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Abstract: Utilization of natural shale formations for the creation of annular barriers in oil and gas
wells is currently discussed as a mean of simplifying cumbersome plugging and abandonment
procedures. Shales that are likely to form annular barriers are shales with high content of swelling
clays and relatively low content of cementation material (e.g., quartz, carbonates). Shales with large
content of quartz and low content of swelling clays will be rather brittle and not easily deformable.
In this paper we ask the question whether and to what extent it is possible to modify the mechanical
properties of relatively brittle shales by chemically removing some cementation material. To answer
this question, we have leached out carbonates from Pierre I shale matrix using hydrochloric acid and
we have compared mechanical properties of shale before and after leaching. We have also followed
leaching dynamics using X-ray tomography. The results show that removal of around 4–5 wt%
of cementation material results in 43% reduction in Pierre I shale shear strength compared to the
non-etched shale exposed to sodium chloride solution for the same time. The etching rate was shown
to be strongly affected by the volume of fluid staying in direct contact with the shale sample.

Keywords: shale; caprock; activation; permanent barrier; acid treatment

1. Introduction

All oil and gas wells need to be permanently plugged and abandoned (P&A) after they
stop injecting/producing. Well plugging before decommissioning relies on setting several
cement plugs in the wellbore to isolate the reservoir and other fluid-bearing formations and
to prevent contamination of the environment [1]. Guidelines for permanent abandonment
described in NORSOK Standard D-010 assumes setting three barriers in a well: primary and
secondary well barriers and the environmental isolation plug. Very often however a plug
placed within the casing is not sufficient to create a throughgoing barrier, and the plugging
procedure require casing removal. This is the case when the annuli behind the casing is not
cemented or the cement quality is not acceptable. Under such circumstances the casing
needs to be milled, swarf has to be removed and the remaining casing pulled. These proce-
dures are very time consuming and thus very expensive [2]. Data from ConocoPhillips [2]
indicate that pipe removal is one of the most time-consuming P&A operations, taking on
average 65 days [2]. Assuming a daily rig day of USD 0.47 million [3] pipe removal from
only one well can cost on average USD 38 million. It is thus not surprising that the oil
industry is urgently seeking for novel P&A solutions.

One emerging innovation is utilization of shale formations to form natural permanent
annular barriers. It has been shown by sonic bond logs that in many wells a solid phase is
present behind the casing far above the theoretical cement top [4]. The presence of this solid
material was correlated with shales, known to cause problems during drilling. It has been
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suggested that some shale formations may deform and seal off the space behind the casing.
Figure 1 represents schematically how the P&A is performed currently (Figure 1A,B) and
the proposed “shale as a barrier” concept (Figure 1C).
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Figure 1. Schematic illustration of: (A) Unplugged well: caprock (red), cement (grey), casing (blue);
(B) Current P&A operations including casing removal and formation-to-formation cementing; (C) The
proposed “shale as a barrier” concept relying on plugging of uncemented annulus by spontaneous or
chemically induced shale deformation.

Creep, i.e., time dependent plastic deformation, has been identified as the main shale
deformation mechanism [5]. It has been suggested that this phenomenon can potentially be
useful in P&A [4,5]. Indeed, it has been confirmed in downscaled laboratory experiments
that some shales like e.g., Lark-Horda can efficiently seal off annulus [6,7]. It has been
shown that annulus closure may be induced by annulus pressure reduction and may be
facilitated either thermally [8] or chemically [6]. Bauer et al. used controlled heating to
stimulate plastic deformation in shale. They show that undrained heating under devia-
toric stress may result in large plastic shear strains [8]. Their thermo-hydro-mechanically
coupled finite-element simulations confirm that heating of a well may result in a strong re-
duction of the borehole radius and eventually to annulus closure. Van Oort et al. have used
both heating as well as chemical treatment to accelerate shale creep [6]. They have shown
that exposure of Lark-Horda shale to sodium and especially lithium silicate solutions
resulted in faster formation of annular barrier compared to the reference test performed
with the artificial pore fluid. The authors hypothesize that the fast barrier formation may
have a twofold reason: (1) highly alkaline pH of these fluids may result in shale weakening
and dispersion due to e.g., increased double-layer repulsion between the clay particles;
(2) cation exchange in clays that results in increased intermolecular hydration forces and
double-layer repulsion between clay particles leading to clay swelling.

