
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

Larrs Bjertnes
Applying N

LP-Based M
L Techniques to our LS-CAT D

ataset

Lars Bjertnes

Applying Natural-Language-
Processing-Based Machine-Learning
Techniques to our Large Scale CUDA
AutoTuning Dataset

Master’s thesis in Computer Science

October 2020M
as

te
r’s

 th
es

is

Lars Bjertnes

Applying Natural-Language-Processing-
Based Machine-Learning Techniques to
our Large Scale CUDA AutoTuning
Dataset

Master’s thesis in Computer Science
October 2020

Norwegian University of Science and Technology

Problem description

Machine Learning (ML) is a powerful tool for a variety of analysis-based tasks, but
require large datasets to work well. This master thesis will build on the student
fall project “CUDA Source Code Dataset”, later reworked and republished at ICA-
PAI 2021 as "LS-CAT: A Large-Scale CUDA AutoTuning Dataset" [1]. The LS-CAT
project used CUDA codes from the publicly available GIT source code repository.
The CUDA source codes selected were parameterized in order to generate a variety
of execution-time-based result. With close to 20 000 kernels, the LS-CAT dataset
is very well suited for ML-based autotuning tasks. For this this thesis project, the
student will use natural language based machine learning, as seen in the earlier
related works [2–5].

The main focus of this thesis work will be analyze whether or not an ML-
based model can be used to select efficient thread-block sizes to increase kernel
performance on our LS-CAT dataset. Additionally, ML attention-mechanisms and
the embedding inst2vec [3], may also be analyzed with respect to their impact on
the ML model’s performance.

Thesis start date: 15. January 2021.
Advisor: Professor Anne C. Elster, IDI
Co-Advisor: Post-Grad Jacob O. Tørring, IDI

iii

Abstract

Autotuning tasks are almost impossible for humans to perform. The abstract
relation between hardware parameters and program performance makes setting
hardware parameters a far too complex task for any human. Without autotuning,
software ends up missing low-level optimizations, resulting in lower performance.
Traditionally time-consuming trial and error search methods have been the staple
of autotuning. The emergence of machine learning (ML) could diminish these
time-consuming searches.

Applying Natural language processing (NLP) based ML methods to source
code as a means to perform autotuning-oriented tasks is a growing topic. The ear-
lier projects have, with success, performed a range of different autotuning tasks
using multiple source code languages. However, most of the source code data is
CPU-oriented, with very little GPU code. Unsatisfied with this, our LS-CAT (Large-
Scale CUDA AutoTuning) project used CUDA GPU-based kernels and generated a
dataset to perform thread-coarsening. This thesis implements several custom NLP-
ML pipelines to evaluate ML-based thread-coarsening using our LS-CAT dataset.

Several model configurations were able to beat both random choice, 0.9400,
and the only selecting the largest thread-block (1024), 0.9437. Finally, the best
model achieves a score of 0.9483, giving an average performance increase and
speedup of 0.49 percent over the largest thread-block.

This project made several discoveries. The implementation of self-attention
mechanisms proved beneficial in the learning process by counteracting over-fitting.
The choice of underlying methodology is important, with a multi-label method
outperforming the rest. Compared to the dataset from [2], our LS-CAT dataset’s
higher number of thread-coarsening levels gave a false impression of lower per-
formance.

The choice of embedding in earlier works inst2vec was unable to parse around
half of the CUDA source code LLVM IR tokens, resulting in high data loss. Ap-
proaches on how to address this and other ideas for future work are also included
in this thesis.

ii L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

Sammendrag

Autotuning oppgaver er nesten umulige for mennesker å gjennomføre. Den ab-
strakte relasjonen mellom maskinvare parametere og program ytelse, gjør param-
eter setting uegnet for hånd. Uten autotuning, mangler programvare low-level op-
timaliseringer, som resulterer i mindre ytelse. Tid krevende søkemetoder går ofte
hånd i hånd med autotuning. Videreføringen av maskin læring (ML) kan minske
disse tidskrevende søkeprosessene.

Bruk av naturlig språk prosessering (NLP) basert ML på kildekode, for å gjen-
nomføre autotuning oppgaver er ett voksende emne. Tidligere prosjekter har med
suksess utført en rekke ulike autotuning oppgaver med flere typer kildekode språk.
Mesteparten av denne kildekoden er relatert til CPU, og lite GPU kode er tilgjen-
gelig. Med vårt LS-CAT prosjekt skapte vi ett datasett bestående av CUDA GPU
kode. Denne avhandlingen implementer flere NLP-ML “pipelines” for å evaluere
ML-basert «thread-coarsning» på vårt LS-CAT datasett.

Flere modell konfigurasjoner var i stand til å slå både «random choice», 0.940,
og kun velge største «thread-block» størrelse (1024), 0.9437. Den beste modellen
scoret 0.9483, som gir en gjennomsnittlig ytelse økning på 0.49 prosent over å
velge kun den største blokken.

Avhandlingen gjorde flere oppdagelser. Implementeringen av «self-attention»
mekanismer virket positivt i læringsprosessen ved å motvirke over-fitting. Valget
av underliggende metodologi er viktig, og «multi-label» metoden virket best. Sam-
menlignet med datasettet fra tidligere forsøk, ga vårt LS-CAT datasetts høyere an-
tall mulige «thread-coarsning» nivåer et falskt inntrykk av lavere ytelse.

Valget av «embedding” I tidligere arbeid «inst2vec» var ute av stand til å tolke
rundt halvparten av «CUDA» kilde koden, som resulterte i høyt tap av data. Måter
å håndtere dette og andre ideer for fremtidig arbeid er også inkludert i denne
avhandlingen.

Acknowledgements

First of all I would like to thank my Supervisor Anne C. Elster and Co-Supervisor
Jacob O. Tørring for important feedback along the way. While unfamiliar with
some of the technical details of machine-learning, their knowledge of everything
else regarding research, writing academic papers, autotuning, and related works,
were valuable to say the least.

I would also like to thank my fellow HPC-lab members, Ivar Andreas Helgestad
Sandvik, Andreas Hammer, and Maren Wessel-Berg, for giving good feedback on
any figure, chart, or graphical element I made or was thinking about making. With
special thanks to Andreas for proofreading my thesis.

Lastly, I would like to thank my good friend Erlend Fauchald for being a frequent
discussion partner regarding the machine-learning process.

iii

Contents

Problem description . iii
Acknowledgements . iii
Contents . v
Figures . vii
Tables . ix
Code Listings . xi
Abbreviations . xii
1 Introduction . 1
2 Background and Related Works . 4

2.1 Autotuning . 4
2.2 GPU . 5
2.3 CUDA . 6
2.4 Traditional Autotuning . 6

2.4.1 ATLAS . 7
2.4.2 FFTW3 . 7
2.4.3 OSKI . 8
2.4.4 SPIRAL . 8
2.4.5 Orio . 8

2.5 LS-CAT . 9
3 Machine Learning and ML-based Autotuners 10

3.1 Machine Learning . 10
3.1.1 Activation Functions . 11
3.1.2 Learning Tasks . 13
3.1.3 Embedding . 14
3.1.4 Recurrent Neural Network (RNN) 16
3.1.5 Attention Mechanisms . 16
3.1.6 Optimizers . 18
3.1.7 SGD With Momentum . 18
3.1.8 Hyperparameters . 19
3.1.9 Changing Settings While Training 20

3.2 Intermediate Representation . 20
3.3 Benchmarking . 21
3.4 Python and Libraries . 22
3.5 Autotuners Using Source Code Based ML Methods 22

v

vi L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

3.5.1 end2end-dl/deeptune . 22
3.5.2 NCC . 23
3.5.3 CDFG . 23
3.5.4 ProGraML . 24

4 Applying NLP-ML Techniques to our LS-CAT Dataset 25
4.1 Source Code to Intermediate Representation 25
4.2 The inst2vec Pipeline and NCC . 26
4.3 FastText Embedding . 28
4.4 ML Pipeline . 29

4.4.1 Embedder . 29
4.4.2 CSV Data Pre-Processing . 30
4.4.3 Data . 30
4.4.4 Configuration . 31
4.4.5 Data-Loader . 31
4.4.6 Utilities . 32
4.4.7 Trainer . 32
4.4.8 Model . 35

4.5 Evaluation of FastText . 37
4.6 Binary Classification Model . 37
4.7 Regression Oriented Models . 41

5 Results and Benchmarks . 45
5.1 Binary Classifier . 45

5.1.1 LS-CAT LSTM Model . 45
5.1.2 LS-CAT LSTM Self-Attention . 45
5.1.3 LS-CAT LSTM Self-Attention . 47

5.2 Regression Results . 47
5.2.1 LS-CAT LSTM Model . 50
5.2.2 LS-CAT LSTM Self-Attention . 50

6 Discussion . 57
6.1 Embedding . 57
6.2 LS-CAT ML Models Results . 58
6.3 LS-CAT ML Model Architecture Variations 58
6.4 Evaluation of our LS-CAT Dataset . 59

7 Conclusions and Future Work . 62
Bibliography . 64
A Poster .
B Our LS-CAT paper .
C Source Code .

Figures

3.1 Linear layer machine learning model 11
3.2 Sigmoid activation function . 12
3.3 Tanh activation function . 12
3.4 Common LSTM cell implementation 17
3.5 Intermediate representation translation 21
3.6 Classification errors . 21

4.1 Transform to find relative performance 27
4.2 Distribution of 1024 thread-block size performance compared to

optimal . 28
4.3 Data folder structure . 30
4.4 The entirety of the training process found in the trainer class 34
4.5 The design for the two different core ML models 36
4.6 Pre-calculated performance given accuracy levels 39
4.7 Binary classification evaluation . 40
4.8 The regression output and targets . 41
4.9 Evaluating the performance of the regression model 44

5.1 The binary classification LSTM model results 46
5.2 The threshold effect on the binary classification LSTM model results 47
5.3 The binary classification LSTM model with self-attention results . . 48
5.4 The threshold effect on the binary classification LSTM model with

self-attention results . 49
5.5 The precision recall curve of the LSTM and LSTM Self-Attention

models . 49
5.6 Comparison of the binary classification LSTM and LSTM with self-

attention . 50
5.7 The regression LSTM model with no target transform and L1 loss . 51
5.8 The regression LSTM model with no target transform and MSE loss 51
5.9 The regression LSTM model with no target transform and BCE loss 51
5.10 The MSE LSTM model with a 10x transform 52
5.11 The MSE LSTM model with a 10x transform 52
5.12 The MSE LSTM model with self-attention and a 10x transform . . . 52
5.13 The BCE LSTM model with self-attention and a 10x transform . . . 53

vii

viii L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

5.14 Comparison of the LSTM and LSTM with self-attention models us-
ing BCE . 53

5.15 Comparison of the LSTM and LSTM with self-attention models us-
ing MSE . 54

5.16 Comparison of the LSTM models using MSE or BCE 54
5.17 Comparison of the LSTM and self-attention models using MSE or

BCE . 55
5.18 Comparison of the BCE regression LSTM binary classification LSTM 55
5.19 Comparison of the BCE regression LSTM+self-attention and binary

classification LSTM+self-attention . 56
5.20 Best single point performing model . 56

