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Abstract

This thesis presents a novel dynamic model for a widely used Vertical-TakeOff-and-

Landing (VTOL) Unmanned Aerial Vehicle (UAV) named the FoxTech Babyshark

260 VTOL. Through its hybrid design, the aircraft is capable of taking off and land-

ing vertically, by combining the principles of fixed-wing and quadcopter aircrafts.

Having a good model for the system is crucial for many applications, such as model-

based control, planning and fault-detection. Through proposing a publicly available

dynamic model of the Babyshark VTOL aircraft, the author hopes to facilitate future

research in the field of VTOL UAVs, and to enable the use of model-based methods

on the Babyshark for both industrial and academic applications.

The complete UAV model is derived from first principles of physics and parameters

are estimated with optimization methods through system identification. 3D modeling

is used to find the inertial properties of the aircraft, while on-the-ground testing is

used to identify separate actuator models. Flight-Test Data (FTD) is obtained from

real flight experiments, and kinematic relationships, piecewise splines, and analytical

derivation are used for Flight Path Reconstruction (FPR). The aerodynamic model

is then derived from FTD, where a stepwise-regression procedure is used together

with the Equation-Error method to identify a suitable aerodynamic model structure

for both longitudinal and lateral-directional motion. Next, the Output-Error method

is implemented with the Gauss-Newton step optimization algorithm to arrive at the

final parameter estimates that minimize the squared simulation error. Finally, a

single parameter is added to the model to capture rudder-pitch coupling caused by

the aircraft’s V-tail configuration.

The result of this thesis is a model which captures the observed behavior of the

aircraft well. Confidence in the model is built through residual analysis on validation

data, investigation of the static curves of the model, invidividual parameter analysis,

and eigenmode analysis of the linearized aircraft model. Finally, future directions

are proposed, both for further model development and applications of the model. A

ready-to-use implementation of the final model can be found at [1].
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Sammendrag

I denne masteroppgaven presenteres en ny dynamisk modell for den populære VTOL-

droneplattformen FoxTech Babyshark 260 VTOL. P̊a grunn av sitt design er fartøyet

i stand til å ta av og lande vertikalt, gjennom å kombinere prinsipper fra moderne

kvadrotordroner og tradisjonelle fly. For mange bruksomr̊ader er det essensielt å ha en

god modell av systemet, for eksempel for modellbasert kontroll, planlegging og feilde-

tektering. Ved å tilgjengeliggjøre en dynamisk modell av VTOL-dronen h̊aper forfat-

teren å fasilitere for fremtidig forskning p̊a VTOL-droner, og å muliggjøre bruk av

modellbaserte metoder p̊a fartøyet for b̊ade industrielle og akademiske applikasjoner.

Den fullstendige dronemodellen er utledet fra grunnprinsipper i fysikk, og modell-

parametrene er estimert gjennom optimeringsmetoder fra systemidentifikasjon. 3D-

modellering er brukt for å beregne treghetsegenskapene til fartøyet, og separate

aktuatormodeller er identifisert gjennom enkle labtester. Flytestdata er innhentet

fra ekte eksperimenter, og kinematiske forhold, stykkvise polynomiske funksjoner

og analytisk derivering er brukt for å rekonstruere flyets fullstendige tilstand gjen-

nom eksperimentene. Deretter er den aerodynamiske modellen utledet fra flytest-

dataen, der en stegvis regresjonsprosedyre kombinert med Equation-Error-metoden

er brukt for å identifisere en passende modellstruktur for b̊ade langsg̊aende og side-

veis bevegelse. Videre s̊a er Output-Error-metoden implementert med Gauss-Newton-

algoritmen brukt for å finne modellparametrene som minimerer den kvadratiske simu-

leringsfeilen til modellen. Til slutt er modellen utvidet med en siste parameter for å

fange kobling mellom flyets sideror og pitchvinkel, for̊arsaket av flyets V-hale.

Resultatet av denne oppgaven er en model som beskriver den observerte oppførselen

til flyet p̊a en god måte. Tilliten til modellen bygges gjennom residualanalyse p̊a valid-

eringsdata, etterforskning av modellens statiske kurver, individuell parameteranalyse

og egenmodusanalyse av den lineariserte modellen for fartøyet. Til slutt s̊a er lovende

retninger for fremtidig arbeid foresl̊att, b̊ade for videre utvikling og applikasjoner av

modellen. En offentlig tilgjenglig, ferdig implementasjon av modellen finnes p̊a [1].
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Chapter 1

Introduction

Figure 1-1: The focus of this thesis: The FoxTech Babyshark 260 VTOL.

The field of small Unmanned Aerial Vehicles (UAVs) has seen significant progress

over recent years, both academically and commercially. This is caused by various

reasons, ranging from advances in research to the availability and price of hardware.

Technical advancements in the field of multirotor and fixed-wing vehicles, combined

with reduced prices for components, significant improvements in computational power
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on lightweight microcontrollers, and weight reductions in sensors and other modules,

are all reasons that have made it possible for both businesses and scientists to acquire

and develop modern, small UAVs.

Two of the most common types of Unmanned Aerial Vehicle (UAV)s are fixed-wing

vehicles and multirotor vehicles. The respective UAV types have their advantages and

disadvantages, and it is customary to employ them for different tasks. Multirotor

vehicles are typically used for short-flights requiring high precision, while fixed-wing

UAVs are employed where long-range capability is a key factor. This can be seen in

the industry, where multirotor UAVs such as quadcopters are used for inspection and

precision-farming [2, 3, 4], and fixed-wing UAVs are used for routine surveillance or

search-and-rescue of larger areas [5, 6, 7, 8, 9]

In particular, multirotor UAVs have the advantage that they can take off from

nearly anywhere. In addition to this, multirotor UAVs are highly maneuvrable. How-

ever, this all comes at the cost of spending much energy to stay in the air, as the

vehicle constantly has to generate an upwards force that balances out the gravita-

tional force pulling the aircraft down. On the other hand, fixed-wing UAVs have the

advantage of being energy efficient, as the aerodynamic properties of a wing are ex-

ploited to generate lift. Therefore, the amount of energy required to keep the vehicle

airborne is significantly reduced compared to that of multirotor vehicles. Typically,

this advantage comes at the cost of requiring large runways for takeoff and landing.

In recent years, a new type of unmanned aerial vehicle called Vertical-TakeOff-

and-Landing (VTOL) has grown more and more popular [7, 8, 9, 10, 11]. Although

this type of design has seen use for manned aircraft, such as the Osprey V-22 aircraft

as seen in fig. 1-2, its application to small, unmanned VTOL aircraft are far from

mature. Different VTOL designs exist, but the main purpose of these vehicles is the

same across designs: VTOL vehicles maintain the energy advantages of fixed-wing

vehicles while still keeping essential advantages of multirotor vehicles; most notably,

VTOL vehicles are capable of takeoff and landing anywhere.

Typical VTOL designs can be described as tailsitters, tilrotors or hybrid designs.

Tailsitter VTOL vehicles are aircraft where the thrust generating propellers are sta-

13



tionary, either on the front or back of the aircraft, and are generating a thrust in

the opposite direction of the nose. These aircraft take off from a standing configu-

ration and tilt into the cruise configuration, where the propellers generate thrust in

the direction of flight. Tiltrotors have propellers capable of tilting and can keep the

aircraft’s body stationary while tilting the propellers to move from hover flight to

cruise flight. These designs are both lightweight and reduce the number of moving

parts. However, they come at the cost of being vulnerable to disturbances and faults

during the transition phase, both from hover flight to cruise flight and back.

Figure 1-2: The Bell Boeing V-22 Osprey, one of the most well-known examples of
manned VTOL aircraft. Photographer: Airwolfhound from Hertfordshire, UK. Pic-
ture reused under the Creative Commons BY-SA 2.0 license via Wikimedia Commons.

This work deals with the VTOL UAV named the FoxTech Babyshark 260 VTOL

[12], an aerial platform that is used across the world for research and commercial

applications. The aircraft employs a hybrid VTOL design, and the aircraft can be

seen in fig. 1-3. This design is essentially a traditional fixed-wing aircraft, where

multirotor motors and propellers are added to the design in a stationary fashion. The

multirotor propellers are used only during the hover phase of flight, before the aircraft

transitions into conventional fixed-wing cruise flight, where the traditional fixed-wing

pusher motor is being used to generate forward thrust. This type of design has a

significant advantage of additional safety and robustness, as the vehicle will, in most

cases, be able to use the multirotor propellers to land safely. The aircraft is also less

14



Figure 1-3: Pictures of the FoxTech Babyshark 260 VTOL in flight. Photographer:
Otto Barsten Johnson. Pictures published with permission from the photographer.

prone to disturbances and errors during the most critical flight stage, the transition

between cruise and hover flight. However, this design comes with the drawback of

additional drag during fixed-wing cruise flight when the multirotor propellers are not

in use.

1.1 Thesis Contributions and Research Objectives

The goal of this thesis is to develop an accurate dynamic model of the FoxTech

Babyshark 260 VTOL. Although the aircraft is widely used for both research and

commercial applications, to the author’s knowledge, no dynamic model of the aircraft
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exists today. Therefore, all known applications of the Babyshark VTOL employ PID

controllers that are experimentally tuned. Due to the lack of an adequate dynamic

model, it has not been possible to employ rigorous model-based control, planning,

and estimation methods on the aircraft. By proposing a novel model of the aircraft,

this thesis aims to facilitate the use of advanced, model-based methods on the aircraft

in the future, both for industrial and academic applications.

The ultimate result of this thesis is a novel, full-state, nonlinear model of the

aircraft. The final nonlinear model is presented in its entirety in section 6.2. As the

aircraft is essentially a combination between a multirotor and a fixed-wing aircraft,

the model of the aircraft combines modeling from two traditionally separated fields.

For multirotors, simple models are typically employed, where identification primarily

focuses on identifying the inertia properties and the propeller properties, modeling

the UAV as a standard rigid body [13, 14, 15, 16, 17, 18]. On the other hand, for fixed-

wing aircraft, modeling is usually more complex, and requires complex aerodynamic

modeling [19, 20, 21]. Therefore, fixed-wing system identification makes up the central

part of the work in this thesis.

In the process of obtaining a dynamic aircraft model, a combination of many

methods is used. As will be seen, the field of system identification is mature, espe-

cially for manned, full-scale fixed-wing aircraft. However, for small UAVs, the field

is not as mature, and not all principles can be applied directly. Therefore, to obtain

a satisfactory model of the aircraft, this work employs principles from traditional

system identification methods for full-scale aircraft, combined with new variations on

methods for data-processing, parameter estimation, and model development based on

recent relevant research.

Finally, to facilitate future work, the obtained aircraft model is made publicly

available. As is shown in the final section of this thesis, the model performs well upon

validation. Currently, much of UAV research focuses on either multirotors or fixed-

wing aircraft. As the Babyshark is a widespread VTOL platform both for research

and commercial applications, the author hopes that the freely available model of the

aircraft will contribute to research on small, unmanned VTOL aircraft in the future.
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1.2 Motivation and Applications of UAV System

Identification

The goal of UAV system identification is to obtain a dynamic model of the aircraft,

which is desirable for many reasons. Typical reasons for performing system identifica-

tions of UAVs are summarized in the survey by Hoffer et al. in [22], where the authors

propose that everything that requires a-priori knowledge of the aircraft is dependent

on having a model. Examples include control system design, control system verifica-

tion, fault detection, online and offline parameter estimation, and adaptive control to

compensate for time-varying changes in the system or to faults. In addition, having

an accurate model lets the engineer employ strong methods for planning and state

estimation.

Many of the most rigorous modern control and planning methods are model-based

methods. That is, these methods require knowledge of the expected behavior of the

system, which usually means having a dynamic model of the system. Examples

of model-based control methods employing dynamic system models are many. In

particular, within optimal control, methods such as Model Predictive Control (MPC),

Linear Quadratic Regulator (LQR), Linear Quadratic Gaussian (LQG), H∞ control,

Dynamic Programming (DP), or variations of these, all require a dynamic model,

either linear or nonlinear, of the system that is to be controlled, with examples for

fixed-wing aircraft in [23, 24, 25]. Other examples are found within standard nonlinear

control methods: most Lyapunov-based methods require a model of the system, for

example, Sliding Mode Control, Feedback Linearization, or Backstepping Control

[26]. Even for Adaptive Control, when the goal is to estimate and react to unknown

parameters and disturbances online, the methods usually require an a-priori dynamic

model [27].

All of the control methods mentioned above stabilize the system around a nominal

point or trajectory, and many methods for trajectory generation are also model-based.

However, some methods are model-free, such as the workflow employed in the famous

open-source autopilot PX4 [28, 29], which is often used to control the Babyshark
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aircraft. In PX4, trajectories are generated as straight lines between user-selected

waypoints, and then a guidance logic named L1 guidance [30] is used to decide how

the aircraft should track the trajectory. This trajectory optimization scheme works

for many simple applications. However, because no information about the aircraft

behavior is employed when generating the trajectory, it is usually not dynamically

feasible, which causes significant tracking errors.

In contrast, model-based trajectory methods such as trajectory optimization may

be employed to generate complex, dynamically feasible trajectories. There exists a

number of these methods, and one such method is Direct Collocation [31]. Here, a

nonlinear optimization scheme is employed to generate dynamically feasible trajecto-

ries represented by piecewise polynomials. One of the strengths of such methods is

that additional constraints may be imposed on the trajectories, and collision avoid-

ance or other task-specific behavior may be included in the trajectory planning. When

the trajectories are dynamically feasible, tracking errors are significantly reduced com-

pared to model-free trajectory generation methods.

In summary, there are several strong reasons to obtain a dynamic model of an

aircraft. Applications including control, planning, and fault detection are significant

reasons for developing such a model. In addition, many other valuable applications

exist, such as more accurate simulation, estimation methods, or adaptive control

methods.

1.3 Thesis Outline

In chapter 2, an overview of relevant literature for this thesis is presented. Next,

the general mathematical model that is employed is presented in chapter 3, including

rigid-body modeling, aerodynamic modeling, and actuator modeling. The identifi-

cation of the model is divided into two parts: a preliminary airframe analysis and

aerodynamic modeling based on Flight-Test Data (FTD). The preliminary analysis is

presented in chapter 4, where instrumentation, static properties of the aircraft, and

actuator models are found. Next, the theoretical principles employed for aerodynamic
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modeling are outlined in chapter 5. Then, the results of the aerodynamic modeling

are presented together with the entire model, model validation, and discussion of the

final model in chapter 6. Finally, conclusions, future work, and promising directions

for the model are presented in chapter 7.

1.4 Implementation

A complete implementation of the final model, including example simulations and 3D

visualization, can be found at [1]. The source code for the identification procedure

can be found at [32]. All the methods are implemented as outlined in chapter 5. In

the interest of open-source, all of the system identification source code is implemented

without third-party libraries, contrary to other relevant works, where closed-source

libraries are often used for fixed-wing system identification. Most of the implemen-

tation in this work is done in Matlab, although parts of the optimization routine

outlined in chapter 5 are implemented in C++ to speed up the final optimization

routine.
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Chapter 2

Literature Review

In this chapter, an overview of relevant literature for system identification of UAVs

is given. This thesis deals with the system identification of a VTOL UAV, and it is,

therefore, relevant to cover methods for multirotor modeling, fixed-wing modeling,

VTOL modelling, as well as applications of these models. As will be seen, the lit-

erature on system identification for UAVs is rich, especially for full-scale traditional

fixed-wing aircraft. The objective of this chapter is to provide the reader with a sense

of common methods and to locate this thesis in the literary landscape of system

identification for UAVs.

First, the reader is pointed to both a recent and a traditional survey on fixed-wing

system identification. Next, literature on traditional full-scale aircraft identification

is covered, as these are still highly relevant references for modern system identifica-

tion. Further, identification of modern fixed-wing UAVs is covered, split into the time

domain and the frequency domain. These methods typically deal with the identifi-

cation of the aircraft around a reference flight condition. Following this, some work

on expanding the aircraft modeling to the nonlinear flight envelope at close-to-stall

conditions is presented. Next, multiple recent works covering system identification

of a VTOL aircraft are presented. Further, as the estimation of the aerodynamic

quantities AoA, SSA and airspeed are highly relevant for fixed-wing system identifi-

cation, a short coverage of a few relevant works on this is provided. Finally, typical

multirotor modeling is briefly introduced, and example works are given.
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2.1 UAV System Identification Surveys

Before diving into specific relevant work, the reader may be interested in recent sur-

veys and categorizations of literature on system identification for low-cost, small

UAVs. One such survey is given by Hoffer et al. in [22]. The survey is from 2014,

and contains an overview over literature for helicopter UAVs, fixed-wing UAVs, mul-

tirotor UAVs, flapping-wing UAVs, and lighter-than-air UAVs. An introduction to

the main elements of UAV system identification is given, as well as an overview of

typical applications. The literature for fixed-wing system identification is organized

after model use, system identification method, data source, and application, and

summarizes which works employ which methods.

Another survey that may be of interest is [33] that was presented in 1996 and

covers many of the mature system identification methods traditionally used for full-

scale aircraft. However, this material is meant for full-scale aircraft. In addition,

most of the material is covered in the traditional textbooks [19, 20, 21], which are

introduced in the next subsection.

2.2 Traditional Full-Scale Fixed-Wing Aircraft Iden-

tification

For traditional full-scale aircraft, several well-regarded textbooks for system identi-

fication exist. One of these is the textbook written by Klein et al. [19], where a

comprehensive overview and theoretical foundation for modeling in both the time-

domain and the frequency domain is given. Another excellent source for time-domain

system identification is [20]. In this thesis, time-domain methods are used, and [19,

20] are therefore used extensively as resources. In addition, [21] gives an overview

over frequency-based approaches. Although classical textbooks such as [19, 20, 21]

are very relevant for UAV system, identification, the downside of these works is that

the material is intended for full-scale aircraft. In fact, many of the recent works in

the field of system identification for small, fixed-wing aircraft mentioned throughout

21



this thesis focus on applying and adapting traditional methods from [19, 20, 21] for

smaller aircraft.

In particular, [19, 20] cover methods for data gathering, including input signal de-

sign, experiment design, maneuver design, and instrumentation setup. Both sources

provide a fundamental introduction to general mathematical modeling for aircraft

and data reconstruction and compatibility analysis techniques. Comprehensive break-

downs of identification methods such as the Filter-Error, the Equation-Error, or the

Output-Error methods, in addition to regression methods for both parameter estima-

tion and model structure determination, make up much of the content in the books.

In addition, methods for model validation, such as statistical accuracy of parameters,

or residual analysis, are described and come in handy when one seeks to validate the

model. Other topics, such as estimation theory, realtime parameter estimation, and

unstable aircraft identification, are also covered in the books.

A relevant paper on traditional system identification for fixed-wing aircraft is

[34], where the methods now known in [19, 20] as the Equation-Error method and

the Output-Error method are reviewed and compared. While [34] was published in

1994, it provides foundations for the methods used in much of the related literature

presented here. At the time, the Equation-Error method was named the Two-Step

method [35] and is compared to the One-Step Maximum Likelihood method, which

is now called the Output-Error method. In the work, both methods are employed

and analyzed for aircraft system identification. The One-Step Maximum Likelihood

method proposes estimating both the aircraft state trajectory and the aerodynamic

parameters simultaneously, and as such, assumes an appropriate model structure

a-priori. On the other hand, the Two-Step method proposes estimating the state tra-

jectory in the first step while estimating the aerodynamic parameters in the second

step. The advantage of the latter is that multiple model structures can be rapidly

explored. The results prove that, in many situations, the Two-Step method possesses

the same estimation properties as the One-Step Maximum Likelihood method. How-

ever, the Two-Step method makes the aerodynamic parameter estimation step linear

in the parameters, making it possible to investigate different model structures quickly.
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2.3 Time Domain Identification of Modern Fixed-

Wing UAVs

Moving on to more recent work, in [36] published in 2015, Arifianto et al. develops a

small, low-cost fixed-wing UAV from commercially available off-the-shelf components.

In addition, a mathematical model of the aircraft is developed. Several steps are

taken in the modeling of the aircraft: The simple pendulum method [37] is used

for determining the moments of inertia of the vehicle. A frequency response test of

the servo motors is used to derive a second-order model of the control surfaces. A

sophisticated propulsion model is developed using a lookup table generated from CFD

modeling of the propeller in the JavaProp applet and validated through static tests.

Finally, the Output-Error method, as formulated in [19, 20], is used to estimate

both the longitudinal and lateral-directional aerodynamic parameters from flight-

test data in the time domain, based on an aerodynamical model postulated a-priori.

According to the authors, this is the first time this method has been employed for

small fixed-wing UAVs. In this work, in-house built air data probes are used to

get accurate information on the entire aerodynamic state of the system, such as

Angle of Attack (AoA), SideSlip Angle (SSA) and airspeed, which are used in the

identification procedure. Having sensors that directly measure these aerodynamic

angles are uncommon for small, fixed-wing UAVs. Finally, the obtained model is

validated through real-life flight-data.

In the work by Grymin et al. from 2016 [38], the Two-Step method from [34,

35] is used to identify a suitable aerodynamic model for the small UAV developed

in [36]. As mentioned earlier, the Two-Step method provides a framework for rapid

investigation of various model structures, which the authors take advantage of by

using stepwise multiple regression to determine relevant explanatory variables for

the aerodynamic coefficients, as is proposed in [19]. In the first step, the authors

use an Extended Kalman Filter (EKF) for the Flight Path Reconstruction (FPR),

which is the reconstruction of the aircraft state trajectory from measured data. For

the second step, Ordinary Least-Squares (OLS) is used to estimate the aerodynamic
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parameters. This allows multiple model structures to be rapidly explored, and the

statistical metric known as the partial F-value is used to determine which explanatory

variables should be included in the regression. In the end, the aerodynamic forces

and moments are described as functions of multiple linear and second-degree spline

functions of the state variables. After the aerodynamic model is obtained, it is used

to obtain dynamically feasible trajectories through the solution of an optimal control

problem, and discrete-time feedback controllers are used to stabilize the trajectories.

Finally, the results are verified in simulation and flight tests.

Even more recently, in the work by Simmons et al. in [39, 40] from 2019, system

identification of a small, low-cost UAV is performed using a time-domain formulation

of the Output-Error method. The Equation-Error method [19, 20] (similar to the

Two-Step method from [34, 35]) is first used to determine the aerodynamic model

structure, and the resulting parameters are then used as initial guessed for the Output-

Error method, with the model structure developed with the Equation-Error method.

A large portion of the procedure follows the practices outlined in [19], where the

Output-Error method is initialized with results from the Equation-Error method.

Novel additions to these methods include supplementing Flight-Test Data (FTD)

with information obtained using the Vortex Lattice Method (VLM) and synthesizing

information obtained from different flight maneuvers into the successful identification

of a lateral-directional model. Separate models for the longitudinal and the lateral-

directional maneuvers are developed, using the body-axis formulation for aerodynamic

coefficients rather than the stability axes. The models show good predictive behavior

when validated on flight test data, and the certainty of the parameters is shown to

decrease when supplementing FTD with data from VLM.

A different perspective on system identification is given by Hale et al. in [41],

where the authors focus on uncertainty analysis of identified aircraft models and their

parameters. Employing the Output-Error method from [19], the authors first identify

a model for a small, fixed-wing UAV with a V-tail configuration. After estimating

the parameters of the model, the Cramér-Rao lower bound is used to represent the

minimum variance of the estimated value, as proposed in [19]. A novel addition to
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the procedure outlined in [19] is a method for determining model-form uncertainty

represented by prediction intervals by using a separate validation data set to calculate

the residuals between the aerodynamic coefficients in the identified model and the

data. The method is tested both with synthetic data and actual flight-test data and

shows that the estimated model-form uncertainty increases when the assumed model

structure moves away from the true model.