The formation of a sustainable barrier closing the gap between the casing and the for-
mation requires large shale deformations, way beyond the limits of elastic deformation [9].
As borehole closure is restricted by shear stiffness [9], plastic shear deformation or shear
failure is needed to close the annulus. Any enhancement of such non-elastic processes in
the near well region are therefore potentially beneficial for shale barrier formation. Creep,
which is time delayed plastic (predominantly shear) deformation, has been considered to
be an important process for the formation of shale barriers [4].

The Lark-Horda shale shown to undergo the chemical acceleration in Van Oort experi-
ment [6] is a weak shale with a Young’s modulus of 827.4 MPa and large clay content of
70–73%, thus it is not surprising that by modulating clay swelling shale creep abilities can
be engineered.

The question, whether mechanically strong and brittle shales can be chemically en-
gineered so that they undergo time dependent plastic deformation, remains unanswered.
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The strong shales are typically those that contain small clay content and large content
of cementation minerals like e.g., quartz, calcite, etc. [10]. We hypothesize that chemical
etching of some cementation material from shale fabric may lead to reduction of shale
stiffness and may lead to acceleration of creep. To achieve a balance between the amount
of swelling clays and etched cementation material will be important. In this paper we
test to what extent the mechanical strength of such shales can be decreased by chemically
removing some cementation material from the shale matrix. To this end we use acid
treatment to dissolve carbonates from Pierre I shale and test how this treatment affects the
shear strength of this shale.

Acid treatment of shales has been of interest to scientific and oil industry environ-
ments in view of so called “matrix acidizing” [11–13], shale gas extraction [14], as well
as CO2 storage [15,16]. Matrix acidizing of gas and oil-bearing shales is a stimulation
method used often as a pre-treatment before hydraulic fracturing. The acidizing aims on:
dissolving sediments, mud solids, increasing shale matrix porosity and thus stimulating
the formation to produce more oil or gas. It has been shown experimentally that typical
shale gas/oil shales like e.g., Eagle Ford, Mancos, Barnett and Marcellus may undergo
significant reduction in Young’s Modulus after acid treatment [17]. It has also been reported
that shales may experience increased creep behaviour when exposed at acidic conditions,
as compared to neutral pH solutions [15]. The above findings suggest that acid treatment
may be a good candidate for stimulation of hard and brittle shales to form annular barriers.
The novelty of the concept suggested in this paper relies on applying acid treatment to
the caprock surface in an annulus in order to weaken a stiff shale and thereby enhance the
probability for the formation of a shale barrier.

2. Materials and Methods
2.1. Sample Preparation and Exposure

Pierre I shale was chosen as a model shale material as it possesses relatively high
stiffness and friction angle owing to a large content of quartz and non-swelling clays
and low content of swelling clays compared to other shales: Young’s modulus ~1 GPa,
unconfined compressive strength ~10 MPa, friction angle ~30 degrees. Mineralogical
composition of the Pierre I shale is presented in Table 1.

Table 1. Mineralogical composition of Pierre shale estimated based on X-ray diffraction.

QZ K-f Pl Ch Ka Mi/Il Mix Sm Dol Py

wt% 30 5 11 1 7 30 8 2 4 1

QZ Quartz, K-f K-feldspar, Pl Plagioclase, Ch Chlorite, Ka kaolinite, Mi/Il Mica/illite, Mix Mixed layer, Sm
Smectite, Dol Dolomite, Py Pyrite.