6.1 Comparison of four and eight levels of thread-coarsening - Dis-
played as difference from optimal . 60

6.2 LS-CAT with only eight thread-block sizes 60

Tables

4.1 Binary classification CSV data . 31
4.2 Regression CSV data subset . 31
4.3 Binary classification task . 39
4.4 Regression subset without all 15 thread-block ids 43
4.5 Regression subset with transformations without all 15 thread-block

ids . 43

ix

Code Listings

4.1 PTX generation . 25
4.2 LLVM IR generation . 26
4.3 Data pre-processing regex steps. 29
4.4 First target transformation . 42
4.5 Second target transformation Softmax 42
C.1 Evaluation script for the binary classifier
C.2 Creation of the embeds .
C.3 The FastText embed trainer class .
C.4 The model class .
C.5 The data loader class .
C.6 The utility class .
C.7 The trainer class .
C.8 The Regression task .
C.9 Configuration file .

xi

xii L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

Abbreviations

CPU = Central Processing Unit
GPU = Graphics Processing Unit
OpenCL = Open Compute Language
SIMD = Singe Instruction Multiple Data
ALU = Arithmetic Logic Unit
BLAS = Basic Linear Algebra Subprograms
DSP = Digital Signal Processor
CUDA = Compute Unified Device Architecture
ML = Machine-Learning
NLP = Natural language processing
GRU = Gated Recurrent Unit
RNN = Recurrent Neural Network
PTX = Parallel Thread Execution
NVCC = NVIDIA CUDA Compiler
IR = Intermediate Representation
AST = Abstract syntax tree
LLVM = Low Level Virtual Machine
LSTM = Long Short Term Memory
LR = Learning rate
BCE = Binary Cross Entropy
MSE = Mean Squared Error
LS-CAT = Large Scale CUDA AutoTuning
LLVM = Low Level Virtual Machine
diff = Difference from optimal

Chapter 1

Introduction

As hardware variation and complexity increased, software is increasingly strug-
gling to keep up with the specificity required to have full system utilization. Low
hardware utilization created a high gap between actual program performance and
theoretical program performance. The cause is a lack of low-level optimizations,
which needs hardware taken into account. One solution is having several versions
of the same software, to take these details in hardware into account. While cre-
ating several different program versions for each system would be possible, the
number of systems and knowledge required to make a effective hardware appli-
cation for all systems made this a challenging task. Instead, the low-level opti-
mizations should be done either by a compiler or an autotuner. The compiler is
designed more with compilation speed in mind and not program performance,
while the autotuners entire purpose is to increase the end program performance.
Traditional autotuners are usually library-based and domain-specific or genera-
tive. Some autotuners combine the strength of being both domain-specific and
generative. Domain-specific autotuners supply several variations of the same code
implementations and create a parameter space representing the variations. Gen-
erative autotuners edit source code and change the code using predefined rules.
Each potential modification and degree of modification is defined as a parameter
space.

There is usually a complex relationship between a specific parameter and the
total change in performance. This means that an extensive search through the
parameter space is required in autotuning. Searching through all possible legal
combinations of parameters is a highly time-consuming process, as for each time
search step, the autotuner compiles and executes the program. Then, based on
the results, the subsequent search step is performed until an optimal program
variation is found. A better alternative would have an autotuner that can set better
parameters without searching, compiling, or executing the program.

Machine learning is a method that is well suited in situations where there
is an abstract relationship between the data points, and where there is a large
enough dataset and enough data processing power [6]. There are different types
of machine learning models, but they all conceptually create an internal mathe-

1

2 L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

matical model. This model consists of activation, weights, and biases. The weights
and biases are adjusted depending on how the model’s output value compares to
the target value. The model "learns" patterns this way and can be used in a wide
range of applications. For example, a machine learning model can skip the inten-
sive searching process needed by autotuners.

Autotuners using source code-based ML methods require a dataset of source
codes and program results based on different parameters. Earlier attempts at do-
ing machine-learned autotuning, range in the task performed, source code lan-
guage, and dataset. Some of these attempts focused on attempting to perform
thread-coarsening on an OpenCL dataset created by end2end-dl [2]. This dataset
is lacking in size and general representation of source code. With that in mind, our
LS-CAT project [1] created a CUDA-based dataset. Our LS-CAT dataset consists of
CUDA source code kernels and their runtime data. LS-CAT has more thread-block
sizes, semi equivalent to thread coarsening level, and significantly more source
code samples.

Motivation

The project’s primary goal is to apply machine learning and NLP, natural language
processing techniques to our LS-CAT, and using ML-model selected thread-block
sizes to increase the performance. Additionally, evaluate the impact of both ML-
attention-mechanisms and inst2vec [3] on the machine-learned model’s perfor-
mance.

Contributions

C.1 First implementation of an end-to-end machine learning pipeline, designed
for CUDA source code data.

C.2 First implementation applying ML NLP techniques to our earlier LS-CAT
dataset.

C.3 First implementation of self-attention for source code based autotuners
C.4 First attempt at using the inst2vec embedder with CUDA LLVM IR tokens
C.5 First to outperformed both random choice (0.94) and best default option

(0.9437) on LS-CAT, with the best model configuration scoring 0.9483.
C.6 Findings indicate a generalized learning process, not memorization, imply-

ing that CUDA source code has learn-able abstract features.

Outline

The thesis is structured the following way.

• Chapter 2: Presents autotuning and our earlier LS-CAT project.

• Chapter 3: Focuses on the machine learning principles relevant for the the-
sis, and previous source code based machine learnt autotuners.

Chapter 1: Introduction 3

• Chapter 4: Describes the entire process of designing the machine learning
pipeline, from source code to outputted ML predictions.

• Chapter 5: Results from some key model configurations.

• Chapter 6: Discussion and evaluation of the results.

• Chapter 7: Conclusion drawn from the work in the master thesis with out-
lines for future work.

• Appendix A: Thesis presented as a poster.

• Appendix B: Our earlier project LS-CAT.

• Appendix C: Parts of the source code used.

Chapter 2

Background and Related Works

To better understand the project, autotuning as a concept and some very rele-
vant papers are introduced in the following sections. Autotuning is hardware-
dependent. In this case, the GPU is the hardware part taken into account Section
2.2. The programming language CUDA Section 2.3, can be used to interface with
the GPU itself,. Lastly our earlier project LS-CAT is presented, which was created
using CUDA kernels.

The Sections 2.1-2.4 are taken from my fall project on LS-CAT, which this thesis
is built on.

2.1 Autotuning

Autotuning was a natural response to the increasing diversity in hardware solu-
tions during the 90s. Software companies could no longer feasibly create software
designed specifically for all types of hardware. As extensive knowledge of each
hardware component would be needed and would require multiple software ver-
sions. Making numerous versions would lead to increased project difficulty, and
in turn, projects became more time-consuming. Instead, software development
neglected the hardware variance, causing varying performance from hardware
to hardware. To mitigate this, hardware vendors would, to some extent, create
their versions of the software that executed better on their hardware, especially
for essential programs such as BLAS. The vendor-supplied versions of programs
had increased performance, but not all vendors offered this service and would
neither optimize all programs. It was not cost-efficient for either the software or
hardware manufactures to optimize the code for each combination of software
and hardware.

To mitigate the work needed to be done by all parties, software parameters
were introduced by the software manufacturers. These parameters can change the
way the program runs, the extent to which it uses cache, the order of operations,
and more. Each parameter can change the program’s performance, accuracy, and
run time depending on the hardware. This made it possible to generalize the pro-
cess of finding a good combination by searching through the parameter space.

4

Chapter 2: Background and Related Works 5

However, there was still a pretty high requirement for accurately tuning a pro-
gram manually, as there would still be a need for understanding the underlying
hardware and the effect of each parameter on the run time behavior. Addition-
ally, setting many different parameters, with a high number of possible values for
each parameter, results in a time-consuming process. A common way to solve this
would be picking some parameters the programmer assumed to work pretty well,
testing each of the assumed good combinations and then picking the best. This
would still require an experienced programmer and was in no way a guarantee of
finding the best parameters.

Instead of using humans for this type of code optimization, the machine would
optimize the program by adjusting different parameters. The machine could try
out a lot more different parameters by itself compared to a human. It just needed
some decent heuristics or sophisticated searching methods to pick suitable param-
eters efficiently. Before performing autotuning, the machine might also try and
find specific hardware information. Hardware information could quickly exclude
some parameters. The user might also supply this information. Then the parame-
ters are initialized. After this, the machine compiles, runs the program, and then
measures the results. The program keeps a record of that combination of param-
eter’s performance on the hardware. Different varieties are tried by adjusting the
parameters, compiling, and running the program until the best one is found. As
mentioned above, the method for adjusting parameters can save a lot of time, as
just searching through all parameters can be incredibly time-consuming. Some of
the earlier autotuning projects PHiPAC, that tried to autotune BLAS, would, for
instance, take several days to complete. Found more clever ways of picking good
parameters, and ATLAS, one of the first BLAS autotuners, performed as well as a
vendor-delivered solution, after running for just two hours. These types of classi-
cal autotuners usually work well. However, they can have a pretty high run time
due to still having to run and compile the program for each parameter adjustment
needed to find a good combination.

2.2 GPU

A GPU, graphical processing unit, compared to a CPU, central processing unit, has
many more ALUs, or cores responsible for doing simple computations. A modern
GPU can have more than ten thousand cores, compared to a modern CPU with
around four to eight cores, sometimes more but very rarely above two digits. On
the other hand, each core in a GPU has a lower clock speed and less functionality.
Making the GPU less suited for tasks with a broad specter of different instruc-
tions, a GPU can neither handle interruptions nor other key CPU functionalities.
THEREFORE, a GPU is worse than a CPU when it comes to doing complex tasks,
such as running an operative system. The advantage of a GPU is that the high core
count can quickly process numerous data using identical instructions. A common
instruction over large data is called SIMD, single instruction multiple data, and
is the key feature of a GPU. Historically this type of computation has been lim-

6 L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

ited to graphical visualization, hence the name GPU, but modern libraries such
as OpenCL and CUDA have made it possible to do other types of tasks on the
GPU. Data-intensive tasks that are suited for parallelization can reach a signifi-
cant increase in performance if they are done on the GPU instead of a CPU. If
the problem can be parallelized enough, using a GPU can lead to several hundred
times speedup compared to a CPU.

2.3 CUDA

CUDA is NVIDIAs proprietary language that gives the programmer an accessible
interface for their GPU lineup. A CUDA function run on the GPU is called a kernel.
A kernel is either marked as global if run from the system or device if called from
the global kernel. The global kernel needs a block parameter and grid parameter
set. The block parameter is a three-dimensional representation of a collection of
threads. Each block should be of divisor 32 as a warp is 32 threads large, and a
warp executes all thread simultaneously. A block of non 32 divisible would have
idle threads. A block can at most run 1024 threads at the same time. Each thread
can do one computation at a time. So one CUDA block of size 32x32 can, for in-
stance, do an addition on a 32x32 matrix simultaneously. The 32x32 block seems
to be a two-dimensional shape but is represented internally as a 32x32x1 in CUDA,
as any dimension not set is set to one. The flexibility in dimensions is predomi-
nantly to have more convenient interactions between the threads and data. As
data often might be represented as a cube or matrix rather than an array. The
optimal number of threads per block is not always 1024, as several smaller blocks
would have more unhindered register access, for instance.

However, the grid can fit any number of blocks as long as they are declared
but is usually set to be the minimum amount of blocks needed to compute a given
input size. To find a grid size given a specific block and input size, divide the input
by block size. For instance, an input of 128x128 and a block size of 8x8 would give
a grid size of 16x16 blocks. If the input was 127x127 and the block still 8x8 you
would need 15.9x15.9 blocks. As this is not possible, the grid would use 16x16
blocks instead.

A critical bottleneck in GPU programming is that the system needs to allocate
memory for both the system and the GPU to do data transfers between them. If
this transfer takes a longer time than just running the computation on the CPU,
there is no point in using the GPU.