An entirely different approach to system identification is taken by Kamel et al. in

[23]. The authors seek to model the dynamics of a fixed-wing UAV for the purpose

of using Nonlinear Model Predictive Control (NMPC) for lateral-directional trajec-

tory tracking. A high-level closed-loop model is developed for the lateral-directional

dynamics of the aircraft based on flight data, assuming that a low-level autopilot con-

sisting of state estimation and control of attitude, airspeed, and altitude is already

running on the aircraft. With successful open-source flight controllers such as the

Pixhawk [42] running the PX4 software [28, 29], this is a common scenario. This way

of modeling aircraft dynamics focuses only on the high-level behavior of the system

and significantly reduces the order of the model, which in turn simplifies the system

identification procedure. However, this comes at the cost of reducing the physical

interpretability of the model parameters. A high-level NMPC is successfully imple-

mented based on the obtained closed-loop model, and the controller is tested in real

flights in cascade with the low-level autopilot controller.

The work in [23] is further extended by Stastny et al. in [24], where the lateral-

directional model is extended with an open-loop model for the longitudinal dynamics.

The longitudinal model assumes that the dynamics can be described in a quasi-steady

manner, where airspeed, relative flight path angle, and heading are influenced by the

commanded throttle and AoA. The model is validated on free-form flight data and

shows good prediction capabilities. Finally, a high-level NMPC is implemented for

simultaneous airspeed stabilization, 3D path following, and handling of soft angle of

attack constraints.

A different approach is taken to time-domain modeling in [43], where a nonlin-

ear adaptive estimation scheme is used for online learning of an aerodynamic model
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for the fixed-wing aircraft. The purpose of using an adaptive model is to accurately

capture unsteady aerodynamics in the presence of adverse and exconditions and dis-

turbances. In the work, the entire nonlinear rigid body EOMs for an aircraft is

used, and the aerodynamic forces and moments are modeled as a single-layer adap-

tive neural network, where the adaptive parameters are updated in realtime based on

a moving window of past data. By minimizing the squared prediction error for the

acceleration, the parameters are iteratively updated through a Newton-type search

method.

Further, in [25, 43], the adaptive nonlinear model is used as the basis for a robust

Nonlinear Model Predictive Control (NMPC) controller. The robust NMPC employs

frequency-dependent weighting matrices to reject low-frequency process noise and

high-frequency sensor noise. Further, a quadratic cost function is minimized, subject

to the nonlinear and time-changing system dynamics. The controller is successfully

tested in simulation, showing robustness to both lift reduction and drag increase in

the model.

In [6], Lee et al. propose a global method for system identification of High Altitude

Long Endurance vehicles, which reduces the need for extensive flight testing over

multiple flight envelopes. The technique is an extension of traditional Incremental

Model Update Schemes (IMUS), where virtual experiments based on Computational

Fluid Dynamics (CFD) are used to avoid extensive gathering of flight data. In the

work, VLM is used to obtain a baseline linear aerodynamics model, which is combined

with nonlinear rigid-body dynamics. Next, estimated forces and moments from real

FTD are compared to those predicted by the model from VLM to calculate model

correction terms that are linear in the airspeed. Finally, the correction terms are used

to develop a model valid for a broader flight envelope than initially captured by the

data.
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2.4 Frequency Domain Identification of Modern

Fixed-Wing UAVs

Moving on to modeling and identification in the frequency domain, in [44, 45] pub-

lished in 2011 and 2013, Dorobantu et al. proposed a system identification procedure

for modeling of small, low-cost, fixed-wing UAVs using flight data from a single In-

ertial Measurement Unit (IMU). The method estimates frequency responses from

obtained flight data and then identifies aircraft dynamics in the frequency domain by

fitting linear parametric models to the estimated frequency responses. The aerody-

namic derivatives obtained from the linear models are integrated into the nonlinear

equations of motion for an aircraft, and both models are validated in the time do-

main. The model accuracy is evaluated using sensitivity and residual analysis and

shows good model performance.

Later, [46] published by Venkataraman et al. in 2019, a model of a small, rudder-

less, fixed-wing UAV is developed using frequency-domain methods. First-principles

are used to obtain an initial model, where the initial parameters are obtained as sta-

bility and control derivatives from the vortex lattice method using the AVL software

[47]. Black-box models in the form of transfer functions are used to find the initial

parameter values. Due to the lateral-directional dynamics being highly coupled, a

scheme for updating only some of the most uncertain parameters with a linear state-

space model is proposed, based on the principles of flight dynamics outlined in [48].

The model is validated with flight data.

2.5 Near Stall Identification of Fixed-Wing UAVs

In [49], Hoburg et al. focus on aircraft identification for post-stall aerodynamics for

UAV perching. Here, a longitudinal aircraft model is developed, focusing on nonlinear

aerodynamic effects that arise due to unsteady flow at high AoAs. In the work, a

set of physically inspired basis functions is used to model the behavior of the aircraft

close to the stall regime. Flight data is collected using a motion capture system. The
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obtained model accurately predicts the measured aircraft trajectories.

In [50], work on fixed-wing UAV perching is expanded. This time, a flat-plate

model for the lift and drag of the aircraft is employed. However, to better match the

obtained data, the flat-plate model is augmented with radial basis functions as first

proposed in [51]. Using the trajectory optimization technique called Direct Colloca-

tion, optimal perching trajectories are computed for the aircraft. Next, the model

is further used to implement a control scheme known as LQR-Trees, where multiple

TVLQR controllers are computed to stabilize a variety of different initial conditions

around the nominal trajectory. Sums-of-Squares optimization is used to calculate the

region of attraction for the controllers. A library is built from the controllers and

their regions of attraction are used to select the appropriate controller in realtime.

The method is extensively tested on a real physical system, showing excellent results

with a success rate of 95%.

2.6 System Identification of Modern VTOL UAVs

In [7], Verling et al. propose a model-based nonlinear control law for a tailsitter

VTOL. The tailsitter VTOL is a flying wing that uses two elevons combined with the

differential thrust from two propellers for control. The aircraft is modeled as a rigid

body system, and wind-tunnel testing is used to develop an aerodynamic model of the

aircraft. The authors individually model the two sides of the aircraft corresponding

to each elevon and propeller for the aerodynamic modeling. This way of modeling,

combined with an aerodynamic model in the body frame, makes it possible to derive

all moments from only modeling the forces along the x and y-axis, as well as the y-

axis moment. Aerodynamic models similar to this thesis are employed, but the model

is extended to take propeller slipstream into account. The aerodynamic coefficients

are calculated from wind-tunnel measurements. A geometric control law on SO(3)

is implemented to reach the reference attitude and reference angular speed, which

calculates generalized forces and moments as inputs. An inversion of the UAV model

is then used to calculate the required system inputs to achieve the commanded forces
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and moments. The controller is implemented in PX4 and tested together with the L1

navigation law from [30].

Verling et al. further extend the work on the tailsitter UAV from [7] in the

work in [9], where an augmented model is used to compute optimal trajectories for

the back transition from fixed-wing flight to hover flight for the aircraft. Through

an offline, nonlinear trajectory optimization scheme, optimal trajectories for the back

transition that minimize the altitude change is computed based on the aircraft model.

A trajectory is found for the required pitch and throttle, which is used as feed-forward

by the low-level controller from [7]. Feedback is added on the altitude tracking to

improve robustness to disturbances and modeling errors. The feedback is a simple

P-gain, where the input is added directly to the thrust input. The trajectories and

tracking with the augmented controller are tested in real-world experiments with good

results.

In [10], the authors further expand the work in [7, 9] with a model-based wind

estimation framework. This time, a model that captures the relation between the

aircraft attitude and the freestream velocity in the North and East directions during

steady-state flight is developed from a flat-plate model. The model is fit from FTD

through a weighted least squares method. From this model, the airspeed can be

implied from attitude measurements, making it possible to estimate the wind in the

North and East directions from the wind triangle. A Kalman filter is implemented

based on the model to estimate the wind vector in realtime. The estimation algorithm

is tested in real experiments.

Further, in the recent work by Olsson et al. in [8], the model of the VTOL tailsitter

from [7, 9, 10] is expanded to a full, nonlinear aircraft model that is valid over the

entire flight regime. First principles of physics are used to derive a rigid-body model of

the aircraft. Aerodynamic coefficients are identified via nonlinear, time domain, grey-

box parameter estimation in Matlab from FTD. Detailed modeling of the interaction

between the propeller and wings, with individual modeling of propeller moments and

thrust, is used to arrive at an accurate model.
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2.7 Estimation of Aerodynamic Angles and Air-

speed

In [52], Johansen et al. propose a method for estimating the AoA, SSA and airspeed

of an aircraft without the use of an accurate aircraft model. Instead, kinematic rela-

tionships are used rather than specific aircraft models, and a sensor suite consisting

of GNSS, IMU, and a single pitot tube is assumed. A Kalman filter driven by the

GNSS velocities and the airspeed sensor measurements is designed to estimate the

aerodynamic quantities. Under the conditions that the input signal is persistently ex-

citing, meaning that the aircraft is changing its pitch and yaw, the estimates converge.

Actual experiments seem to indicate parameter convergence; however, the results are

deemed preliminary, as the results are not compared to actual measurements of the

aerodynamic quantities.

The work is further extended by Wenz et al. in [53]. Here, the goal is to estimate

the wind velocity vector to compute the AoA, SSA and airspeed of the aircraft. The

wind velocity vector is estimated from an Extended Kalman filter, which employs

both kinematic relationships, aerodynamic relationships relating the lift and drag to

the AoA with a flat-plate model as proposed in [54], and Drydens gust model for the

wind, also as proposed in [54]. Finally, the implementation is tested in simulation,

where it shows promising results.

2.8 Multirotor System Identification

In general, research on quadcopters tends to employ the same modeling principles.

The quadrotor is usually modeled as a rigid body, and the inputs of the system are

defined as the total thrust and the moments around the body axes. The attitude

may be represented by Euler angles, such as in [13, 15, 16, 18], quaternions as in

[14, 55, 56], or rotation matrices such as in [17]. Usually, the propellers are assumed

to generate an instantaneous thrust and moment, where the thrust and moment are

modeled as quadratic in the propeller rotational speed. Sometimes, the propellers are
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modeled as a first-order response, such as in [55].

An example of a quadrotor model and its usage is given in [17], where Lee et

al. propose a geometric, nonlinear, model-based controller for a quadrotor. The

controller is similar to that proposed for a VTOL tailsitter in [7]. In [17], the quadrotor

is modeled as a rotating rigid-body, where the attitude is modeled with rotation

matrices. The inputs to the model are the total force and the moments around

the body axes. The propellers are assumed to generate an instantaneous thrust or

moment, where the moment is proportional to the generated thrust. In the work, the

position and heading of the quadrotor are controlled. The controller commands total

thrust and moment, and the quadrotor model is used to calculate the corresponding

inputs.
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Chapter 3

Background and Aircraft Modeling

In this chapter, a complete mathematical model for the VTOL UAV is presented.

The model is based on rigid-body Equations of Motion (EOMs), combined with tra-

ditional principles for aerodynamic modelling for fixed-wing aircraft as found in lit-

terature such as [19, 20, 38, 39, 40, 44, 54, 57]. First, relevant coordinate frames and

the state and input formulations are defined. Then, standard rigid-body EOMs are

presented: the kinematic relationships known as the navigation equations and the

rotational kinematic equations are presented, followed by the dynamics in the form of

force equations and moment equations. A general model for aerodynamic forces and

moments is presented, where a separation is made between longitudinal and lateral-

directional motion. Next, an additional parameter is added to capture rudder-pitch

coupling caused by the aircraft V-tail configuration. Finally, the actuators of the sys-

tem are modeled, both the fixed-wing propeller, control surfaces, and the multirotor

propellers.

3.1 Reference Frames and State Representation

In aircraft modeling, a common assumption is that the aircraft is a rigid body. Hence,

aircraft are often modeled by the standard Newton-Euler equations that describe rigid

bodies’ combined translational and rotational dynamics. However, the aerodynamics

forces and moments that affect an aircraft are not dependent on the inertial position
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and velocities of the aircraft but rather depend on the movement of the aircraft

relative to the surrounding airflow. For that reason, it is helpful to define a set of

reference frames to aid in the modeling of the aircraft. As will be seen, the dynamics

of an aircraft can be defined differently depending on which reference frame is chosen

to model the state, and it is essential how the state of the aircraft is described. In

this section, both relevant reference frames and the state representation are covered.

3.1.1 Reference Frames

As is common in aircraft modeling, four reference frames are defined and used in this

work. These are the inertial NED frame N , the body frame B, the stability frame

S, and the wind frame W . Here, the reference frames are presented briefly. For a

comprehensive walk-through, the reader is referred to [54], which employs the same

reference frames.

First, let the NED frame be denoted as N . The NED frame N is defined as an

inertial frame, with the x-axis pointing North, the y-axis pointing East, and the z-axis

pointing Down. N is used to define inertial positions and velocities, and several of

the available sensor measurements are measured in the NED frame, such as Global

Navigation Satellite System (GNSS) data and magnetometer readings.

Second, define the body frame B as a reference frame centered with the origin

at the center of gravity of the aircraft, with the x-axis pointing out of the aircraft’s

nose, the y-axis pointing out of the right wing, and the z-axis pointing down. The

transformation from N to B is given by the Z-Y-X Euler sequence, that is, by the

following sequence of right-handed rotations:

RBN = Rx(φ)Ry(θ)Rz(ψ) (3.1)

Next, let S denote the stability frame. The stability frame is helpful in the model-

ing of lift and drag forces and is defined such that the lift force acts along the negative

y-axis, and the drag force acts along the negative x-axis. S is obtained from B by

a negative right-handed rotation of the Angle of Attack (AoA), represented by α,
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around the y-axis:

RBS = Ry(−α) (3.2)

Finally, let the wind frame be denoted by W . Although this frame is not directly

used, it is useful as it defines the SideSlip Angle (SSA), which we represent by β. Let

W be defined as a right-handed rotation of β around the z-axis in S:

RSW = Rz(β) (3.3)

3.1.2 State and Input Representation

First, let the position of the aircraft in the NED frame N be defined as p = [x, y, h]ᵀ,

where x and y denotes the position along the North and East axes, and h indicates the

height of the aircraft, defined in the negative direction along the Down axis. Next,

let the attitude of the aircraft be represented by the Euler angles Φ = [φ, θ, ψ]ᵀ,

where φ, θ, and ψ denote the roll, pitch, and yaw of the aircraft, respectively. Next,

let the angular rates of the aircraft be described by ω = [p, q, r]ᵀ, where p, q and

r describe the rotational speed around the x, y, and z-axis in the body frame B.

Further, let v = [u, v, w]ᵀ describe the body velocities of the aircraft, where u, v

and w describe the velocities along the x, y, and z body axes. Finally, from the

reference frames defined in the preceding subsection, we now represent the following

aerodynamic quantities:

α = tan−1
(w
u

)
(3.4a)

β = sin−1
( v
V

)
(3.4b)

V =
√
u2 + v2 + w2 (3.4c)

where α denotes the Angle of Attack (AoA) of the aircraft, β denotes the SideSlip

Angle (SSA) of the aircraft, and V denotes the total airspeed of the aircraft. Note

that in this work, it is assumed that there is no wind present.
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Not all of the variables above are needed to define the dynamics of an aircraft fully.

For example, one may choose between two state representations: the first represents

the state in terms of the body axes in B, using the body velocities v = [u, v, w]ᵀ.

The second defines the state in terms of the wind axes defined in W , and uses the

aerodynamic angles α and β, in addition to the total airspeed of the aircraft V .

In both cases, the angular rates w, attitude Φ, and position p are included in the

state. The two models are equivalent in terms of rigid body dynamics, although the

dynamics are formulated in different state vectors. However, in terms of modeling

aerodynamic forces and moments, the two representations typically lead to slightly

different aerodynamic models, which is seen later in this chapter. The difference lies

in whether the aerodynamic forces and moments are modeled in the body frame or

the wind frame.

In this thesis, the dynamics are modeled in the body frame B rather than the

stability frame S. The main reason is that the aircraft in question does not have

sensors to measure α and β directly. On larger aircraft, these aerodynamic angles

are typically measured using wind vanes mounted on the aircraft. However, for small

aircraft, this is usually not the case. For small aircraft, it is common to model both

the dynamics and the aerodynamic forces in the body frame [38, 39, 40, 44, 45, 46].

The author has not seen any recent examples where the dynamics are formulated

entirely in the wind frame as is it formulated in traditional textbooks such as [19, 20],

the closest being the somewhat similar state formulations used in [23, 24]. However,

many researchers use the body frame formulation of the state in combination with a

wind frame formulation of the aerodynamic model, as is also done in this thesis. In

this formulation used in for example [8, 36, 41, 54, 57], the aerodynamic angles are

estimated, and forces and moments are calculated in terms of aerodynamic angles

before being rotated back to the body frame where the system state and dynamics

are defined. In these cases, the aerodynamic angles are typically approximated as in

eq. (3.4c) by assuming that there is no wind.

In this work, not all aircraft states are included in the state formulation, and

the state also consists of actuator states. In particular, only the attitude, angular
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velocity, and translational velocities are of interest for the aircraft dynamics, as the

inertial position does not impact the dynamic equations. This is seen in section 3.2.1.

Hence, the aircraft state consists only of the attitude, angular body velocities, and

translational body velocities. In addition to the aircraft state, the control surface

deflections are included in the state. This is because the control surfaces have internal

dynamics, which play a significant part in the aircraft dynamics, and therefore need

to be included in the model. Let the actual control surface deflections be denoted by

δ = [δa, δe, δr]
ᵀ, which corresponds to the deflection angles of the ailerons, elevators

and rudders given in radians.

Finally, the inputs to the system consists of both fixed-wing inputs and multirotor

inputs. The fixed-wing inputs are the control surface deflection setpoints δspa , δspe and

δspr , in addition to the squared commanded pevolutions per second (RPS) of the fixed-

wing propeller, δt , η2
FW. The multirotor inputs consist of the squared RPS of each

of the i ∈ [1, 4] multirotor propellers, δMR,i , η2
MR,i

The entire state and input vector are thus given by

x = [Φᵀωᵀ vᵀ δᵀ]ᵀ = [φ, θ, ψ, p, q, r, u, v, w, δa, δe, δr]
ᵀ (3.5)

u = [uᵀ
FW, u

ᵀ
MR]ᵀ = [δspa , δ

sp
e , δ

sp
r , δt, δMR,1, δMR,2, δMR,3, δMR,4]ᵀ (3.6)

3.2 Rigid-Body Equations of Motion for Aircrafts

The EOMs for a rigid body consists of both kinematic and dynamic equations. The

kinematic relationships are integrations dependent only on states and are not directly

affected by inputs or disturbances to the system. In particular, there are two sets

of kinematic equations for an aircraft, namely the navigation equations and the ro-

tational kinematic equations. The dynamics of an aircraft consist of the force and

moment equations, which are where inputs and disturbances enter the system.
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3.2.1 Navigation Equations

The navigation equations describe the kinematic relationships between the inertial

position p, attitude Φ and body velocities v:
ẋ

ẏ

ḣ

 =


cosψ cos θ cosψ sin θ sinφ− sinψ cosφ cosψ sin θ cosφ+ sinψ sinφ

sinψ cos θ sinψ sin θ sinφ+ cosψ cosφ sinψ sin θ cosφ− cosψ sinφ

sin θ − cos θ sinφ − cos θ cosφ



u

v

w


(3.7a)

Note that the relationship is kinematic, and that the position can be seen as a pure

output of the system. As the position does not play any role in the rest of the aircraft

dynamics, the position and navigation equations are omitted from the model, and

included here only for the sake of completeness.

3.2.2 Rotational Kinematic Equations

The rotational kinematic equations relate the rate of change of the Euler angles to

the body-axis components of the angular velocity:

φ̇ = p+ tan θ(q sinφ+ r cosφ) (3.8a)

θ̇ = q cosφ− r sinφ (3.8b)

ψ̇ =
q sinφ+ r cosφ

cos θ
(3.8c)

3.2.3 Force Equations

The aircraft is assumed to be a rigid body. By using Newtons Second Law of Motion

for a rigid body undergoing translational motion, one obtains the expression for the
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translational dynamics of the aircraft described in the body frame B as

Ftot = m (v̇ + ω × v) (3.9)

where Ftot = [fx, fy, fz]
ᵀ denotes the sum of forces acting in the body frame B,

and m denotes the mass of the aircraft (note the different font to differentiate it

from the aerodynamic x-moment m). Expanding the cross product in eq. (3.10) and

rearranging gives the individual translational dynamics:
u̇

v̇

ẇ

 =


rv − qw

pw − ru

qu− pv

+
1

m


fx

fy

fz

 (3.10)

There are multiple forces acting on the aircraft. The total sum of forces acting on

the rigid body are modelled in the body frame as

Ftot = FG + FA + FT + FMR (3.11)

where FG denotes the gravitational force acting on the body, FA = [X, Y, Z]ᵀ denotes

the total aerodynamic forces, FT = [T, 0, 0]ᵀ denotes the total thrust force from the

fixed-wing propeller acting along the body x-axis, and FMR = [0, 0, −TMR]ᵀ denotes

the total force generated by the multirotor propellers in the direction of the z-body

axis. Modeling of both the aerodynamic forces and the propellers forces are covered

in their own sections.

The gravitational force is defined in the inertial frame N , and is rotated to the

body frame B. Using Euler angles, the gravitational force is given in the body frame

as

FG = RBN


0

o

mg

 = mg


− sin θ

sinφ cos θ

cosφ cos θ

 (3.12)
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Using the result in eq. (3.12) and writing the component form of all the forces

acting on the aircraft, the total force equations are given as

u̇ = rv − qw +
1

m
(X + T −mg sin θ) (3.13a)

v̇ = pw − ru+
1

m
(Y + mg sinφ cos θ) (3.13b)

ẇ = qu− pv +
1

m
(Z − TMR + mg cosφ cos θ) (3.13c)

3.2.4 Moment Equations

Equivalently, by using Newtons Second Law of Motion for a rigid body undergoing

rotational motion, the angular dynamics of the aircraft are described in the body

frame B as

τtot = Iω̇ + ω × Iω (3.14)

where τtot = [τx, τy, τz]
ᵀ denotes the sum of moments acting in the body frame B.

I denotes the inertia matrix of the aircraft. The individual attitude dynamics in

eq. (3.14) are formulated as:


ṗ

q̇

ṙ

 =


Γ1pq − Γ2qr

Γ5pr − Γ6(p2 − r2)

Γ7pq − Γ1qr

+


Γ3τx + Γ4τz

1
Jyy
τy

Γ4τx + Γ8τz

 (3.15)

Where it is assumed that the aircraft is symmetric around the plane spanned by the

body x-axis and y-axis, such that the moment of inertia of the aircraft is given as

I =


Jxx 0 −Jxz
0 Jyy 0

−Jxz 0 Jzz

 (3.16)
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From this, the constants Γi, i ∈ [1, 8] are defined as

Γ = JxxJzz − J2
xz (3.17a)

Γ1 =
Jxz(Jxx − Jyy + Jzz)

Γ
(3.17b)

Γ2 =
(Jzz(Jzz − Jyy) + J2

xz)

Γ
(3.17c)

Γ3 =
Jzz
Γ

(3.17d)

Γ4 =
Jxz
Γ

(3.17e)

Γ5 =
(Jzz − Jxx)

Jyy
(3.17f)

Γ6 =
Jxz
Jyy

(3.17g)

Γ7 =
Jxx(Jxx − Jyy) + J2

xz

Γ
(3.17h)

Γ8 =
Jxx
Γ

(3.17i)

The sum of moments acting on the rigid body are modelled in the body frame as

τtot = τA + τMRQ + τMRT (3.18)

where τA = [l, m, n]ᵀ denotes the total aerodynamic moments, τMRT = [τMRT,x , τMRT,y , 0]ᵀ

denotes the total moments due to the multirotor propeller thrust forces and their dis-

placement from the center of mass, and τMRQ = [0, 0, QMR]ᵀ denotes the aerodynamic

propeller moments form the multirotor propellers. The fixed-wing propeller moment

is neglected, as this is measured from experiments to be small. Modeling of the

aerodynamic moments and the multirotor propeller moments are covered in the next

subsections.

