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Abstract  This research looks at the conditional mean and volatility densities for the
nearest maturities of renewable Carbon and fossil Brent Oil Futures contracts. The
primary goal is to characterize the features of volatility across commodity financial
markets. Serial and cross-correlation are reported via a Kalman filter and the explicit
volatility projection. The enhanced cross-lags should supplement available deriva-
tive trading strategies with step-ahead volatility information.
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6.1 INTRODUCTION
The chapter applies a semi-parametric nonlinear model to investigate characteris-
tics of the conditional mean and volatility densities for the ICE Carbon front
December and the ICE Brent Oil front month future contracts for the period 2011
to 2021. The chapter uses multifactor stochastic volatility models to obtain step-
ahead volatility forecasts for the two contracts. Stochastic volatility (SV) models
have an intuitive and simple structure and can explain the major stylized facts of
asset, currency and commodity price movements (Solibakke, 2020). Time-varying
volatility is endemic in financial markets, and SV models are the main way this
time-varying volatility is modelled (Shephard and Andersen, 2009). The motiva-
tion for the use of SV models is therefore mainly threefold: Firstly, the number of
events is unpredictable on day t (Taylor, 1982). The SV methodology is propor-
tional to the number of day t events. Secondly, the trading clock runs at different
intensities on different days (time deformation) where the clock is often repre-
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sented by trading volume (Clark, 1973). Finally, Hull and White (1987) show that
SV models are a good approximation to diffusion processes for continuous volatil-
ity variables (closely related to realized variance). Volatility is a measure of disper-
sion around the mean return of an asset. When the price returns are tightly
bunched together, the volatility is small; conversely, when they are spread apart, the
volatility is large. The use of all volatility models entails prediction characteristics
for future returns. A special feature of asset volatility is that it is not directly observ-
able. The unobservability of volatility makes it difficult to evaluate the forecasting
performance of volatility models. However, market participants who understand
the dynamic behaviour of volatility are more likely to have realistic expectations
about future prices and the risks to which they are exposed. The step-ahead vola-
tility forecasts are useful to traders of variance swaps1. For example, when forecasts
are used for trading variance swaps, signals to buy or sell can be obtained by com-
paring the volatility forecast with the implied volatility (Andersen et al., 2003).
Moreover, both the ICE Carbon and Brent Oil have a market for listed derivatives.
Bearing in mind that volatility is for most instruments non-traded, which suggests
imperfect estimates, the volatility can be interpreted as a latent variable that can be
modelled and predicted through its direct influence on the magnitude of returns.
The chapter uses the Bayesian Markov Chain Monte Carlo (MCMC) modelling
strategy used by Gallant and McCulloch (2020) and Gallant and Tauchen (2010a,
2010b)2. The method is a systematic approach to generate moment conditions for
the generalized method of moments (GMM) estimator (Hansen, 1982) of the
parameters of a structural model. Moreover, the implemented Chernozhukov and
Hong (2003) estimator keeps model parameters in the region where predicted
shares are positive for every observed price/expenditure vector. The computation-
ally intensive method enables efficient estimates of parametric SV models. Moreo-
ver, the methodology supports restrictions, inequality restrictions, and informative
prior information (on model parameters and functionals of the model). 

1 A variance swap is a swap between a floating rate and a fixed rate (the variance swap rate). The
swap is a pure volatility trade. There are numerous trading applications of variance swaps, inclu-
ding spread trades on forward volatility and on the spread between volatilities on different
underlyings. They also provide a natural diversification for long equity investors, since there is
strong negative correlation between their pay-offs and returns on equities.