2.4 Traditional Autotuning

Modern hardware systems are multilayered and far more complex than they used
to be. As a result, compilers are not adequate to accurately make program im-
provements based on the source code and the hardware system. Instead, auto-
tuners, which range in functionality and problem area, can solve this issue. The

Chapter 2: Background and Related Works 7

following papers represent some hallmark autotuners that are still important to-
day and introduced some key concepts for later autotuners.

2.4.1 ATLAS

ATLAS Auto tuned linear algebra software [7], was one of the first projects to
create an autotuned solution for specific software, in this case, BLAS. BLAS, basic
linear algebra subprogram, is a collection of methods for solving matrix-matrix
multiplication, matrix-vector multiplication, and vecto- vector multiplication. The
matrix-matrix multiplication part is very significant as BLAS solved for "blocks" in
the matrices and not for cells. This made better use of the cache but requires
hardware knowledge for efficient cache usage.

The second version of ATLAS optimized the gemm, general matrix-matrix mul-
tiplication part of BLAS, to run on any hardware that was out at that time. The
alternative was creating a hardware-specific solution for each BLAS subprogram,
which some software vendors did. However, there was in no way an optimized
BLAS for all types of hardware.

ATLAS aimed to create a general method for finding a good hardware-specific
program for the BLAS matrix-matrix multiplication. The idea was based on gen-
eralizing how the hardware features influenced the performance. Then having a
collection of generalized code, the machine could generate a program that effi-
ciently used the hardware by picking the correct parts of the generalized code.
Of course, many factors were considered that were influenced by the hardware
and would create more parts in the generalized code. Loop unrolling, for instance,
could change the way a compiler interacted with the generated code and, at the
same time, the amount of loop overhead. In addition, the cache size determined
to what extent the matrices could be stored. Other factors are the cache miss rate,
the order of floating point operations, the order of looping, and the size of blocks
that fit in the matrix to be used.

Some of the values could be supplied by the user or searched for, i.e., the size of
L1 cache, but most required running and testing the effects, and this process could
take between one to two hours. Nevertheless, the end results were about as good
as the vendor-supplied software. So even though the ATLAS run time sounds like
a lot today, the alternative had a programmer work on creating a specific solution,
which would take far longer.

2.4.2 FFTW3

FFTW3 [8] performs as well as specialized vendor programs, just like ATLAS, and
does this automatically, without being tuned to a specific machine. The "plan-
ner," as it’s called in FFTW3, takes a "problem" that is a multi-dimensional loop of
multi-dimensional discrete Fourier transforms. The problem is divided into sev-
eral different parts, called "codelets." Each codelet has different versions of it, each
specialized either for a particular case with the type of input or type of hardware.
By trying out different combinations of codelets, the optimal combination can be

8 L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

found,just like with ATLAS. This way, the planner can adapt to any given hard-
ware. Unlike ATLAS the planner is adapted for a specific input shape and size of
matrices, meaning the planner needs to be used multiple times if the system needs
discrete Fourier transforms for several matrix shapes. Therefore, the user should
decide if time saved after using the planner is worth the planner’s execution time.

2.4.3 OSKI

Conventional sparse matrix-vector multiply and sparse triangular solvers usually
run at 10 percent machine usage, as hardware utilization is low. However, the
autotuner OSKI [9] provides a library of basic sparse kernels that works as basic
building blocks or code selections, similarly to ATLAS. OSKIs tuning process is
given a select machine and matrix, then selecting the data and code structure
that increases a user-defined heuristic, often fastest kernel implementation. As the
matrix information is needed for the tuning, runtime tuning might therefore be
unavoidable. Modern systems include a layered cache structure, this can’t be taken
into account by i.e. ATLAS, but OSKI supports multilevel cache tuning. Autotuners
can be more time-consuming than the time they save. OSKI will only tune for the
given matrices, as one tuning can take 40x the time of one regular solver. The
number of operations done is also visible to the user to make it easier to decide if
the tuning process is worth it. Additionally, OSKI stores the matrix patterns so that
matrices with the same zero values can use the same OSKI routine. There is also
the possibility of providing similar patterns, as finding a closely related routine
would, in many cases, be faster.

2.4.4 SPIRAL

SPIRAL [10] uses a library of DSP functions, and a low-level generator. The DSP
functions can be combined to create DSP formulas. While two functions might
both be O(n), one might have better cache usage, which leads to a performance
disparity. Different functions are combined to create variations of the same for-
mula. The best-performing formula is used in the implementation. After imple-
menting the formula, other low-level optimizations are applied by a generator.
As the total amount of possible combinations makes exhaustive search infeasible,
SPIRAL uses reinforcement learning to speed up the search process. As bonus fea-
tures, SPIRAL supports profiling and user-created functions and transforms. The
profiling process makes SPIRAL able to use runtime information to increase search
efficiency. This type of profiling is usually avoided by compilers, as this would in-
crease compilation time, but since SPIRAL is installed once, the profiling cost is
negligible.

2.4.5 Orio

Compared to the other autotuners that are problem-specific, Orio [11] attempts
to provide library-based autotuning for general code.

Chapter 2: Background and Related Works 9

To enable Orio tuning, the programmer must annotate the parts of code for
tuning. The annotation can be architecture-specific. Orio takes these code frag-
ments and generates tuned versions of the same operation. The different versions
are then evaluated. Then Orio selects the best performing one for production
use. Automatic parallelization is also supported using PLuTo. The code gener-
ator can create different variations of low-level optimizations, combine various
handwritten algorithm optimizations. The user can also add their handwritten
algorithm optimizations to Orio, and this is the feature that makes Orio a general-
purpose library-based autotuner. An exhaustive search through all the code vari-
ations would be too time-consuming. Orio has, therefore, different global search
methods and user-definable search restrictions. Then a local search is done. This
ensures that the search process is both sufficiently enough and fast. The program
tuned by Orio outperformed the compiler in all cases. Especially in cases with
small problem sizes.

2.5 LS-CAT

Our LS-CAT project [1] had as a goal to increase the amount of GPU source code
for machine-learned autotuning. Before LS-CAT, there was little public data of this
type available. While earlier works focused on OpenCL GPU code, there were no
attempts at creating a CUDA-based dataset. The project used publicly available
source code aggregated from GitHub. It reformatted each project into a collec-
tion of executable CUDA kernels, which were executed with a range of different
thread block sizes and matrix sizes. The CUDA automatic thread block size tool
was evaluated but lacked sensitivity to matrix sizes. LS-CAT produced around 19
683 kernels, with 20 thread-block sizes, of which 16 are one dimensional. The in-
creased amount of source code could hopefully make automatic thread coarsening
possible.

In the LS-CAT dataset for the T4, the 1024 thread block size was the superior
choice and performed on an average of 94.438 percent from the optimal, meaning
around a 6 percent speedup can be achieved from always picking the optimal
choice. A machine-learned model needs to score higher than 94.438 percent to
give any speedup at all.

Chapter 3

Machine Learning and ML-based
Autotuners

Machine learning is a complex field consisting of several subsections, each with
its specific purpose: transforming data, modeling data, creating internal repre-
sentations, and analyzing data. The data that the models use is explained in the
intermediate representation section. Benchmarking methods are integral to eval-
uate the model’s performance and have their section. The tools used to create
most of the machine learning pipeline are presented in the "Python and libraries"
section. Lastly, earlier attempts at creating autotuners using source code-based
ML methods are presented.

The Section 3.5 was taken from my fall project on LS-CAT, which this thesis is
built on.

3.1 Machine Learning

Machine learning consists of an internal mathematical model and a loss function.
The internal mathematical model varies in complexity, but most of them can be
represented as some combination of weights biases and activation functions. For
example, one of the simpler machine learning models is a layered series of linear
equations where each equation has its weight and a shared bias.

The model seen in Fig. 3.1, is one of the simplest models possible to create. It
has an input vector of size three, a hidden layer of size three, and an output layer
of size two. The weights between the vectors are the same as the two common
vectors, so the first weight is a three by three matrix, and the second weight is
a three by two matrix. This also means that all the computations in this network
are computed using matrix multiplications.

Finding the output value by going through the model for the given inputs is
called a forward pass. In supervised learning, the output is then compared with the
target value for the input value x. This comparison is made using a loss function
that tries to find an accurate number for the difference of all output and target

10

Chapter 3: Machine Learning and ML-based Autotuners 11

Figure 3.1: Linear layer machine learning model

values at that given training step. Based on the loss score, different weights are
adjusted differently based on their gradient, which is calculated per layer using
the chain rule. This process is known as backward propagation.

By repeating the process of forward and backward passes, the weights are
adjusted to minimize the loss function, making the model output similar values
to the target values. Even though the model might score high in this process,
there is a chance that the model learned the entire dataset and memorized all
the features. This phenomenon is called over-fitting and can be counteracted in
several different ways. If the model scores remain low throughout the training
phase, the model is under-fitting, either due to lack of complexity, an error, flawed
data, or the model is unsuited for that type of work.

Data is the essential factor for doing machine learning. There are some ways
to counteract the lack of data, low data quality, or other issues, but having a satis-
factory dataset is a critical factor for good results. Inadvertently, this often means
that the datasets, not the models themselves, are valuable in machine learning
projects.

3.1.1 Activation Functions

Activation functions transform the output of a layer in a machine learning model.
Activation functions serve different purposes based on their mathematical prop-
erties or computational complexity. One common type of activation function is
those who squish the output into a fixed range. The advantage of squishing the
output range is that too large of values can cause gradient explosion. Gradient ex-
plosion results from too large errors, which creates a gradient too large to adjust
the network in any meaningful way. The downside of squishing the output values
is the loss of accurate representation of large vs. small values, with some varying
solutions to retain a balance between values when down-scaling. The Sigmoid

12 L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

Figure 3.2: Sigmoid activation function

Figure 3.3: Tanh activation function

activation function as seen in Fig. 3.2 uses the Sigmoid function to scale large
numbers to the range of zero to one, one issue however is that numbers larger
than around six would all be represented equally, and the function is quite steep
giving a higher resolution for smaller values.

To mitigate the second effect to some extent the tanh function shown in Fig. 3.3
has a less steep function. The difference between large values would still be lost
however.

An alternative to these two functions is the ReLU activation function, which
sets negative values to zero and is otherwise an identity function. As a result,
around half of the network gets zero activated, which mitigates gradient explo-
sions to some extent while still keeping a better representation of larger weights.

Another important activation function is the Softmax activation function, which
scales a vector input into a probability of each element occurring. This activation
is commonly used on the last output layer in a classification problem.

So f tmax =
ezi

∑K
j=1 ez j

Chapter 3: Machine Learning and ML-based Autotuners 13

So f tmax(

3.0
1.5
0.5
0.0

) =

0.6
0.3
0.1
0.0

(3.1)

3.1.2 Learning Tasks

Learning tasks represent the purpose of the machine learning model. Machine
learning is used to understand large amounts of data better. The tasks revolve
around getting useful aggregated information out of the data. This can include
unsupervised tasks such as clustering or supervised tasks like regression or clas-
sification, require datasets with labeled data. As this project focuses on labeled
data, supervised learning tasks are the most purposeful. Regression is a learning
task for data that does not have distinct output values but rather discrete values
based on independent variables. For instance, future stock prices are based on
previous ones. In comparison, classification is better suited for data with distinct
output values, such as finding different animals. The tasks can be separated based
on how the output layer is structured and the loss function used.

Classification

Labeled data classification is one of the most common tasks for machine learn-
ing. Classification usually has two sub-tasks, multi-target classification and binary
classification. Multi-target classification often using cross-entropy loss, and only in
a few cases would any other multi-classification loss be used at all. Cross-entropy
loss takes the average difference in the probability of the output classes with the
target classes.