During normal fixed-wing flight, the multirotor actuators are assumed to be
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switched off. In that case, the moment equations are given simply as

ṗ = Γ1pq − Γ2qr + Γ3l + Γ4n (3.19a)

q̇ = Γ5pr − Γ6(p2 − r2) +
1

Jyy
m (3.19b)

ṙ = Γ7pq − Γ1qr + Γ4l + Γ8n (3.19c)

3.3 Aerodynamic Modeling

The main task of aircraft system identification is typically modeling aerodynamic

forces and moments acting on the aircraft in flight. As stated at the beginning of the

thesis, there is rich literature on this topic for conventional aircraft, as it has been

an active area of research for decades. For small fixed-wing UAVs, the literature is

not as mature, although research has been emerging over the past years. In short,

there are many established conventions for aerodynamic modeling, and researchers

tend to use different techniques and combinations of techniques. Most of the modeling

principles used for this thesis are from [19], which covers a variety of practices typically

employed. Similar modeling techniques are found in textbooks as [20, 54]. This

chapter outlines the specific modeling principles used for this work.

For full-scale conventional aircraft in quasi-steady flow at low Mach numbers,

M = flow speed
speed of sound

, the aerodynamic forces and moments are typically functions of α,

β, V , angular rates ω, aircraft controls δ, α̇ and β̇. In reality and for the full flight

envelope, this relationship can be nonlinear and quite complex. Although it can be

tempting to create complex models to fit the data better, it is important to identify a

suitable model structure that matches the flight data well without overfitting the data

through overly complex model structures. A simpler model that explains the data

well is preferred over a complex model, as the addition of more parameters increases

the parameter uncertainty [19, 20, 39].

For the aerodynamic modeling in this thesis, the following assumptions are adapted

from [19]:
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Assumption 1 The aerodynamic model is developed around a reference flight con-

dition, implying that model validity is localized to conditions close to the reference

condition.

Assumption 2 The reference flight regime follows quasy-steady aerodynamics, mean-

ing that the flowfield adjusts instantaneously to changes.

Assumption 3 The dependence of longitudinal forces and moments on lateral vari-

ables can be neglected, and vice versa.

Assumption 4 For subsonic flight, airspeed changes do not affect the aerodynamic

coefficients.

Using standard notation within the aerospace literature, let the aerodynamic

forces in the body frame be denoted as FA = [X, Y, Z]ᵀ, and the aerodynamic

moments in the body frame be given as τA = [l, m, n]ᵀ. This chapter covers the

modeling of forces and moments as functions of the aircraft states and inputs and

presents the chosen modeling techniques and assumptions. Methods for finding the

actual parameter values and the best-suited model structure are presented in the next

chapter, which is devoted to principles of system identification for fixed-wing aircraft.

From assumption 3, individual aerodynamic models for the longitudinal and the

lateral-directional aircraft dynamics are developed. The longitudinal motion of an

aircraft refers to translational motion along the x-axis and z-axis, in addition to

rotational motion around the y-axis. The corresponding forces and moments are X,

Z and m, with the related states xlon = [u, w, q, θ]ᵀ and the inputs ulon = [δspe , δt]
ᵀ.

The lateral-direction motion of an aircraft refers to translational motion along the

body y-axis, in addition to rotational motion around both the x-axis and z-axis. The

corresponding forces and moments are Y , l and n, with the related states xlat =

[v, p, r, φ, ψ]ᵀ and the inputs ulat = [δspa , δ
sp
r ]ᵀ. However, as will be seen, a single

coupling parameter between longitudinal motion and lateral-directional motion is

added in the end, to capture the rudder-pitch coupling found to be significant for

large rudder deflections.
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The details of the aerodynamic models are derived and presented in this section.

From principles outlined in [19] combined with more recent works on smaller fixed-

wing aircraft, the final result is a model where all the aerodynamic coefficients are

modeled as a sum of terms that are nonlinear in the aerodynamic angles α, β, linear

in the angular rates p, q, and r, and linear in control surfaces δa, δe, and δr. The linear

terms for angular rates and control surfaces are also nonlinear in α and β. As a simple

model is always preferable, the derivatives associated with the angular rates and

control surfaces are only considered constant or linear functions of the aerodynamic

angles. Functional dependencies of airspeed dependencies are not considered in this

work, following assumption 4.

First, the traditional aerodynamic model typically used for large-scale aircraft is

presented. Then, with the aim of expanding the model’s validity to to a larger flight

envelope, the model is augmented to employ the aerodynamic angles α, β rather than

the body velocities u, v, w. Finally, the model is augmented with nonlinear terms

that are functions of the aerodynamic angles. The longitudinal model is presented

first, followed by the lateral-directional model. Finally, the augmentation to capture

the rudder-pitch coupling is presented.

3.3.1 Traditional Perturbation Model

In [19, 20, 48], traditional aerodynamic models are developed around certain reference

conditions. These conditions are referred to as trim, which for normal flight typically

means a specific airspeed, AoA and the constant control surface deflections required

to cancel out all moments about this condition. If the airplane is modeled in body

velocities, airspeed and aerodynamic angles are replaced by body velocities u, v, and

w. Such a model is typically linear and usually describes the motion close to the trim

conditions well. For example, in [39, 40], such a model is employed successfully for

a small fixed-wing airplane flying at a constant throttle setting. As the perturbation

model is the foundation for the final aerodynamic model in this work, it is presented

here for completeness. However, in the next sections, this model is expanded and

changed before arriving at the final model.

43



Following the assumption of quasi-steady aerodynamics in assumption 2, the aero-

dynamic forces and moments in the body frame B can be expressed as linear Taylor

series expansion about a reference condition, giving the following expressions for the

longitudinal forces and moments:

X = X0 +Xu∆u+Xw∆w +Xqq +Xδe∆δe (3.20a)

Z = Z0 + Zu∆u+ Zw∆w + Zqq + Zδe∆δe (3.20b)

m = m0 +mu∆u+mw∆w +mqq +mδe∆δe (3.20c)

where ∆u = u − u∗, ∆w = w − w∗ and ∆δe = δe − δe,0 denote the perturbations

from the reference condition x∗, u∗. Note that for the angular rates, the reference

condition is defined as p∗, q∗, r∗ = 0.

Simmilarly, first order Taylor expansion about the reference condition gives the

following lateral-directional aerodynamic model

Y = Y0 + Yvv + Ypp+ Yrr + Yδa∆δa + Yδr∆δr (3.21a)

l = l0 + lvv + lpp+ lrr + lδa∆δa + lδr∆δr (3.21b)

n = n0 + nvv + npp+ nrr + nδa∆δa + nδr∆δr (3.21c)

where ∆δa = δa − δa,0, ∆δr = δr − δr,0,denote the perturbations from the reference

condition x∗, u∗. For the angular rates, the reference condition is still p∗, q∗, r∗ = 0,

and for the body velocity in the y-direction v∗ = 0.

It is often more convenient to work with nondimensional aerodynamic coefficients

expressed in terms of nondimensional quantities, in order to eliminate the known

dependence on airspeed V and air density ρ, and to normalize the partial derivatives.

Let the nondimensional longitudinal aerodynamic coefficients be defined as

cX =
X

q̄S
, cZ =

Z

q̄S
, cm =

m

q̄Sc̄
, (3.22)
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and the lateral-directional coefficients as

cY =
Y

q̄S
, cl =

l

q̄Sb
, cn =

n

q̄Sb
, (3.23)

where S denotes the total surface area of the wings on the aircraft, c̄ denotes the

Mean Aerodynamic Chord (MAC) of the aircraft, b is the wingspan, and q̄ = 1
2
ρV 2

is the dynamic pressure.

Further, define the following nondimensional quantities:

û =
u

V0

, ŵ =
w

V0

, q̂ =
c̄q

2V0

(3.24)

v̂ =
v

V0

, p̂ =
bp

2V0

, r̂ =
br

2V0

(3.25)

where V0 denotes the reference airspeed.

It is now possible to express the aerodynamic coefficients as linear functions of the

nondimensional quantities, which gives the traditional model of a full-scale aircraft

operating around a reference condition and modelled in the body frame:

cX = cX0 + cXu∆û+ cXw∆ŵ + cXq q̂ + cXδe∆δe (3.26a)

cZ = cZ0 + cZu∆û+ cZw∆ŵ + cZq q̂ + cZδe∆δe (3.26b)

cm = cm0 + cmu∆û+ cmw∆ŵ + cmq q̂ + cmδe∆δe (3.26c)

Similarly, for the lateral-directional motion:

cY = cY0 + cYvv + Ypp+ cYrr + cYδa∆δa + cYδr∆δr (3.27a)

cl = cl0 + clvv + clpp+ clrr + clδa∆δa + clδr∆δr (3.27b)

cn = cn0 + cnvv + cnpp+ cnrr + cnδa∆δa + cnδr∆δr (3.27c)

For symmetric aircraft, usually cY 0, cl0, and cn0 are zero. The fixed-wing propeller

generally causes a moment about the x-axis, which is trimmed by having some nonzero
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deflection in the ailerons, δ∗a 6= 0. For symmetric aircraft, δ∗r = 0.

3.3.2 Linear Aerodynamic Model in AoA and SSA

In this work, modifications to the traditional aerodynamic model presented above are

made. To more accurately model the aerodynamics over a flight envelope consisting

of different airspeeds, the aerodynamic model is developed around the absolute aero-

dynamic angles α, β, rather than around the local reference conditions u∗, v∗, and

w∗. This is similar to many recent works on small fixed-wing UAVs where the body

velocity is employed to model the aircraft state while using the aerodynamic angles

to model the aerodynamic forces and moments, such as in [8, 11, 54].

Therefore, we instead model the aerodynamic forces as they appear in reality. The

aerodynamic x and z-forces originate from the lift force L and the drag force D acting

in the stability frame S. The aerodynamic pitch moment is still modeled in the body

frame B. Further, we now model all the forces and moments in the body frame as

functions of the aerodynamic angles α, β, the nondimensionalized pitch rate q̂, and

the deflection of the elevator from the reference condition, ∆δe , δe−δ∗e . This results

in the following longitudinal aerodynamic coefficients acting in the body frame B:

cX = −cD cosα + cL sinα (3.28a)

cZ = −cD sinα− cL cosα (3.28b)

cm = cm0 + cmαα + cmq̂ q̂ + cmδe∆δe (3.28c)

where the lift and drag coefficients are modelled as

cL = cL0 + cLαα + cLq̂ q̂ + cLδe∆δe (3.29a)

cD = cD0 + cDαα + cDq̂ q̂ + cDδe∆δe (3.29b)

Similarly, the lateral-directional aerodynamics are all modelled in the body frame B

as functions of the lateral-directional aerodynamic angle β, lateral-directional nondi-

mensionalized angular rates p̂, r̂, and the lateral-directional control surface deflections
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from trim ∆δa , δa − δ∗a, ∆δr , δr − δ∗r :

cY = cY 0 + cY ββ + cY p̂p̂+ cY r̂r̂ + cY δa∆δa + cY δr∆δr (3.30a)

cl = cl0 + clββ + clp̂p̂+ clr̂r̂ + clδa∆δa + clδr∆δr (3.30b)

cn = cn0 + cnββ + cnp̂p̂+ cnr̂r̂ + cnδa∆δa + cnδr∆δr (3.30c)

The aerodynamic coefficients defined in eqs. (3.28) and (3.30) are called nomdi-

mensional stability and control derivatives. The static stability derivates are those

associated with the aerodynamic angles (α, β) (or in the perturbation model, the

air-relative velocities (u, v, w)). The dynamic stability derivatives are those associ-

ated with angular rates (p, q, r). The control derivatives are those associated with

the controls (δa, δe, δr). In addition to this, there are the derivatives associated with

unsteady aerodynamics α̇ (or ẇ). However, the latter is often hard to differentiate as

an independent coefficient, as α̇ (or ẇ) and q often follows the same time-histories,

and these parameters are therefore lumped together as caq for a = D, L andm as

proposed in [19].

3.3.3 Nonlinear Aerodynamic Model

The linear dependencies in section 3.3.2 typically provide a good representation for

the aerodynamic forces and moments in most practical situations. However, it may

be desirable to extend the model with nonlinear terms for large amplitudes or rapid

deviations from the reference flight conditions [19]. Here, the aerodynamic model will

be augmented with nonlinear terms.

As stated in the opening, the linearly involved terms may be nonlinear in α and

sometimes in β. To keep the model structure simple, the derivatives associated with

the angular rates and control surfaces are only considered constant or linear functions

of the aerodynamic angles. For the aerodynamic static stability derivatives, squared

terms are considered. Adding these nonlinear dependencies, we arrive at the final

aerodynamic models that is considered in this work. For the longitudinal aerodynamic

model, the cofficients are modelled as follows:
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cD = cD0 + cD(α, α2) + cDq̂(α)q̂ + cDδe(α)∆δe (3.31a)

cL = cL0 + cL(α, α2) + cLq̂(α)q̂ + cLδe(α)∆δe (3.31b)

cm = cm0 + cm(α, α2) + cmq̂(α)q̂ + cmδe(α)∆δe (3.31c)

Similarly, for the lateral-directional model:

cY = cY 0 + cY (β, β2) + cY p̂(β)p̂+ cY r̂(β)r̂ + cY δa(β)∆δa + cY δr(β)∆δr (3.32a)

cl = cl0 + cl(β, β
2) + clp̂(β)p̂+ clr̂(β)r̂ + clδa(β)∆δa + clδr(β)∆δr (3.32b)

cr = cr0 + cr(β, β
2) + crp̂(β)p̂+ crr̂(β)r̂ + crδa(β)∆δa + crδr(β)∆δr (3.32c)

where ck(x, x
2) = ckxx + ckx2x

2 and ck(x) = ckxx denote quadratic and linear func-

tions, with k = D, Y, L, l,m, n and x = α, β.

Equation (3.31) and eq. (3.32) represents the full aerodynamic models that is

considered for the identification and modelling of the aerodynamic coefficients in this

thesis. Although the entire nonlinear models are presented here, the specific model

structure for each coefficient is developed based on experimental data. As will be seen,

individual subsets of the model structure is chosen for each coefficient. The details of

the procedure for determining this model structure are presented in chapter 5.

3.3.4 Rudder-Pitch Coupling

Because of the control surface configuration on the aircraft, there is a coupling between

the rudder deflection δr and the pitch, which cannot be neglected. This is caused by

the V-tail control surfaces illustrated in fig. 3-1, where a differential deflection causes

a change in the pitch moment. An important fact to note is that the sign of the

differential deflection does not matter for the generated pitch moment. In this work,

FTD is used to find the function that best captures the rudder-pitch coupling. In

chapter 6, it is found that a quadratic relationship between cm and δr best describes
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the data. Therefore, the pitch moment model is augmented as follows:

cm = cm0 + cm(α, α2) + cmq̂(α)q̂ + cmδe(α)∆δe + cmδ2rδ
2
r (3.33)

As this parameter only affects the aircraft motion for large rudder deflections, cmδ2r is

estimated in a final, separate step, described in section 6.1.4

3.4 Linear Aircraft Models around Trim

The nonlinear equations presented in the preceding sections can be linearized around

trim conditions. This is useful for both analysis and control design. In this work,

the linear dynamics models is used to analyze the modes which describe the aircraft’s

fixed-wing behavior around trim. Here, the linear models are only summarized and

explained briefly. For a complete derivation, the reader is referred to for example

[54], [48] or [44]. The reader should note that this linearized model only includes the

fixed-wing regime of flight, and that neither control surface dynamics or multirotor

dynamics are included in this linear model.

First, the longitudinal dynamics may be described by the state xlon = [u, w, q, θ]ᵀ,

and the input ulon = [δe, δt]
ᵀ. This gives the following linear system for the longitu-

dinal motion of the aircraft around trim xlon = x∗lon:

ẋlon = Alonxlon +Blonulon (3.34)

where

Alon =


Xu Xw Xq −g cos θ∗

Zu Zw Zq −g sin θ∗

Mu Mw Mq 0

0 0 1 0

 , Blon =


Xδe Xδt

Zδe 0

Mδe 0

0 0

 (3.35)
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and trim conditions defined as

x∗lon = [u∗, w∗, 0, θ∗]ᵀ (3.36a)

u∗lon = [δ∗e , δ
∗
t ]

ᵀ (3.36b)

Through an eigenmode decomposition of Alon one obtaines two complex-conjugated

pole-pairs. These are called the short-period mode and the phugoid mode. The short-

period mode is associated with damped oscillations in pitch about the y-axis, and

usually has a natural frequency between 1rad/s and 10rad/s. The airspeed usually

remains constant during an excitation of the short-period mode. The phugoid mode

is a very light damped low-frequency mode, with oscillations in the speed u, where α

remains constant. The phugoid mode is coupled with all states, including the height of

the system. Usually, the natural frequency of the phugoid mode ranges from 0.1rad/s

to 1rad/s.

Similarly, the lateral-directional dynamics may be described by the state xlat =

[v, p, r, φ]ᵀ and the input ulat = [δa, δr]
ᵀ. This gives the following linear system for

the lateral-directional motion of an aircraft around trim x = x∗:

ẋlat = Alatxlat +Blatulat (3.37)

where

Alat =


Yv Yp Yr g cos θ∗

Lv Lp Lr 0

Nv Np Nr 0

0 1 tan θ∗ 0

 , Blat =


Yδa Yδr

Lδa Lδr

Nδa Nδr

0 0

 (3.38)

and trim conditions defined as

x∗lat = [0, 0, 0, 0]ᵀ (3.39a)

u∗lat = [δ∗a, δ
∗
r ]

ᵀ (3.39b)
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From an eigenmode decomposition of Alat one obtains three modes: two real poles

and one complex-conjugated pole-pair. The two real poles correspond to the roll

mode and the spiral divergence mode, and the complex-conjugated pole corresponds

to the Dutch roll mode. The roll mode is is nonoscillatory and is typically fast, and

is decoupled from the spiral and Dutch roll modes. The spiral mode is typically very

slow and marginally stable, slightly stable, or even slightly unstable. It is very slow,

in the order of 100s. If the spiral mode is unstable, this causes the aircraft to slowly

spiral into the ground. Having an unstable mode may sound strange at first, but this

is actually the case for some aircraft [48]. However, in real applications, the spiral

mode is compensated for by the control system or pilot inputs, and as long as it

is slow, this mode is not an issue. Finally, the Dutch roll mode is lightly damped

oscillations around the z-axis. It is visible as oscillations in roll and yaw, with 90°

phase lag between the motions.

3.5 Actuator Modeling

There are multiple actuators on the aircraft, which are separately modeled. The

actuators consist of the fixed-wing actuators and the multirotor actuators. The fixed-

wing actuators are the control surface deflections δa, δe, and δr, and the squared

RPS of the fixed-wing propeller δt. The multi-rotor actuators consist only of the four

multirotor propellers, where their squared RPS are denoted by δMR,i.

3.5.1 Control Surfaces Modeling

First, the input signals δa, δe, and δr are defined in terms of their signs and their

corresponding control surfaces on the aircraft. Then, the control surfaces are modeled

with their own dynamics, separate from the rest of the aircraft.

The input signals δa, δe and δr follow the standard sign conventions of aviation:

a positive aileron angle δa leads to a positive rolling moment around the x-axis, a

positive elevator angle δe leads to a negative pitching moment around the y-axis, and

a positive rudder angle δr leads to a negative yawing moment around the z-axis. An
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illustration of this can be seen in fig. 3-1.

+δ
a

+δ
a

+δ
e

+δ
r

Figure 3-1: Sign definitions for control surfaces.

The control surfaces are modelled as if it is possible to control the aileron deflection

angle δa, elevator deflection angle δe and rudder deflection angle δr separately. In

reality, the aircraft only has two pairs of control surfaces, namely a pair of ailerons

and a pair of ruddervators in an inverted V-tail configuration. Therefore, the elevator

and rudder signals, δe and δr, are combined to compute the true deflection angles of

the actual control surfaces. Deflecting the ruddervators together has the same effect

as an elevator, and deflecting them differentially has the same effect as a rudder.

Conversion from δe and δr is performed by the autopilot mixer. In this thesis, the

relationship between the elevator, rudder, and ruddervators is defined asδe
δr

 =

 1 1

−1 1

δrr
δrl

 (3.40)

where δrr and δrl denote the right and left ruddervator deflection angles measured in

radians. The convention in eq. (3.40) is the same as the one proposed in [54]. Note
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that the autopilot commands and logs signals in δa, δe, and δr, which are the signals

that are used for the identification procedure.

Next, the control surfaces have dynamics of their own that need to be modeled.

The control surfaces of the aircraft are controlled with servos, which have limitations

in terms of rates. If these servos are fast enough compared to the dynamics of the

aircraft, their dynamics can be neglected. However, through the experiments, it is

found that the bandwidth of the servos is too close to the aircraft dynamics to be

ignored. There are a total of four servos for the ailerons and ruddervators, and the

servos are identical. Through experiments, it was found that the servos seem to follow

a rate-limited first-order response, described by the following model:

δ̇i = sat

(− 1
T
δi + 1

T
δspi

δ̇max

)
δ̇max, sat(x) =

x for |x| ≤ 1

1 for x > 1

(3.41)

The experiments and resulting model parameters are covered in section 4.3.2.

3.5.2 Fixed-Wing Propeller Modeling

In this work, the fixed-wing propeller thrust force is identified separately from the

rest of the aerodynamics. This is in contrast to many other existing works for system

identification of aircraft. The aircraft is often assumed to fly at a constant throttle

setting, and the propeller thrust is included in the aerodynamic model. Examples

of this can be found in [19, 38, 39, 40, 44, 45]. Separately modeling the fixed-wing

propeller has some advantages, one being that it is easier to update the model if the

fixed-wing propeller setup is changed.

The thrust generated by the fixed-wing propeller only acts along the body x-axis,

and is denoted by T . It is modelled as a linear function of the quadratic RPS value

ηFW, with δt , η2
FW:

T = ρD4
FWcTFW

δt (3.42a)
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where DFW denotes the diameter of the fixed-wing propeller, and cTFW
denotes the

fixed-wing thrust coefficient.

The fixed-wing propeller spins along the positive body x-axis and generates a

negative aerodynamic moment around the x-axis. This torque causes requires the

aircraft to hold a constant aileron deflection at steady-state flight [58]. However, for

the modeling in this thesis, this torque is assumed to be small and is hence neglected.

Instead, this torque is captured in the aileron trim δ∗a and cl0.

It should be mentioned that the proposed propeller model does not capture the

effect of a propeller that is moving through an airfield. For a propeller rotating at

a constant RPS, increasing the airspeed decreases the effective AoA of the propeller

blade. As a result, this reduces the propeller thrust. This phenomenon can be

modeled with a more sophisticated model, such as using the advance ratio as is done

in [8] or a numerically obtained lookup table as is done in [36]. However, this was not

found necessary in this work, and the simple static model proposed in this section

captures the aircraft motion well.

The entire aircraft is modeled as a rigid body with no moving parts. In reality, the

propellers are rotating, which cause a gyroscopic moment that acts on the rigid body.

However, this gyroscopic effect is considered negligible for the aircraft in question due

to its large inertia properties.

3.5.3 Multirotor Modeling

As for regular quadcopters, there are four propellers mounted along the body z-axis

of the aircraft. These generate moments around all body axes and a thrust along

the body z-axis. The aircraft in this thesis follows the standard PX4 convention for

propeller direction and order, as can be seen in fig. 3-2.
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Figure 3-2: Ordering and direction of multirotor propellers.

Thrust

The thrusts generated by the multirotor propellers are modelled as a linear function

of the multirotor inputs, which are defined as the squared RPS δMR,i , η2
MR,i:

TMR,i = ρD4
MRcTMR

δMR,i (3.43a)

where DMR is the diameter of the multirotor propellers, ηMR,i denotes the rotational

speed (RPM) of the i-th multirotor propeller, and cTMR
is the thrust coefficient for

the multirotor propellers.