Two types of samples were prepared: (1) samples for mechanical testing and (2)
samples for in-situ dynamic testing under X-ray tomography. The samples for mechanical
testing have been prepared by first drilling cylindrical blocks (φ~14 mm) perpendicular
to bedding plane and then slicing the blocks into 3–4 mm thick disks. The disks were
polished using a sand paper in a specially designed jig to ensure that the end surfaces are
flat and parallel. The samples were protected from drying by immersing them in Marcol
oil (ExxonMobil).

As prepared samples were exposed to 1 M HCl (Sigma Aldrich, Saint Louis, MO,
USA) or 1 M NaCl (Merck, Darmstadt, Germany) aqueous solutions at ambient condi-
tions. It was important to apply similar molar concentrations of salt and acid in order to
assure comparable ionic strength in both solutions so that osmotic swelling/shrinkage is
comparable. The 1 M concentration was chosen to make sure the osmotic swelling of the
samples will be hindered due to lower ionic strength of the pore fluid. After 2, 21, 48, 96,
144, 192 h at least three samples were removed from the solution, placed in Marcol oil and
then P-wave velocity and shear strength measurements were performed as described later
in this section.
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Samples for dynamics studies were cylindrical shale blocks with diameter of φ~14 mm
and length of about 15–20 mm. They were drilled out perpendicular to bedding plane and
then molded in epoxy resin. The samples were prepared for exposure to acid in a two-fold
manner: (1) sample A was cut at the top and polished with a sandpaper in Marcol oil to
limit contact with air and drying. At time 0 the 1 M HCL was poured over the sample
surface so that the plane parallel to bedding was exposed to acid. (2) sample B was drilled
through and the inner diameter was φ~4 mm. 1 M acid was injected from the bottom
using a syringe in order to displace Marcol oil protecting shale surface from drying out.
Figure 2 shows schematically how the samples A and B were exposed to acid. The progress
of reaction fronts for samples A and B were followed using X-ray tomography.
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Figure 2. Schematic illustration of in-situ exposure configuration for X-ray tomography studies of samples (A) (parallel
configuration where the surface exposed to acid was paralell to the bedding plane) and (B) (perpendicular configuration
where the surface exposed to acid was perpendicular to the bedding plane). Sample diameter was φ~14 mm and the length
about 15-20 mm in both configurations. The hole diameter in configuration B was φ~4 mm.

2.2. X-ray Computed Tomography

X-ray micro-computed tomography (µ-CT) was performed in order to follow reaction
kinetics of shale rock with HCl. To this end an industrial CT scanner (XT H 225 ST, Nikon,
Tokyo, Japan) was used. It was operated at 210 kV with a current of 155µA. The raw CT
data were reconstructed into cross sectional slices.

2.3. Powder X-ray Diffraction (XRD)

The changes of mineralogical composition of shales due to acid treatment were fol-
lowed using a D8 Advance DaVinci X-ray diffractometer (Bruker, Billerica, Massachusetts,
USA) with Bragg-Brentano geometry using CuKα radiation (λ = 1.54187 Å). The samples
were first washed in water to remove acid and water-soluble reaction products of acid with
shale minerals and next crushed using a mortar and pestle and dried at 40 ◦C. Corundum
(α-alumina) was used as an internal standard. The samples were scanned from 2–55◦ 2θ.
The data analysis does not include amorphous material as e.g., organic material. The
method is therefore considered as semi-quantitative analysis. The result of X-ray diffrac-
tion analysis are listed in Table 1 (untreated Pierre I shale) and Table 2 (acid treated Pierre I
shale after different exposure times).
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Table 2. Mineralogical composition of shale samples after exposure to oil, water (after 96 h) and 1 M
HCl (after 2, 21, 46, 96 h).