−
M
∑

c

yc log(pc)

Where M is the number of classes, p is the vector over predicted probabilities, y
is a target binary identifier where the correct class is one and all other zero.

Binary classification is used if the data can be categorized into two classes:
anomaly detection. A similar loss function is used binary cross-entropy loss, which
has some shortcuts compared to the original loss function.

−(y log(p) + (1− y) log(1− p))

Another version of binary classification is multi-label classification. In this
case, samples can belong to more than one class.

Regression

In comparison to the classification, regression is a more complex task as there
are several loss functions, which could prove viable in most cases, and there is
also the possibility of having multiple time-steps. While the choice of the loss

14 L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

function is not as apparent as in classification, there are some standard loss types
based on the regression requirements, and the starting point of testing regression
loss functions should be Mean Squared Error loss. MSE loss is the average of the
squared differences between the predicted and actual values. The result is always
positive, and a perfect value is zero. The squaring operation gives a higher loss for
larger errors, meaning the model is mainly adjusted when making more significant
mistakes. This loss function is primarily applicable if the target variable has a
Gaussian distribution.

MSE =
1
n

n
∑

i

(yi − pi)
2

Suppose the large error values cause too many adjustments compared to smaller
error values. Then, the mean squared logarithmic error can be calculated or MSLE,
which adds a log operation before the squaring in the MSE loss.

MSLE =
1
n

n
∑

i

(log(yi + 1)− log(pi + 1))2

If the target function has mostly a Gaussian distribution with some higher fre-
quency outliers, the mean absolute error loss can be a better alternative. MAE is
the absolute difference between the target and predicted values.

MAE =
1
n

n
∑

i

| yi − pi |

Other than these mainstream regression loss functions, several more specialized
loss functions could prove beneficial, but mainly in multi-step regression, which
is not relevant for this project.

3.1.3 Embedding

Machine learning models can only take numeric values as input. Therefore, there
need to be some transformations in place for any other type of input data to change
the data to a numeric representation.

Tokenizing

The simplest type of embedding is a basic numeric representation, where a spe-
cific number represents the entirety of an input class. For instance, if the model
took farm animals as input, a cow might be represented by a five. However, the is-
sue with this is that relationships between classes are lost and entirely separated,
which is an issue if the classes have similarities or dependencies. For instance, the
ox might be represented with nine and the chicken eight, making it harder for
the model to recognize a stronger connection between five and nine compared to
five and eight. In this case, the amount of farm animal classes are most likely low
enough that a model could efficiently discover this connection. Still, if instead of

Chapter 3: Machine Learning and ML-based Autotuners 15

taking farm animals, the model were to take words, the number of classes would
be too high for such a simple methodology.

Instead of taking the entire word, one might instead make a numeric represen-
tation of each character. However, this would increase the input size drastically,
the idea of different words would be lost, and longer words would have more
importance as they represented more data than shorter words. Furthermore, this
is not really as harsh words can have more semantic value in a sentence than a
longer word, making learning harder.

Instead of creating a basic numeric representation of either the words or char-
acters, alternative unsupervised learning methods such as Skip-Gram or chosen
bag of words can be used. These methods are designed to create vectors that better
represent the words.

Chosen Bag of Words (CBOW)

CBOW uses neighboring words or tokens to find the context and is trained un-
supervised by feeding the CBOW model token sequences where one part of the
sequence is missing. The unsupervised task is to find the missing sequence. This
way, the CBOW model can get some understanding of sentences or sequenced
data. After establishing relationships between the tokens, vector representations
can be made by feeding the model a token. These vectors are structured such that
similar tokens have similar vectors based on context.

Skip-Gram

Skip-gram is a method designed to find the most related words or tokens based
on a context. Skip-gram is unsupervised, where a sentence is split and using the
original context, the following words are found, which is the other way around
in comparison with CBOW. While skip-gram training is more complex and takes
more time, it is also associated with better performance and results than CBOW,
especially for infrequent data points.

N-GRAMS

While both of these methods can establish contextual relationships, direct seman-
tic relationships can pose a challenge. Words with minor syntactic differences like
"word" and "words" are different tokens and used in slightly different semantic
circumstances. Instead of representing the words as tokens, can s split the words
into their N-Grams. N-Grams are a collection of character combinations. For ex-
ample, the 2-Gram of "words" would be "wo-or-rd-ds". This way, each token or
word can be represented as their unique collection of n-grams. This also means
that syntactically similar words have similar N-Grams and is less of an issue for
the CBOW or Skip-Gram model.

16 L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

3.1.4 Recurrent Neural Network (RNN)

Recurrent neural networks are a subsection of machine learning models that cap-
ture sequenced temporal information using a different variation of directed graphs.
This directed graph-based representation has the unique feature of taking a series
of vectors as input of varying length, with each vector being able to express a dif-
ferent time step. Additionally, an RNN can store previous time step information
as a secondary input to these directed graphs so that a model can establish time
or sequence-based dependencies in the data across time steps.

The main issue with RNNs was the vanishing gradient problem, which occurs
when the gradient is too small to impact weight adjustment. The vanishing gradi-
ent problem is usually associated with deeper networks, as the chain rule works
per layer, and the further away from the output layer, the smaller the gradient be-
comes. Other vanishing gradient causes are the choice of activation functions, for
instance, the Sigmoid activation function. The Long Short Term Memory, LSTM
cell, was developed to solve these issues in RNNs.

LSTM

The LSTM cell includes Constant Error Carousel (CEC) units, which handles the
vanishing gradient problem. Represented as Ct in Fig. 3.4 the CEC is combined
with inputs from the "input" and "forget" gate before being used in the "output"
gate function. The "forget" gate and the CEC are combined with a multiplication
operation. This serves as a filter to completely ignore values that are regarded as
unimportant. As the CEC is not reliant on any other activation function directly,
and the term is only multiplied with the "forget" gate, backpropagation of Ct for
Ct1 causes no vanishing gradient issue.

Performance-wise LSTM cells have shown significant performance in a range
of different applications, i.e. computer-vision [12], and LSTM cells remain one
of the most common modules included in deep learning networks that handle
sequenced information.

GRU

The GRU is considered a more simplistic version of the LSTM, where the forget and
input gate are replaced by an update gate. This makes both forward and backward
pass less time-consuming, and the GRU cell is, therefore, faster than an LSTM cell.
The downside is that GRUs have lower accuracy or network performance in most
cases compared to LSTM cells, and if training time is not an issue, LSTM is the
preferred choice over GRUs.

3.1.5 Attention Mechanisms

LSTMs or other types of RNN techniques can be used to establish the sequential
relationship between time steps. However, connections between different parts

Chapter 3: Machine Learning and ML-based Autotuners 17

Figure 3.4: Common LSTM cell implementation

of the sequence, or if multiple sequences are used, the relationships between all
the sequenced data are less clear. Attention mechanisms aim to establish clearer
cross sequence connections and the relative relationships between data points.
The calculations look at how one data point influences the other data points and
how the rest of the data points influences that single data point. Self-attention is
computing the attention score of a single data-stream.

These attention mechanisms are often used in conjuncture with encoder-decoder
frameworks. Encoder decoder frameworks consist of an encoder that creates an
abstract representation of the input vector and a decoder that decodes the abstrac-
tion to output vectors. One of the main advantages of encoder-decoder frame-
works is more flexibility for data size transformations. For instance, sequences
with unequal lengths can be compared by encoding decoding the input to the
target length.

Bahdanau Attention

Bahdanau [13] attention is one of the earlier attempts at creating an attention
mechanism. Encoder decoder frameworks usually compress the encoder output,
which results in loss of data quality. Bahdanau attention aims to pick the relevant
part of the encoder output and keep it, so the relevant parts are not lost to com-
pression. This is done using a "soft search" functionality, which enables the model
to pick what part of the source input is most relevant, the corresponding encoder
outputs are kept.

18 L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

Luong Attention

Luong attention [14] is similar to Bahdanau, with most of the differences being
smaller mathematical choices. However, the essential difference between these
two methods is that Luong’s attention reuses the attention from the previous step,
as Luong believed that attention history is vital.

Multiheaded Attention

Multiheaded attention [15] uses the "Scaled dot product attention" formula.

At tention(Q, K , V) = so f tmax(
QK T

p

dk

)V

The formula works by taking the softmax of the dot product between the queries
and keys then multiplied with the value, which results in a matrix where each
element signifies the influence of other values on that element and vice versa.
This mechanism is applied to the data for each attention head, with the output
being concatenated. The advantage of multiple attention heads is that they in
parallel capture information from differently positioned subspaces. However, one
attention head would likely be incapable of this due to the averaging effect applied
by the "Scaled dot product attention".

This attention mechanism is suited for computing self-attention.

3.1.6 Optimizers

Backpropagation computation is determined by choice of algorithm. The most
"basic" option is gradient descent. Gradient descent computes the loss for the en-
tire training dataset, which is very slow and memory intensive. Newer methods
aim to improve upon gradient descent. These algorithms vary in accuracy, speed,
and amount of parameters. In some cases, specific optimizers might be an ideal
choice. However, there is usually no need to use more than two of the optimizers
[16].

3.1.7 SGD With Momentum

Stochastic gradient descent uses random sampling instead of using the entire
training set in comparison with gradient descent. This has a few benefits besides
being significantly less memory intensive. Sampling makes it possible to update
the gradient more frequently, and this should make training faster if the dataset
training samples have overlapping or similar data points. Gradient descent con-
verges to the minimum of the parameter space. SGD’s fluctuates due to sampling,
which causes a "jumping" effect, making it possible to discover a better local min-
imum potentially. However, this does make convergence to the exact minimum a
lot harder, as SGD "overshoots". This can be solved by lowering the learning rate
while training. Adam Adaptive Moment Estimation, [17], is an optimizer that finds

Chapter 3: Machine Learning and ML-based Autotuners 19

adaptive learning rates for each parameter. In addition to storing an exponentially
decaying average of past squared gradients, Adam also keeps an exponentially
decaying average of past gradients, similar to momentum. However, whereas mo-
mentum can be seen as a ball running down a slope, Adam behaves like a heavy
ball with friction, which prefers flat minima in the error surface. Nevertheless,
Adam has been shown to works well in practice and compares favorably to other
adaptive learning-method algorithms.

3.1.8 Hyperparameters

Hyperparameters are some of the key configuration features that have a different
impact on network performance. However, correctly setting hyperparameters can
be challenging as there is often not a clear-cut case of what values the different
parameters should be set to. Often, the network needs to train to judge the choice
of hyperparameters.

Learning Rate (LR)

The learning rate, LR, determines the rate at which the weights are adjusted by
the gradient [18]. Using a higher learning rate means that the network "learns"
features faster. The downside of using a high learning rate is that smaller key
features can be missed. This occurs when the step distance between the current
weight and the minima for that weight is smaller than the learning rate, which
would cause the backpropagation to over-adjust the weight. If the learning rate
remains the same, the weight would be continuously adjusted to miss the minima
by over-adjustment for each training cycle. This can manifest as a static loss. On
the other side picking a low value for learning rate would lead to a longer learn-
ing time. The model would, however, learn diffuse features more efficiently. The
downside is the potential issue of getting stuck in local minima. Any weight ad-
justment would be too small to escape the local minima, making finding the global
minima impossible. Therefore, the learning rate hyperparameter is often consid-
ered the most important one, and there are some usually good default picks. Still,
good learning rate values are very model and dataset dependent.