The total force TMR given by the propellers along the body z-axis is given as

TMR =
4∑
i=1

TMR,i (3.44)
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Aerodynamic moments

Similarly, the aerodynamic moments generated by the multirotor propellers are mod-

eled as

QMR,i = ρD5
MRcQMR

δMR,i (3.45a)

where cQMR
denotes the moment coefficient of the multirotor propellers. There are

four multirotor propellers, divided into two pairs of propellers that spin in the opposite

direction. This is common for quadcopters, as it allows the aircraft to use the four

propellers to control the moments around all the body axes.

The total moment around the body z-axis is given as

QMR = QMR,1 +QMR,2 −QMR,3 −QMR,4 (3.46)

where the signs of the terms in τQ are given by the rotational direction of the indi-

vidual propellers, as is shown in fig. 3-2.

Moment due to thrust

As the thrust forces from the top propellers are not acting on the center of mass, they

generate a moment around the x-axis and the y-axis. The resulting moment from the

thrust forces generated by the propellers are given by

τMRT =
4∑
i=1

rp,i × TMR,i =
4∑
i=1


ri,x

ri,y

ri,z

×


0

0

−TMR,i

 =
4∑
i=1


−ri,yTMR,i

ri,xTMR,i

0

 (3.47)

where rt,i denotes the vector describing the location of the i-th multirotor propeller

relative to the center of mass.
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Chapter 4

UAV Airframe and Preliminary

Analysis

In this chapter, a preliminary analysis of the VTOL UAV is presented. The UAV air-

frame is described in general in terms of design, actuation principle, instrumentation,

and avionics. Static properties of the aircraft are investigated, such as inertial prop-

erties, propeller constants, and dynamics of the control surfaces. Finally, the trim

properties of the aircraft obtained from preliminary manual experiments are sum-

marized, and an initial aerodynamic model is obtained through the use of simplified

surface modeling and a Computational Fluid Dynamics (CFD) method called Vortex

Lattice Method (VLM).

4.1 Instrumentation and Avionics

There are several digital electronic components on the aircraft. For example, the

Flight Controller (FC) running on the aircraft is a Pixhawk [42] 2.1, which is a micro-

controller with multiple onboard sensors. The sensor suite on the Pixhawk 2.1 consists

of three accelerometers, three gyroscopes, three magnetometers, and two barometers.

In addition, an external GNSS system combined with a magnetometer is mounted on

the outside of the airframe. In addition to this, there is a digital differential airspeed

sensor aboard the vehicles, which measures both static and dynamic pressure from

57



a pitot tube mounted at the aircraft’s nose, which allows estimation of the vehicle

airspeed.

The FC onboard the aircraft is running PX4 [29], an open-source autopilot that

is widely used. PX4 is running an elaborate estimation library in the form of an

Extended Kalman Filter (EKF) running at a slightly delayed time horizon. As the

EKF is running at a delayed time horizon, PX4 also employs a faster but less elaborate

output predicter that is running in realtime, which is used for low-level control at high

frequencies. The output predicter predicts states at realtime rates and uses the EKF

to correct its states to prevent drifting. Both the states of the EKF and the output

predictor outputs are logged at 200 Hz during the flight experiments performed in

this work and combined to obtain the entire state of the aircraft.

4.2 Static Airframe Properties

Initially, neither the total mass of the aircraft, the inertia matrix, or the properties

of the lifting surfaces are known. However, when seeking to accurately model the

dynamics of an aircraft, these properties are essential to identify before aerodynamic

system identification can be started. In this section, the mass, the inertia matrix,

the properties of the lifting surfaces are found. A summary of the static aircraft

properties can be found in table 4.1. Note how only four of the inertia terms are

included, as the rest are assumed to be zero from symmetry arguments are described

in chapter 3.

Parameter Value
b 2.5m
c̄ 0.242m
S 0.6617m
m 12.140 kg
Jxx 0.7316
Jyy 1.0664
Jzz 1.6917
Jxz 0.1277

Table 4.1: Summary of all the static properties of the aircraft.
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4.2.1 Mass

First, the mass of the aircraft is found. The aircraft is too large to be weighted as

a single part, and the individual parts have to be weighed separately and summed

up. The total aircraft mass with the specific avionics setup used for the work in this

thesis is found to be m = 12.140kg. To ease potential future work for researchers

working with the same airframe but with a different avionics setup, the details of the

masses can be found in table 4.2.

Part Mass Quantity
Battery 6500mah 0.950kg 2
Battery 11000mah 1.270kg 3
Wing (with servo) 0.770kg 2
Tail (with servos) 0.630kg 1

Fuselage (with avionics) 2.310kg 1
VTOL arm (with wiring) 0.280kg 2

Top motor (with propeller) 0.260kg 4
Pusher motor (with propeller) 0.350kg 2

Total 12.140kg

Table 4.2: Masses of the individual parts of the aircraft.

4.2.2 Inertia Matrix

A critical static property of the aircraft is the inertia matrix J , as introduced in

chapter 3. In this work, an accurate 3D model is carefully created from physical

measurements on the airframe, as it was desirable to have a 3D model of the aircraft

for future work and visualization. Another common method is the compound pen-

dulum method used in [39], and [57]. All parts assumed to contribute significantly

to the aircraft inertia are included in the 3D model. The measured part masses are

uniformly distributed on the part, and is accurately located on the model. The parts

included in the model are the fuselage, wings, tail, VTOL arms, batteries, ESCs, and

motors. Renderings of the 3D model can be seen in fig. 4-1. The 3D model is created

in Solidworks. Note that the 3D renderings do not show the batteries, ESCs, and

servos, as these are located within the airframe.
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Figure 4-1: Detailed 3D model of the Babyshark.
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The inertia matrix J is directly obtained from the 3D modeling software after the

individual part masses are added. One advantage of this method is that the products

of inertias on the off-diagonal of J can also be estimated, in contrast to using the

compound pendulum method which only estimates the moments of inertia on the

diagonal of J . However, a downside is that recreating an accurate 3D model from

measurements can be a time-demanding process. The final inertia matrix parameters

obtained from the 3D model are summarized in table 4.1.

4.2.3 Lifting Surfaces

Next, the static properties of the wings are measured. There are a total of three lifting

surfaces on the aircraft: two wings and one tail. The wingspan b is readily found from

direct measurements on the aircraft to be 2.5m. The total lifting surface area of the

wing S = 0.6617m2 is found by projecting the wings and tail on the x-y-plane in

the 3D model of the aircraft. The MAC is defined as the average chord length of a

tapered, swept wing, and is found from a numerical approximation of the wing to be

c̄ = 0.242m. A figure of the numerical approximation can be seen in section 4.2.3.

From dialogue with the aircraft manufacturer, the wing airfoil is known to be

EPPLER 397, and the tail airfoil is known to be NACA0010. Plots of these airfoils

can be seen in fig. 4-2.

(a) Wing airfoil: EPPLER 397. (b) Tail airfoil: NACA 0010.

Figure 4-2: The airfoils used for the aircraft.

4.3 Actuator Identification

As shown in the previous chapter, the different actuators are modeled individually.

In this section, the model parameters are found through preliminary tests and ex-

61



Figure 4-3: Wing approximation used to calculate the Mean Aerodynamic Chord
(MAC) of the aircraft.

periments on the actuators. A summary of the actuator parameters can be seen in

table 4.3.

Parameter Value
Tservo 0.028s

δ̇max 200° s−1 = 3.491 rad s−1

δa,max 25°
δe,max 25°
δr,max 22°
ρ 1.225kg/m3

DFW 0.3810m
DMR 0.4064m
cTFW

0.0840
cTMR

0.0994
cQMR

0.006338
r1,x 0.353m
r1,y 0.400m
r2,x −0.447m
r2,y −0.400m
r3,x 0.353m
r3,y −0.400m
r4,x −0.447m
r4,y 0.400m

Table 4.3: Summary of all the parameters describing the actuators of the aircraft.
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4.3.1 Propellers and Motors

The models for propeller thrust and moment are presented in eqs. (3.42), (3.43)

and (3.45). These models introduces three unknown parameters, namely cTFW
, cTMR

,

and cQMR
. The rest of the parameters are known a-priori or can be measured directly.

Due to the chosen model presented in chapter 3 where the propellers forces are mod-

elled separately from the aerodynamics, it is simple to update the model with a new

propeller configuration. One only has to do the propeller tests for the new configu-

ration and update the corresponding coefficients in the model. To ease future work,

the current propeller and motor setup used in this work is shown in table 4.4

Motor Propeller
Fixed-Wing T-Motor AT4120 500KV 15x8 Wood
Multirotor T-Motor MN505-S 320KV 16x5.5 Carbon Fiber

Table 4.4: Current setup of motors and propeller.

Figure 4-4: Experimental setup used for measurements of the propeller constants.

For the tests, a thrust stand of the type [59] is used, which is capable of measuring

both the total generated thrust force and torque while measuring the RPS of the

motor through an optical sensor. A picture of the setup can be seen in fig. 4-4. After

performing the tests for the two different motor types, the unknown coefficients are

found through Ordinary Least-Squares (OLS) as defined in section 5.4.2, by using

the measured forces as outputs, and the squared RPS multiplied with ρD4 as input,

where D is the diameter of the used propeller.
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Figure 4-5: Fixed-wing propeller identification results.
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Figure 4-6: Multirotor propeller identification results.

A plot of the data and the obtained functions can be seen for the fixed-wing

propeller in fig. 4-5, and for the multirotor propeller in fig. 4-6. As can be seen from

the plot, the propeller model presented in chapter 3 accurately predicts both the

thrust and the moments for both of the propellers when there is no incoming airflow.
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4.3.2 Control Surface Dynamics

Next, the servo dynamics are identified. The servo experiments are performed with

the servos mounted in the wing and a-tail, as they are when the aircraft is flying.

This is to make sure that they are tested with a realistic load. The servo model used

for the aircraft is the KST FZ10 Servo. A step input of different amplitudes is given

to the servos, and the use of a high-speed camera measures the total deflection angles.

The recorded responses for the motors are given in fig. 4-7.

At first, a simple first-order response was assumed for the servos. However, by

looking at the data, it is found that a pure first-order response does not accurately

reflect the behavior of the motors. Different amplitudes give different time constants,

which is not the case for a simple first-order system. Therefore, a more detailed model

is needed.

By looking at the data, the responses of the servos seem to be rate-limited. This

can be seen as a linear part of the response, which is visible in fig. 4-7. It also

corresponds with the specifications from the servo producer, where a max rate under

no load is specified. Therefore, the model presented in eq. (3.41) is used. Note that

the model in eq. (3.41) is nothing more than a simple first-order response with a rate

limit expressed in mathematical terms.

As the motors are identical for the different control surfaces, it is expected that

a single model will fit all of the motors. The parameter values are obtained through

trial and error, and the simulated responses compared with the obtained data can be

seen in fig. 4-7. It is clear that the model accurately described the behavior of the

motors. The parameters are summarized in table 4.1.

4.4 Trim Conditions

It is necessary to trim all fixed-wing aircraft. First, the airspeed affects the lift of the

aircraft, which gives rise to a trim AoA, α∗, where the wings generate enough lift to

stay at a constant altitude. Second, at this α∗, the aircraft will generate a specific

drag, which will require a constant trim throttle δ∗t to fly at a constant airspeed.
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Figure 4-7: Step responses of the control surface servos.

Third, the lift at α∗ will cause a pitching moment as the center of gravity is in front

of the center of pressure, which will require an elevator trim δ∗e that cancels out the

pitching moment. Finally, the fixed-wing propeller will generate a moment at the

constant throttle setting, which will require an aileron trim δ∗a to keep the vehicle at

a constant bank angle φ∗ = 0.

The trim settings are found through preliminary manual flights with an RC pilot.

Aircraft trim settings are likely to vary slightly between instances of the same model

due to minor physical differences in the aircraft. The specific trim settings used for

the aircraft in this thesis are shown in table 4.5. It may be necessary for another

aircraft instance of the same model to find new trim settings, depending on how

different they are from the ones presented here.

Parameter Value
α∗ 3°
β∗ 0°
V ∗ 21m s−1

δ∗a 3.0309°
δ∗e −5.6436°
δ∗r 0°
δ∗t η∗FW

2 = 1252

θ∗ 3°
u∗ 20.971m/s
w∗ 1.099m/s

Table 4.5: Trim settings for the aircraft in this thesis.

From the trim airspeed V ∗ and the trim AoA α∗ it is possible to calculate the trim
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body velocities u∗ and w∗. Some manipulation of the equations in eq. (3.4c) gives

u∗ =
V ∗√

1 + tanα∗2
(4.1a)

w∗ =
√

(V ∗)2 − (u∗)∗ (4.1b)

4.5 Aerodynamic Modeling with the Vortex Lat-

tice Method

Although the aerodynamic modeling of aircraft is most accurately performed through

the use of wind tunnel data or flight data [19, 21], it is possible to obtain theoretical

values for the aerodynamic parameters using numerical methods. These parameters

are expected to be inaccurate but may provide valuable insight into the aircraft’s

time constants and expected behavior. For example, in [39, 40] such modeling is used

to design input signals to the aircraft that excite the desired modes of the system.

Having a baseline model before starting system identification procedures obtained

from similar aircraft, small-scale aircraft models, wind-tunnel tests, or numerical

calculations is common. An example of this is given in [44], where the researchers use

combined data from similar aircraft to obtain a baseline model. In addition, in [57],

parameters obtained from wind tunnel tests are compared with parameters obtained

through VLM, where stability coefficients from VLM are used directly in the final

model.

In this work, the Extended Vortex Lattice Method (VLM) is employed, through

the software AVL [47]. The coefficients obtained from numerical simulations are not

expected to be exact because of weaknesses in purely computational approaches and

uncertainty in the aircraft geometry. Still, they will be helpful as a baseline model for

the complete nonlinear system identification and preliminary analysis. Through AVL,

both linear state-space models around trim and nonlinear models using aerodynamic

coefficients are developed. These models are tested on validation data in chapter 6,

but as will be seen, they do not accurately capture the aerodynamics acting on the

67



Figure 4-8: AVL model of the lifting surfaces on the UAV.

aircraft.

To employ VLM, one needs to specify the geometry of the lifting surfaces on the

aircraft. That is, only the wings and the V-tail and the respective control surfaces

are modeled. A visual representation of the model can be seen in fig. 4-8. As recom-

mended in the documentation, the fuselage, and the VTOL modules are not modeled,

as this may give inaccurate results. Some geometry of the aircraft is known precisely.

The rest of the geometry has to be matched based on physical measurements of the

aircraft. For example, it is hard to manually determine whether there is a twist in

the wings, which will affect the pitch moment stability [58, 60]. In particular, the

pitch moment coefficients are found to be very sensitive to small changes such as the

twist of the wings or the center of gravity. VLM is also known to over-estimate the

effect of the control surfaces [39].

Both longitudinal and lateral-directional state-space models are obtained through
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VLM. In the following subsections, eigenmode analysis is performed to analyze the

results. For further details on the implementation of VLM and the use of AVL, the

reader is referred to the AVL documentation.

4.5.1 Eigenmode Analysis of State-Space Model from VLM

For the longitudinal model, eigenmode analysis of the state-space matrix obtained

through VLM gives the modes shown in table 4.6, where ζ is the damping of the

mode, f is the mode frequency, and Tc is the time-constant. As is typical for aircraft,

Mode Eigenvalue ζ f [cycles/s] Tc[s]
Short-Period −3.09± 7.44i 0.384 1.2812 0.324

Phugoid −0.01± 0.62i 0.0192 0.0988 83.7

Table 4.6: Eigenmode analysis of longitudinal state-space model obtained through
VLM.

the short-period mode is damped with a short time constant of 0.324s. For the

phugoid mode, the time constant is much larger and is 83.7s. The damping of the

phugoid mode is very light, with ζ = 0.019.

Similarly, eigenmode analysis of the lateral-directional state-space matrix obtained

through VLM gives the results in table 4.7. The first thing to note from the eigenmode

Mode Eigenvalue ζ f [cycles/s] Tc[s]
Roll −16 −− −− 0.0624

Dutch roll −1.06± 5.66i 0.184 0.9167 0.946
Spiral 0.107 −− −− −9.35

Table 4.7: Eigenmode analysis of lateral-directional state-space model obtained
through VLM.

analysis of the lateral-directional model is that the spiral mode of the aircraft is slow,

in the order of 10s, and is slighly unstable. Further, as is quite common [48], the

Dutch roll mode is lightly damped with a damping of ζ = 0.184, with a relatively

slow time constant of 0.174s. The roll mode is fast and critically damped, with a time

constant of 0.0625s.
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There are some interesting takeways from the preliminary analysis performed with

VLM. First, the aircrafts time constants are of expected magnitudes given the aircraft

size. Second, it seems that the experiments in this work will not be able to capture all

five modes accurately. As will be seen, due to physical restrictions during the tests,

the flight experiments that are performed are on the order of 5s. By the assumption

that the general order of magnitude of the time-constants obtained through VLM

are correct, it, therefore, seems that both the short-period mode, the roll mode, and

the Dutch roll mode will get captured in the experiments. However, this also means

that the data obtained through flight testing will not capture the slow modes of

the aircraft. Therefore, it is expected that there will be uncertainty associated with

identifying both the phugoid mode and the spiral mode.
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Chapter 5

Principles of Time Domain System

Identification

System Identification is a method for building mathematical models of dynamic sys-

tems, using measurements of input and output signals of the system. In general, the

purpose of doing system identification is to obtain a model of the system in question,

such that advanced methods within control and planning, as mentioned in section 1.2,

can be employed.

In this chapter, an introduction to system identification for fixed-wing aircraft

is given. There are many different methods for performing system identification,

depending on the system in question, the goal, the available data, and other resources

available. The VTOL aircraft in this thesis consists of a multirotor and a fixed-wing

part, where the multirotor part was already identified in the preliminary analysis

in chapter 4. As mentioned in the introduction in chapter 1, fixed-wing system

identification is a large field that has received a lot of focus over the years, particularly

for full-scale aircraft. Research on small fixed-wing UAVs is less mature. As will be

seen, the principles for fixed-wing system identification are often quite involved, and

the methods used in this thesis are presented in this chapter.
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5.1 Introduction to System Identification for Fixed-

Wing UAVs

The process of system identification for fixed-wing UAVs is complex and involves

many steps, and several of the steps usually have to be reperformed as one gains

information about the system. These steps involve preliminary analysis, model class

choice, experiment design, data processing, model structure determination, parameter

estimation, and model validation. In the aviation industry, it is common to spend

much time and resources on developing more accurate and correct models. A relatively

coarse model may be developed initially, and iterations with higher and higher fidelity

may be developed over several years, as seen in, for example, the work by Wingtra in

[7, 8, 9].

First, depending on the purpose and a-priori knowledge of the airframe, a model

class must be selected for the identification procedure. Then, experiments are de-

signed such that the chosen model is best identified from the available data. This

involves the design of input signals to excite the desired system frequencies or target

only some of the states or axes of the system while keeping the rest of the system

stable. Next, one must prepare the instrumentation so that the data is logged with

the appropriate fidelity and retrieved after the experiments. Post-processing must be

performed on the data, where the data first needs to be organized into input-output

datasets. Then, the data must be cleaned and filtered, and relevant signals must be

calculated from the data. Then, a model from the selected class can be initialized

and fit the input-output data, typically during an optimization routine. Finally, the

validity of the obtained model has to be ascertained before the system identification

routine is complete.

System identification is seldom an iterative process where the steps are only re-

peated once. Instead, the steps are repeated multiple times after new information

about the system is uncovered. One may have to go back a few steps several times

before the procedure is over. During the process, one might, for example, discover

that the model class is not rich enough to describe the system or that the model class
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is overly complex, causing over-fitting of the data. One might discover that additional

data is needed to estimate specific parameters accurately or that the initial data was

too noisy or otherwise corrupted and not usable for the last steps.

For aircraft, system identification is usually a question of parameter estimation, as

the model is typically more or less known a-priori and does not have to be determined

from the data [19]. For normal aircraft, the unknowns generally are the aerodynamic

coefficients that describe the total aerodynamic forces and moments. The way these

forces and moments enter the system is known from first principles of physics. This is

illustrated in the proposed model from chapter 3, where most of the model is known

or can be found from simple tests as in chapter 4, except for the aerodynamic forces

and moments.

5.1.1 Problem Formulation

It is possible to write the system idenfitication problem as a general optimization

problem, where the system is represented by an arbitrary state-space model. Let

the system be instrumented with sensors and actuators, where one may apply input

commands u[n] at some discrete rate, and measure the outputs y[n] at some discrete

rate. Without diving into the details of the state-space model, we then have a system

of the following form

x̂[n+ 1] = fθ(x̂[n],u[n]) (5.1a)

ŷ[n] = gθ(x̂[n],u[n]) (5.1b)

where x̂[n] is the predicted state of the system at timestep n, ŷ[n] is the predicted

output of the system, and θ describes a vector of all the model parameters. f is a

model of the state dynamics, and g is some model of the system output. Note that

this formulation allows for virtually any type of system model, where the model could

be represented by anything ranging from explicit EOMs derived from first principles

of physics, to nonlinear neural-network models.

Generally in system identification, one seeks to minimize the squared simulation
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error:

min
θ,x[0]

N−1∑
n=1

‖ŷ[i]− y[i]‖2, subject to eq. (5.1) (5.2)

That is, one seeks to find the model parameters θ and the initial state x[0], that min-

imize the squared error between the predicted output ŷ[i] and the measured output

y[i]. In the general formulation, both initial conditions x[0] and the parameters θ

are unknown, as is the case for many practical applications. As will be seen, only

the parameters θ are estimated in the optimization routine in this thesis, as x[0] is

assumed to be known exactly through the data preprocessing steps.

It should be noted that the formulation in eq. (5.1) is simplified, as it does not take

any noise into account. However, measurements will always be corrupted with mea-

surement noise in the real world, and the dynamics will be affected by process noise.

Thus, generally, one needs to adjust the system identification procedure depending

on the significance of the noise and the way it enters the system. This is especially

true for small, fixed-wing aircraft flying in the atmosphere, where vibrations, sensor

noise, and wind disturbances always affect measurements.

5.1.2 Classes of System Identification

Given the general framework for system identification given in eqs. (5.1) and (5.2), one

may employ a variety of model classes and different parametrizations for the system

in question. Here, a brief overview to system identification for fixed-wing aircrafts is

presented. It should be noted that system identification in general is a field much to

broad to accurately cover in a few pages, and that the intention of this subsection

is only to give the reader a sense of where this work fits in the world of fixed-wing

system identification.

Generally, system identification methods can be differentiated into two groups:

parametric and non-parametric [21, 22]. In the survey in [22], the authors provide

the following, precise explanation: Non-parametric methods require no a-priori in-

formation about the system dynamics or model structure and are identified from
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impulse responses or frequency responses. On the other hand, parametric models

assume a structure for the dynamic model and identify the model parameters from

training data. From the research on relevant literature in this thesis, most fixed-wing

applications apply a parametric method.

There exist many different parametric models used for system identification. Fol-

lowing [22], parametric models are be divided into the following four categories:

• Time-varying and time-invariant systems

• Static and dynamic systems

• Linear and nonlinear systems

• Continuous and discrete systems

Aircraft identification typically works with identifying a time-invariant, dynamic sys-

tem, which may be either linear or nonlinear, and modeled as either continuous or

discrete. However, most works found for the literature review in this thesis employ

continuous models.

In addition to the four categories given above, another distinction can be made

on whether the model is a full black-box model or a grey-box model. A black-box

model is a purely data-driven modeling tool, where one employs no a-priori knowledge

about the underlying model. A famous example of this is neural networks, where the

unknown function is approximated by nonlinear over-parametrization, and the pa-

rameters are found through nonlinear optimization. An example of this model type

employed to aircraft can be found in [61]. Another example of black-box models

are discrete, parametric models such as ARX, ARMAX, NARMAX, or Box-Jenkins,

which employ variations of auto-regression and moving averages to describe the dy-

namics, such as used for fixed-wing aircraft in [62]. Yet another black-box representa-

tion is transfer functions, as employed for system identification of a small fixed-wing

aircraft in [46].