QZ K-f Pl Ch Ka Mi/Il Mix Sm Si Dol Py

Oil 30 5 11 1 7 30 8 2 0 4 1
H2O 27 6 12 0 8 29 3 10 1 4 1

HCl 2 h 29 7 9 0 7 25 3 15 1 3 1
HCl 21 h 29 8 12 0 6 23 3 18 0 0 1
HCl 46 h 32 8 12 0 4 28 4 10 0 0 2
HCl 96 h 32 7 15 0 6 25 3 9 1 0 2

QZ Quartz, K-f K-feldspar, Pl Plagioclase, Ch Chlorite, Ka kaolinite, Mi/Il Mica/illite, Mix Mixed layer, Sm
Smectite, Dol Dolomite, Si Siderite, Py Pyrite.

2.4. Shear Strength Measurements

The test is performed by applying an axial force to the head of the puncher tool in
displacement control mode while measuring the axial displacement and force. A detailed
description of the shale puncher tool used here is given elsewhere [18]. The standard
displacement rate used was 0.15 mm/min.

2.5. P-Wave Velocity Measurements

P-wave velocity measurements were performed using the continuous wave technique
(CWT) [19]. The technique is designed for measurements on very small (mm thick) samples.
It utilizes standing waves in the sample, generated by a sweeping excitation frequency.
The phase velocity of the sample is determined from the frequency difference between the
resonance peaks. The tool operates in the MHz range.

2.6. Scanning Electron Microscopy/Energy Dispersive Spectroscopy (SEM/EDX)

Scanning electron microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDX)
were used to visualize surfaces of shales non exposed and exposed to acid. A S-3400N
microscope (Hitachi, Tokyo, Japan) was used at 30 kV accelerating voltage. Images were
acquired with a backscattered electron (BSE) detector.

3. Results and Discussion

Typical force-displacement curves obtained for Pierre I shale samples after 96 h of
exposure to oil, 1M NaCl brine and 1M HCl are presented in Figure 3. The curves for
samples stored in oil were steep and underwent abrupt failure. The axial force needed
to shear the sample was on average 2–4 times higher compared to the force required for
failure of shale samples stored in water-based fluids. The shape of the force-displacement
curve after exposure to water-based fluids became less sharp indicating that the material
after exposure changed from brittle to more ductile. Deterioration of shale hardness and
strength upon exposure to water based fluids is a well-known phenomenon termed “shale
softening” [20]. According to the literature, the main mechanisms responsible for “shale
softening” are: (1) interaction of the foreign fluids with swelling clays present in shales
that result in volumetric changes of the clay particles, (2) electrostatic repulsion between
similarly charged clay particles, and (3) dissolution of cementation minerals [20].

When a well preserved, shale sample is exposed to an external fluid at atmospheric
pressure, the fluid first fills in the available pore spaces as pore spaces are typically only
partially filled in with pore fluid [21]. Capillary forces transport the fluid further inside
the sample and the pore fluid mixes with the exposure fluid. The exact ionic composition
of the shale pore fluid of Pierre shale sample used in this work is unknown. Thus, it is
expected that the arbitrary chosen 1 molar concentration of NaCl and HCl exposure fluids
is very likely different from the pore fluid ionic strength and ionic composition. Mixing of
the shale pore fluid with the exposure fluid will thus cause the system to undergo changes
toward a new equilibrium state. These changes may thus include: (1) ion exchange between
clays and the new pore fluid followed by volumetric response of swelling clays (swelling,
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shrinkage), (2) changes in the interparticle interactions, (3) dissolution of some minerals
due to contact with undersaturated solution [16,20].
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1M NaCl brine and 1M HCl. Indicate decimals with “.” not “,”.

The observed significant difference between the maximum peak force after exposure
to HCl compared to NaCl is most likely due to leaching out of some cementing material
at acidic conditions. It has been shown that exposure of some shale rocks to acidic en-
vironment leads to significant deterioration of shale mechanical properties [16,17,22–24].
The loss of mechanical strength of shales upon exposure to acidic fluids was ascribed to
dissolution of such minerals as: carbonates like calcite, dolomite, magnesite, and siderite;
phyllosilicates like e.g., chlorite and K-feldspar [16,25].

In this paper we utilize this effect to transform a brittle Pierre I shale to a more ductile
material that may have potential to creep and form a barrier behind a casing.