Batch Size

The batch size determines the number of samples to be used for each training cy-
cle. The advantage of having a larger batch size is added generality. On the other
hand, the model becomes less sensitive to outliers, this does increase the memory
requirement for training, and the model might be too reliant on the mathematical
advantage of using averages for predictions and not finding and learning indi-
vidual key features [19]. At the same time, a smaller batch size would have a
lower memory cost and diminishing the value of the average. The model might
not learn the average key features and over-focus on some of the sample’s extreme
individual key features. This can be observed as high loss oscillation. This means

20 L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

that using a too large or too small batch size could significantly limit the learning
potential of a neural network.

Momentum

As a network reaches the minima training speed slows down, as the error gradi-
ent lessens, smaller and smaller "steps" are taken each training cycle. This phe-
nomenon can be fixed by adding momentum to the optimizer. The momentum
serves as a directional bias and increases the step length for each training cycle
with an additional constant distance.

3.1.9 Changing Settings While Training

While some combinations of optimizers and hyperparameters might prove to be a
decent choice in the early stages of network training, there is a case for adjusting
these as the training goes on. The main reason for this is that minute features
can be more challenging to catch with a fast network using Adam and a high
learning rate. By stopping the network and lowering the network learning rate,
and changing the optimizer to SGD, the network has a high chance of finding
smaller features, boosting overall network performance. In addition, changing the
optimizer and learning rate at a certain point would make it possible to combine
both speeds from Adam and accuracy from SGD.

3.2 Intermediate Representation

The intermediate representation is used to compiler source code agnostic, which
means that the compiler can compile the source code regardless of language as
long as the source language can be turned into an intermediate representation.
Modern compilers can be imagined as a three-part pipeline, consisting of a front,
middle and back end. The transformation from source code to intermediate rep-
resentation is viewed as the front-end part of the compilation process. This is
followed by an optimization process and then a back-end process to turn it into
an object or assembly code. The front end is fully responsible for creating accu-
rate translations that retain all the source code information. Depending on the
compiler pipeline used, several source codes can be transformed into the exact
intermediate representation.

The Clang compiler can transform C-based source code and derivatives such
as CUDA to an intermediate representation, seen in Fig. 3.5, which in turn can be
used by the LLVM back end [20]. This transformed source code is then outputted
on the format of Clang LLVM IR, with some sub-variations, i.e., CUDA LLVM IR.

Chapter 3: Machine Learning and ML-based Autotuners 21

Figure 3.5: Intermediate representation translation

3.3 Benchmarking

To benchmark and evaluate the performance of the machine learning model is
done by looking at several factors. Most apparent is the learning, training, and
validation loss, which, as mentioned above, is a measurement of the model’s error
based on the loss function. The loss is not, however, necessarily directly indicative
of real-world performance. There are alternative measures that could be more in-
dicative of the model’s efficiency. Accuracy is the measurement of correct guesses
compared to wrong guesses and is often used in classification tasks. Accuracy,
however, does not consider the usage of thresholds or to what extent the model
should be confident for activation or prediction to count. If the predictions have a
particular limit, the concepts of precision and recall are beneficial. Both of these
concepts are based on the idea of true positives, false positives, false negatives,
and true negatives [21] illustrated in Fig. 3.6.

Figure 3.6: Classification errors

Precision can be defined as true positives divided by the sum of true positives
and false positives. At the same time, recall is defined by the true positives divided
by the sum of true positives and false negatives. Thus, these two measurements
can be combined into a precision-recall curve.

Simplified, this curve showcases accuracy based on how confident the classi-
fication is. This can be used to great advantage if the cost of an error in relation
to correct is known. For example, making errors has a higher cost than the ben-

22 L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

efit of making a correct guess one could lower recall and secondhand increase
the model’s performance. However, this would only work if there is a correlation
between precision and recall, which is not always the case.

Other than accuracy, precision-recall, and loss, custom special case scoring
systems can be used. For example, in our LS-CAT dataset, there is for each kernel
matrix combination an optimal choice. Still, subsequent choices can be described
as a deviation from the optimal choice. Evaluating the model based on the average
amount of variation can be easily compared with random choice and largest block.

3.4 Python and Libraries

Python is a framework that comes with extensive libraries capable of adding sev-
eral functionalities to the framework. Including GPU efficient machine learning
libraries like Tensorflow or Pytorch that are flexible and make modular modeling
possible. Tensorflow is a google developed library that gives the user access to
several machine learning tools and functionalities. Pytorch is developed by Face-
book and is functionality-wise and performance-wise very similar to Tensorflow.
Tensorflow has a static computational graph, while Pytorch has a dynamic compu-
tational graph. The data loaders in Pytorch are, therefore, better suited to handle
variable-length sequences found in RNNs. Data prepossessing can also be handled
by python libraries such as Pandas. Pandas give the user efficient and high-level
interfaces with CSV or other tabular text data, such as SQL queries or their own
boolean data searches. The library FastText developed by Facebook is capable of
performing skip-gram, CBOW, and creation of n-grams to generate embeds.

3.5 Autotuners Using Source Code Based ML Methods

Variations in source code are proven to have a significant impact on performance
due to hardware variation. Therefore, machine learning methods could combine
oversight over hardware and source code to use machine learning to make cal-
culations or forecasting. This would avoid having to change and compile then
execute source code iteratively. The following papers present some attempts at
using source code-based ML techniques for autotuning.

3.5.1 end2end-dl/deeptune

The motivation for end2end-dl [2] was replacing the manually crafted heuristics,
as manually creating features can be very difficult and time-consuming, instead of
having the machine-learned model formulate its heuristics based on source code.

The dataset consists of a handful of individual kernels, executed with different
hardware systems and either on the GPU or CPU and with differing amounts of
thread coarsening. In total, there are 17 programs with 6 separate thread coars-
ening factors for each hardware platform. The source code is stored as raw source

Chapter 3: Machine Learning and ML-based Autotuners 23

code but is pre-processed, discarding unnecessary information, then each line
code is turned into a sequence of tokens, where the and turned into embedding
by the model. The model itself is a combination of LSTM cells, which are good at
capturing sequenced information and is often used for learning language features
in a machine learning context.

They showed that their solution could outperform machine-learned methods
relying on human-designed heuristics and features by 14 percent. For predict-
ing if a kernel should be run on a GPU or CPU, a type of binary classification.
Thread coarsening, which deeptune treated as a multi-classification problem and
their competitor as several binary classifications. Both models scored pretty low
when doing thread coarsening on the NVIDIA GPU, most likely due to the small
number of training samples.

3.5.2 NCC

NCC [3] tries to create a general machine-learned model to do classification and
regression on source code of different origin languages. However, NLP does not
take into account the nature of code structure, and NCC proposes their embedding
inst2vec to take the specificities of source code into account. The general tasks
they want to accomplish are device mapping, algorithm classification, run-time
prediction, and thread coarsening.

By making their model use the IR, intermediate representation, the model
should work on languages that can create an IR without creating extra language
support themselves. This also made it possible to use source code from a lot of dif-
ferent sources. For example, the code embedding inst2vec uses a skip-gram method
on the IR lines. This is then combined with the contextual flow graph, which rep-
resents how different parts of the code are depended on each other. NCC uses then
a series of RNN, recurrent neural network, for the model itself.

The setup inst2vec NCC scored higher than other models for algorithm classifi-
cation, at around 95 percent accuracy. The other models. They also outperformed
deeptune on doing both device mapping and thread coarsening, using the same
dataset. inst2vec NCC showed that a combination of using both the dependencies
or flow and the sequenced nature of code could yield better results than focusing
on just one aspect.

3.5.3 CDFG

Instead of focusing on the sequenced part of source code learning, CDFG [4]makes
a case for relying more on graph representation. It is pretty similar to NCC, but
NCC while sort of including graph representation did not use graph-based machine
learning techniques. The goals of CDFG are device mapping and thread coarsen-
ing.

The model takes the embedded source code and a code representation of the
AST, abstract syntax tree. The AST is a graph representing how all the parts of
the code are dependent on each other, CDFG also labels all the connections so

24 L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

that they are not interchanged. Passing this through a series of GRUs, which are
similar to LSTMs, a graph neural network does the final calculations.

Compared to the other models, they compared with NCC and deeptune, CDFG
performed slightly better on device mapping and thread coarsening. But when the
dataset was split into groups based on the origin of the code, CDFG significantly
outperformed all the other models in device mapping. In contrast, the other mod-
els could not beat random selection.

3.5.4 ProGraML

Representing source code as graphs proved beneficially in past attempts, Pro-
GraML [5] tries to further push this by using three different graphs derived from
source code. With the goals being device mapping, thread-coarsening, and algo-
rithm classification.

The three graphs are control flow, data flow, and call flow. The control flow
is the order statements are executed based on branching and sequence. The data
flow is a data dependency graph. Finally, the call flow is just a graph to connect the
origin instruction jump and the destination or the connection between called func-
tions and where they were called. This combined graph representation is made
by using IR that has been normalized using inst2vec. Then by using graph-based
machine learning, a prediction can be made.

ProGraML did not compare itself with CDFG, but with both deeptune and NCC.
In conclusion, ProGraML achieved the best results when compared with the others
in device mapping and algorithm classification.

Chapter 4

Applying NLP-ML Techniques to
our LS-CAT Dataset

Any machine learning process consists of several steps. Each step is dependent on
the previous and is therefore done in a chronological, often iterative process. The
three first sections detail transforming raw data into ML readable data. In the first
section, the raw source code data is transformed to an intermediate representa-
tion (IR). To transform the IR to numerical data, two different methods inst2vec
and are tested in the Sections 4.2 and 4.3. The machine learning pipeline itself is
outlined in Section 4.4 and consists of several subsections. An intermediate eval-
uation of inst2vec is done in Section 4.5. Lastly the two practical methods binary
classification and regression is described in Sections 4.6 and 4.7.

4.1 Source Code to Intermediate Representation

While pure source code could be used more or less as-is for machine learning, with
some small conversions to numeric values, using the IR, intermediate representa-
tion, as described in Section 3.2 would be far superior. In addition, the intermedi-
ate representation has many advantages when generalizing the code. Firstly the
variable names are all standardized to simple register references, which reduces
the variance between each kernel and should make actual distinctions more eas-
ily identifiable. The second advantage of using IR is that the machine-learned
model would be source code independent and utilize all source codes that could
be transformed to the same IR.

CUDA has its intermediate representation, PTX, that is only used internally in
the NVCC compiler. With the correct settings, the PTX file can be ejected, seen in
List 4.1.

Code listing 4.1: PTX generation

nvcc source -PTX -o path.PTX

25

26 L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

In the related works section, most of the previous attempts made use of the inst2vec
pipeline. This pipeline requires Clang LLVM IR, which CUDA can be compiled into.
However, compiler linking can be a tedious process, especially when using unfa-
miliar modules. The Clang CUDA guide was therefore followed closely [22]. This
guide, however, was not enough to seamlessly create IR from CUDA, probably
due to some version or path issues, and some modifications had to be made. In
the end, the following setup found in List 4.2 was used to create all IR from the
CUDA source code.

Code listing 4.2: LLVM IR generation

clang++-10 path source.cu --cuda-gpu-arch=sm_50 -pthread \
--cuda-path=/usr/local/cuda-10.1 -std=c++11 -fno-exceptions \
-stdlib=libstdc++ -S -emit-llvm -O3

Every CUDA source code kernel was transformed into IR with names corre-
sponding to their location using a bash script. By going through each folder and
sub-folder containing the kernels, they can then be compiled and named following
the format parent folder underscore sub-folder. The location is the unique identi-
fier in the LS-CAT dataset, as each IR has its path as a name. Thus, minimal effort
is required to access its run time data, only some minor formatting. Unfortunately,
some kernels were unable to be transformed into IR. In total, 19540 out of 20257
were transformed or 96%. This should, therefore, not be an issue. The combined
size of all the IR files is around 72 MB.