In contrast to black-box models, grey-box models are based on a-priori knowledge

of the system, typically first principles of physics. This thesis employs grey-box

modeling, and an example of this was presented in chapter 3. In this thesis, the
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nonlinear grey-box model is based on rigid-body motion, and the coefficients are

individually identified as part of the nonlinear model. Similar approaches are taken

by researchers in [8, 38, 39, 40, 57]. Another approach to grey-box modeling is to

linearize the nonlinear aircraft EOMs, and identify the parameters of the linear model

instead. This approach is taken by researchers in [44, 45, 46]. It is also possible to

combine grey-box models with black-box models, such as in [49], where a flat-plate

aerodynamic model is augmented by using local radial basis functions.

In this thesis, a parametric, grey-box model is employed. The model is time-

invariant, dynamic, nonlinear, and continuous and is based on rigid-body motion.

Many of the parameters are already estimated through preliminary analysis in chap-

ter 4. In particular, the part of the system identification that remains is the aerody-

namic modeling, where the aerodynamic forces and moments are modeled as functions

of the relevant states and inputs. The exact model structure and the parameters are

determined from the data, using the procedures outlined in this chapter.

5.2 Experiment Design

The design of the experiments for collecting data is one of the most critical aspects

of system identification. In particular, the chosen input signals are vital, as the input

signal to the system affects all other aspects of the identification process [22]. While

designing the experiments, there are several key aspects to keep in mind. In this

section, a brief overview of the experiment design used for the work in this thesis is

given.

All of the flights are performed by a professional RC pilot that controls the aircraft.

The pilot flies laps with the aircraft at the desired flight conditions and initiates

preprogrammed identification maneuvers on the long side of the lap. During an entire

flight, the pilot, therefore, executes several maneuvers for system identification. The

aircraft is flown in the Stabilized mode, and the throttle is kept more or less constant

during the entirety of a maneuver.

The maneuvers themselves are automated and mapped to a switch on the RC
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controller, such that the pilot may initiate a maneuver when desired. The maneuvers

are preprogrammed into PX4, and the maneuver parameters are programmed as

parameters in the flight control software. This allows the parameters to be changed

in flight, as the aircraft is communicated with through MAVlink messages transmitted

over the RC connection. In this way, an engineer may change the parameters and

prepare the maneuvers while a pilot is flying the aircraft. When the aircraft is flying

straight and level, the pilot initiates a maneuver, letting the aircraft settle before

another maneuver may be performed. Due to physical restrictions, the maneuvers

are limited to a maximum duration of approximately 5s, before the pilot needs to

command a turn.

Several different input signals are being used in relevant work on small, fixed-wing

aircraft. The input signals for the maneuvers have to be carefully designed, and there

are several aspects to this. Hoffer et al. highlights multiple aspects in [22]:

• Applicable frequency range for the system

• Persistent excitation of all the desired modes

• Duration of excitation

• Types of inputs

• Chosen set of inputs for model verification

One may, for example, use signals such as frequency sweeps, doublets, manual ma-

neuvers, or a combination. Some researchers also use different signals for different

axes of the aircraft. For example, in [44, 45], frequency signals are used for frequency-

domain identification, and doublets are used for time-domain identification. In [39,

40], doublets are used for the elevator and rudder, while 1-2-1 signals are used for the

aileron. In [46], chirp signals are superimposed over the manual pilot stick inputs. In

[8], 2-1-1 signals are used for all axes of the aircraft.

In this work, 2-1-1 signals are used to excite the different axes. This signal struc-

ture is recommended by [23], as it excites a large frequency range while being more

efficient than frequency sweeps [63]. A 2-1-1 signal is a multistep signal consisting of

three steps, where the first step has a period that is twice as long as the next two
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steps. For the work in this thesis, different amplitudes and periods are used for the

signal, as recommended in [23]. A plot of a 2-1-1 signal can be seen in fig. 5-1.
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Figure 5-1: 2-1-1 signal.

The maneuvers are grouped into three different types: roll maneuvers, pitch ma-

neuvers, and yaw maneuvers. 3D plots of recorded maneuvers with input signals of

different signs and amplitudes can be seen in figs. 5-2 to 5-4. First, 2-1-1 signals are

commanded to the aileron, which excites the roll mode. Between every maneuver, the

input sign is switched, such that the aircraft performs the maneuver to both sides.

Next, 2-1-1 signals are commanded to the elevators. This time, due to safety reasons

while flying, the signal is designed such that the first step always pitches the aircraft

upwards. This signal will excite the short-period mode. Finally, 2-1-1 signals are

commanded to the aircraft’s rudder, again while alternating the sign between ma-

neuvers. This last signal is designed to excite the Dutch roll mode. For the aileron

and pitch maneuvers, periods ranging from 0.3s to 0.5s are used, and for the rudder

maneuvers periods ranging from 0.9s to 1.1s are used. The different maneuver types

are designed to excite the modes of the system corresponding to each axis. However,

because of physical limitations on the maneuver durations, it is expected that neither

the phugoid mode nor the spiral roll mode will be captured in the data. These modes

usually have time constants in the order of 10 to 100s, much longer than what the

experiment setup allows. In addition, these modes are known to be hard to excite

due to lack of excitation in the low-frequency domain [22, 44].

All maneuvers are designed for the onboard flight controller to stabilize all other

aircraft axes while the maneuver is performed. That is, the control surfaces corre-

sponding to the axis in question perform the 2-1-1 deflection, while PX4 controls
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Figure 5-2: 2-1-1 aileron maneuvers (scale of the aircraft is 5:1).

the other control surfaces to stabilize the aircraft around those axes. Although this

degrades the data, it is necessary to prevent the aircraft from crashing, as also ex-

plained in [19]. This is similar to works such as [8]. It should be pointed out that

this is troublesome for the Dutch roll mode, which is known to excite both rolling

and yawing motion, where the rolling motion in the Dutch roll mode will be canceled

out by feedback control in these experiments.

For the work in this thesis, several attempts of data collection are made. Due to

bad weather, logging dropouts, and disturbances in pilot inputs, between a third to

half of all the data is discarded. In the end, all of the selected data is obtained when

there is no detectable wind on the ground. The wind is known to increase higher up

in the atmosphere, and as such, it is impossible to rule out any wind at the height
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Figure 5-3: 2-1-1 elevator maneuvers (scale of the aircraft is 5:1).

the maneuvers are performed at. However, in this work, it is assumed that any wind

disturbances are negligible, as there was no detectable wind during the experiments.

A valuable lesson learned from the experiment planning in this work is that there is

usually significantly less wind during the early morning. During the testing period,

it was found that the wind levels started to increase considerably from 9 am.

5.3 Preprocessing and Initial Data Analysis

Before the system identification routine can begin, the available data needs to be

preprocessed. This means both cleaning and sorting the raw data and obtaining the

required signals from the data. First, the data itself needs to be processed, as it is

corrupted with sensor noise, biases, and drifts. Second, the relevant signals have to

be constructed from the processed data through the process known as Flight Path

Reconstruction (FPR). Depending on the available sensors and avionics installed on
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Figure 5-4: 2-1-1 rudder maneuvers (scale of the aircraft is 10:1).

the aircraft, different quantities are measured directly. Usually, many of the signals

used for system identification need to be created as a preprocessing step. Finally,

the data obtained through preprocessing and FPR need to be verified through a step

known as checking for data compatibility or kinematic consistency.

5.3.1 Cleaning, Smoothing and Derivation of the Data

Raw sensor data is noisy and usually has to be processed before system identification

can be performed [22]. Noise levels depend on sensor quality and the size of the

aircraft, but there will always be noise in a sensor signal. Commonly in systems

theory, one makes the distinction between pure sensor noise and process disturbances.

The sensor noise is modeled as Gaussian noise and is always present in any sensor.

Process disturbance accounts for other processes in the system that degrades the
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data, such as actual disturbance in the form of wind gusts or unmodelled modes of

the system, such as high-frequency vibrations from the motor or oscillations in the

wings. A large portion of the external system disturbances for an aircraft, such as

static wind and wing gusts, can be eliminated by flying only on days with little wind.

Yet, some of the system disturbances are usually seen as noise in the data.

First, the data is cleaned and organized by maneuver types. That means that

only the relevant parts of the experiment flights are retained and that any maneuvers

with significant data degradation due to dropouts or large disturbances are rejected.

The process of finding only the maneuver data can be entirely automated, as the

maneuvers are initiated with a switch on the RC controller, and the RC signals are

logged. The process of flagging data with dropouts can be automated too. However,

the process of removing data with significant disturbances, or too little stable flight

before or after a maneuver, is manual and quite tedious work.

After the data is cleaned and organized, relevant signals intended for FPR are

selected from the data. The aircraft used in this work is running an Extended Kalman

Filter (EKF) as part of the flight controller suite [64], which is estimating the attitude

and inertial velocity of the aircraft, by fusing sensor data at a delayed time horizon.

The PX4 flight suite is beginning to be quite common in the UAV literature, and in

[8, 39, 40] the states from the EKF are used for identification rather than raw sensor

data. This is also done in this work. Before experiments are performed, modifications

are made to the PX4 software to ensure that the EKF data is logged at an appropriate

sample rate. Finally, the logged attitude and inertial velocities are taken from the

onboard EKF and used as the basis for the remaining steps. As the raw sensor data

is already processed by an EKF, it is expected that most noise in the data is already

removed.

In this work, a Savitsky-Golay filter is used to additionally reduce the noise level

in the FTD. This is similar to the work in [39, 40]. The Savitsky-Golay filter is a

digital filter that can be applied for smoothing the data without distorting the signal

tendency. Other than this, there is little particular reason for choosing this filter type

over any other, and the filter is found to work well with standard settings. As stated,
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the noise level in the data is already relatively low due to the EKF. A filter order

of 5 and a frame length of 11 is found to give satisfiable results for the kinematic

consistency tests as described in section 5.3.3.

For FPR, both the smoothed attitude and the inertial velocities are used. Their

derivatives are needed too, and the signals need to be fused to the desired time hori-

zon. In this work, derivatives are computed using analytical differentiation of local

polynomial regressions, as proposed in [19, 39, 40]. This is in contrast to numerical

differentiation by using, for example, finite differences, which is known to be trou-

blesome for signals with noise [19]. Piecewise splines are chosen for the polynomial

regression, and if the spline intervals are small enough, it can be seen in fig. 5-5 how

the data is accurately approximated. The derivatives are obtained by analytically

differentiating the splines in the interval and evaluating the function at the desired

time. The open-source Matlab package SLM [65] is found to work well with the poly-

nomial spline regression and is used for the work in this thesis. In this work, a spline

interval of dt = 0.1s is found to perform well.
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Figure 5-5: Data approximation using piecewise polynomial splines.
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5.3.2 Flight-Path Reconstruction

The goal of Flight Path Reconstruction (FPR) is to reconstruct the aircraft state

history based on measurements and kinematic relations. Specific details of FPR

depend on which variables are chosen as states in the aircraft model and on which

data is used as the basis for the FPR. Details and variations on FPR are given in [19,

20].

In this work, the inertial velocities VNED = [VN VE VD]ᵀ and the Euler angles

Φ = [φ θ ψ]ᵀ are available from the EKF, which are filtered and used as the basis for

FPR. The full aircraft state used in modelling the aircraft dynamics consists of the

body velocities v, the angular rates ω and the Euler angles. That means that both

v and ω has to be computed from the available measurements VNED and Φ from

kinematic relationships. In addition to this, aerodynamic force coefficients cX , cY , cZ

and aerodynamic moment coefficients cl, cm, cn will be used for the regression analysis

in section 5.4. Calculation of these coefficients requires both the angular accelerations

ω̇ = [ṗ q̇ ṙ]ᵀ and translational accelerations a = [ax ay az]
ᵀ, so these signals also have

to be obtained through FPR.

The kinematic relationships described in this section follow standard rigid-body

physics and modeling. For completeness and the convenience of the reader, all of the

kinematic relationships used for FPR in this thesis work are given here, with brief

explanations. For complete derivations and further details, the reader is referred

to traditional references such as [19, 20] which do an excellent job of covering the

material.

First, the body velocities are obtained by constructing a rotation matrix from

the Euler angles RN
B = Rx(φ)Ry(θ)Rz(ψ) such that VNED = RN

Bv. This gives the

following translational kinematic relationship for reconstructing the body velocities

84



from the inertial velocities:
u

v

w

 =


cos θ cosψ cos θ sinψ − sin(θ)

cosψ sin θ sinφ− cosφ sinψ cosφ cosψ + sin θ sinφ sinψ cos θ sinφ

cosψ sin θ cosφ+ sinφ sinψ sin θ cosφ sinψ − sinφ cosψ cos θ cosφ



VN

VE

VD


(5.3a)

Next, the angular rates are obtained from an inversion of the rotational kinematic

relationship in eq. (3.8), resulting in the following kinematic relationship:


p

q

r

 =


1 0 − sin θ

0 cosφ sinφ cos θ

0 − sinφ cosφ cos θ



φ̇

θ̇

ψ̇

 (5.4a)

This relationship requires not only the Euler angles Φ but also their derivatives

Φ̇. These derivatives are obtained by analytical derivation of piecewise polynomial

regressions rather than numerical derivatives, as described in section 5.3.1.

The translational accelerations are needed to compute the aerodynamic force co-

efficients. Translational accelerations are obtained from the following kinematic rela-

tionship 
ax

ay

az

 =


u̇+ qw − rv + g sin θ

v̇ + ru− pw − g cos θ sinφ

ẇ + pv − qu− g cos θ cosφ

 (5.5a)

Also here, the derivatives of the body velocities are first obtained through ana-

lytical derivation of piecewise polynomial regressions approximating v, before the

translational accelerations can be computed. The angular accelerations ω̇ are readily

obtained from derivation of ω.

At this point in the FPR procedure, the resulting signals are v, ω, a, ω̇ and

Φ. The final step is to compute the aerodynamic coefficients, which depend on the
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aerodynamic forces. The aerodynamic forces are given as

X = max − T (5.6a)

Y = may (5.6b)

Z = maz (5.6c)

where T is the force generated by the fixed-wing propeller. The aerodynamic force

coefficients follow readily as

cX =
X

q̄S
(5.7a)

cY =
X

q̄S
(5.7b)

cZ =
X

q̄S
(5.7c)

where S is the total planform area of the wings, and q̄ = 1
2
ρV 2

a as defined in chapter 3.

Further, the aerodynamic lift and drag coefficients are obtained ascD
cL

 =

 cosα sinα

− sinα cosα

−cX
−cZ

 (5.8)

The aerodynamic moments are given as
l

m

n

 =


Jxxṗ− Jxz(ṙ + pq) + qr(Jzz − Jyy)

Jyy q̇ + pr(Jxx − Jzz) + Jxz(p
2 − r2)

Jzz ṙ − Jxz(ṗ− qr) + pq(Jyy − Jxx)

 (5.9a)

The aerodynamic moment coefficients are computed as

cl =
L

q̄Sb
(5.10a)

cm =
M

q̄Sc̄
(5.10b)

cn =
N

q̄Sb
(5.10c)
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with b being the wingspan of the aircraft, and c̄ being the Mean Aerodynamic Chord

(MAC) as defined in chapter 3.

5.3.3 Data Compatibility, or Kinematic Consistency

Checking for data compatibility, or kinematic consistency, between the different data

obtained through the preprocessing and FPR step, is essential before system identi-

fication can be performed. Data compatibility analysis is the process of determining

whether the data obtained from different sensors onboard the aircraft are mutually

consistent with the kinematic relationships that govern the aircraft motion. Data

compatibility is well established in the literature for system identification [19, 20],

and is also covered in most recent research works such as [38, 39, 40].

Usually, the instrumentation on a small aircraft includes sensors that measure ac-

celerations, angular rates, inertial velocities, and inertial position, as well as airspeed.

Data compatibility is determined by checking whether the obtained measurements

from different sensors satisfy the kinematic relationships known from first principles

about rigid-body motion. Sensor bias and sensor noise may lead to drifting in the

states when the kinematic relationships are integrated, resulting in poor data compat-

ibility, which will cause problems in the system identification step. Data compatibility

analysis may be used to identify and eliminate such biases and give valuable insight

into how the data should be preprocessed.

In work in this thesis, minor issues are expected with data compatibility, as the

data is extracted from the onboard EKF and not directly from the sensors. However,

checking the data compatibility is still an essential step in the data preprocessing step

and is used to determine the parameters for smoothing and derivation of the data.

It should be noted that only the states and variables that have a purely kinematic

relationship can be checked for kinematic consistency. Input signals are not included

in the data compatibility analysis, as the inputs directly affect the accelerations of

the system and are hence part of the dynamics, not the kinematics, of the system.

Data compatibility analysis is performed by integrating the kinematic equations

in eq. (3.8), as well as by inverting the kinematic relationship in eq. (5.5) where the
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accelerations are now known:

u̇ = rv − qw − g sin θ + ax (5.11a)

v̇ = pw − ru+ g sinφ cos θ + ay (5.11b)

ẇ = qu− pv + g cosφ cos θ + az (5.11c)

The kinematics relationships are unstable, which means that noise or biases in the

measurements will cause drifts over time. As stated in [19], the random sensor noise

implies that the kinematic differential equations are stochastic. If the noise is small

with zero mean, this can often be ignored, and the data will be compatible and ready

for system identification. However, smoothing, filtering, or de-trending techniques

need to be applied if the noise is significant. The body-axis angular rates ω, and

the translational accelerations a are considered inputs in the kinematic relationships.

Suppose the recorded measurements of the Euler angles Φ and the body velocities

v correspond with the resulting outputs from integrating the kinematic relationships

outlined in this section. In that case, the flight data is said to be kinematically

consistent. If the reconstructed outputs do not match the measured outputs, the

data needs to be processed further.

Through kinematic consistency testing, the preprocessing parameters used in this

work are found. As stated earlier, standard parameters for the Savitsky Golay filter

are found to work well. Next, the intervals for the piecewise splines are selected to

0.1s, a number that is arrived at through the kinematic consistency checking. In

fig. 5-6, a plot comparing different intervals for the spline approximation can be seen.

Figure 5-6: Kinematic consistency test for different spline intervals.
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5.4 Equation-Error and Model Determination

A powerful estimation tool is the Equation-Error method. In this work, this method

is used in combination with a stepwise regression procedure to arrive at a proper

model structure that describes the data while keeping the model structure as simple

as possible. The method is also used to obtain initial parameter estimates for the

Output-Error method covered in the next section. Due to the implementation of the

preprocessing step in the previous section, approximate signals for all aerodynamic

coefficients are available, making it possible to employ the Equation-Error method as

a linear regression procedure. This section outlines both the Equation-Error method

and the stepwise regression procedure used for this work.

5.4.1 Equation-Error Parameter Estimation

The Equation-Error method formulates the problem of system identification as a

linear regression problem. In the context of system identification, this refers to esti-

mating the relationships between measured variables. These measured variables are

divided into regressors and outputs, or equivalently, independent and dependent vari-

ables. The Equation-Error method is well established and outlined in, for example,

[19, 20, 39, 40].

The general formulation of the Equation-Error method for a general dynamical

model is found by minimizing the sum of the one-step prediction errors:

min
θ

N−2∑
i=0

‖fθ(x̂[i],u[i])− x̂[i+ 1]‖2, subject to eq. (5.1) (5.12)

Note that in the previous cost function in eq. (5.1), the sum of squared errors between

the simulated system outputs ŷ and the measured outputs y are minimized. In the

cost function in eq. (5.12), only the sum of the squared errors in the next predicted

state is minimized. This means that in eq. (5.12), the error at every timestep is

independent. This is what is meant by one-step predictions, as the cost function only

sums up the predictions one step ahead for each timestep.
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The cost function in eq. (5.12) may look nonlinear. However, assuming one knows

the states and inputs perfectly, the cost function can be re-formulated as a linear

regression problem for many model structures. In the case of the aerodynamic model

presented in chapter 3, this regression problem is linear in all the parameters. This

means that Ordinary Least-Squares (OLS) can be employed to obtain the parameter

estimates from the experimental data.

Take for example the full pitch moment coefficient model proposed in eq. (3.31):

cm = cm0 + cmαα + cmα2α2 + cmq̂ q̂ + cmq̂αq̂α + cmδeδe + cmδeαδeα (5.13)

=
[
cm0 cmα cmα2 cmq̂ cmq̂α cmδe cmδeα

]



1

α

α2

q̂

q̂α

δe

δeα


= θᵀφ (5.14)

where θ is a vector of unknown parameters and φ is the known regressor vector.

All of the coefficients in both eqs. (3.31) and (3.32) follow the same model structure.

Although the model for the coefficient contains nonlinear terms, the terms themselves

are linearly involved. Therefore, OLS, as defined in the next subsection, may be

employed directly.

5.4.2 Ordinary Least Squares Regression

Here, a brief introduction to OLS is given. For a more comprehensive treatment, the

reader is referred to excellent sources such as [19].

Let measurements z = y+v be obtained from a model of the form y = θᵀφ, where v

is a normally distrubed measurement error. Collect all the N output measurements in

a vector z ∈ RN×1, and the N data points of m-dimensional regressors in the regressor

vector Φ ∈ Rm×N . Collect the m unknown parameters in the vector θ ∈ Rm×1. Let
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the parameters be estimated by θ̂, such that the outputs can be estimated as ŷ = Φᵀθ̂.

Further, define the squared error as

1

2
‖z − ŷ‖2 =

1

2
‖z −Φᵀθ̂‖2 (5.15)

The squared error is then minimized simply by setting the derivative with respect to

θ to zero, from which we obtain the least squares parameter estimate:

θ̂ = (ΦΦᵀ)−1Φz (5.16)

5.4.3 Stepwise Regression and Model Determination

There are several methods for determining the appropriate model structure from the

obtained data. In this work, a technique named Stepwise Regression is used. The

procedure is a method for deciding which regressors to include, evaluating if the

regressor increased the model performance significantly, and determining when to

stop including regressors.

There are different ways of implementing stepwise regression. For example, one

may manually use specific parts of the procedure to evaluate regressors and model

structure, as in [39, 40]. The method may also be entirely automated, designed to

analytically pick the best regressors out of a generated regressor pool, as is done in

this work. The stepwise regression method was first proposed in [66]. In [19], Klein

et al. provide an excellent overview of the technique in general, with various means of

validation and implementation, stopping rules, and statistical metrics. Other methods

exist, such as multivariate-orthogonal-function modeling, as proposed in [67] and

employed in [68]. In this subsection, the stepwise regression method as implemented

explicitly for this work is outlined.

In this work, stepwise regression is entirely automated. In [39, 40], it is proposed

that this procedure needs to be performed manually and that the engineer needs to

employ intuition and knowledge of physics to develop a suitable model structure suc-

cessfully. However, in this work, it is found that when using a-priori knowledge from
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physics in handpicking the regressor candidates while fully automating everything

else, an automated procedure can better determine a suitable model structure than

a manual process. In fact, manually developing and comparing each possible model

structure rapidly becomes a huge problem that may be intractable for a human to do

successfully. Instead, we propose that the engineer use insight to formulate a mean-

ingful stepwise regression problem and then leave the actual model development up

to the algorithm.

Stepwise Regression Algorithm

The stepwise regression algorithm consists of two steps, which are repeated until

convergence. The first step is the Forward selection step, and the second step is

the Backward elimination step. The next regressor is chosen from the remaining

regressors in the regressor pool at every step of the forward selection step. If the new

potential regressor sufficiently increases the model performance, it is included in the

model. As adding a new regressor may make previously added regressors superficial,

the backward elimination step now has to be performed. In the backward regression

step, regressors that no longer increase the model performance are removed. This

step is repeated until no more regressors should be removed. Then, the procedure

starts over again, with another step of the forward selection procedure. When a

step is performed where no changes to the model are made, the stepwise regression

procedure terminates.