Figure 4 shows Pierre I shale shear strength evolution (a) and P-wave velocity evolu-
tion (b) with exposure time for 1M HCl, 1 M NaCl solutions as well as 1 M HCl solution
followed with 1 h washing in a large excess of 1 M NaCl. Huge loss of shear strength (from
5.8 to 2.5 MPa) was observed for all samples independent from the pH of the exposure
solution already after 2 h of exposure. This effect can be ascribed to the shale softening
effect described earlier in this section. After 21 h of exposure the shear strength of samples
exposed to NaCl has only slightly dropped to around 2.2 MPa and stayed unchanged
during further exposure. Shear strength of the samples exposed to acid was reduced to
about 1.2 MPa and further exposure did not change this value significantly. P-wave velocity
values also remained unchanged after 21 h of exposure at 2.5 km/s for samples exposed
to NaCl and at around 2.2 km/s for samples exposed to acid. The stable values of shear
strength and P-wave velocity already after 21 h suggest that the shale samples reached
equilibrium already within 1 day. The lower values of shear strength and P-wave velocity
for acid treated shale samples suggest that the treatment affected microstructure of the shale
fabric. Indeed, an X-ray tomography cross-section image through sample disks exposed
to oil, NaCl, H2O and HCl/H2O, respectively, suggests that the acid exposed sample has
lower material density compared to oil and NaCl exposed samples. This is manifested in
lower X-rays absorption intensity in the HCl/H2O exposed disk (see Figure 5). The lower
material density may be ascribed to partial dissolution of the shale fabric that leads to the
formation of micropores in the shale fabric as depicted in Figure 5. Some cracking was
observed for the sample that was first exposed to acid and next to water. The cracking was
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most likely due to increased osmotic pressure as well as swelling pressure acting in water
on the mechanically weakened shale matrix.
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standard deviation from the mean value obtained for at least three samples. Wherever an error bar is
not visible, the standard deviation is smaller than the size of markers.
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Figure 5. X-ray tomography cross-sectional image through shale disks exposed for 96 h to oil, 1 M
NaCl, H2O and 1 M HCl/H2O, respectively, (left) and around 3 times enlarged images of shale
samples exposed to H2O (top) and 1 M HCl and H2O (bottom) with micro-sized porosity highlighted
in red being a consequence of mineral dissolution (right).

Figure 6 compares topography and distribution of elements on the surfaces of cross
sections through shale samples exposed to HCl and to oil, respectively. The SEM BSE
image indicates slightly higher porosity of samples treated with HCl which is in line
with X-ray tomography observations. EDX maps indicate that samples treated with HCl
are depleted with calcium, magnesium and iron. The amount of other elements like
e.g., silicon remained unchanged (data not shown). In order to quantify the amounts of
minerals removed during acid treatment powder X-ray diffraction with corundum as an
internal standard was performed. The mineralogical composition obtained for the samples
based on XRD patterns is given in Table 2. The data show that already after 21 h of acid
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exposure samples are completely depleted from calcium and magnesium carbonate mineral
(CaMg(CO3)2, dolomite). This explains why EDX maps show lower contents of calcium and
magnesium. In fact, calcium was almost entirely removed from the shale sample during
the acid treatment. Carbonate minerals are very susceptible to acid attack [16]. It has been
shown that even weak acids like carbonic acid can efficiently etch carbonates from various
types of shales [16,25]. The most susceptible to acid attack is calcite followed by dolomite
while siderite and magnesite show lower dissolution rates [26]. The iron removed from
shale samples after acid treatment could originate either from siderite (FeCO3), chlorite
minerals that were present at low concentrations in Pierre I shale samples or from partial
dissolution of phyllosilicate minerals like e.g., illite and mixed layer minerals. Pyrite (Fe2S)
is rather resistant to acid attack [27] as long it is not exposed to oxidizing environment [28].
Thus, it is rather likely that the remaining iron after acid treatment is associated with the
presence of i.e., pyrite. The apparent increase in the content of quartz after etching is most
likely due to removal of carbonates. After removal of carbonates, quartz will constitute
a higher fraction per given mass of the shale sample. The presence of siderite is at the
detection limit. Appearance of siderite in the sample after 96 h of exposure to 1 M HCl is
somewhat surprising as siderite is also susceptible to acid leaching. It is however likely
that some reprecipitation might have happened during washing following acid treatment
when the washing solution (deionized water with ions washed out from the sample) was
in contact with CO2 from the air.
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Figure 6. SEM BSE image and EDX maps showing distribution of calcium, magnesium and iron
elements on surfaces of cross-sections of shale samples exposed to 1 M HCl (left) and 1 M NaCl
(right) after 96 h of exposure.

