48.0 0.0275 47.3 0.0306 47.0 0.0337 46.1 

200 - - 0.0289 23.3 0.0299 22.7 0.0312 22.6 

500 - - - - 0.0307 9.1 0.0309 9.0 

1000 - - - - - - 0.0316 4.5 

Fig. 5. The gray dots show accelerometer observations for an arbitrary user. The red lines show when the user changes activity. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

8 
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Fig. 6. The first and the second row show scatterplot of accelerometer observations for two activity sessions. 

Table 7 

Tracking of α-depth regions 

for α = 0 . 05 , 0.2 and 0.4 for 

the distribution characterized 

by (11) and (12) using fairly 

equidistant directional vectors. 

Tracking error is measured us- 

ing MADE. The left and right 

columns show results for T = 

10 3 and 10 4 , respectively. Di- 

mension is p = 2 . 

n u T = 10 3 T = 10 4 

5 0.0465 0.0303 

10 0.0400 0.0216 

25 0.0440 0.0217 

50 0.0477 0.0226 

100 0.0505 0.0236 

i

s

a

p
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t

s

a

a
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t
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p

e

c

t

t

2 For MEWMA, λt refers to the moving average tuning parameter and λt = 1 /t is 

thus equivalent to the sample mean. 
E( ED 

2 
t ) = (1 − δ) E( ED 

2 
t−1 ) + δED 

2 
t 

SD ( ED t ) = 

√ 

E ( ED t ) 2 − E ( ED 

2 
t ) 

4. When the user changes activity, we expect ED t to rapidly in- 

crease. A new activity is detected when ED t is more than 

η standard deviations higher then E ( ED t ) , i.e. ED t ≥ E ( ED t ) + 

η SD ( ED t ) . 
9 
5. When a new activity is detected, restart the tracking of the α- 

depth contours and go back to step 1. 

This approach is elegant since by virtue of measuring difference 

n depth contours, it can detect virtually any kind of change in the 

hape of the simultaneous acceleration distribution, for example 

 change from an elliptic to a non-elliptic distribution. Given the 

roperties of the observations in this application, this flexibility is 

mportant. 

We compare the approach against an identical approach except 

hat in the first part of the algorithm the mean and covariance 

tructure (and not depth contours) were tracked using multivari- 

te exponentially weighted moving average (MEWMA) [24] . 

We measured the performance of the depth and the MEWMA 

pproaches for a wide range of values for the tuning parameters. 

s several sessions lasted for only 30 seconds, it was thus impor- 

ant for the tracking algorithms to rapidly adapt to a session be- 

ore a new change of activity took place. In the first step of the 

rocedures, we thus chose decreasing values of the tuning param- 

ters, but with a minimum value to take into account the dynamic 

hanges in accelerations within a session, λt = max { 1 /t, λmin } , and 

ried the values 0.1, 0.05 and 0.01 for λmin 
2 This performed bet- 

er than using constant values of the tuning parameter. We further 
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Table 8 

Change detection example. Results for the depth approach. 

λmin δmin h η n u Precision Recall F1 score Det. delay (sec) 

0.01 0.01 100 8 20 0.796 0.497 0.612 1.325 

0.01 0.01 100 8 50 0.781 0.486 0.599 1.150 

0.01 0.05 200 8 20 0.532 0.682 0.597 1.415 

0.01 0.05 50 8 50 0.613 0.564 0.587 1.876 

0.01 0.01 200 8 20 0.735 0.488 0.587 1.202 

0.01 0.05 200 8 50 0.510 0.673 0.580 1.482 

0.01 0.01 200 8 50 0.719 0.480 0.575 1.219 

0.01 0.05 100 8 20 0.538 0.618 0.575 1.010 

0.05 0.10 200 8 20 0.539 0.616 0.575 1.903 

0.01 0.05 50 8 20 0.613 0.532 0.570 1.894 

Table 9 

Change detection example. Results for the MEWMA approach. 