4.2 The inst2vec Pipeline and NCC

The inst2vec pipeline is used in all the later papers [4] [5], and creates embedding
based upon LLVM IR, and is trained using a range of different source codes. Since
the data embedding is one of the first steps taken in an NLP context, the efficiency
of this inst2vec needs to be evaluated as early as possible.

The NCC project comes with a pre-trained inst2vec model for the embedding
process, but it is possible to train the embedder with custom data. Using custom
data and training a new inst2vec model was not relevant in this project due to two
reasons. First, all the data should be conserved and not exposed to the model to
avoid any form of preemptive over-fitting that could occur. Second, the training
itself is a time-consuming process. This would delay all further development and
drastically halt any project progress.

While the inst2vec was not trained on the CUDA LLVM IR codes, it was still
capable of embedding parts of the code. Around 55 percent of code was not turned
into embeds. In comparison, the OpenCL kernels used initially had approximately
12-13 percent of non-embedding code. While the missing data posed a potential
issue, machine-learned models can perform with missing data in a lot of cases,
and missing data problems are their well-studied sub-field of study in machine
learning [23]. It was neither apparent what kind of data was missing or how vital
these statements might be. The NCC model was adapted to perform classification

Chapter 4: Applying NLP-ML Techniques to our LS-CAT Dataset 27

on the dataset, as this was regarded as one of the more straightforward tasks to
complete and evaluate.

The classifications are split into finding an optimal block and deciding whether
or not thread-block size 1024 was a "good" block size given a kernel and matrix
size. In addition, our LS-CAT dataset needs to have some transformations applied
to create the learning tasks. Data related to the T4 system was used in both cases,
as this data should be more stable.

For the optimal block a grouping operation is applied to the data on the kernel
and matrix combination. This results in more columns as every thread-block is
represented as a column header instead of stored in the row data.

Figure 4.1: Transform to find relative performance

To then find the optimal choice in each combination is picking the lowest
runtime number. This can indirectly be used to find the binary classification labels,
as the runtime of the 1024 thread-block can be compared with the lowest number.
This comparison is made by dividing the smallest number by the 1024 thread-
block such that one would indicate that 1024 is the optimal thread-block size.
The transformation is seen in Fig. 4.1. Next is deciding at what rate the binary
classification labels should be set and labeled either as "good" or "bad" choices.

This "good" factor was set to be above 0.99 percent of the optimal, and the
"bad" was set to be lower than 0.925 percent. This leaves a grey zone, but this task
is primarily for checking the learnability of the model given this type of problem
and dataset, and the amount of bad and good data is very close. The few extra
data samples were cut out to create a balanced dataset. The distribution of "good"
and "bad" is visualized as a histogram in Fig. 4.2.

28 L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

Figure 4.2: Distribution of 1024 thread-block size performance compared to op-
timal

To make the NCC model capable with the runtime data and classification la-
bels from the LS-CAT dataset, some modifications had to be made. First, the data
loader had to be replaced with loading both the LS-CAT runtime data and IR of the
kernels. Second, the NCC network itself was tweaked to work as a binary classifier,
with the LS-CAT data as an input.

The final results of the NCC model ended up being around 60 percent in binary
classification.

4.3 FastText Embedding

To evaluate if the inst2vec data loss did indeed pose a bigger problem than the
potential benefit of adopting the pipeline, independent text embedding had to be
tested out.

For this purpose, the tool FastText was chosen. FastText, developed by Face-
book, has some key features that make it stand out. It has the flexibility of cre-
ating custom length vectors based on input—the ability to use both the training
methods skip-gram and a chosen bag of word. There are also additional settings,
such as learning rate, that can be easily modified. This offers a lot of options as
different vector representations of the kernels could be tested out. The perhaps
most notable feature to FastText is that unseen data can also be represented by
the vectorization process, which was an issue with inst2vec. This new unseen data
would vectorize where text with similar semantic and syntactic values turns into
similar vectors.

A custom text prepossessing pipeline was created to generate FastText training
data. This could be reused to create a vector representation of any LLVM IR image.

Chapter 4: Applying NLP-ML Techniques to our LS-CAT Dataset 29

Each line of code was subjected to the following steps from the List 4.3.

Code listing 4.3: Data pre-processing regex steps.

processed_lines = []
for l in lines:
l=re.sub(r’\(.*?\)’, "", l) #Squishes statements between parentheses
l=re.sub(’\(’, ’␣’,l) #Removes parentheses
l=re.sub(’\)’, ’␣’,l) #Removes parentheses
l=re.sub(’,’, ’␣’,l) #Removes commas
l=re.sub(’␣+’, ’␣’,l) #Removes extra white spaces
processed_lines.append(l)

In the original pipeline, some more steps were present. However, such as re-
moving digits, initial testing showed that keeping the digits was a better option.

For the data training file that FastText requires to create an embedding model,
all the LLVM IR are read and line by line added to a single file. This file is then
fed into the FastText training function, and the finished trained model is stored for
later use.

To create vector embeds from the LLVM IR, a file is opened. Each token is
turned into a vector appended to a list, turned into a two-dimensional Numpy
array, and stored in a separate sub-folder with a name indicating which LLVM IR
it was made from. The training process is significantly faster by storing all the em-
beds as the generation process is only done once. However, this does come with
a potential downside, as the embedding layer is completely "frozen" for the en-
tire training sequence. The embedding is therefore unable to "learn". In this case,
the last layers and parameters should be able to take the weight of adjustments
needed, as shown in [24].

4.4 ML Pipeline

The new embeds created using FastText lacked a model to compare it to the NCC
model itself, which is mostly just LSTM cells. To give a fair comparison, a bare
LSTM network was used. To use the model, a Pytorch ML pipeline was designed.
This pipeline is used to load the embedded data, feed the data to a model, use
training and evaluation epochs, store results, save trained model weights, and
other auxiliary functionalities.

The pipeline has some important parts that can be broken down into a trainer,
data-loader, configuration, data, the FastText embedder, model, CSV data pre-
processor, and utilities. This is set up so that different versions of the same part
can be used depending on the task being done. The trainer determines which ver-
sion of the various components are used, and the trainer being used is chosen by
the main file being used.

4.4.1 Embedder

This is the embedder from the Section 4.3. The embedder is only used by the
pipeline when there are any changes to the embedding process.

30 L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

4.4.2 CSV Data Pre-Processing

The CSV data pre-processing is used to give additional depth to the data, annotate
or transform it. This is done in Jupyter notebook. Jupyter can store program execu-
tion progress and keeps track of any object. This was helpful as some of the dataset
transformations were time-consuming and frequent oversight over the data was
required to ensure everything was correct. The specific steps taken to create the
first anomaly and classification data sets are as follows.

4.4.3 Data

The data that the pipeline uses is organized using the following folder structure
as seen in Fig. 4.3.

Figure 4.3: Data folder structure

The sub-folder "raw" contains two more folders, an "embedded" and an "ir"
folder. The intermediate representations derived from the clang compiler are stored
in the "ir" folder. The "embedded" folder holds the embedded versions of the cor-
responding IR. Additionally, CSV has the entry for all the runtimes given a kernel
matrix and block is stored in the "raw" folder.

After the required dataset pre-processing, the runtime dataset is split and di-
vided into the test, train, and validation folders.

The CSV datasets for the learning tasks are similar, but they have each their
own set of unique columns, as shown in the Tables 4.1 and 4.2.

The binary classification data contains the runtime for the largest thread block
(1024), associated with the number 15 as its block number 15. The path column
directly correlates to the kernel being used, the first number is the project number,
and the second number is the kernel number. The time is the execution time for
that kernel and matrix. The diff_15 number is the difference between this runtime
and the optimal for that matrix kernel combination. The flag column is either zero
or one, depending on whether the diff_15 is lower than 0.925 or larger than 0.99.

The regression data contains the combination of kernel matrix and the runtime
for each thread-block size; this is a subset of columns as the entire set goes up to
15. The label column indicates the optimal thread block for any given matrix and

Chapter 4: Applying NLP-ML Techniques to our LS-CAT Dataset 31

Table 4.1: Binary classification CSV data

Table 4.2: Regression CSV data subset

kernel.

4.4.4 Configuration

The configuration file stores key hyperparameters, detailed in the Section 3.1.8.
The embedder settings and dataset information are also stored in the configura-
tion. As Jupyter notebook scripts handle the dataset modifications, the only viable
dataset setting is selecting which dataset to use. Whether or not to use the embed-
der to recreate the data, the embedder input/output dimension can be changed in
the embedder part of the configuration file. All normal hyperparameters can be set
in the trainer configuration part, including the number of training epochs and if
any previously saved weights should be loaded. The modular design makes it pos-
sible to use more than one configuration file. Still, compared to having multiple
model or training files, the added complexity would not be worth just remember-
ing or storing settings information.

4.4.5 Data-Loader

The data-loaders’ purpose is to load the saved data created from the embedder
and feed it to the trainer conveniently. This is done using a function to create a
data loader object, a custom dataset class, and a class to enable potential GPU
loading or device loading.

The function to create a data loader takes information from the configuration
file, information from the trainer about what part of the dataset should be loaded,

32 L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

and what device to use. By combining information from the trainer and configu-
ration, the correct dataset CSV file can be loaded. This file is loaded as a pandas
data frame and is used to generate a dataset object. This dataset object is then
used by the Pytorch "DataLoader" class and the batch size from the configuration.
This "DataLoader" object can return batched samples from the dataset, with each
batch having the size set by the configuration. As a default, the "DataLoader" re-
turns CPU localized samples, but for greater performance, data samples should be
stored and returned on the GPU. The basic "DataLoader" can be encapsulated by
another class to enable potential GPU loading. This new class uses moving data
samples to the available device and the Python yield generator to create a GPU
data loader.

The custom dataset class contains some simple functionalities such as storing
the pandas data frame, returning the length, and item retrieval. The characteristics
for item retrieval differ based on the task being performed, and this information
will be better detailed in Sections 4.6 and 4.7.

4.4.6 Utilities

There are some shared utility functions for both of the different learning tasks,
either relating to loading information onto the correct device or GPU and stor-
ing and loading trained weights. In addition, the scoring metric is also a utility
function but is keyed to the task being performed and not detailed in this section.

The device loading functions are used primarily by the trainer and data-loader,
with the explicit purpose of moving data to the GPU if possible. To determine if a
CUDA capable GPU device is available, the Pytorch method "torch.Cuda.is_available"
should be used. After doing this, loading CPU data to the GPU is done using the
Pytorch ".to" method and setting the device parameter. This method is available
to Pytorch tensors, and any data that should be on the GPU requires to be trans-
formed to a Pytorch tensor.

Managing trained weights are done using a saving function and two different
loading functions, one for the last training epoch and one for the current best
epoch. As the model is trained and evaluated, the saving function gets called by
the trainer with a boolean to determine if it’s the current best performing one. If
the current model is the best one, an additional copy is stored with the designation
"best", then a copy is stored with a name corresponding with the global training
step. To clear up storage, any previous non best saves are deleted. A list containing
the names of all the saved weights is also updated with the training step taken.
The function to load the best weights uses the static name-space, and the function
to load the last weight uses the list as mentioned above to find the latest saved
weights.

4.4.7 Trainer

The trainer uses the data loader’s data and uses a target function and the con-
figuration hyperparameters to perform machine learning training and evaluation.

Chapter 4: Applying NLP-ML Techniques to our LS-CAT Dataset 33

This is done using a training class with some helper functions for training, testing,
evaluation, loading, saving, and initializing data.