2 The methodology is designed for estimation and inference for models where (1) the likelihood
is not available, (2) some variables are latent (unobservable), (3) the variables can be simulated
and (4) there exists a well-specified and adequate statistical model for the simulations. The
methodologies – General Scientific Models (GSM) and Efficient Method of Moments (EMM) –
are general-purpose implementation of the Chernozhukov and Hong (2003) estimator. That is,
the applications for methodologies are not restricted to simulation estimators.
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In the SV methodology, the distribution of returns is modelled indirectly (via the
structure of the model), and as indicated by the methodology above, the likelihood
function is not directly observable. Asset pricing theory implies that higher rewards
are required as an asset is exposed to more systematic risk. Knowing that risks
change through time in complicated ways, it seems natural to build stochastic mod-
els. These models bring financial economics closer to the empirical reality, allowing
better decision making, inspiring new theories, and improving model building3.
Among other features, the SV methodology consistently measures correlation
between factors enabling explicit potential return-volatility correlations inducing
mean and volatility skewness. That is, negative returns show the lower tail of the log
returns distribution that is long and thin, while positive returns show the upper tail
of the log return distributions that will be light. Similarly, negative correlation
between volatility factors suggests a negative co-movement in volatility, while the
opposite is true for positive correlation. Moreover, the number of stochastic factors
capability of SV models makes the specification flexible and extendable. For exam-
ple, a specification with two stochastic volatility factors with consistent correlation
structures enables both persistent and strongly mean-reverting volatility factors
explicitly detailing the volatility densities. This volatility information allows for data
dependence analysis suggesting any form of predictability. In comparison, general
autoregressive conditionally heteroscedasticity (GARCH) processes, often described
as SV, do not follow this nomenclature4. These models explicitly model the condi-
tional variance, given past returns observed by the econometrician. The rest of the
chapter is organized as follows: Section 6.2 describes the methodology. Section 6.3
presents correlation results, and section 6.4 concretizes these facts from stochastic
volatility models. Section 6.5 summarizes and concludes.

6.2 THEORY AND METHODOLOGY
6.2.1 Stochastic volatility models
The SV approach specifies the predictive distribution of price returns indirectly
via the structure of the model, rather than directly. The SV model has its own

3 The close connection between SV and realized volatility has allowed financial econometricians
to harness the enriched information set available through high-frequency data to improve, by
order of magnitude, the accuracy of their volatility forecasts over that traditionally offered by
GARCH models based on daily observations. The applications of SV have therefore broadened
into the important arena of risk assessment and asset allocation.

4 See Joshua and Grant (2015) and Byon and Cho (2013) and references therein.



Solibakke | Bidrag innen kundeverdi og marked112

stochastic process without considering the implied one-step-ahead distribution of
returns recorded over an arbitrary time interval convenient for the econometri-
cian. The starting point is the application of Andersen, Benzoni, and Lund (2002)
considering the familiar stochastic volatility diffusion for an observed stock price

St given by , where the unob-

served volatility processes Vi,t , i = 1,2, is either log linear or square root (affine).
The W1,t and W2,t are standard Brownian motions that are possibly correlated with
corr(dW1,t, dW2,t) = ρ. Andersen et al. (2002) estimate both versions of the sto-
chastic volatility model with daily S&P 500 stock index data, from 1953 through
31 December 1996. Both SV model versions are sharply rejected. However, adding
a jump component to a basic SV model greatly improves the fit, reflecting two
familiar characteristics: thick non-Gaussian tails and persistent time-varying vola-
tility. An SV model with two stochastic volatility factors shows encouraging results
in Chernov et al. (2003). The authors consider two broad classes of setups for the
volatility index functions and factor dynamics: an affine setup and a logarithmic
setup. The models are estimated using daily data on the DOW Index, from 2 Jan-
uary 1953 to 16 July 1999. They find that models with two volatility factors do
much better than models with only a single volatility factor. They also find that the
logarithmic two-volatility factor models outperform affine jump diffusion models
and provide an acceptable fit to the data. One of the volatility factors is extremely
persistent and the other strongly mean-reverting. The chapter’s SV model applies
the logarithmic model with two stochastic volatility factors (Chernov et al., 2003).
The model is extended to facilitate correlation between the mean (W1t) and the
two stochastic volatility factors (W2t, W3t). The main argument for the correlation
modelling is to introduce asymmetry effects (correlation between return innova-
tions and the two volatility innovations)5. 