λmin δmin h η Precision Recall F1 score Det. delay (sec) 

0.01 0.01 200 8 0.454 0.697 0.550 1.553 

0.05 0.01 200 8 0.447 0.697 0.545 1.691 

0.05 0.01 50 8 0.438 0.699 0.539 2.249 

0.01 0.01 50 8 0.421 0.711 0.529 1.736 

0.01 0.01 100 8 0.398 0.737 0.517 1.293 

0.05 0.01 100 8 0.388 0.711 0.502 1.747 

0.05 0.05 200 8 0.353 0.760 0.483 1.525 

0.05 0.05 50 8 0.336 0.818 0.476 1.832 

0.05 0.10 200 8 0.336 0.803 0.474 1.522 

0.01 0.05 200 8 0.330 0.777 0.463 1.281 
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ried the values 0.1, 0.05 and 0.01 for δ, 2.5, 5 and 10 seconds for

 and 2, 5 and 8 for η. Further, for the depth approach we used

hree depth contours with α equal to 0.2, 0.05 and 0.01 and tried 

 u = 20 or 50 directional vectors. We ran the two change detec- 

ion approaches for the whole dataset for all the combinations of 

he parameters. This resulted in a total of 162 and 81 experiments 

or the depth and the MEWMA approaches, respectively. 

Precision, recall and the F1 score were used to measure perfor- 

ance [31] . If the approach detects more than one change between 

wo true changes, we characterize the first change as a correct de- 

ection and the others as false detections and define 

recision = 

No. of correct detections 

No. of detections 

Recall = 

No. of correct detections 

No. true changes 

F1 score = 

2 · Precision · Recall 

Precision + Recall 

Tables 8 and 9 show the top ten results with respect to the 

1 score. The depth approach outperforms the MEWMA with re- 

pect to the F1 score and in addition detects the true changes more 

apidly. The performance of the depth approach does not seem 

o be particularly sensitive to the number of directional quantiles 

sed. 

. Closing remarks 

In this paper we have presented a computationally and memory 

fficient procedure to estimate and track Tukey α-depth contours 

sing incremental quantile estimators. The algorithms use the re- 

ults by [20] according to which the α-depth region equals the di- 

ectional quantile envelope. We further demonstrated how incre- 

ental quantile estimators can be used to efficiently estimate the 

irectional quantile envelope. By using incremental quantile esti- 

ators, we are able to recursively estimate and track α-depth con- 

ours, and to the best of our knowledge, it is the first method in

he literature with this ability. However, as shown in Section 5.2 , 
10 
f the amount of data is limited, it is better to estimate α-depth 

ontours using traditional offline quantile estimators. 

The algorithms estimated Tukey depth contours equally well for 

oth elliptic (Gaussian) and non-elliptic distributions. The perfor- 

ance, however, depends on the degree of curvature for the true 

epth contours being closely related to the degree of dependency 

etween variables. For static data streams, the algorithm estimated 

 depth contour of dimension p = 10 with a mean absolute error 

n Tukey depth less than 0.01 in 1.2 and 125 minutes for inde- 

endent and strongly dependent variables, respectively, on a single 

PU processor. For dynamically changing data streams, even for di- 

ensions as high as p = 5 , the algorithm was able to process tens

f thousands of observations per second and track depth contours 

ith high precision. We have not found any studies that have been 

ble to estimate depth contours of such a high dimension and for 

uch a large of amount of data, which documents the efficiency of 

he algorithm. 

The real-life data examples demonstrate that the procedure is 

seful to track and detect changes in complex distributional pat- 

erns. 

To estimate α-depth contours, the number of directional vec- 

ors, n u , and values of tuning parameters in the incremental quan- 

ile tracking algorithms must be chosen. We are currently work- 

ng on procedures that use information from the history of the 

ata stream to recursively update such values. Tukey depth is best 

uited to account for convex features of the distribution of interest. 

owever, there exist other modified depth measures that better ac- 

ount for non-convex features [6] . In the future, we plan to extend 

he method in this paper in order to also be applied to these depth 

easures. [1,2,12,26] 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.patcog.2021.108339 . 

eferences 

[1] N. Alkhamees , M. Fasli , Event detection from social network streams using fre- 

quent pattern mining with dynamic support values, in: Big Data (Big Data), 
2016 IEEE International Conference on, IEEE, 2016, pp. 1670–1679 . 

[2] F. Atefeh , W. Khreich , A survey of techniques for event detection in twitter,
Comput Intell 31 (1) (2015) 132–164 . 