The data initializing and loading is done when creating the trainer object.
The configuration settings and a name for keeping track of the setup are taken as
input parameters first as they are required for later steps. The Pytorch optimizer
is created using either SGD or Adam and the configuration. The loss criterion
is designated, which for binary classification is BCEWithLogitsLoss. A model is
created using the chosen model file. The training test and validation datasets are
loaded. Then based on the configuration, saved weights can be loaded. Several
python collections ordered dictionary objects are created to organize and keep
track of all the results for any training or evaluation being done. There are ordered
dictionaries for training loss, test loss, validation loss, test, and validation accuracy
in the basic solution. Additionally, a timer is initialized to keep track of the training
speed.

The validation and evaluation are very similar but are called at different inter-
vals during the training cycle and use their respective datasets. First, the model is
set to evaluation mode, as this avoids any weight adjustments and need for back-
ward passes, then the relevant performance metric function gets called based on
the learning task being done. The result from this performance metric is then
stored in the corresponding ordered dictionary. Finally, the model is put back into
training mode. Then the console prints the results, epoch and training step count,
and the number of batches being calculated per second. The batches per the sec-
ond number are calculated using the total training step count and total time spent.

The primary function of the trainer class is the training function. It is here
that the model performs forward and backward passes calculate training loss, and
calls any potential evaluation to be done after set intervals. The trainer class uses
a double looping structure to repeat all the needed steps and finishes by storing
the ordered dictionaries. This trainer function is illustrated in Fig. 4.4.

34 L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

Figure 4.4: The entirety of the training process found in the trainer class

Chapter 4: Applying NLP-ML Techniques to our LS-CAT Dataset 35

4.4.8 Model

The NCC model, which was tested out previously, is LSTM based, and this new
Pytorch model should also be based on LSTM modules as this would make a better
comparison between the embedding techniques instead of the later parts of the
model.

The models are based on the standard model classes used in Pytorch. This
means that there is an initialization function and a forward pass function. The ini-
tialize function is used to declare any variables, Pytorch machine learning struc-
tures, activation functions, and weight initializing. The basic network requires
only the Pytorch LSTM module, Linear layers, activation function, and embed-
ding layers.

The LSTM module is based on the LSTM cell described in Section 3.1.4, and is
a parallel combination of these cells, with adjustable input size, sequence length,
and hidden dimension.

The embedding layer is a Pytorch improved version of one-hot-encoding. This
module transforms a vector of integers into a two-dimensional matrix that can
represent the distinct integers as separate entities and not a discrete series. Any
particular auxiliary information, such as the type of matrix, can be passed through
an embedding module.

The linear or dense layer can be used to combine the output of the LSTM
module and embedder, and at the same time, shape the dimensions to fit the
target dimensions.

The model itself, shown in Fig. 4.5a, is structured such that the FastText em-
beds are fed directly into the LSTM module. However, the outputted tensor has
three dimensions, and both the embedder and dense linear layer works with two
dimensions. To solve this conflict, the outputted tensor is transposed such that the
batch dimension is first, same as in the linear layer, then a view transform is ap-
plied, which changes the three-dimension (batch, x, y) tensor into a (batch, x*y)
tensor. After the transformation, this new tensor is then combined with the ma-
trix information using the embedding module. The resulting tensor goes through
a series of linear layers, with each layer reducing the number of neurons until the
final layer reduces the tensor to the target shape.

Another more advanced model was also made, an LSTM Encoder-Decoder
with self-attention, the attention mechanism is described in Section 3.1.5. The
new model is illustrated in Fig. 4.5b.

36 L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

(a) The basic LSTM model setup
(b) The LS-CAT self multi attention LSTM net-
work

Figure 4.5: The design for the two different core ML models

Chapter 4: Applying NLP-ML Techniques to our LS-CAT Dataset 37

4.5 Evaluation of FastText

To evaluate the embeds created using FastText, the same learning tasks used in
combination with the inst2vec pipeline and NCC model had to be repeated. Overall
this FastText and basic LSTM model outperformed the inst2vec and NCC model by
around 7 percent which is quite significant. The most probable cause is the data
loss caused by the inst2vec pipeline. Fixing this pipeline error would be quite hard
as extensive knowledge would be required. Even the inst2vec NCC project has data
loss on its thread-coarsening task. This would likely indicate that fixing this part
of the pipeline is indeed a difficult task to overtake.

Instead of working on the faults in the inst2vec pipeline, attempting to refine
the model, FastText embedding, and this new machine learning pipeline, would
likely be more beneficial. More practical learning tasks to get potential marketable
results would have to be designed.

The results for this model indicated a strong advantage over the inst2vec +
NCC model solution, which had an accuracy of 0.604 on the same dataset. The
basic model + FastText embedding achieved an accuracy of 0.67. This shows that
the inst2vec data-loss gives quite a disadvantage, as the models themselves should
perform similarly. The practical learning task models are therefore using FastText
embedding, and not inst2vec.

4.6 Binary Classification Model

There are some key reasons why a binary classification model could be useful
for thread-coarsening. Firstly the error cost is comparatively low to other classi-
fication scenarios, as a non-optimal thread-block would still have a performance
that’s not zero. Secondly, using the largest thread-block size is best, but has some
scenarios where this is not the case. Another thread-block size might significantly
outperform block size 1024 in its worst cases and could be used as a second al-
ternative. Switching between these two cases could give good results depending
on the accuracy, precision, recall values of the model and yield a performance in-
crease compared to relying solely on the best block size. Theoretical results can
also be computed beforehand. It should be possible to find this second thread-
block for the binary classification model using just these preemptive calculations.

The first step is calculating different scenarios of model performance and what
results can be achieved with that performance. To evaluate this methodology, a
good second thread-block option needs to be located, as the good first option
needs a good second option in the case of errors. Using Pandas, the dataset is
split up in any given way, and all the different thread-blocks can be compared in
different accuracy scenarios. In this case, the perceived accuracy and potentially
the threshold are crucial to determining a good and bad scenario for block size
1024. Earlier attempts at creating a basic model gave an accuracy of 0.67 percent,
with the threshold being 0.925 and 0.99 for the 1024 block size. This can be used
for testing purposes without actually creating the model beforehand to see what

38 L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

type of performance can be expected. However, this type of threshold makes an
obvious "grey-zone" between 0.925-0.99, and this needs to be taken into account
to get accurate performance results.

A script was made to test out some theoretical scenarios. This script divides the
dataset based on the threshold conditions given. Then the parts were designated
"good" and "bad". Using these two sets, the mean of all the other thread-blocks for
that set can be calculated. Combining the mean values for the 1024 thread-block
size at each threshold with the different mean values makes it possible to estimate
probable performance.

The binary classifier has two choices, either the 1024 or another block size.
If the classifier had a hundred percent accuracy, the performance would be the
mean performance of the 1024 block size in the "good" set and another block size
mean performance in the "bad" set.

per f = (good1024 + badblock)/2

As the classifier will not have a hundred percent accuracy, the wrong predic-
tion cost must be taken into account. Which is the mean of the 1024 block size
in the "bad" set and the mean of another block in the "good" set. Thus, using an
accuracy variable, the cost of good guesses and bad guesses can be calculated.

per f = acc ∗ (good1024 + badblock)/2+ (1− acc) ∗ (bad1024 + goodblock)/2

The following heat-map of thread block sizes performance in the above sce-
narios given the thresholds of 0.9759 and 0.976, as this threshold avoids any
grey-zone and results in a near perfect split. The resulting performance for the
accuracies: 0.55, 0.6, 0.65 and 0.67, are represented as a heat-map in Fig. 4.6.

Chapter 4: Applying NLP-ML Techniques to our LS-CAT Dataset 39

Figure 4.6: Pre-calculated performance given accuracy levels

The 896 thread-block sizes showed themselves to be the best possible choice,
followed by 832 and 640. Therefore, the binary classifier decides to use either the
thread-block size 1024 or 896 in a given scenario.

The dataset used for this task has the following columns and value formats,
as seen in Table 4.3.

Table 4.3: Binary classification task

The diff_13 is the thread-block size 896 performance concerning the optimal,
and diff_15 is the relative performance optimal for the thread-block size 1024.

The binary classifiers data loaders item retrieval function loads the Numpy

40 L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

array associated with the path, matrix ID, diff_13 diff_15 as a combined vector,
and the flag target value. The binary classifiers trainer uses this data by feeding
the model and calculates the BCE loss using the outputted value and the flag.

For each evaluation and test call, the model’s accuracy and the performance of
its block choice are measured. This performance figure is made using the diff_13
diff_15 vector combination and selecting the effect of the model choice for each
combination. This logic is illustrated in Fig. 4.7.

Figure 4.7: Binary classification evaluation

In this case, the thread-block size 1024 or diff_15 is selected each time the
output is one, marked with green. The accuracy of the model in this example was
60 percent, and the performance 0.95. This is an improvement of the average
1024 thread-block size performance.

To find a network configuration that worked. A lot of adjustments had to be
made to the model. The learning rate, batch size, and dense layer dimensions were
found by repeated adjustments. The learning rate should have a value between
0.00001-0.0001. A learning rate decay function was also applied, this concept is
described in Section 3.1.9. The decay function adjusts the higher-end learning
rate down to the lower-end learning rate at a constant pace. The batch size could
vary between 128-256, and this is common in NLP tasks [25]. The dense layer di-
mensions ended up being 5-10 linear layers and a hidden size of 500. Additionally,
stacked LSTM modules were tried out with little success.

Classification and binary classification allows for using a threshold value. This
value can impact when the output is counted as one or a zero. Any value above 0.5
is calculated as a one in binary classification, and anything less as zero. A script
was designed to find the impact of a changing threshold and graph the precision
and recall curve for the model. This would make it possible to adjust for error cost

Chapter 4: Applying NLP-ML Techniques to our LS-CAT Dataset 41

and avoid potential bad predictions.

4.7 Regression Oriented Models

As the score of each thread-block can be expressed as discrete numbers and not
just an optimal choice, means that regression techniques can be used. The model
can be inputted a matrix IR combination and output a series of discrete numbers,
one for each thread-block. A prediction would be picking the optimal value, as
that number would be linked directly to a specific thread-block size. Alternatively,
the model could output a single digit for the input of matrix, IR, and thread-block.
This setup would, however, require multiple predictions and results in comparison
for finding the optimal thread-block size. The multiple predictions model is shown
in Fig. 4.8.

Figure 4.8: The regression output and targets

In this case, the model has only five thread-blocks, for illustration purposes.
Each thread-block option is represented by its green node and represents a differ-
ent amount of thread-coarsening. Each of the thread-block nodes has its output
and target value. These output values are compared with the target values using

42 L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

a loss function. As the model improves and the difference between the targets and
outputs diminishes, it should be possible to either get the best or a good thread-
block by picking, in this case, the lowest runtime number. In this example, the
lowest runtime outputted by the model is 209, which corresponds to the fourth
thread-block, while the real optimal would have been thread-block number five.
Overall the model was not too far off with its prediction, and avoided the worst
outcomes, and performed better than the average choice. If the model can pre-
vent enough bad thread-block outcomes and pick better or the best thread-block,
it would have a clear advantage over random choice and could outperform select-
ing the most frequently good option (block size 1024).

The relationship between the numbers matters more than the real numeric
output value. For example, if the model above, instead of predicting 220, 232,
231, 209, 215 and instead predicted 318, 331, 333, 316, 312, the model would
have a significantly higher loss, but the indirect prediction of picking the optimal
thread-block would have been correct.