6.2.2 The unobserved state vector using the nonlinear Kalman 
filter technique
A Kalman filter is an algorithm for sequentially updating a projection for the dyna-
mic system. The algorithm provides a way to calculate exact finite-sample fore-
casts. From the prior SV model estimation, one by-product is a long-simulated
realization of the volatility state vector  and the corresponding

5 See Solibakke (2020), for a detailed specification of a two-factor stochastic volatility model.
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returns for the optimal estimated parameters . Hence, by calibrating
the functional form of the conditional distribution of volatility functions

  given the simulated returns ; evaluating the result on observed
returns ; and generating predictions for volatilities  through Kalman
filtering returns yt , very general functions of can be used and a huge data
set is available. An SNP model is re-estimated on the simulated returns , remem-
bering that the model provides a convenient representation of the one-step-ahead
conditional variance of simulated returns  given the long simulated returns

. Regressions are run off on ,  and  and lags (generously
long) of these series. These functions are evaluated on the observed return series

, which give volatility values  for the two volatility factors at the
original data points (Solibakke, 2020). That is, the available data set now consists
of , and , where t is the length of the original data set.

6.3 THE ICE CARBON AND THE BRENT OIL CONTRACT 
SERIES AND SNP DENSITIES
6.3.1 The ICE Carbon and the Brent Oil contract series and 
stationarity
We impose weak stationarity, and the means, variance and covariances are inde-
pendent of times (rather than the entire distribution). That is, a process {yt} is weakly
stationary if for all t, it holds that  and

. A shock to a stationary
autoregressive process of order 1 (AR(1)) affects all future observations with a
decreasing effect. Table 6.1 reports the characteristics of the price movements for
the two series. The mean is positive Carbon and negative Brent Oil contracts. The
highest extreme values are found for Carbon followed by the highest standard
deviation (3.35) as expected. The Brent Oil reports highest kurtosis (23.3) followed
by a negative skew of -1.15 (large dumps). The Cramer-von-Mises test statistic
reports significant non-normality for both Carbon (2.89) and Brent Oil (2.89) con-
tracts. The Q(12) and the Q2(12) correlogram statistics (serial correlation) show
dependencies for both the mean and volatility for both contracts. Similarly, the
12th lag ARCH test statistic (Engle, 1982) suggests highly significant conditional
heteroscedasticity. The RESET test (Ramsey, 1969) reports instability. Finally, for
both series, the adjusted series ADF (Dickey & Fuller, 1979) and the KPSS (Kwia-
towski et al., 1992) statistics confirm stationarity and the BDS test statistic (Brock
and Dechert, 1988; Brock et al., 1996) reports general nonlinear data dependence.
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Figure 6.1 reports the levels and the movements series for the Carbon and Brent
Oil contracts. The general appearance of the two series is typical for equity market
data. We also experimented with breaking trends in the movement equations, but
our results suggested little evidence for trend breaks. The Value at Risk (VaR) is a
well-known concept of measures of risk, and Table 6.1 includes the 2.5% and 1%
VaR numbers for market participants.

6.3.2 The SNP density projection
Since the conditional density completely characterizes the price movement pro-
cess, the density is naturally viewed as the fundamental statistical object of interest.
The semi-nonparametric (SNP) model is fitted using conventional maximum like-
lihood together with a model selection strategy that determines the appropriate
order of expansion (BIC). The Schwarz Bayes information criterion (Schwarz,

1978) is computed as  with small values of the cri-

terion preferred. Table 6.2 reports the maximum likelihood (ML) estimates6 of the
parameters for the BIC-optimal SNP density models7. Firstly, for the mean, the
intercept is insignificant and the serial correlations (B[1,x]) are not significant for
Carbon but significant for Brent Oil, implying dependence (η6). The negative cor-
relation for Brent Oil (η6) suggests mean reversion for these contracts. Secondly,
the conditional variance coefficients (η7 – η9) are all strongly significant. Condi-
tional heteroscedasticity is therefore present (η7 – η9). Furthermore, asymmetry
(η10) and level effects (η11) are only present for Brent Oil (not for Carbon). For the
Brent Oil contracts, the reaction from negative price movements is therefore
higher than from positive movements (not reported). The largest eigenvalue of the
conditional variance function P & Q companion matrix is 1.055 and 0.967 for the
Carbon and Brent Oil contracts, respectively. Due to the use of an additional trans-
formation8 (trigonometric spline) the dictum that the sum of the squared coeffi-
cients (squares) must be less than one9 no longer holds. Finally, the hermite func-
tions coefficients (η1-η4), which capture parametric model departures, are BIC
preferred up to the sixth polynomial lag expansions. Hence, the hermite results

6 Based on likelihood ratio test statistics (LRT), the student-t log-likelihood function is strongly
preferred to a normal likelihood function.