[3] J.O. Cerdeira , T. Monteiro-Henriques , M.J. Martins , P.C. Silva , D. Alagador ,

A.M. Franco , M.L. Campagnolo , P. Arsénio , F.C. Aguiar , M. Cabeza , Revisit-
ing niche fundamentals with tukey depth, Methods Ecol. Evol. 9 (12) (2018) 

2349–2361 . 
[4] Y. Chang , Z. Tu , W. Xie , B. Luo , S. Zhang , H. Sui , J. Yuan , Video anomaly detec-

tion with spatio-temporal dissociation, Pattern Recognit (2021) 108213 . 

https://doi.org/10.1016/j.patcog.2021.108339
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0004


H.L. Hammer, A. Yazidi and H. Rue Pattern Recognition 122 (2022) 108339 

 

 

 

 

 

[  

 

 

 

 

[

[

[  

[  

[  

[  

[

[

[

[

[

[

[

[

[

[  

[

G

u

i
S

[5] F. Chebana , T.B. Ouarda , Depth-based multivariate descriptive statistics with 
hydrological applications, Journal of Geophysical Research: Atmospheres 116 

(D10) (2011) . 
[6] V. Chernozhukov , A. Galichon , M. Hallin , M. Henry , et al. , Monge–kantorovich

depth, quantiles, ranks and signs, Ann Stat 45 (1) (2017) 223–256 . 
[7] D. Eddelbuettel , Seamless rand c++ integration with rcpp, Springer, New York, 

2013 . ISBN 978-1-4614-6867-7 
[8] D. Eddelbuettel , R. François , Rcpp: seamless r and c++ integration, J Stat Softw

40 (8) (2011) 1–18 . 

[9] S.M. Erfani , S. Rajasegarar , S. Karunasekera , C. Leckie , High-dimensional and
large-scale anomaly detection using a linear one-class svm with deep learning, 

Pattern Recognit 58 (2016) 121–134 . 
[10] H.L. Hammer , A. Yazidi , H. Rue , A new quantile tracking algorithm using a gen-

eralized exponentially weighted average of observations, Applied Intelligence 
49 (4) (2019) 1406–1420 . 

[11] H.L. Hammer , A. Yazidi , H. Rue , Joint tracking of multiple quantiles through

conditional quantiles, Inf Sci (Ny) 563 (2021) 40–58 . 
12] M. Hasan , M.A. Orgun , R. Schwitter , A survey on real-time event detec-

tion from the twitter data stream, Journal of Information Science (2017) . 
0165551517698564 

[13] S. Huang , Z. Kang , Z. Xu , Q. Liu , Robust deep k-means: an effective and simple
method for data clustering, Pattern Recognit 117 (2021) 107996 . 

[14] M. Hubert , P. Rousseeuw , P. Segaert , Multivariate and functional classification 

using depth and distance, Adv Data Anal Classif 11 (3) (2017) 445–466 . 
[15] M. Hubert , P.J. Rousseeuw , P. Segaert , Multivariate functional outlier detection, 

Statistical Methods & Applications 24 (2) (2015) 177–202 . 
[16] R.J. Hyndman , Y. Fan , Sample quantiles in statistical packages, Am Stat 50 (4)

(1996) 361–365 . 
[17] B.K. Iwana , S. Uchida , Time series classification using local distance-based fea- 

tures in multi-modal fusion networks, Pattern Recognit 97 (2020) 107024 . 

[18] R. Jörnsten , Clustering and classification based on the l1 data depth, J Multivar
Anal 90 (1) (2004) 67–89 . 

[19] S. Kim , B.M. Mun , S.J. Bae , Data depth based support vector machines for pre-
dicting corporate bankruptcy, Applied Intelligence 48 (3) (2018) 791–804 . 

20] L. Kong , I. Mizera , Quantile tomography: using quantiles with multivariate 
data, Stat Sin (2012) 1589–1610 . 

21] D. Kosiorowski , Z. Zawadzki , Depthproc an r package for robust exploration 

of multidimensional economic phenomena, arXiv preprint arXiv:1408.4542 
(2014) . 

22] J.R. Kwapisz , G.M. Weiss , S.A. Moore , Activity recognition using cell phone ac-
celerometers, ACM SigKDD Explorations Newsletter 12 (2) (2011) 74–82 . 

23] X. Liu , K. Mosler , P. Mozharovskyi , Fast computation of tukey trimmed re-
gions and median in dimension p > 2 , Journal of Computational and Graphical 

Statistics (2019) 1–31 . 

24] C.A. Lowry , W.H. Woodall , C.W. Champ , S.E. Rigdon , A multivariate exponen-
tially weighted moving average control chart, Technometrics 34 (1) (1992) 

46–53 . 
25] J. Ma , Y. Zhang , L. Zhang , Discriminative subspace matrix factorization for mul-

tiview data clustering, Pattern Recognit 111 (2021) 107676 . 
26] J.-C. Massé, Asymptotics for the tukey depth process, with an application to a 

multivariate trimmed mean, Bernoulli (2004) 397–419 . 
27] K. Mosler , Depth Statistics, in: Robustness and complex data structures, 

Springer, 2013, pp. 17–34 . 