The model starts with adding a bias term as the first regressor. Then, the proce-

dure evaluates linear terms, and upon termination, repeats, now with the nonlinear

terms in the regressor candidate pool. A general summary of the stepwise regression

algorithm can be seen in algorithm 1. Xpool denotes the pool, or group, of remaining

potential regressors, and xj denotes a specific regressor. Φcurr denotes the current

model regressors, and φj denotes a specific model regressor. Fin, Fout, and R2
in are

statistical thresholds for regressor inclusion or exclusion, and may be decided by the

engineer. CalcF0(X1, X2) is a pseudocode function that calculates the F0 statistic

for comparison between two different models, where model 1 is a subset of model 2.
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CalcR2(X1, X2) is a pseudocode function that calculates the change in the R2 statistic

between two different models. The pseudocode function FindNextRegressor finds

the next regressor from the pool of available regressors, based on which regressor best

predicts the residue left from the current model. This is outlined in more detail in a

few paragraphs.

Algorithm 1 Stepwise Regression.

Φcurr ← {1}
for Xpool ∈ {Xlinear, Xnonlinear} do

while Φcurr is updated do
xnew ← FindNextRegressor(Xpool) . Forward selection step
F0 ← CalcF0(Φcurr,Φcurr ∪ xnew)
∆R2 ← CalcR2(Φcurr,Φcurr ∪ xnew)
if F0 > Fin and ∆R2 > R2

in then
Φcurr ← Φcurr ∪ xnew

end if
while Φcurr is updated do . Backward elimination step

for φj ∈ Φcurr do
F0,j ← CalcF0(Φcurr \ φj,Φcurr)

end for
if minj(F0,j) < Fout then

Φcurr ← Φcurr \ xj
end if

end while
end while

end for

Statistical metrics for regressor inclusion

In algorithm 1, various error metrics are calculated and used to determine whether to

include or remove regressors. Those error metrics are the coefficient of determination

R2, and the performance of an F-test. Both of these metrics require calculation of

the Total Sum of Squares (TSS) and Residual Sum of Squares (RSS) (also known as
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the sum of squared errors in prediction), defined as

TSS ,
N∑
i=1

(z[i]− z̄)2 (5.17)

RSS(θ̂) ,
N∑
i=1

(z[i]− ŷ(θ̂)[i])2 (5.18)

with z̄ = 1
N

∑N
i=1 z[i] being the mean of the measured outputs z, and ŷ(θ̂) being the

predicted output as a function of the estimated parameter vector θ̂.

First, the coefficient of determination, denoted by R2, is calculated as

R2 ,

(
1− RSS

TSS

)
× 100% (5.19)

where a score of 100% corresponds to a perfect fit. As seen in algorithm 1, a regressor

is only included if it increases R2 by a certain percentage. In [19] a minimum increase

of R2
in = 0.5% is proposed. In this thesis, a slightly higher value of 2% is used, as will

be seen in chapter 6.

Next, it is possible to perform a partial F-test to see whether a more complex

model significantly increases the fit. Let θ̂1 denote the parameters of model 1, and

θ̂2 denote the parameters of model 2. Further, let model 1 be a subset of model

2, such that model 2 is the more complex model. By proposing the null hypothesis

that model 2 does not have a significantly better fit than model 1, F0 will have a

F distribution with (p2 − p1, N − p2) degrees of freedom. The F-test can then be

performed as

F0 > Fin (5.20)

where Fin = F (α; p2 − p1, N − p2), and α is the selected significance level, and F0 is

the partial F statistics for null hypothesis. For the proposed null hypothesis, F0 is
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calculated as

F0 ,

(
RSS(θ̂1)−RSS(θ̂2)

p2−p1

)
(

RSS(θ̂2)
N−p2

) (5.21)

where θ̂1 is a subset of θ̂2, pi, i = 1, 2 denotes the number of parameters in the models,

and N is the total number of data points.

If the null hypothesis is rejected, in other words, if eq. (5.20) holds, model 2 gives a

significantly better fit than model 1, with a confidence level of (1−α)%. For aircraft,

it is common to choose α = 0.05, such that a 95% confidence level is achieved. In

this work, only the inclusion or exclusion of a single variable at a time is considered,

such that p2 − p1 = 1 and N − p2 = N − p, where p is the total number of regressors

in the new model. When N � 100 and p < 10, the effect of p on F (α; 1, N − p) is

small, and therefore one can employ Fin = Fout = F (0.05; 1, N − p) ≈ 4 [19].

Picking the next regressor

In the forward selection step, the next candidate regressor is picked from the remaining

regressor pool. If it passes the F-test and increases R2 by a sufficient amount, the

regressor is included in a model. In addition, there are some nuances to how the next

candidate regressor should be picked, which are now covered.

In short, the next regressor is picked based on predicting the remaining information

that is not yet captured by the current model, with information that is not yet used.

This is done in two steps: first, the information already used by the model is removed.

Then, the regressor with the strongest correlation to the output is selected as the

next regressor. The first step is performed by making the remaining regressor pool

orthogonal to the current model regressors. This is achieved through OLS, where one

uses the current model regressors to predict the remaining regressors and subtracts

this prediction from the remaining regressors. Then, the residuals are calculated based

on the current model. Finally, to find the next regressor, the correlation coefficients

between orthogonalized regressors and residue are computed for all regressors, and
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the regressor with the highest value is picked. Note that the orthogonalization is only

used to select the next regressor; the regressors used for prediction are provided at the

beginning of the stepwise regression procedure. Intuitively, one may think of this as

removing all the used information from the regressors and the output before picking

the next candidate regressor.

The procedure for picking the next regressor index is outlined in algorithm 2.

After the procedure, the next regressor xnew is then picked as the i-th regressor in

Xpool. OLS(Φ, z) denotes standard OLS prediction of z, given the regressors Φ. The

Algorithm 2 Picking the next candidate regressor index.

X̂pool = OLS(Φcurr, Xpool)

Xorthogonal = Xpool − X̂pool

v ← residue(Φcurr)
for xort,j ∈ Xorthogonal do

σj = correlation(xort,j, v)
end for
inew ← argmaxσi

residue is calculated as

v = z − ŷ = z −Φᵀθ̂ (5.22)

where θ̂ is calculated from OLS as defined in section 5.4.2. The correlation is calcu-

lated as the correlation coefficient

σ(A,B) =
cov(A,B)

σAσB
(5.23)

where σA and σB are the standard deviations of A and B, respectively.

5.5 Nonlinear Optimization with Output-Error

The Output-Error method is a maximum likelihood estimator commonly used to

arrive at the final parameter estimates in system identification of fixed-wing aircraft.

This method is used extensively, and various implementations can be seen in [19, 20,
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36, 39, 40, 41, 68, 69]. The goal of the method is to minimize the simulation error,

as presented very generally in eq. (5.2). However, the Output-Error is a maximum

likelihood method that also accounts for measurements noise, and therefore the cost

function will not be formulated exactly as in eq. (5.2). A summary of the algorithm

as implemented in this work can be seen in algorithm 3. In this section, the details

of this algorithm are covered.

In very general terms, the Output-Error methods seeks to minimize the simulation

error, as shown in eq. (5.2). However, the Output-Error method is a maximum like-

lihood method, meaning that it maximizes the likelihood of observing the measured

data z, given a set of model parameters θ. In mathematical terms, this is expressed

as

θ̂ = max
θ

L[z; θ] (5.24)

where L is the likelihood function. From eq. (5.24), it is possible to arrive at the

negative log-likelihood function [19] that is actually the cost function being minimized

in the Output-Error method:

J(θ) =
1

2

N∑
i=1

(z[i]− ŷ[i])ᵀR̂−1(z[i]− ŷ[i]) (5.25)

where z are the obtained measurements corrupted with normally distributed mea-

surement noise and R̂ is the estimated noise covariance. The noise covariance is

estimated as

R̂ =
1

N

N∑
i=1

v[i]v[i]ᵀ =
1

N

N∑
i=1

(z[i]− ŷ[i])(z[i]− ŷ[i])ᵀ (5.26)

where ŷ[i] is the predicted output at time step i. Further, it is assumed that R is

diagonal, that is, that noise cross-covariances are zero.

Intuitively, one may think of eq. (5.25) being the same as eq. (5.2), but that

measurement noise is now taken into account. The cost function in eq. (5.25) weights
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the cost function by dividing each signal by the measurement noise variance. This

means that prediction errors in signals with larger noise variance will be weighted less

and that the signals with lower noise levels will be trusted more.

5.5.1 Solving the Optimization Problem

The cost function in eq. (5.25) is nonlinear, as it requires the simulation of the non-

linear system dynamics eq. (5.1). Therefore, there are no analytical solutions to

minimizing the cost function, and computationally efficient methods like OLS cannot

be applied. Instead, the cost function in eq. (5.25) is minimized with a numerical

optimization algorithm called Gauss-Newton or modified Newton-Raphson. The pro-

cedure used in this work mostly follows the method as outlined in [19]; however,

some aspects are changed slightly from the textbook to make the algorithm work

satisfactory. In this subsection, the specific method used in this thesis is presented.

Second-Order Cost Function Approximation

First, a second-order Taylor expansion of the cost function in eq. (5.25) is performed

around the parameter value θ0

J(θ0 + ∆θ) ≈ J(θ0) + ∆θᵀ
∂J

∂θ

∣∣∣∣
θ=θ0

+ ∆θᵀ
∂2J

∂θ∂θᵀ

∣∣∣∣
θ=θ0

∆θ (5.27)

The necessary condition for J(θ0 + ∆θ) to minimize J is

∂

∂θ
[J(θ0 + ∆θ)] = 0 (5.28)

Combining the last two results gives an estimate for the vector of parameter changes

∆θ

∆θ̂ = −

[
∂2J

∂θ∂θᵀ

∣∣∣∣
θ=θ0

]−1
∂J

∂θ

∣∣∣∣
θ=θ0

(5.29)
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From this, the updated parameter estimate θ̂ can be computed from

θ̂ = θ0 + ∆θ (5.30)

where the update in eq. (5.30) has to be performed over multiple iterations, as the

true cost is not really quadratic, as assumed in eq. (5.27)

The Gauss-Newton Step

In order to perform the update in eq. (5.30), both the gradient and Hessian matrix

of J need to be known. First, by differentiation of eq. (5.25), the gradient is given as

∂J(θ)

∂θ
=

N∑
i=1

∂vᵀ[i]

∂θ
R̂−1v[i] = −

N∑
i=1

∂ŷᵀ[i]

∂θ
R̂−1v[i] (5.31)

where the relation that v = z − ŷ is used to arrive at the final result.

Next, the Hessian is found as

∂2J(θ)

∂θ∂θᵀ
=

N∑
i=1

∂ŷᵀ[i]

∂θ
R̂−1∂ŷ[i]

∂θ
−

N∑
i=1

∂2ŷ[i]

∂θ∂θᵀ
R̂−1v[i] (5.32)

By neglecting the second term in eq. (5.32), we arrive at the Gauss-Newton method.

There are several reasons for neglecting the second-order partial derivative: it is

computationally expensive to obtain, and very susceptible to noise and numerical

error. When the residue v[i] is small, this approximation is justifiable, as the second

term is multiplied with the residue. Therefore, it is important that the Gauss-Newton

method starts close to the true optimal values.

Define the Fischer information matrix M as

M ,
N∑
i=1

∂ŷᵀ[i]

∂θ
R̂−1∂ŷ[i]

∂θ
(5.33)
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From this, the Gauss-Newton step is written as

θ̂ = θ0 −M−1
θ=θ0

[
∂J(θ))

∂θ

]
θ=θ0

(5.34)

The Optimization Algorithm

The Gauss-Newton optimization algorithm is an iterative procedure that has to be

repeated until convergence. Although R̂ is a function of the parameters θ̂, R̂ and θ̂

are not adjusted simultaneously. Instead, J(θ) is minimized for a fixed R̂, and then

R̂ is recalculated, and J(θ) is minimized again. This is repeated until R̂ converges.

For every step of minimizing J(θ), the Gauss-Newton step is applied as in eq. (5.34),

until the cost, the cost gradient, or the parameters converge. In reality, alternating

between changing θ̂ and R̂ is a relaxation of the problem. The reason for doing it

this way is that the optimization hopefully will be more well-conditioned when this

iterative approach is taken [19].

In [19], a full Gauss-Newton step is taken at each iteration of minimizing J(θ).

However, in this work, a line search is used to find the optimal step length. This was

done as it greatly increased the convergence properties of the algorithm. The line

search was implemented by augmenting eq. (5.34) with a scaling parameter α:

θ̂ = θ0 − αM−1
θ=θ0

[
∂J(θ))

∂θ

]
θ=θ0

(5.35)

where α ∈ (0, 1].

The full Gauss-Newton optimization algorithm as implemented in this work can

be seen in algorithm 3. ε∆R, ε∆J(θ), ε∆θ, and ε ∂J
∂θ

are convergence thresholds that are

chosen by the engineer. In table 6.1, the values that are used for these parameters

are presented.

Calculating the Gradients

The Gauss-Newton Algorithm as described in algorithm 3 requires the computation

of gradients. More specifically, both the cost function gradient J(θ)
∂θ

and the Fischer
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Algorithm 3 Gauss-Newton Algorithm.

while ‖∆R̂‖ > ε∆R do
R̂← 1

N

∑N
i=1(z[i]− ŷ(θ̂)[i])(z[i]− ŷ(θ̂)[i])ᵀ

while (‖∆J(θ)‖ > ε∆J(θ) and ‖∆θ̂‖ > ε∆θ and ‖∂J(θ)
∂θ
‖ > ε ∂J

∂θ
) do

∆θ ←M−1

θ=θ̂

[
∂J(θ))
∂θ

]
θ=θ̂

α← argminαJ(θ̂ + α∆θ), α ∈ (0, 1]
θ̂ ← θ̂ − α∆θ

end while
end while

information matrix M are dependent on the gradient of the output y with respect

to the parameters θ, as is seen in eqs. (5.31) and (5.33). This matrix

S[i] ,
∂y(θ)[i]

∂θ
∈ Rno×np (5.36)

is more commonly referred to as the sensitivity matrix, where no is the number of

outputs, and np is the number of parameters.

There are several ways to calculate the sensitivities. In this work, a central finite

differences approach is taken. This is more accurate than the forward finite differences

approach, at the cost of being more computationally expensive. The vectors in S are

therefore calculated numerically as

∂y

∂θj
=
y(θ0 + δθj)− y(θ0 − δθj)

2|δθj|
(5.37)

where δθj is a vector of zeros, except for the j-th location that is chosen as δθ = ξ θj,0,

where θj,0 denotes the initial guess for the j-th parameter, and ξ is a design parameter.

In [19] a value of 0.01 is proposed, but this was found to give too large parameter

changes at each iteration, and hence a smaller value of 0.001 is chosen.

Adding Regularization

In addition to the Gauss-Newton algorithm outlined until now, which was the stan-

dard Gauss-Newton algorithm augmented with a line search, it is possible to extend

the method to include additional features. In this work, both regularization and out-
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put weighting are tested to see if this gives better system identification results. Here,

it is shown how to add regularization to the method, as this is not shown in classic

references such as [19, 20]. In addition, it is shown how adding regularization may

help make the optimization problem well-conditioned.

The cost function in eq. (5.25) can be augmented with a regularizing term in the

following way:

J(θ) =
1

2

N∑
i=1

(z[i]− ŷ[i])ᵀR̂−1(z[i]− ŷ[i]) +
1

2
λ‖∆θ‖2 (5.38)

where ∆θ , θ − θ0, θ0 are the initial parameter guesses, and λ is the regularization

parameter. In addition to minimizing the simulation error, this cost function will also

try to keep the parameter values close to the initial guesses. This can be useful to

keep parameters from going to unrealistically large values, for example if a parameter

does not significantly affect the output in the performed experiments. This may be

the case if the experiments do not persistently excite all of the modes of the system,

or if parameters are not uniquely identificable.

When augmenting the cost function with a regularization term, the gradient needs

to be augmented as follows:

∂J(θ)

∂θ
= −

N∑
i=1

∂ŷᵀ[i]

∂θ
R̂−1v[i] + λ∆θ (5.39)

where it can be seen how the regularization term will pull the parameters back towards

the initial guesses at every step.

Likewise, the Ficher information matrix M is now

M =
N∑
i=1

∂ŷᵀ[i]

∂θ
R̂−1∂ŷ[i]

∂θ
+ λI (5.40)

where the regularization term actually improves the conditioning of M , as it helps

preventing it from becoming singular.
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Adding Output Weighting

In this work, output weighting is used, as will be seen in chapter 6. Here, it is shown

how to augment the Gauss-Newton with output weighting.

The cost function may readily be augmented with a diagonal weight matrix W , in

order to weight each of the outputs differently. This gives the following cost function:

J(θ) =
1

2

N∑
i=1

(z[i]− ŷ[i])ᵀWR̂−1(z[i]− ŷ[i]) (5.41)

This gives the following gradient

∂J(θ)

∂θ
= −

N∑
i=1

∂ŷᵀ[i]

∂θ
WR̂−1v[i] (5.42)

and the following Fisher information matrix

M =
N∑
i=1

∂ŷᵀ[i]

∂θ
WR̂−1∂ŷ[i]

∂θ
(5.43)

5.6 Model Validation through Residual Analysis

Residual analysis is a popular way of validating the performance of a model [19, 20,

21, 39, 40, 44]. In this work, the following metrics are used to determine the fit of a

model: MAE, RMSE, GOF, and TIC. In chapter 6, these metrics will be employed

to evaluate the fit of the final model.

Goodness-of-Fit (GOF) is determined for the i-th signal from the measured output

zi, the initial value of the measured output zi0 , and the estimated output yi:

GOFi = 1− (zi − yi)ᵀ(zi − yi)
(zi − zi0)ᵀ(zi − zi0)

(5.44)

GOF ranges from 0 to 1. A GOF near 1 indicates a good fit [20].
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Theil’s Inequality Coefficient (TIC) is defined as

TICi =

√
1
N

(zi − yi)ᵀ(zi − yi)√
1
N
zᵀi zi +

√
1
N
yᵀ
i yi

(5.45)

TIC ranges from 1 to 0, where a smaller value indicates a better fit. In general, a

TIC of 0.25 - 0.3 indicates a good model [20, 44].

In addition, the Mean Absolute Error (MAE) and Root-Mean-Squared Error

(RMSE) are defined as

MAEi =
1

N

N∑
k=1

|zi(k)− yi(k)| (5.46)

RMSEi =

√√√√ 1

N

N∑
k=1

(zi(k)− yi(k))2 (5.47)

In order to compare the performance of the model on each signal, the error metrics

are normalized as Normalized Mean Absolute Error (NMAE) and Normalized Root-

Mean-Squared Error (nrmse):

NMAEi =
MAEi

range(zi)
(5.48)

NRMSEi =
RMSEi

range(zi)
(5.49)
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Chapter 6

Identification Results

In this chapter, the complete final dynamic model developed for the VTOL UAV

in question is presented and validated. The final model consists of the nonlinear

rigid-body dynamics for a fixed-wing aircraft, a nonlinear aerodynamic model, and

dynamic actuator models. The development and validation of the aerodynamic model

is the primary focus of this chapter. However, the validation of the final aerodynamic

model simulates both the aircraft actuator dynamics and the rigid-body dynamics as

identified and presented in chapters 3 and 4, which is considered preliminary analysis

of the aircraft.

The aerodynamic model identification follows the procedures outlined in chapter 5,

and in this chapter, the results are presented, validated, and discussed. First, the

baseline aerodynamic model developed through the use of VLM in section 4.5 is

evaluated on validation data. As will be seen, this model does not accurately capture

the dynamics of the aircraft. Next, the Equation-Error method from section 5.4 is

used in combination with the stepwise regression procedure in section 5.4.3 to develop

a suitable aerodynamic model structure based on the Flight-Test Data (FTD) and the

prediction of the aerodynamic coefficients at each timestep. The model performance

on one-step prediction of aerodynamic force and moment coefficients is shown, as

well as the simulated model performance on the validation maneuvers. Next, the

Output-Error method in section 5.5 is employed to improve the parameters from the

Equation-Error method. Finally, the rudder-pitch coupling parameter is found with a
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line search. Models from each step are inspected before the final aerodynamic model

is presented to highlight the effect of the different techniques.

The final complete dynamic model for the aircraft predicts both the longitudi-

nal and the lateral-directional motion well, in addition to coupled motion during the

different maneuvers. As will be seen, the final aerodynamic model consists of pa-

rameters from the Output-Error method, augmented with the rudder-pitch coupling

parameter. Through different measures for validation, it is concluded that the confi-

dence in the final model is high. The model is validated through simulation on the

validation maneuvers, evaluation of error metrics and residual analysis, an inspection

of the model parameters and properties, and finally eigenmode analysis around trim

conditions.

6.1 Aerodynamic Modeling Results

In this section, three separate aerodynamic models are presented. The models are

from VLM, Equation-Error, and Output-Error, and all models are tested on a valida-

tion data set containing both 2-1-1 maneuvers for the elevators, ailerons, and rudders.

Only a random subset of the maneuvers used for validation is plotted to improve this

chapter’s readability. However, the validation metrics used on the final model are

calculated on the entire validation set for the relevant maneuvers. The final model is

chosen as the parameters from the Output-Error method.

6.1.1 Baseline Aerodynamic Model from VLM

In the preliminary analysis in section 4.5, a baseline model is developed from a nu-

merical approach, without the use of FTD. The validation results for the nonlinear

VLM model can be seen in figs. 6-1 and 6-2. Although this method is convenient

and much less time-consuming than obtaining experimental data, when validated on

real data, it is clear that the parameters obtained through VLM do not generally

comprise a good model. Results with the linear state-space model obtained through

VLM are similar but perform worse around the largest perturbations from trim. As
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the results obtained with the linear and nonlinear VLM are similar, only results from

the nonlinear model are shown.

From the plots, it is clear that while the behavior of the aircraft seems to be

captured in a general sense, the predicted state history is highly inaccurate, and there

are large errors. From the plot of the longitudinal model in fig. 6-1, it is clear that

the model overpredicts the influence of the elevator δe, for all of the longitudinal state

variables. Next, for the plot of the lateral-directional model in fig. 6-2, the results

are better. Surprisingly, the resulting model for lateral-directional motion performs

well for the aileron deflections. The model performs worse for the rudder deflections.

Despite some prediction error, the lateral-directional model obtained through VLM

seems to capture the dynamics and aerodynamic forces and moments to some degree.

Figure 6-1: Validation of the longitudinal VLM model.

In summary, the model obtained through VLM does not perform satisfactorily.

Significant errors are observed, especially in the longitudinal model, and it is clear

that a purely numerical approach is insufficient to predict the aircraft’s behavior

accurately. In the following subsection, a new model is therefore developed from
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FTD.

Figure 6-2: Validation of the lateral-directional VLM model.
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6.1.2 Model Structure Determination with the Equation-Error

Method

Next, the Equation-Error method as described in section 5.4 is used to establish a

suitable aerodynamic model structure and to find estimates for the parameters. As

described in section 5.4, the Equation-Error method aims only to predict the depen-

dent variables at each timestep and treats every timestep as individual data points.

The dependent variables to predict are the aerodynamic force and moment coeffi-

cients. The longitudinal aerodynamic coefficients cL, cD and cm are predicted from

elevator-deflection maneuvers, while the lateral-directional aerodynamic coefficients

cY , cl and cn are predicted from both aileron and rudder-deflection maneuvers.

The stepwise regression procedure outlined in section 5.4.3 is used to determine

which explanatory variables should be used, based on the available data. A regressor

is only added if it improves the R2 value with at least 2% and has an F-statistic of

at least 4. Compared to [19] where it is suggested that terms which increase R2 with

less than 0.5% are insignificant, using a threshold of R2 ≥ 2% is quite conservative.

This is done to prevent structural overfitting, as is discussed in section 6.3.

Longitudinal Equation-Error Model

The dependent variables for the longitudinal model are the force and moment coef-

ficients cL, cD, and cm. The independent variables are the longitudinal quantities α,

and q̂ and longitudinal input δe as defined in chapter 3. The throttle is not included

as an independent variable, as the aerodynamic force in the x-direction is modeled

as separate from the thrust force generated by the pusher propeller, as discussed in

chapter 3.