7 The BIC optimal SNP model is the Lu=14,Lg=1,Lr=1,Lv=1,Lω=1,Lp=1,Kz=12,Kx=0 specifica-
tion.
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clearly suggest departures from the classical normally distributed and parametric
conditional model. The SNP projection gives access to one-step-ahead densities

, conditional on the values for , the densities
for the conditional mean and volatility together with the conditional one-step-
ahead mean densities. Moreover, simulation paths are easily obtainable using the
seed for stochastics and bootstrapping. Figure 6.2 reports densities for some of
these features. The mean distribution for Carbon contract seems to give a positive
mean followed by a negative skewness. The Brent Oil contracts seem to give a neg-
ative mean also followed by a negative skewness. The conditional volatility distri-
bution shows a larger right tail for the Carbon contracts than for Brent Oil. More-
over, the Brent Oil contracts seem to show a lower overall volatility.

Table 6.1: Characteristics for the ICE Carbon and Brent Oil contracts for the period 2011–2021

8  where xi denotes an element of

xt-1.
9 Under the spline transformation, it suffices that the sum of squares of the coefficients be less

than 2.
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Figure 6.1: The ICE Carbon and Brent Oi contract level (top) and movements (bottom) se-
ries for the period 2011–2021.
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Table 6.2: SNP-Model Projection Specification Carbon and Brent Oil contracts10 
Statistical Model SNP (111140000) opt. BIC-fit; semi-parametric-GARCH model

10 The residual test battery is all insignificant except for the Cramer-von-Mises test for normality,
which is strongly reduced in significance (not reported).

    Mode and {Standard Error}

Var SNP Coeff. The ICE Carbon The ICE Brent Oil

Hermite Polynoms

η1 a0[1] -0,02432 {0,0266} -0,04087 {0,0239}

η2 a0[2] -0,18025 {0,0196} -0,15918 {0,0196}

η3 a0[3] 0,01124 {0,0155} -0,02248 {0,0165}

η4 a0[4] 0,13065 {0,0114} 0,10216 {0,0162}

η5 a0[5] -0,00105 {0,0162} 0,00464 {0,0193}

η6 a0[6] -0,06886 {0,0172} -0,07695 {0,0139}

Mean Equation (Correlation)

η5 b0[1] 0,05704 {0,0418} 0,05108 {0,0320}

η6 B(1,1) 0,00789 {0,0213} -0,04853 {0,0215}

Variance Equation (Correlation)

η7 R0[1] 0,12625 {0,0214} 0,07765 {0,0159}

η8 P[1,1] 0,39379 {0,0357} 0,18454 {0,0524}

η9 Q[1,1] 0,94843 {0,0057} 0,96608 {0,0047}

η10 V[1,1] 0 {0,0968} -0,34431 {0,0385}

η11 W[1,1] 0 {0,0} 0,30542 {0,0842}

Model sn 1,23241 1,1302302

selection aic 1,23733 1,1302302

critera: bic 1,25158 1,1302302

Largest eigenvalue for mean 0,02641 0,04853

Largest eigenvalue variance 1,05459 0,96737
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Figure 6.2: Conditional mean and volatility, and one-step-ahead conditional mean den-
sity.

The risk seems therefore lower in Brent Oil contracts relative to Carbon contracts.
Furthermore, conditioning on the unconditional mean, the Carbon one-step-
ahead mean distribution is much wider than for Brent Oil. However, note from
Figure 6.2 (right column), the step-ahead mean conditional on the unconditional
mean from Table 6.1 is about 0.088 for Carbon and -0.001 for Brent Oil. Normally,
these plots therefore suggest a higher positive drift for Carbon than for the Brent
Oil contracts.