As the acid treatment of Pierre I shale is associated with mineral etching and thus
density changes within the shale fabric, it was possible to follow the dynamics of acid
treatment using an X-ray tomography technique. The etching was performed in two
configurations described in detail and illustrated in the Materials and Methods section.
Figure 7 shows the progress of etching for sample A that was exposed to acidic solution in
a parallel configuration. In this configuration acid was applied from the top sample side
and the shale/acid contact surface was parallel to the bedding plane. Figure 8 shows the
progress of etching for sample B that was exposed to acidic solution in a perpendicular
configuration where acid was applied through a channel drilled through the cylindrical



Energies 2021, 14, 2342 9 of 14

sample. On the X-ray tomography images shown in both Figures 7 and 8 the etched area
was darker compared to the nonmodified material due to lower density and thus lower
X-rays absorption intensity in the etched areas.
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Figure 8. X-ray tomography XY (top) and YZ (bottom) cross-sections through the cylindrical shale sample B (in a configura-
tion where the surface exposed to acid was perpendicular to the bedding plane) after different exposure times (0, 5, 10, 29,
53 and 125 h). The red stripe indicates the extent of the etched volume. The channel diameter is ~4 mm.

Figure 9 shows intensity profiles taken from X-ray tomography cross-sections of
sample B after different exposure times. The shape of the profiles change with exposure
time. In the area close to the exposed channel the intensity decreases with time and the
length of the area with reduced intensity increases with time.

The reaction depth was plotted as a function of time for shale samples exposed to HCl
acid at parallel and perpendicular configurations (see Figure 10).
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A significantly higher etching rate was observed for the sample exposed in the parallel
configuration, i.e., when the sample surface parallel to bedding was exposed to acid. Mass
transport inside sedimentary rock matrices has been shown to be highly dependent on
the direction in respect to rock bedding plane [29–32]. Typically, the diffusion rates in the
direction perpendicular to the bedding plane are shown to be lower than that parallel to
the bedding plane [30–32]. The anisotropy of the permeability and diffusivity are due to
the anisotropy of pore structure of the bedding. Our observations in contrast to literature
findings suggest that the etching reaction of carbonates with acid proceeds faster in the
direction perpendicular to bedding than parallel. This however can be explained by the
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geometry and the size of the fluid reservoir being in direct contact with the surface. While
in the parallel exposure configuration the whole volume of the reservoir (~20 cm3) is in
direct contact with the exposed shale surface, in the perpendicular configuration only
a small volume of a narrow channel (0.75 cm3) is in contact with the surface while the
larger fluid reservoir (~20 cm3) is only connected via the channel. The presence of the
narrow channel significantly constrains transport of reaction substrate (HCl acid) to the
shale and products (e.g., calcium ions) from the surface. The constrained transport is the
most likely explanation for the lower reaction rates in the perpendicular configuration
compared to the parallel. Similar reduced reaction rates have been previously reported
by Chavez Panduro et.al. [33]. The reactive fluid flow through the channel resulted in a
significantly facilitated etching processes compared to the stationary conditions [33]. This
suggest that at stationary conditions the volume of fluid in respect to the exposed surface
will affect the etching rate while at the flow conditions the reaction rate will depend on
the fluid flow rate [34]. Summarizing, the etching rate will be dependent on geometry
in which shale is exposed to acid in addition to shale type, bedding plane exposed, acid
concentration and type as well as temperature, pressure, and the reactive fluid flow rate.