28] R Core Team , R: A Language and Environment for Statistical Computing, R 
Foundation for Statistical Computing, 2021 . Vienna, Austria 

29] N. Rastin , M.Z. Jahromi , M. Taheri , A generalized weighted distance k-nearest 
neighbor for multi-label problems, Pattern Recognit 114 (2021) 107526 . 
11 
30] E.B. Saff, A.B. Kuijlaars , Distributing many points on a sphere, The mathemati- 
cal intelligencer 19 (1) (1997) 5–11 . 

31] M. Sokolova , G. Lapalme , A systematic analysis of performance measures 
for classification tasks, Information Processing & Management 45 (4) (2009) 

427–437 . 
32] J.W. Tukey , Mathematics and the picturing of data, in: Proceedings of the in- 

ternational congress of mathematicians, 2, 1975, pp. 523–531 . 
33] B. Williams , M. Toussaint , A.J. Storkey , Modelling motion primitives and their 

timing in biologically executed movements, in: Advances in neural information 

processing systems, 2008, pp. 1609–1616 . 
34] A. Yazidi , H. Hammer , Multiplicative update methods for incremental quantile 

estimation, IEEE Trans Cybern 49 (3) (2017) 746–756 . 
35] V. Zavrtanik , M. Kristan , D. Sko ̌caj , Reconstruction by inpainting for visual

anomaly detection, Pattern Recognit 112 (2021) 107706 . 
36] Y. Zuo , R. Serfling , General notions of statistical depth function, Ann Stat 

(20 0 0) 461–482 . 

Hugo Lewi Hammer received the M.Sc. and Ph.D. degrees 

from the Norwegian University of Science and Technology, 
in 2003 and 2008, respectively. He is currently a professor 

with the Department of Computer Science, OsloMet Oslo 

Metropolitan University, Oslo, Norway and an adjunct re- 
search scientist at Simula Metropolitan Centre, Oslo, Nor- 

way. Before joining OsloMet and SimulaMet, he worked 
as a researcher with Norwegian Computer Center, Oslo, 

Norway. His research interests include computer intensive 
statistical methods, machine learning, learning automata 

and stochastic optimization. 

Anis Yazidi received the M.Sc. and Ph.D. degrees from the 
University of Agder, Grimstad, Norway, in 2008 and 2012, 

respectively. He is currently a professor with the De- 

partment of Computer Science OsloMet Oslo Metropoli- 
tan University, Oslo, Norway. Before joining OsloMet, he 

worked as a researcher with Teknova AS, Grimstad, Nor- 
way. His current research interests include machine learn- 

ing, learning automata, stochastic optimization, software- 
defined networks and cloud computing. He led the re- 

search group Autonomous Systems and Networks at 
OsloMet from 2015 to 2018. He is currently the leader 

of the research group Applied Artificial Intelligence at 

OsloMet. 

Håvard Rue received the M.Sc. and Ph.D. degrees from 

the Norwegian Institute of Technology, in 1988 and 1993, 
respectively. He is currently a professor in statistics with 

the Computer, Electrical and Mathematical Science and 
Engineering Division, King Abdullah University of Sci- 

ence and Technology (KAUST), Saudi Arabia. Before join- 
ing KAUST, he worked as a professor in statistics at Nor- 

wegian University of Science and Technology. His re- 

search interests lie in computational Bayesian statistics 
and Bayesian methodology such as priors, sensitivity and 

robustness. His main body of research is built around the 
R-INLA project ( www.r-inla.org ), which aims to provide a 

practical tool for approximate Bayesian analysis of latent 
aussian models, often at extreme data scales. This project also includes effort s to 

se stochastic partial differential equations to represent Gaussian fields, for the use 

n spatial statistics. He is the leader of the research group Bayesian Computational 
tatistics and Modeling. 

http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00519-7/sbref0036
http://www.r-inla.org

	Estimating Tukey depth using incremental quantile estimators
	1 Introduction
	2 The concept of depth
	3 Efficient estimation of tukey depth
	4 Performance metrics
	5 Synthetic experiments
	5.1 Synthetic experiments - Static data stream
	5.2 Synthetic experiments - Offline setting
	5.3 Synthetic experiments - Dynamically changing data streams

	6 Real-life data examples
	6.1 Activity change detection

	7 Closing remarks
	Declaration of Competing Interest
	Supplementary material
	References