6.4 STOCHASTIC VOLATILITY 
The SNP methodology obtains a convenient representation of one-step-ahead
conditional variance . From the stochastic volatility
model optimization in Table 6.3, we use the by-product of a long simulated reali-
zation of the state vector  together with the corresponding 
for the optimally estimated parameter vector  Running regressions for Vit
on  and a generous number of lags of theses series, we obtain cal-
ibrated functions that give step-ahead predicted values of  at
the original data points (see Section 6.2.1). The re-projected volatility and the two
volatility factors are reported in Table 6.4 and Figure 6.3.
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Table 6.3: Optimal stochastic volatility parameter values for the ICE Carbon and Brent Oil 

Figure 6:3: Stochastic volatility factors for the ICE Carbon and Brent Oil future contracts.

The ICE Carbon Scientific Model The ICE Brent Oil Scentific Model

Parameter values Scientific Model Parameter values Scientific Model

θ Mode Mean
Standard 

error θ Mode Mean
Standard 

error

a0 0,088745 0,078207 0,005025 a0 0,039551 0,035373 0,068131

a1 -0,015991 -0,015823 0,009387 a1 -0,047363 -0,051652 0,020053

b0 0,763430 0,763470 0,010869 b0 0,145630 0,158620 0,168230

b1 0,971250 0,970390 0,002016 b1 0,828000 0,824020 0,095037

c1 0 0 0 c1 0 0 0

s1 0,088409 0,087666 0,001208 s1 0,169340 0,169330 0,000983

s2 0,190860 0,190400 0,001833 s2 0,157070 0,157050 0,001290

r1 -0,101200 -0,099473 0,005040 r1 -0,331670 -0,330850 0,004434

r2 0,075989 0,076666 0,004590 r2 0,117550 0,113550 0,005410

Distributed Chi-square (no. of 
freedoms)

χ2(5) Distributed Chi-square (no. of 
freedoms)

χ2(5)

Posterior at the mode -4,1074 Posterior at the mode -6,2121

Chi-square test statistic {0,1420} Chi-square test statistic {0,0922}
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Table 6.4: Re-projected Volatility Characteristics

6.4.1 Volatility characteristics
The volatility factors in Figure 6.3 seem to model two different flows of informa-
tion to the Carbon and Brent Oil markets and their participants. The slowly mean-
reverting factor provides volatility persistence and the rapidly mean-reverting fac-
tor provides for the tails (Chernov et al., 2003). For the period 2011 to 2021, the V1
factor for the Carbon market is clearly moving slower than for the Brent Oil con-
tracts, possibly showing higher serial correlation. For Brent Oil contracts, both V1
and V2 report large realization in the start of 2020 (Covid-19). The re-projected
volatility is therefore high volatility in both 2020 and 2021. However, for Carbon
contracts, volatility for the Covid-19 period from March 2020 seems almost unaf-
fected. The highest volatility period for the Carbon contracts seems to be back in
2012/13 (low prices). For both the contracts, the volatility seems to increase more
from negative price changes than from positive price changes. Volatility densities
for the front year and the front quarter contract series suggest lognormal densities.
Furthermore, the power law  providing an alternative to the
normal distributions seems approximately true for the volatility (not reported).
Table 6.4 reports statistical details for Carbon and Brent Oil contracts. The statis-
tics indicate substantial data dependence suggesting both clustering (serial corre-
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lation) and persistence. However, the statistics (unit root) still suggest mean rever-
sion. The data dependence makes volatility predictions clearly more relevant and
probably more informative to market participants.

6.4.2 Volatility co-movements
Table 6.5 reports the cross-correlations, Granger causality and Wald coefficient
restriction tests (asymptotically equal to a likelihood ratio test). The Granger
(1969) approach to the question of whether x causes y is to see how much of the
current y can be explained by past values of y and then to see whether adding
lagged values of x can improve the explanation. y is said to be Granger-caused by
x if x helps in the prediction of y, or equivalently if the coefficients on the lagged
x-es are statistically significant. It is important to note that the statement “x
Granger cause y” does not imply that y is the effect or the result of x. Granger cau-
sality measures precedence and information content, but does not by itself indicate
causality in the more common use of the term. 