Limitations

Only one type of shale has been studied in this paper. As it is likely that strength
changes upon acid treatment will be determined by the proportions of swelling to cemen-
tation minerals as well as porosity of shales, a broader range of shales needs to be studied
to find the relation between the proportions of these components that allow for creep
and to find out how to engineer shales to induce creep. Another important aspect that
future studies have to address is engineering of shale properties at conditions mimicking
downhole conditions, i.e., higher temperature and pressure. The two parameters may
affect both leaching rates as well as the resulting mechanical response.

It is expected however that any reduction in shear strength of the shale will improve
the probability for annulus closure, unless the shear modulus of the shale is extremely
small (typically less than 0.05 GPa [9]). Whether a given reduction in strength is sufficient
to close the annulus in a given situation depends on the local stress and pore pressure
conditions, the initial strength and the shear modulus of the rock (as well as the size of the
annulus gap).

The thickness of the shale barrier has to be at least the minimum plug length required
by regulations, which is 50 m in the Norwegian sector of the North Sea [3] while it is 100 ft
(30.5 m) in the UK sector [35]. Since flow requires a continuous flow path, one may think
that an impermeable annulus barrier is equally efficient regardless its length, hence the
more efficient the barrier is, the shorter it can be while still fulfilling the required sealing
efficiency. This argument has limited validity however, since the leaking fluid may bypass
a short barrier by going through the intact shale which is not entirely impermeable, at least
not in an “eternal perspective” [3]. The requirement that the barrier shall be “imperme-
able” [3], or at least sufficiently effective so that it only permits “leakage of fluids at the
same rate or a lower rate than the caprock” [35] can hardly be met by any realistically appli-
cable technology anyway, hence the minimum plug length set by regulators is for practical
purposes the most relevant value for the minimum thickness of the shale formation.

The performance of the shale barrier will anyway need to be verified in accordance to
current practices. There are currently two pressure integrity type of tests used to verify
the performance of well barrier elements. These are: (1) The XLOT-type test and (2) the
communications test. The resolution limits of those tests are, however, limited and the
tests are not capable to detect annulus permeability below the milli Darcy permeability
range [36].

Whether or not the concept of acid treatment to reduce strength of strong shales can be
applicable in the field or not depends on whether the solution to combat casing corrosion
can be applied as acids show corrosive properties towards metals including casing steel.
The casing could possibly be protected from corrosion by e.g., applying coating on casing
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or corrosion inhibitors. In the latter case the effect of inhibitors on carbonates leaching has
to be determined.

4. Conclusions

In this paper we show to what extend the mechanical properties of Pierre I shale can
be changed by removing from the shale matrix carbonates acting as a cementation material.
The removal was done by chemical leaching of carbonates in hydrochloric acid. Mechanical
properties of shale before and after leaching have been compared. The results show that:

(1) removal of around 4–5 wt% of cementation material resulted in 43% reduction in
Pierre shale shear strength compared to the non-etched shale exposed to sodium
chloride solution for the same time.

(2) the removed material was mainly dolomite
(3) leaching rate was dependent on geometry in which shale was exposed to acid, or

more specifically, on volume staying in direct contact with the exposed shale surface.
It has been suggested that leaching rate can be enhanced by inducing fluid flow.

Whether or not the observed mechanical strength reduction is sufficient for the shale
barrier to form around casing is a subject of our further studies.
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Abbreviations

QZ Quartz
K-f K-feldspar
Pl Plagioclase
Ch Chlorite
Ka Kaolinite
Mi/Il Mica/illite
Mix Mixed layer
Sm Smectite
Dol Dolomite
Py Pyrite
P&A plugging and abandonment
µ-CT, CT X-ray micro-computed tomography
XRD powder X-ray diffraction
EDX energy dispersive X-ray spectroscopy
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