The longitudinal aerodynamic coefficients are modelled as shown in eq. (3.31), and

all the regressors in the proposed model structure are considered. Through the use

of stepwise regression on the FTD, the model structure containing only the following
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regressors was found to best explain the observed dynamics:

cD = cD0 + cDαα + cα2α2 + cDq̂ q̂ + (cDδe + cDδeαα)δe (6.1a)

cL = cL0 + cLαα + cLα2α2 + cLδeδe (6.1b)

cm = cm0 + cmαα + cmq̂ q̂ + cmδeδe (6.1c)

A plot showing the one-step prediction of the longitudinal coefficients on the valida-

tion data can be seen in fig. 6-3. As can be seen in the plot, the aerodynamic model

obtained from Equation-Error explains the aerodynamic coefficients well. However,

it is important to remember that this plot only shows the one-step prediction and

that while these predictions are good, a dynamic model should predict the dynamics

of a system over time. Therefore, the aerodynamic coefficients are inserted into the

full nonlinear rigid-body model presented in chapter 3 and simulated. The simulated

results compared with real validation data can be seen in fig. 6-5a, and various error

metrics evaluated on the model can be seen in fig. 6-5b.

Figure 6-3: Longitudinal one-step coefficient predictions from the Equation-Error
model.
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Lateral-Directional Equation-Error Model

For the lateral directional model, the dependent variables are the force and moment

coefficients cY , cl, and cn. The independent variables are the lateral-directional quan-

tities, β, p̂, r̂ and lateral inputs δa and δr. The proposed model structure is presented

in eq. (3.32) From the stepwise regression procedure, the model structure with the

following regressors is chosen:

cY = cY 0 + cDββ + cY p̂p̂+ cY δaδa + cY δrδr (6.2a)

cl = cl0 + clββ + clp̂p̂+ clr̂r̂ + clδaδa (6.2b)

cn = cn0 + cnββ + cnp̂p̂+ cnr̂r̂ + cnδrδr (6.2c)

Nonlinear terms as described in eq. (3.32) were considered by the stepwise regression

procedure, but not found to significantly improve the data prediction. The one-step

predictions for lateral-directional coefficients for both aileron and rudder maneuvers

can be seen in figs. 6-4a and 6-4b. The full nonlinear model with the coefficient

estimates from the Equation-Error method is simulated on the validation data in

fig. 6-7, and the error metrics can be seen in fig. 6-6.
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(a) Aileron maneuvers.

(b) Rudder maneuvers.

Figure 6-4: Lateral-directional one-step coefficient predictions from the Equation-
Error model.
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6.1.3 Parameter Estimation with the Output-Error Method

In this section, a model is developed using the Output-Error method from section 5.5

to obtain final parameter values for the model structure formed with the Equation-

Error method. This time, the unknown parameters are estimated through a nonlinear

optimization scheme. The cost function is the sum of the squared errors of the simu-

lated model response over all the maneuvers. This contrasts the sum of squared one-

step prediction errors that is the cost function used by the Equation-Error method.

Therefore, the Output-Error method yields different parameters values when com-

pared to the Equation-Error method, as parameters that cause signal divergence are

now penalized. In addition, the Output-Error accounts for measurement noise, which

the Equation-Error method does not, making the Output-Error the preferred method.

As stated in [19] and used in [39, 40], the Equation-Error method helps provide

the Output-Error method with good initial guesses for the parameter values. The

Output-Error implemented with the Newton-Raphson optimization step converges if

it starts close to the actual parameter values; otherwise, it is likely to diverge [19].

Thus, in this work, the parameter values from the Equation-Error method are used

as initial guesses. All parameters are updated with the Output-Error method.

In table 6.1, the parameters used for convergence criterion and gradient calculation

for the Output-Error method in this work can be seen. The same parameters are used

for the longitudinal and the lateral-directional maneuvers.

Parameter Value
ε∆R 0.05
ε∆J(θ) 0.001
ε∆θ 0.001
ε ∂J
∂θ

0.05

ξ 0.001

Table 6.1: Parameters used for the Output-Error algorithm.
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Longitudinal Output-Error Model

The longitudinal output errors are minimized for the Output-Error model are u, w,

q and θ. For the longitudinal model, no regularization is used. However, a problem

found during the optimization is that large errors in u are not penalized enough,

which causes degraded simulation results. This is because the magnitude of u is

large compared to the signals in w, p, and θ, which causes a disproportionally large

covariance estimate, resulting in errors in u weighted less in the cost function.

In order to obtain good results for the longitudinal model, the cost function is

augmented in such a way that the signals are normalized before the cost is computed.

To achieve this, the cost function is augmented with a diagonal weighting matrix, as

described in section 5.5.1. To normalize the squared errors, the errors are divided

by the squared nominal maximum values of each signal. Therefore, the following

diagonal weight matrix is used for the longitudinal Output-Error optimization:

W =


1

max(u0)2
0 0 0

0 1
max(w0)2

0 0

0 0 1
max(q0)2

0

0 0 0 1
max(θ0)2

 (6.3)

max(u0) = 21ms−1, max(w0) = 4ms−1,

max(q0) = 70°s−1, max(θ0) = 23°

A plot showing the simulated performance of the longitudinal Output-Error model

can be seen in fig. 6-5a. The error metrics for the model can be seen in fig. 6-5b. The

results are discussed in detail in section 6.3.
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(a) Simulated performance on validation data.

(b) Error metrics.

Figure 6-5: Validation plots and error metrics for the longitudinal models from the
Equation-Error method and the Output-Error method.
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Lateral-Directional Output-Error Model

The outputs errors to be minimized for the lateral-directional Output-Error model

are v, p, r and φ. As ψ is an output that follows a purely kinematic relationship with

the other states and does not feed back into the dynamics, it is not included as an

output for the optimization.

For the lateral-directional model, no regularization or weighting is used. The

simulated performances for the lateral-directional model on the validation data can

be seen in fig. 6-7. The corresponding error metrics can be found in fig. 6-6. The

results are discussed in section 6.3.

Figure 6-6: Error metrics for the lateral-directional models from the Equation-Error
method and the Output-Error method.
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Figure 6-7: Validation plots for the lateral-directional models from the Equation-Error
method and the Output-Error method.
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6.1.4 Estimation of Rudder-Pitch Coupling

Finally, the last model parameter cmδ2r is estimated. As this parameter is only visible

as coupling in the pitch angle for large rudder deflections, this parameter is estimated

separately from the 2-1-1 rudder maneuvers as a final step. The estimation procedure

for this parameter is simplified compared to the rest of the model development.

First, the best-suited regressor is chosen as the regressor that is strongest corre-

lated with the pitch coefficient residual, where the part that the current model already

explains is removed, similar to the procedure outlined in section 5.4. For the potential

regressors, δ2
r , abs(δr), and abs(

√
δr) are considered, where δ2

r is found to have the

strongest correlation with the pitch coefficient residual. Next, a simple line search is

used to find the value of cmδ2r which minimizes the squared simulation error over all

the training maneuvers with yaw deflections. A plot of the line search is shown in

fig. 6-8

Figure 6-8: Line search to find cmδ2r .
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6.2 Final Model for the Babyshark 260 VTOL UAV

In this section, the final model for the Babyshark 260 VTOL UAV is summarized

as a stand-alone section, together with the resulting parameters and error metrics.

The purpose of this is to faciliate for easy use of the model, by collecting all the

information in one place. A ready-to-use implementation can be found at [1]. The

complete model comprises multiple components, consisting of individual actuator

models, rigid-body dynamics, and aerodynamic modeling based on flight-test data.

Individual components of the model are presented in detail in previous chapters. The

discussion of the final model is presented in the next section.

6.2.1 Final Equations-of-Motion

The entire state vector x and input vector u are given as

x = [u, v, w, p, q, r, φ, θ, ψ, δa, δe, δr]
ᵀ (6.4)

u = [δspa , δ
sp
e , δ

sp
r , δt, δMR,1, δMR,2, δMR,3, δMR,4]ᵀ (6.5)

and the nonlinear dynamics are formulated as

u̇ = rv − qw +
1

m
(X + T −mg sin θ) (6.6a)

v̇ = pw − ru+
1

m
(Y + mg sinφ cos θ) (6.6b)

ẇ = qu− pv +
1

m
(Z − TMR + mg cosφ cos θ) (6.6c)

ṗ = Γ1pq − Γ2qr + Γ3τx + Γ4τz (6.6d)

q̇ = Γ5pr − Γ6(p2 − r2) +
1

Jyy
τy (6.6e)

ṙ = Γ7pq − Γ1qr + Γ4τx + Γ8τz (6.6f)

φ̇ = p+ tan θ(q sinφ+ r cosφ) (6.6g)

θ̇ = q cosφ− r sinφ (6.6h)

ψ̇ =
q sinφ+ r cosφ

cos θ
(6.6i)
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where the control surface deflections are modelled separately as

δ̇k = sat

(
− 1
Tservo

δk + 1
Tservo

δspk

δ̇max

)
δ̇max, sat(x) =

x for |x| ≤ 1

1 for x > 1

, k = a, e, r

The aerodynamic forces are given as

X = q̄ScX (6.7a)

Y = q̄ScY (6.7b)

Z = q̄ScZ (6.7c)

with the aerodynamic force coefficients

cX = −cD cosα + cL sinα (6.8a)

cY = cY 0 + cDββ + cY p̂p̂+ cY δa∆δa + cY δr∆δr (6.8b)

cZ = −cD sinα− cL cosα (6.8c)

cD = cD0 + cDαα + cα2α2 + cDq̂ q̂ + (cDδe + cDδeαα)∆δe (6.8d)

cL = cL0 + cLαα + cLα2α2 + cLδeδe (6.8e)

Similarly, the aerodynamic moments are modelled as

l = q̄clSb (6.9a)

m = q̄cmSc̄ (6.9b)

n = q̄cnSb (6.9c)

and the aerodynamic moment coefficients

cl = cl0 + clββ + clp̂p̂+ clr̂r̂ + clδa∆δa (6.10a)

cm = cm0 + cmαα + cmq̂ q̂ + cmδe∆δe + cmδ2rδ
2
r (6.10b)

cn = cn0 + cnββ + cnp̂p̂+ cnr̂r̂ + cnδr∆δr (6.10c)
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The non-dimensional angular rates are defined as

p̂ =
bp

2V0

, q̂ =
c̄q

2V0

, r̂ =
br

2V0

(6.11a)

The dynamic pressure, aerodynamic angles, and airspeed are defined as

q̄ =
1

2
ρV 2 (6.12a)

α = tan−1
(w
u

)
(6.12b)

β = sin−1
( v
V

)
(6.12c)

V =
√
u2 + v2 + w2 (6.12d)

The control surface deflection angles away from trim are defined as

∆δa = δa − δ∗a (6.13a)

∆δe = δe − δ∗e (6.13b)

∆δr = δr − δ∗r (6.13c)

The total moments acting on the aircraft are defined as

τx = l +

(
4∑
i=1

−ri,yTMR,i

)
(6.14a)

τy = m+

(
4∑
i=1

ri,xTMR,i

)
(6.14b)

τz = n+ (QMR,1 +QMR,2 −QMR,3 −QMR,4) (6.14c)

Finally, the forces and moments generated by the propellers are modeled as

T = ρD4
FWcTFW

δt (6.15a)

TMR,i = ρD4
MRcTMR

δMR,i (6.15b)

QMR,i = ρD5
MRcQMR

δMR,i (6.15c)

121



where the total multirotor propeller thrust is given as

TMR =
4∑
i=1

TMR,i (6.16a)

6.2.2 Final Parameters

There are several parameters in the presented model. Here, all of the parameters are

collected. The static aircraft parameters and the actuator parameters can be seen in

tables 6.2 and 6.3. The aerodynamic parameters are found in table 6.4. The trim

conditions can be found in table 6.5.

Parameter Value

b 2.5m

c̄ 0.242m

S 0.6617m

m 12.140 kg

Jxx 0.7316

Jyy 1.0664

Jzz 1.6917

Jxz 0.1277

Γ JxxJzz − J2
xz

Γ1
Jxz(Jxx−Jyy+Jzz)

Γ

Γ2
(Jzz(Jzz−Jyy)+J2

xz)

Γ

Γ3
Jzz
Γ

Γ4
Jxz
Γ

Γ5
(Jzz−Jxx)

Jyy

Γ6
Jxz
Jyy

Γ7
Jxx(Jxx−Jyy)+J2

xz

Γ

Γ8
Jxx
Γ

Table 6.2: Static model parameters.
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Parameter Value

Tservo 0.028s

δ̇max 200° s−1 = 3.491 rad s−1

δa,max 25°

δe,max 25°

δr,max 22°

ρ 1.225kg/m3

DFW 0.3810m

DMR 0.4064m

cTFW
0.0840

cTMR
0.0994

cQMR
0.006338

r1,x 0.353m

r1,y 0.400m

r2,x −0.447m

r2,y −0.400m

r3,x 0.353m

r3,y −0.400m

r4,x −0.447m

r4,y 0.400m

Table 6.3: Actuator model parameters.
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Coefficient Value

cD0 0.0820

cDα 0.272

cDα2 1.810

cDq̂ 10.102

cDδe 0.132

cDδeα 0.450

cL0 0.461

cLα 5.325

cLα2 -3.969

cLδe 0.521

cm0 0.0950

cmα -1.495

cmq̂ -13.140

cmδe -0.675

cmδ2r -0.737

Coefficient Value

cY 0 0.0108

cY β -0.731

cY p̂ 1.0778

cY δa -0.341

cY δr 0.337

cl0 0.000411

clβ -0.0354

clp̂ -0.242

clr̂ 0.0953

clδa 0.124

cn0 0.00106

cnβ 0.0759

cnp̂ -0.0823

cnr̂ -0.0752

cnδr -0.0537

Table 6.4: Aerodynamic model coefficients.

Parameter Value

α∗ 3°

V ∗ 21m s−1

δ∗a 3.0309°

δ∗e −5.6436°

δ∗r 0°

δ∗t η∗FW
2 = 1252

θ∗ 3°

u∗ 20.971m/s

w∗ 1.099m/s

Table 6.5: Trim conditions.
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6.2.3 Linearized Aircraft Model

The aircraft EOMs presented in section 6.2.1 can be linearized around trim condi-

tions for the individual longitudinal and lateral-directional aircraft state as shown in

section 3.4. Here, the linearized model is presented. The multirotor propellers are

not included, and the control surface deflections are simulated separately with their

nonlinear model as presented in section 6.2.1. The linearized state-space model can

be seen in eqs. (6.17) and (6.18).

Alon =


−0.0975 0.6862 −1.9548 −9.7965

−0.8432 −3.5172 20.9262 −0.5138

0.2156 −2.8796 −3.0709 0

0 0 1.0000 0

 , Blon =


−1.8819 0.0002

−7.7815 0

−27.3955 0

0 0


(6.17)

Alat =


−0.5125 2.0435 −20.9710 9.7965

−0.8731 −9.1386 3.3002 0

0.8886 −1.9841 −0.9337 0

0 1.0000 0.0524 0

 , Blat =


−5.0270 4.9636

76.4902 −2.5082

5.7709 −14.3773

0 0


(6.18)

6.2.4 Final Model Performance

The performance of the final model on the individual validation data for longitudinal

and lateral-directional maneuvers is summarized in table 6.6. In addition, a plot

showing a simulation for the full model on a roll, pitch, and yaw validation maneuver

can be seen in figs. 6-9 and 6-10, where all aircraft states are shown for all types of

maneuvers. As shown in the error metrics and the plot, the model exhibits excellent

results for predicting longitudinal motion, lateral-directional motion, and coupled

motion during the maneuvers.
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Figure 6-9: Longitudinal states for full nonlinear model simulation.
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Figure 6-10: Lateral-Directional states for full nonlinear model simulation.
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Signal MAE RMSE GOF TIC
u 0.347m/s 0.449m/s 0.89 0.012
w 0.462m/s 0.555m/s 0.85 0.15
q 4.425°/s 6.385°/s 0.94 0.12
θ 1.807° 2.266° 0.93 0.12

Mean – – 0.90 0.10
v 0.518m/s 0.640m/s 0.96 0.1
p 6.843°/s 8.848°/s 0.93 0.12
r 4.817°/s 6.234°/s 0.94 0.12
φ 4.166° 5.308° 0.89 0.17

Mean – – 0.93 0.13

Table 6.6: Error metrics for the final model.

6.3 Discussion and Validation of the Final Model

In this section, the results presented for the final model are validated and discussed.

There are many different ways of validating a model. In this work, residual anal-

ysis through statistical error metrics is used, in combination with an evaluation of

the models’ physical properties, to gain confidence in the model. In particular, the

Goodness-of-Fit (GOF), Theil’s Inequality Coefficient (TIC),Mean Absolute Error

(MAE), and Root-Mean-Squared Error (RMSE) are evaluated for the model. The

model’s static lift, drag, and pitch moment curves are analyzed and plotted with

recorded data from the flight experiments. Then, the individual aerodynamic deriva-

tives are analyzed, both the static and dynamic stability derivatives. Further, the

nonlinear model is linearized around nominal flight conditions, and an eigenmode

analysis of the dominant modes around trim conditions is performed. Finally, the

developed model structure is evaluated, and potential pitfalls of an automated model

development routine and how these are avoided in this thesis are highlighted.

6.3.1 Residual Analysis

In this subsection, a residual analysis of the final model is performed. The statistical

metrics are defined as in section 5.6. In table 6.6, the error metrics for the final

model are presented. These, along with the comparisons between the Equation-Error

128



method and the Output-Error presented in figs. 6-5 to 6-7, form the basis for the

discussion in this subsection.

Residual Analysis of Longitudinal Model

For the longitudinal model, error metrics in fig. 6-5b show good results for all signals.

As can be seen from the comparison, the Output-Error method increases the model

performance for all signals.

First, the dimensional error metrics MAE and RMSE are evaluated, to give a

sense of the magnitude of the expected error. For the velocities u and w, the RMSE

and MAE are of the order ≈ 0.5m. This is considered low, compared to the nominal

airspeed of 21m s−1. For the pitch rate q the RMSE and MAE are on the order of

≈ 5° s−1, which is small compared to normal values for q which are on the order of

≈ 70° s−1 for the experiments. Finally, the RMSE and MAE are on the order ≈ 2°

for the pitch angle θ, which is considered low.

Next, the GOF and TIC are evaluated for the signals. All signals show GOF

values above 0.85, and TIC values below 0.15. Compared to the guidelines from [20,

44], these are excellent results. The smallest GOF and TIC values are for prediction

of w, which are 0.85 and 0.15, respectively. Although these values are far within

limits for a good model, a comment on why the performance is likely to be low for w

should be made. From chapter 3, w is measured on the assumption that there is no

wind, an assumption that is impossible to fully justify when doing flight tests outside.

Because of this, it is not surprising that the prediction of w shows the lowest score.

Accurate measurement or estimation of AoA may potentially increase the prediction

for w.

Further, by looking at the validation plots in fig. 6-5a, some of the qualitative

differences between the Equation-Error method and the Output-Error method become

clear. Specifically, the Output-Error method increased the model performance on θ.

This highlights the difference between the two methods: the Equation-Error method

minimizes the one-step prediction error, while the Output-Error method minimizes

the simulation error. As already mentioned, the pitch θ follows a purely kinematic
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relationship with the other states, and drift in θ is therefore not penalized by the

Equation-Error method. However, it is punished in the Output-Error method, which

shows an apparent increase in the pitch prediction.

In summary, residual analysis of the longitudinal model shows good model per-

formance. As expected, the Output-Error yields a model that gives better simulation

performance than the Equation-Error method, which is particularly visible in the im-

proved prediction of θ. Although both methods result in models that perform well,

the model with the best error metrics is chosen, the Output-Error model. By evalu-

ating the RMSE, MAE, TIC, and RMSE of the final model, it is clear that the model

performance is satisfactory.

Residual Analysis of Lateral-Directional Model

Similarly, for the lateral-directional model, the Output-Error method was found to

generally increase the model performance. A comparison plot of the different error

metrics can be seen in figs. 6-6 and 6-7. As described earlier, the Output-Error

method is expected to increase performance, as the Output-Error method accounts

for measurement noise and the Equation-Error method does not. Therefore, the

Output-Error model is taken as the final lateral-directional model.

First, the error metrics MAE and RMSE are evaluated for the different lateral-

directional signals. For the body velocity v, the errors are on the order of ≈ 0.5m s−1,

which is considered low compared to the nominal airspeed of 21m s−1. Next, the error

for the roll rate p is on the order of 5 to 10° s−1, which is the largest error amongst

the angular rates. In the experiments, the roll rate reaches values on the order of

≈ 120° s−1, and in comparison, the error is not large. However, the model’s relatively

large error compared to other angular rates may be due to coupled aerodynamic effects

resulting from large perturbations from trim, illustrated in fig. 5-2. Next, the error

of the yaw rate r is on the order of ≈ 5° s−1, again a number that is considered low

compared to the values reached throughout the experiments. Finally, the roll angle

φ displays an error of approximately 5°. This is larger than the error for the pitch

angle for the longitudinal model. Again, a potential cause for this may be unmodelled
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coupled aerodynamics. Given that the error for the roll rate p is larger than errors for

the other angular rates, it is expected that the error is also increased for the roll, as

the latter follows a purely kinematic relationship with the angular rates. Nevertheless,

the error is considered reasonable when compared to the maximum values reached in

the maneuvers.

Next, have a look at the model performance metrics TIC and GOF. First, it is

clear that all the signals show satisfiable results, with TIC and GOF values above

0.89 and below 0.17, respectively. It is also clear that the Output-Error method

increases performance on all the signals, except for the roll rate p, which slightly de-

creases. Again, this highlights the effect of the Output-Error method compared to the

Equation-Error method. The Output-Error method increases the overall simulation

performance for the lateral-directional method while sacrificing some of the ability

to predict the roll rate p accurately. However, the sacrifice is small compared to the

increased performance for the other signals.

A surprising feature of the final model is that it shows a very good prediction of

the y-velocity v. Similarly, for w, v is calculated on the assumption that there is no

wind. However, this is an assumption that never holds entirely true. In addition, it is

known that SSA estimation is challenging for small aircraft [52, 70, 71, 72]. Therefore,

it is expected that the accuracy for v is not as high as that for the other signals. As

the performance is high, this may indicate that there was, in fact, little horizontal

wind at the altitude the experiments are performed at. In more wind, it is expected

that prediction accuracy for v will drop. Again, if the SSA was measured directly

or estimated in a more sophisticated manner, this will likely contribute to a better

prediction of v in windy environments.

In summary, residual analysis of the lateral-directional model shows excellent per-

formance. All errors are within reasonable bounds. Similar to the longitudinal model,

the Output-Error method shows a general increase in the performance for the lateral-

directional model, compared to the Equation-Error method. The model with the

best metrics is selected, which is the model from the Output-Error method. How-

ever, there is a potential weakness in the model that should be kept in mind. Although
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the model displays good predictions for v, it is expected that this prediction will be

reduced during more windy conditions.

6.3.2 Analysis of Static Curves

As a part of the validation process of the final model, the static lift, drag, and pitch

moment curves from the model are investigated. As the individual aerodynamic

coefficients are recreated in the preprocessing step, comparison with the measured

coefficients is possible. By verifying that the static curves match the estimated coeffi-

cients during the flight maneuvers, by comparing the obtained curves with theoretical

values, and by confirming that signs make sense, the confidence in the model is further

increased.

By assuming that the pitch rate is negligible q ≈ 0, one obtains the following

functions for the static curves from the final model used in this work:

cD ≈ cD0 + cDαα + cα2α2 + (cDδe + cDδeαα)δe (6.19a)

cL ≈ cL0 + cLαα + cLα2α2 + cLδeδe (6.19b)

cm ≈ cm0 + cmαα + cmδeδe (6.19c)

The corresponding three-dimensional lift, drag and pitch moment surfaces can be

seen plotted as functions of α and δe in fig. 6-11. Contour lines for different values

of the elevator δe can be seen in figs. 6-12, 6-13 and 6-15, plotted together with lift,

drag and moment coefficients as calculated from the measured data.
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Figure 6-11: Static lift and drag curves plotted as three-dimensional surfaces.
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Lift Curve Analysis

Figure 6-12: Lift curve for different elevator deflections.