Granger causalities indicate a bivariate regression of the form: 

for all possible pairs of (x, y) series in the group. We report the Wald statistics for
the joint hypothesis β1 = β2 = ... = βl = 0 for each equation. The daily Carbon front
December futures and Brent Oil front month futures reject the hypothesis that
Brent oil re-projected volatility does not Granger cause Carbon ICE futures (p =
0.004) (and not the other way (p = 0.5632)). The BIC optimal bivariate VAR for the
re-projected Carbon volatility shows that serial correlation (VAR) is significant up
to lag 23 and, suggested by Granger causality, several significant lags of Brent Oil
(β ≠ 0). Hence, carbon stochastic volatility reports long-run serial correlation
together with significant Brent Oil causality. 

The Wald test computes a test statistic based on unrestricted regression. The
Wald statistic measures how close the unrestricted estimates come to satisfying the
restrictions under the null hypothesis. The test statistics show results that give
additional support for volatility influence from Brent Oil to Carbon contracts (and
not the other way). The Brent Oil contracts report a significant Wald coefficient of
126.9 (p = 0) while Carbon contracts report an insignificant Wald coefficient of 21
(p = 0.10). Moreover, Table 6.5 (bottom) reports a Wald Brent Oil factor 1 coeffi-
cient of 52.7 (p = 0) on Carbon re-projected volatility. The Carbon re-projected
volatility does not report significant Wald coefficients to Brent oil volatility.
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Table 6.5: Causality statistics for Carbon Futures and Brent Oil Futures contracts

6.4.3 Volatility predictions
It is difficult to forecast because the realization of a stochastic process will be influ-
enced by random events that happen in the future. In case of a large market move-
ment at any time before the risk horizon, the forecast needs to take this into
account. However, static one-step-ahead forecasts for the single assets Carbon and
the Brent Oil movements are presented in Figure 6.4. The estimation period is
from 2011 to 1 January 2020 and the static forecasting period from 1 January 2020
to 5 February 2021. Static forecasting performs a series of one-step-ahead forecasts

 Causality statistics Carbon Carbon Carbon

Factor 1 (V1t); prob Factor 2 (V2t); prob Reprojected; prob

Cross-
Correlation

Oil (V1t) -0,01658 {0,4158} 0,009546 {0,6394} -0,00803 {0,6936}

Oil (V2t) 0,012456 {0,5410} 0,052689 {0,0097} 0,027924 {0,1705}

Oil (Repro) 0,025722 {0,2067} 0,044921 {0,0274} 0,039238 {0,0341}

Causality from Brent Oil to Carbon

To: Carbon Carbon Carbon

From: Factor 1 (V1t); prob Factor 2 (V2t); prob Reprojected; prob

Granger Oil (V1t) 2,43058 {0,0022} 1,24173 {0,2373} 1,85668 {0,0265}

Oil (V2t) 1,44935 {0,1223} 1,01604 {0,4336} 1,07715 {0,3734}

Oil (Repro) 3,49463 {0,0000} 1,50165 {0,1021} 2,27503 {0,0044}

Wald coeff. Oil (V1t) 109,042 {0,0000} 24,19942 {0,0483} 52,69607 {0,0000}

restrictions Oil (V2t) 23,32456 {0,0552} 19,60125 {0,1432} 23,63356 {0,0507}

Oil (Repro) 302,2734 {0,0000} 48,07937 {0,0000} 126,8786 {0,0000}

Causality from Carbon to Brent oil

To: Brent Oil Brent Oil Brent Oil

From: Factor 1 (V1t); prob Factor 2 (V2t); prob Reprojected; prob

Granger Oil (V1t) 1,12042 {0,3337} 1,03214 {0,4173} 1,01879 {0,4308}

Oil (V2t) 2,75905 {0,0004} 1,2104 {0,2600} 1,62793 {0,0646}

Oil (Repro) 1,43862 {0,1268} 1,39629 {0,1461} 1,42009 {0,1350}

Wald coeff. Oil (V1t) 8,083335 {0,8849} 10,68981 {0,7102} 9,6049 {0,7905}

restrictions Oil (V2t) 21,93805 {0,0919} 19,11454 {0,1606} 20,74074 {0,1325}

Oil (Repro) 6,371669 {0,9562} 19,52757 {0,1458} 21,00248 {0,1016}
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of the dependent variable (Pindyck & Daniel, 1998). For each observation the fore-
cast computes , where j is the lag number of the forecasting
variable y (always using the actual value of the lagged endogenous variable), data
for any lagged endogenous variables must be observed. The static daily forecasts
do not contain any exogenous variables except for lagged Brent Oil variables for
Carbon forecasts. For a “good” measure of fit, using the Theil inequality coefficient
(bias, variance and covariance portions), the bias and variance should be small so
that most of the bias is concentrated on the covariance proportion. The Granger
and Wald test results in Table 6.5 illustrate Brent Oil influence on Carbon contracts
that are included in the static predictions in Table 6.6. The covariance proportion
for re-projected volatility is 95.5% for the Carbon contracts and 87.6% for the
Brent Oil contracts. For the ICE Carbon contracts, the inclusion of Brent Oil cor-
relation for the step-ahead predictions significantly increases the covariance pro-
portion from 90.9% to 95.5% (and not the other way). Only March (Covid-19 out-
break) and possibly April 2020 for the ICE Brent Oil contracts report actual
volatility outside of the predicted 95% confidence intervals. Running static fore-
casts for sub-samples for the period 2018/19 and comparing the Theil covariance
measures does not significantly change Theil’s covariance portion. In fact, for both
Carbon and Brent Oil, the three sub-periods report covariance measures all
around (94–95% and 87–88%, respectively). Table 6.6 reports also fit measures of
2020/21 for the sub-factors V1t and V2t. Note especially the high covariance por-
tion for the ICE Carbon V1t factor (99.987%). The cross-correlation from the ICE
Brent Oil V1t factor increases this measure to almost 100% (99.994%). The covar-
iance portion for the ICE Carbon V2t factor is considerably lower (32.58%). How-
ever, the cross-correlation from the Brent Oil increases the covariance portion to
56.84%. Hence, the major contribution from the ICE Brent Oil contracts is useful
tail information for the ICE Carbon contracts.

ˆ ˆy c c j yS k S k j       1
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Table 6.6: Fit measure for the ICE Carbon and the ICE Brent Oil contracts 
Estimated Stochastic Volatility Forecast Fit Measures for 2020/21

Factor Factor Reprojected

Contracts Error Measures V1t V2t Volatility

Pure 
Carbon 
Prediction

Root mean square error (RMSE) 0,01647 0,05780 0,93581

Mean absolute error (MAE) 0,01036 0,04174 0,64949

Mean absolute percent error (MAPE) 1,23304 340,881 2,63468

Teil inequality coefficient (U1) 0,01004 0,82302 0,01947

Bias proportion 0,00004 0,00031 0,00011

Variance proportion 0,00010 0,67391 0,09096

Covariance proportion 0,99987 0,32578 0,90893

Theil U2 coefficient 0,98673 1,42456 0,82698

Symmetric MAPE 1,24308 162,772 2,65605

V1t V2t Volatility

Pure 
Brent Oil 
Prediction

Root mean square error (RMSE) 0,21125 0,12421 6,31330

Mean absolute error (MAE) 0,11307 0,07466 2,30957

Mean absolute percent error (MAPE) 60,18694 312,606 7,77173

Teil inequality coefficient (U1) 0,15982 0,41984 0,13348

Bias proportion 0,00236 0,00339 0,00171

Variance proportion 0,06540 0,30417 0,12267

Covariance proportion 0,93224 0,69244 0,87562

Theil U2 coefficient 0,93900 0,69071 0,94765

Symmetric MAPE 30,75530 120,438 7,88567

V1t V2t Volatility

Carbon 
Prediction 
incl. 
Brent Oil

Root mean square error (RMSE) 0,01695 0,06114 0,85214

Mean absolute error (MAE) 0,01088 0,04441 0,62682

Mean absolute percent error (MAPE) 1,29326 299,072 2,55499

Teil inequality coefficient (U1) 0,01033 0,80129 0,01772

Bias proportion 0,00002 0,00439 0,00044

Variance proportion 0,00004 0,42720 0,04499

Covariance proportion 0,99994 0,56841 0,95457

Theil U2 coefficient 1,00486 1,30103 0,75906

Symmetric MAPE 1,30279 160,959 2,56514
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Figure 6.4: VAR-optimal Carbon and Brent Oil Futures volatility forecasts 2020/21.