First, the lift curves in fig. 6-12 are investigated. The stepwise regression procedure

found that a quadratic model of the lift curve best fits the available data. By looking

at the contour lines and comparing them with the data, it seems that a good model

for the lift coefficient as a function of α and δe is found, as it matches the behavior

of the observed data well. Close to the trim AoA α∗, the obtained lift model is close

to linear. In reality, a linear approximation of lift is usually reasonable for small

AoAs. This seems to be the case for the measured data, which is also captured in the

resulting lift model.

As the aircraft approaches the stall angle, the lift will start to decrease rapidly

[58, 60]. From the measured data, the lift is never seen to decline, but the increase

seems to start slowing down around α ≈ 10°. This decrease in the slope appears to

be captured in the quadratic lift model. Further, for most airfoils, the stall angle is

usually between 15 to 20°. From the obtained data, it seems reasonable to assume

that this aicraft exhibits similar behavior. However, enough data is not captured for

the stall regime to accurately capture the stall angle, as a drastic decrease in the lift

is not visible in the data points. Therefore, it is expected that the obtained quadratic

lift model is invalid for AoAs in the stall regime.

Another property to note for the lift curve in fig. 6-12 is that the lift increases
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with positive elevator deflections, that is, downwards deflections, and that the in-

crease seems to match the data points. As pointed out in classical textbooks for

aerodynamics, for example, in [58], a downward elevator deflection should generally

increase the lift. In the final longitudinal model, cLδe > 0, as it should be for all

cambered airfoils [58]. Although not a sufficient condition for model validity, this is

a necessary condition for model validity and, therefore, a good sanity check.

Finally, for the lift curve, aerodynamics give a theoretical approximations for the

aerodynamic coefficient cLα . As pointed out in [54], an approximation is given as

ĉLα ≈
πAR

1 +
√

1 +
(
AR
2

)2
(6.20)

With the measured airframe properties, one obtains ĉLα = 5.092. In the final longi-

tudinal model presented in this work, the value is found to be cLα = 5.325, a value

that is very close to the theoretical approximation. Again, although this is not a

sufficient condition for model validity, the fact that the obtained value is close to the

theoretical approximation further builds confidence in the model.

Drag Curve Analysis

Figure 6-13: Drag curve for different elevator deflections.

Next, the drag curve in fig. 6-13 is investigated. Again, it seems that the obtained

model matches the calculated drag coefficients well, especially in terms of dependency
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on α. An important sanity check is that the drag should be strictly positive, a property

that always holds for all aircraft. From the plot, it is clear that this is the case for

the developed aerodynamic model. This is an important property to verify for a

mathematical aerodynamic model, especially when it is developed from FTD using

optimization, as the optimization scheme can just as well make the drag negative if

this fits the data better.

Also, aerodynamics theory gives a theoretical approximation for the drag coef-

ficient as a function of the lift coefficient for conventional fixed-wing aircraft. This

theoretical relationship is found in example [8, 41, 54], and is given as

cD = cD0 +
c2
L

πeAR
(6.21)

where e is the Oswald efficiency factor, usually in the range between 0.8 and 1.0 [54],

and AR is the aspect ratio. By using the final lift model found in this work and setting

e = 0.8, the theoretical drag curves are calculated and compared to the drag model

obtained purely from FTD. A plot of this can be seen in fig. 6-14. The plot shows that

the theoretical drag and the obtained drag model are very similar and are of the same

magnitudes. The main difference is that the obtained drag model predicts more drag

at higher AoA deflections from trim. This seems reasonable, as the aircraft is not a

pure fixed-wing aircraft, but has large VTOL arms with propellers that causes drag

as they are exposed to the airflow at higher AoAs. This comparison with theoretical

values acts as yet another sanity check which further builds confidence in the model.

Further, the drag dependency on δe is more challenging to say something quanti-

tative about, as this data is not as clear. At least, in the obtained model, cDδeα > 0,

indicating that the drag increases when the aircraft has a positive AoA and a down-

ward elevator deflection, and similarly the other way around. This makes intuitive

sense, as the elevator is opposing the airflow in both of these situations compared to

deflected to align with the airflow.
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Figure 6-14: Theoretical drag compared with model drag.

Pitch Moment Curve Analysis

Figure 6-15: Pitch moment curve for different elevator deflections.

Finally, have a look at the pitch moment curve in fig. 6-15. First of all, from the plot,

the obtained linear pitch moment model fits the data well. However, for large AoAs,

it looks as the pitch moment coefficient starts to become nonlinear, as the slope seems

to change for larger AoAs. This nonlinear behavior for large AoAs is expected for

most aircraft, as the pitch moment curve, in reality, is a nonlinear function, similar to

the real lift and drag. Despite this, the linear approximation seems to approximate

the pitch coefficient reasonably well for the tested flight conditions. Another thing to

note is the two apparent clusters of data points. As the flight maneuvers are 2-1-1

signals, these clusters correspond to the negative and positive position of the elevator

deflections, respectively.
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In order for any aircraft to be longitudinally statically stable, cm0 > 0 and cmα < 0

must hold, such that any AoA generates a restoring pitch moment, bringing the

aircraft back to trim [54, 58, 60]. This depends on the airfoil’s camber, the center of

gravity compared to the center of pressure, and chosen trim conditions. As can be

seen from the plot, the obtained aerodynamic model shows a longitudinally statically

stable aircraft. This is very important for the model, as the aircraft is known to be

longitudinally statically stable from manual flight tests.

Further, it is common to use the elevator to trim fixed-wing aircraft. It is used to

trim the aircraft such that there is no pitching moment generated at trim conditions,

meaning that cm(α∗, δ∗e) = 0 in the ideal case. As can be seen from the plot, this is

approximately the case for the obtained model. However, to be exact, cm(δe = δ∗e)

is actually slightly higher than 0, which may be caused by a number of reasons.

For example, there could be small inaccuracies in the pitch model, partly violated

assumptions, or the model structure may be too simple. For instance, the fixed-

wing propeller may not act directly on the center of mass and therefore cause a

slight change in the pitching moment when δt is changed. Or, the experiments have

small variations in the initial AoA, elevator deflection, and airspeed, changing the

trim conditions slightly between maneuvers, making it hard to capture all the pitch

coefficient terms accurately. Either way, the pitch moment curve seems to represent

a reasonable model for the obtained data.

6.3.3 Analysis of Aerodynamic Parameters

Some simple additional sanity checks may be performed on the obtained model to

verify that all the parameters make physical sense. For example, depending on the

airframe, the signs of many of the coefficients are known a-priori. In this subsection,

the signs and meaning of these parameters are introduced and checked briefly. For

more details on the physical significance of these parameters, the reader is referred

to [54, 58, 60].
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Roll Static Stability

Whether the aircraft will return to φ = 0 after a perturbation or not depends on the

roll static stability. For aircraft which are statically stable, clβ < 0, which will roll

the aircraft away from the direction of sideslip, driving it to zero. From manual flight

tests, it is known that the aircraft in question is statically roll stable. Correspondingly,

the final aerodynamic parameters show that clβ < 0, indicating that the roll stability

is captured in the model.

Yaw Static Stability

If an aircraft is statically stable in yaw, it will always point in the direction of the

wind. For aircraft with a tail, the tail will cause a restoring yaw moment when there

is sideslip, driving the sideslip to zero [58]. This is reflected in the derivative cnβ,

where a positive derivative gives a statically yaw-stable aircraft. Longer or larger tail

will usually give a larger positive value for this derivative. The aircraft in question

has a tail, and is additionally known to be statically stable in yaw from manual flight

tests. For the obtained model cnβ > 0, indicating that the static yaw stability is

captured in the model.

Dynamic Stability Derivatives

The dynamic stability derivatives are cmq, clp, and cnr. These are usually negative,

as they function as damping coefficients for angular motion of the airframe [54, 60].

From table 6.4, all of the dynamic stability derivatives are negative, indicating normal

second-order damping in for all the moments, which is common for most aircraft.

Control Derivatives

The sign of the control derivatives for the different moments are well known from

intuition and physics. Wrong signs on the control derivatives would indicate a bad

model. Following the aerodynamic model, all of the control derivatives in the final

model have the correct signs, cmδe < 0, clδa > 0, and cnδr < 0.
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6.3.4 Eigenmode Analysis Around Trim

Finally, the nonlinear model is linearized around trim conditions as described in

section 3.4, with the trim conditions as shown in table 4.5. The linearized model

was shown in eqs. (6.17) and (6.18). A plot of the zeros of the system can be seen

in fig. 6-16, and the table analyzing the characteristics of the mode can be seen in

table 6.7. As stated in section 5.2, neither the phugoid nor the spiral mode is likely

to be correct for the model, as the experiments do not excite or capture these modes

as described earlier. However, for most applications, this is not a problem due to

feedback control that tends to eliminate the effect of these modes [44].

Mode Eigenvalue ζ f [cycles/s] Tc[s]
Short-Period −3.280± 7.790 0.388 1.345 0.305

Phugoid −0.0673± 0.657i 0.102 0.105 14.900
Roll −8.82 −− −− 0.113

Dutch roll −0.942 + 4.940i 0.187 0.801 1.060
Spiral 0.116 −− −− −8.640

Table 6.7: Eigenmode analysis of the linearized longitudinal and lateral-directional
model.

First, the longitudinal modes are as expected. They consist of a lightly damped

oscillatory mode corresponding to the phugoid mode and another oscillatory mode

corresponding to the short-period mode. The short-period mode has a time constant

of ≈ 300ms, with damping of 0.393. This is very similar to the results presented from

VLM in table 4.6 and is reasonable for an aircraft of the current size. The phugoid

mode in the final model exhibits stronger damping and a shorter time constant than

the one obtained from VLM; however, as noted, the phugoid mode is likely to be

inaccurate for the obtained model.

Next, the lateral-directional model shows three modes: the roll mode, the Dutch

roll mode, and the spiral mode. The roll mode is purely exponential and displays a

time constant of ≈ 100ms, something that is reasonable and expected for an aircraft

of the current size. Next, the Dutch roll mode is lightly damped, with a time-constant

on the order of ≈ 1s. This is also as expected. Compared with the VLM analysis,

the obtained model exhibits similar characteristics. However, the roll mode is slightly
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slower in the final model, and the Dutch-roll mode is more damped. Finally, the

spiral mode is found to be somewhat positive, with a similar magnitude as in VLM.

As mentioned several times already, the spiral mode is likely to be inaccurate for the

final model due to the experiments being too short to capture this mode.

In conclusion, the linearized model shows expected behavior for an aircraft of

the given size. In addition, the eigenmode analysis of the final model resembles the

results obtained from the purely numerical in section 4.5. The confidence is low in

the two slowest modes, the phugoid, and the spiral mode. However, this is not an

issue, as slow modes such as the spiral mode and the phugoid do not typically impact

the model applications, and they are usually eliminated through feedback from the

control systems.

Figure 6-16: Pole plot for the linearized longitudinal and lateral-directional model.

6.3.5 Aerodynamic Model Structure

It seems that the final aerodynamic model structure is as simple as possible while ex-

plaining the obtained data well. As the aircraft is operating around trim conditions,

it is expected that a linear aerodynamic model should capture the general behavior of

the aircraft. The obtained model is almost linear, with a few nonlinear dependencies.

These are all in the drag or in the lift model. In particular, the drag and lift are

nonlinear in AoA, where the lift and induced drag is a function of the squared AoA,

and the drag from the elevators increase with the AoA. These phenomena match aero-
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dynamic theory, and as the maneuvers are relatively large perturbations performed

around trim conditions, the nonlinearities seem to be well justified.

Through a purely data-driven approach, it is easy to fit the data well if one does

not care about the number of regressors [19, 39, 40]. Therefore, the engineer must

pay careful attention when developing the model. A simple model is always preferred,

which is why the stepwise regression procedure in this work is only allowed to include

a regressor if it significantly increases the prediction of the data and is removed or

discarded otherwise. Still, intuition and knowledge of physics must be used when

picking the regressors to avoid structural overfitting or the inclusion of regressors

that do not make physical sense.

An excellent example of structural overfitting was found when it was attempted

to add the squared elevator signal to the pool of potential regressors. In fact, the

squared elevator signal significantly improved how well the models predict the pitch

moment coefficient cm. However, consider that due to safety reasons, all the pitching

maneuvers are 2-1-1 elevator deflection signals that start with the aircraft pointing

up. In addition, consider the physical meaning of the pitch moment to be a function

of the squared elevator signal: the direction of the pitch moment is independent of

the direction of the elevator deflection. This does not make physical sense. There-

fore, it is concluded that such a functional relationship does not capture the actual

dynamics of the aircraft, despite fitting the data well. It is simply a weakness in the

gathered data that causes this regressor to predict cm better. In addition, from [19],

it is known that aircraft coefficients follow a linear relationship with the angular rates

and control surfaces and that the nonlinear dependencies usually only occur in aero-

dynamic angles. This example illustrates why it is critical that the engineer monitors

the selection process and carefully chooses which regressors to include in the pool of

potential regressors.
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Chapter 7

Future Work and Conclusion

In this final chapter, future work and conclusions are presented. First, promising di-

rections for future work based on this thesis are presented, both for further expansion

of the model and potential applications. Next, the work in this thesis is summarized,

and conclusions are drawn.

7.1 Future Work

This work proposes the first dynamic model for the Foxtech Babyshark 260 VTOL.

There are multiple promising directions for future work, both in terms of further

modeling and model applications.

7.1.1 Expanding the Model

Linear Actuator Models

A natural extension of the model is to make a completely linear model of the fixed-

wing regime that includes the control surfaces dynamics. Although a linear model is

already proposed for the fixed-wing regime, it still uses the nonlinear model for the

control surface dynamics. While the servos are known to be rate-limited in reality,

this is not well suited for control design. Therefore, it may be desirable to develop

a linear model for the servos depending on the intended application for the model.
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In similar work, a simple second-order mass-spring-damper model is employed with

success, such as in [8].

Near Stall Dynamics

Next, the model can be expanded to model close-to-stall behavior. It is well known

that flow becomes unsteady for these regimes, which often requires nonlinear modeling

[19, 49, 50, 54]. In this work, a quadratic lift model close to being linear gives the

best fit on the obtained data. Although this seems to describe the behavior of the

data obtained from the experiments, it is clear that the experiments do not capture

data from the stall regime. For aggressive flight maneuvers, flight at larger AoAs may

be desirable. Hence, the model will need to be expanded with nonlinear terms that

capture this flight regime’s complex dynamics. In that case, additional data should

be gathered for these flight regimes, such that the stall angle of the aircraft, as well

as stall behavior, may be identified. Using a combination between a linear and a flat-

plate model such as proposed in [54] is expected to work well and can additionally be

augmented with local function approximators such as in [50]. Radial basis functions,

as proposed in [51] may be a good candidate basis function.

Multirotor Flight and Different Flight Envelopes

Although this work models the multirotor part of the system, flight in this regime

should be verified on real data. As was mentioned in chapter 2, multirotor model-

ing usually deals with identifying the thrust and moment coefficients, as well as the

inertial properties of the aircraft. Hence, it is expected that the multirotor model

proposed in this work will work well during low speeds. However, this should be vali-

dated on data. In addition, there may be unmodelled coupling between the multirotor

actuators and fixed-wing actuators if both actuators are used at high speed.

In addition, if the aircraft is to be flown at different flight envelopes, the model

should be verified and expanded for these envelopes. Other flight envelopes could

mean significantly different Mach numbers or altitudes. This is important before

the model is used for flight conditions far from the trim conditions presented in this
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thesis or where modifications to the aircraft mass or center of gravity are made. As

the aircraft is flying at relatively low airspeeds, the generated propeller thrust may,

for example, be dependent on the aircraft’s airspeed, and the propeller model may

have to be augmented. For this, using a lookup table generated from CFD such as in

[36], or a more complex model using the advance ratio such as the ones from [8, 54]

may be desirable.

Expanding the Model to Wind

Finally, the model assumes that there is no wind and that the aerodynamic angles

AoA and SSA may be estimated from the body velocities. When there is wind, the

aerodynamic angles cannot be estimated in this way, and if they are, the wind will

start to introduce errors. This means that when there is a lot of wind, the model

performance will likely begin to degrade.

Suppose it is expected that the aircraft will fly in significant wind, and the model

is found to perform unsatisfactorily under such circumstances. In that case, this can

be solved through estimation or measurement of the aerodynamic angles. In [36],

comprehensive coverage of how an air probe capable of estimating the AoA and SSA

may be built from cheap and readily available components. In addition, there are

promising methods for estimating the aerodynamic angles without using additional

sensors. For example, [52] presents an estimation framework for the estimation of

aerodynamic angles from a sensor suite similar to the one on the Babyshark VTOL.

Further, in [72], a complete estimation algorithm is proposed, where the AoA and

SSA may be estimated through the inclusion of an aerodynamic model.

7.1.2 Model Applications

Improved Transition from Multirotor to Fixed-Wing Flight

The transition phase for VTOL aircraft is complex. When going from multirotor

flight to fixed-wing flight, the vehicle will cover a large flight envelope, ranging from

zero airspeed to trim conditions. In addition, the optimal combined use of multirotor
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actuators and the fixed-wing actuators during this flight phase is not trivial. There

are several works that deal with this for tailsitter VTOL UAVs [7, 9] and tiltrotor

VTOL UAVs [11]. Relevant work on optimal transitioning for hybrid VTOL designs

has not been found by the author. Through the use of a model-based approach, it

may be possible to better optimize the transition phase of flight.

Currently, the control method for transition imposes limitations on the use of the

aircraft. During this transition, the control system in PX4 interpolates between two

separate control systems, one for the multirotor actuators and one for the fixed-wing

actuators [28]. However, due to the complexities associated with the transition phase,

this simple approach has drawbacks. As the current method does not account for the

aircraft dynamics, the aircraft usually loses height during the transition and often

starts to drift in either direction. Because of this, there is uncertainty related to the

takeoff phase, and takeoffs require an unnecessarily large, open space. With a more

precise transition, takeoffs would be possible in much smaller areas.

In order to optimize the transition, the first step is to generate dynamically fea-

sible transition trajectories. One may use a model-based trajectory optimization

algorithm to develop a full-state trajectory that minimizes height loss and drift to ei-

ther direction. An excellent candidate algorithm for this is Direct Collocation, as first

presented in [31], which was also mentioned at the beginning of this thesis. By using

this method, multiple transition trajectories may be generated a-priori to develop a

library of transition trajectories for different cases.

Next, the trajectory may be stabilized through the use of a nonlinear, model-

based controller. One may, for example, stabilize it with a method as proposed in

[9]. Here, a controller consisting of a feed-forward and a feedback term is proposed.

The pre-computed trajectories are used as feed-forward inputs, and a simple feedback

term with a proportional gain is used to account for minor tracking errors. Another

approach is to employ a more sophisticated controller to stabilize the trajectory, such

as Time-Varying Linear Quadratic Regulator (TVLQR).
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Unified Attitude Controller

With the model, one may also develop a single attitude controller for both the mul-

tirotor and the fixed-wing flight regimes. As mentioned briefly, the current PX4

implementation for VTOL aircraft used two completely separate control systems for

the control of multirotor actuators and fixed-wing actuators. In order to improve

performance during both regimes and in-between, it is desirable to have only a single

attitude controller. In order to achieve this, one may, for example, employ a geomet-

ric controller that calculates input torques and forces, similar to the ones presented

in [7] or [17]. The control law may be very general, as it only operates with forces

or moments. Then, the model can be used to calculate the input signals required to

achieve the commanded forces and torques.

Another solution to improve aircraft performance during the transition and gener-

ally may be to implement Model Predictive Control (MPC) for control of the aircraft.

This could provide better tracking while increasing system robustness to disturbances.

Depending on the implementation, this may require either a linear or a nonlinear

model. Examples and inspiration for this can be found in [24, 25].

Fault Detection and Handling

Different and promising use of the model is to develop a fault detection scheme. With

the obtained model, it is now possible to predict the expected behavior of the aircraft.

If the observed behavior starts deviating from the predicted behavior, something has

likely changed in the system, which may be caused by a fault. The aircraft may

either correct its behavior through adaptive control based on the model or initiate

emergency procedures. Such a fault detection and handling system is highly desirable

in the case of, for example, icing on the wings, which is known to decrease the lift

generated by the wings or propellers rapidly.
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Simulation

Finally, relevant for all of the above applications is that the obtained model allows

for much more accurate simulation. For example, the model may expand the PX4

simulator with a more accurate physics simulation for the aircraft, which will simulate

both the dynamics and all the software running on the aircraft. Alternatively, if the

focus is purely on testing different methods and ideas, it may be more desirable to

simulate the dynamic model on its own together with a standard integrator scheme.

Such an implementation is provided at [1].

7.2 Conclusions

In this thesis, a novel dynamic model of the Vertical-TakeOff-and-Landing (VTOL)

Unmanned Aerial Vehicle (UAV) named FoxTech Babyshark 260 VTOL is developed

from Flight-Test Data (FTD), presented, and validated on real experimental data.

The final model is the result of multiple system identification steps. First, a pre-

liminary analysis is performed on the aircraft and its actuators to identify all airframe

parameters that can be obtained without flight tests. Static airframe properties such

as inertia are found and estimated through measurements and accurate 3D modeling

of the aircraft, and actuators models are proposed, where the propellers are mod-

eled as static models and control surfaces are modeled with their own dynamics. All

corresponding model parameters are found through actuator response measurements

with different equipment, such as cameras and force sensors. Finally, trim conditions

are identified through preliminary manual flight tests of the aircraft, and a baseline

model of the aerodynamic model is obtained from numerical analysis in Vortex Lattice

Method (VLM).

Next, actual flight experiments are performed to obtain Flight-Test Data (FTD).

Through the combined use of an experienced pilot and preprogrammed maneuvers,

2-1-1 deflection signals with varying periods and amplitudes are input to the differ-

ent control surfaces, designed to excite the relevant modes of the system. From the

obtained data, all the required signals that will be used for identification are calcu-
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lated. Finally, the signals are retrieved through an elaborate process of filtering and

analytical derivation using piecewise splines, and Flight Path Reconstruction (FPR)

is used to arrive at all the states and aerodynamic coefficients.

As the first step in the aerodynamic model development, the Equation-Error

method is employed. Due to the data pre-processing steps, estimates of all of the

aerodynamic coefficients during flight tests are available. This makes it possible to

use Ordinary Least-Squares (OLS) to investigate different model structures rapidly.

In order to determine the best-suited structure, a data-driven approach is taken to

the model determination. A variation of stepwise regression is implemented and fully

automated, resulting in an algorithm that automatically selects the best model struc-

ture from a pool of regressor candidates. Care is taken in the selection of the regressor

pool in order to prevent structural overfitting of the data, which is a concern with

fully automated procedures.

For arrival upon a final aerodynamic model, the Output-Error method is used to

estimate the unknown parameters. The model determined by the automatic step-

wise regression algorithm is used, and parameters are found through a nonlinear

optimization scheme called the Gauss-Newton step. In order to improve the algo-

rithm’s convergence properties, a line search is added at every step of the procedure.

The parameters from the Equation-Error method are used as initial guesses for the

Output-Error method. Both the parameters from the Equation-Error method and the

Output-Error method show good results on the validation data. Finally, the model is

augmented with an additional term to capture rudder-pitch coupling caused by the

V-tail configuration of the aircraft.

The entire model is presented in section 6.2. The best model is provided by the

parameters from the Output-Error method. The result is a full, nonlinear model

which accurately predicts both longitudinal and lateral-directional motion, as well

as coupled motion during the maneuvers. The model parameters are discussed and

evaluated through residual analysis, and analysis of static curves and comparison with

measured aerodynamic coefficients is performed. Individual parameter are analyzed,

and an eigenmode analysis performed around trim conditions.
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In summary, the result is a nonlinear dynamic model which shows good perfor-

mance. Validation on data not used for training shows excellent predictions of all

aircraft states. In addition, the analysis of the model properties further builds con-

fidence in the model. An open-source, ready-to-use implementation of the model is

made available at [1]. The author hopes that the development of an accurate, dynamic

model for the Babyshark 260 VTOL will contribute to research on VTOL UAVs in

the future.
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