6.5 SUMMARY AND CONCLUSIONS
The main objective of this chapter has been to characterize a good volatility model
by its ability to forecast and capture the commonly held stylized facts about finan-
cial market volatility. The characteristics indicate substantial data dependence in
volatility enabling volatility predictions.

The chapter has used the Bayesian M-H estimator and a stochastic volatility rep-
resentation. The methodology is based on a simple rule: compute the conditional
distribution of unobserved variables given observed data. The observables are the
asset prices and the un-observables are a parameter vector and latent variables.
The inference problem is solved by the posterior distribution. Based on the Clif-
ford-Hammersley theorem (Hammersley & Clifford, 1970), p(θ,x|y) is completely
characterized by p(θ|x,y) and p(x|θ,y). The distribution p(θ|x,y) is the posterior dis-
tribution of the parameters, conditional on the observed data and the latent varia-
bles. Similarly, the distribution p(x|θ,y) is the smoothing distribution of the latent
variables given the parameters. The MCMC approach therefore extends model
findings relative to nonlinear optimizers by breaking the “curse of dimensionality”



Solibakke | Bidrag innen kundeverdi og marked126

by transforming a higher dimensional problem, sampling from p(θ1,θ2), into easier
problems, sampling from p(θ1|θ2) and p(θ2|θ1) – using the Besag (1974) formula.

This chapter applies stochastic models relating volatility to risks that change
through time in complicated ways. The departure from Black-Scholes-Merton
option prices and occasional dramatic moves in markets is possible to explain (fac-
tors, correlation, and data dependence). In particular, this chapter shows that the
stochastic volatility model separates into two distinct factors: a very persistent fac-
tor, V1t, showing low mean reversion and a strong mean-reverting factor, V2t. The
persistent factor, V1t, provides for the main distribution, and the rapidly mean-
reverting factor, while V2t, provides for the tails. The two-factor stochastic volatil-
ity model also reflects on the shortcomings of single-factor stochastic volatility
models. Moreover, a closer look at the two Brent Oil stochastic factors shows that
both the persistent and the strongly mean-reverting factor reacted quite strongly
to new information in March 2020 (e.g., Covid-19, low and negative oil prices). An
interpretation of these results suggests that the persistent factor signalled a longer
period of high volatility while the second factor signalled more short-term mean
reversion (i.e., more noise).

The volatility factors report causality from Brent Oil to Carbon Futures contracts
(and not the other way around). The influence direction from Brent Oil to Carbon
Futures is shown in classical sample analysis (i.e., correlation, Granger, Wald) in
Table 6.5, and out-of-sample static forecasts in Table 6.5 and Figure 6.4 (a significant
increase in covariance portion) lend support to the influence direction from Brent
Oil to Carbon Futures. Furthermore, using an MCMC implementation of a stochas-
tic volatility model with an associated Kalman filter procedure for projection
reveals a Theil covariance volatility portion close from 87% to 96% for individual
assets. Trading volatility swaps may become less risky for market participants.
Although Carbon and Brent Oil price processes are hardly predictable, the variance
of the forecast error is time dependent and can be estimated by means of observed
past variations. These results suggest that Carbon and Brent Oil contract volatility
can be forecast. Furthermore, the observed volatility clustering induces an uncon-
ditional distribution of returns at odds with the hypothesis of normally distributed
price changes. The stochastic volatility models are therefore an area in empirical
financial data modelling that is fruitful as a practical descriptive and forecasting
device for all contract series enlightening market participants/managers using,
among others, volatility swaps and the associated derivative markets11. Irrespective

11 Trading volatility as an asset class provides the market participant with, among other things,
excellent diversification. For example, equity volatility is strongly negatively correlated with the
equity price (insurance against market crashes).
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of markets and contracts, Monte Carlo Simulations should lead us to more insights
into the nature of the price processes describable from stochastic volatility models. 

REMARKS
Classification: C11, C63, G17, G32. The article is part of the EU project XPESS,
Work Group 3.4. The author has no conflict of interest.
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