The outputted values are pretty high, and machine learning models tend to
like values between 0 and 1 as this can avoid phenomena such as gradient ex-
plosion. Therefore, it might be necessary to transform the target values, using a
transformation function to make the regression task possible. In this case, the Soft-
max activation function can be used to keep the relationship between the num-
bers, which is vital in this learning task. Alternatively, the relationship between
the numbers could also be used directly to transform the values, for instance, di-
vision by max. Transformations such as the Sigmoid activation would also alter
the values to the range of 0 to 1, but at the loss of fine resolution, and is therefore
not applicable.

Two target transformations were designed, and can be seen in Listings 4.4 and
4.5.

Code listing 4.4: First target transformation

def target_transform(Y):
Y = Y.min()/Y
return Y

Code listing 4.5: Second target transformation Softmax

def softmax_transform(Y,constant):
Y = Y/Y.max()
Y = np.exp(Y * constant)
Y /= np.sum(Y)
Y /= Y.max()
return Y

Chapter 4: Applying NLP-ML Techniques to our LS-CAT Dataset 43

Table 4.4: Regression subset without all 15 thread-block ids

The data loader item retrieval for the regression works similar to that of the
binary classifier. However, instead of a flag value, all the runtimes are combined to
a single vector and returned in its place. The label column represents the optimal
thread-block size id.

We used the exact model setups as in the binary classification, with changes
to the number of output neurons. Regression with no target transformation was
attempted using the dataset as is, shown in Table 4.4. Neither L1 or MSE loss
proved able to beat random choice, as the model could not distinguish the fi-
nite differences between such large numbers or their abstract relationship. Target
transformations had to be applied, in this case, the optimal time divided by time,
seen in List 4.4. Using the transformation the alternative dataset was generated,
shown in Table 4.5.

Table 4.5: Regression subset with transformations without all 15 thread-block
ids

To accommodate for this change, the data loader item retrieval was modified
by using the diff values instead of runtimes, and an optional Softmax transforma-
tion was added as described in List 4.5, which can be applied to the diff target
vector with variation in the exponent constant.

The target values are now all floating in the range of 0-1, which makes it
possible to utilize BCE loss, not in the sense of binary cross-entropy loss, but rather
multi-label loss. Each thread-block size can be described as being a deviation from
the optimal or partly being the optimal class. The LS-CAT regression task can
therefore use this loss function and the other regression functions either one by
one or as a hybridization.

The regression task measures the performance the same way as the binary
classification, by letting the output layer select a potential thread-block size and

44 L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

evaluating the average performance of the choices made. This process is illustrated
in Fig. 4.9.

Figure 4.9: Evaluating the performance of the regression model

Selected thread-block sizes are marked as green, the overlap with the optimal
thread-block size is marked with a border, non selected optimal sizes are marked
blue. As the model is not explicitly trained to identify the best block size but rather
good options, measuring accuracy is not essential.

Chapter 5

Results and Benchmarks

Since there were several variations in methodology to perform the same task and
variations in models, each combination should have its independent results. These
models have some difference in metrics but can then be directly compared with
each other using the shared "performance" metric, as described in Section 4.6.
First, the binary classifier results are presented. Then the regression-based model
results are presented. Lastly, a cross-method comparison is performed.

5.1 Binary Classifier

The binary classifier’s primary results are the accuracy and real performance of
the model. Further, the impact of adjusting the threshold variable can also be
displayed as graphs. Finally, the precision-recall curve can give insight into the
models learning capabilities.

5.1.1 LS-CAT LSTM Model

The LSTM network reached minimum test loss after 40 thousand training steps.
After that, accuracy continued to increase until around 100 thousand training
steps and getting a maximum value of approximately 60.05. The potential perfor-
mance increased drastically during the first few training steps, so quick that the
first result beat the option of always using the 1024 block size, then it remained
stable at around 0.9452 with a single peak of about 0.9458, shown in Graph 5.1.

Using the threshold variable in the case of the LSTM network, did not increase
the performance as the default value of 0.5 scored the highest, shown in Graph
5.2.

5.1.2 LS-CAT LSTM Self-Attention

The self-attention LSTM network reached minimum test loss and the highest ac-
curacy after around 50 thousand training steps. The accuracy ended up being
somewhat lower than the pure LSTM network and hovering around 59.8 percent.

45

46 L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

Figure 5.1: The binary classification LSTM model results

Chapter 5: Results and Benchmarks 47

Figure 5.2: The threshold effect on the binary classification LSTM model results

The potential performance increased slower than the pure LSTM network, and
the stopping point overlaps with the training loss and accuracy at 50 thousand
steps. All of these results are in the Graph 5.3.

In this case using another threshold variable than the default would lead to
an increase in performance, and a threshold of 0.38 could potentially boost the
performance of this network. The threshold is graphed out in Fig. 5.4.

The precision recall curve, as seen in Fig. 5.5. Was very similar for both of the
models, and in both cases there is a correlation with higher precision to lower
recall, disregarding the small precision fluctuation at the lower recall values. By
plotting the results together the pure LSTM based network has higher accuracy,
but the potential performance is very similar for both of the models. The results
are compared in the Fig. 5.6.

5.1.3 LS-CAT LSTM Self-Attention

5.2 Regression Results

The results of the regression task only include the loss and potential performance
the model would have caused. The initial regression models used both MSE and
L1 loss. Due to the transformation, found in the List 4.4. BCE-loss can compute
multi-label loss. While strictly not a regression type loss, it operates with discrete
targets.

48 L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

Figure 5.3: The binary classification LSTM model with self-attention results

Chapter 5: Results and Benchmarks 49

Figure 5.4: The threshold effect on the binary classification LSTM model with
self-attention results

Figure 5.5: The precision recall curve of the LSTM and LSTM Self-Attention mod-
els

50 L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

Figure 5.6: Comparison of the binary classification LSTM and LSTM with self-
attention

5.2.1 LS-CAT LSTM Model

First MSE, L1, and BCE loss are each applied to the transformed target values, as
loss criterions in the training process. Displayed in the Graphs 5.7-5.9.

The L1 loss has a noticeable performance lack, shown in Graph 5.7. The only
loss function with no over-fitting was the BCE loss function, shown in Graph 5.8.
Due to its shortcomings, the L1 loss was dropped in favor of MSE and BCE loss. All
of the graphs have a noticeable dip at specific points, likely caused due to the low
difference between the target values. To counteract this dipping effect, an addi-
tional target transform is applied. Using an adjusted Softmax function, described
in List 4.5, with an increased exponent, the difference between the target values
should increase, and this might increase the model’s ability to distinguish them.

Using the same LSTM-network, and applying the Softmax transformation,
from List 4.5, before training. However, in this case, the loss drops rapidly before
50 thousand training steps but keeps decreasing slightly as the training continues.
As a result, the performance curve lacks a significant downward spike. Instead,
the curve keeps a slight increase over time after 50 thousand training steps, shown
in Graphs 5.10 and 5.11.

5.2.2 LS-CAT LSTM Self-Attention

Using the transformation described in List 4.5, the LSTM and self-attention net-
work is retrained using both BCE and MSE loss.

The model with the included Self-Attention and MSE loss has very similar
characteristics to the pure LSTM model, only reaching a lower performance and
somewhat higher loss, seen in the Graph 5.12.

Using BCE loss created more differences between the models than MSE. Dis-
regarding the early loss oscillation, the loss diminishes quickly until 100 thou-

Chapter 5: Results and Benchmarks 51

Figure 5.7: The regression LSTM model with no target transform and L1 loss

Figure 5.8: The regression LSTM model with no target transform and MSE loss

Figure 5.9: The regression LSTM model with no target transform and BCE loss

52 L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

Figure 5.10: The MSE LSTM model with a 10x transform

Figure 5.11: The MSE LSTM model with a 10x transform

Figure 5.12: The MSE LSTM model with self-attention and a 10x transform

Chapter 5: Results and Benchmarks 53

Figure 5.13: The BCE LSTM model with self-attention and a 10x transform

Figure 5.14: Comparison of the LSTM and LSTM with self-attention models using
BCE

sand training steps, and then the decrease is less pronounced. The performance
increase overlaps with the loss decrease and tapers off at around 100 thousand
training steps, illustrated in Graph 5.13.

Comparing the regression task performance of the LSTM and LSTM with self-
attention, highlights how similarly they performed after 100 thousand training
steps. The pure LSTM network has a greater initial increase in performance, and
the self-attention network had a much higher degree of oscillation. The BCE loss
function creates the greatest difference between the two models. Shown in the
Graphs 5.14 and 5.15.

At almost all points during the training BCE outperformed MSE, with the ex-
ception of the very beginning, seen in Graphs 4.3 5.17.

Comparing the regression performance using BCE and binary classification
tasks, the superiority of the regression task in both the self-attention and pure

54 L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

Figure 5.15: Comparison of the LSTM and LSTM with self-attention models using
MSE

Figure 5.16: Comparison of the LSTM models using MSE or BCE

Chapter 5: Results and Benchmarks 55

Figure 5.17: Comparison of the LSTM and self-attention models using MSE or
BCE

Figure 5.18: Comparison of the BCE regression LSTM binary classification LSTM

LSTM models is displayed. In both cases the regression task outperformed the
binary classification somewhere between 25-50 thousand training steps. As shown
in Graphs 5.18 and 5.19.

Overall the best configuration was the multi-label loss with a twelve exponent,
self-attention, and 256 batch size. The best configuration results are shown in the
Graph 5.20. Scoring a performance of 0.9483, this exact performance is an outlier
and only case of the self-attention networks performing better than those without.

56 L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

Figure 5.19: Comparison of the BCE regression LSTM+self-attention and binary
classification LSTM+self-attention

Figure 5.20: Best single point performing model

Chapter 6

Discussion

During the thesis we were able to discover several vital findings. In this chapter
we will present these findings, including the choice of embedding, evaluation of
the model’s results, and evaluation of our LS-CAT dataset.

6.1 Embedding

The choice of embedding method and embedding sophistication proved to have
a significant impact on overall performance in all learning tasks, [3]. Due to the
LS-CAT dataset consisting of CUDA LLVM IR, the inst2vec was unable to translate a
sufficient amount of tokens. More than half of the IR were lost during the embed-
ding process using the inst2vec embedder. Therefore, the sophisticated inst2vec
embedder had to be replaced with a simpler skip-gram-based embedder. The al-
ternative embedder outperformed the inst2vec embedder, most likely due to the
loss-less embedding process. If the inst2vec embedder were to be modified to han-
dle more CUDA LLVM IR tokens and have the same token loss rate as in its original
case of around 12 percent, inst2vec might perform better than the simpler skip-
gram FastText embedder.

There is at least one key reason why inst2vec still might not outperform sim-
ple skip-gram. Compared to typical source code and program flow. Kernels are
designed with linear execution in mind. Due to the cost of advanced program
behavior in GPU programming. The main advantage of the inst2vec is clarifying
more advanced program behavior for a machine-learned model. The level of com-
plexity innate in the kernels and the ability of inst2vec to accurately represent this
complexity would be essential factors to take into account. If the level of complex-
ity is low in the kernels, direct linear representation might be enough. However,
suppose the kernels have a high degree of instruction jumps and other non-linear
program behavior or complex instruction calls. In that case, basic linear represen-
tation might not be sufficient, and more complex representation such as inst2vec
should be preferable. An analysis of the complexity of the kernel could potentially
be performed using unsupervised clustering.

57

58 L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

To accommodate for the CUDA LLVM IR tokens, the inst2vec embedder has
to be modified, or another complex embedder could be created using the same
principles as those used in the inst2vec.

6.2 LS-CAT ML Models Results

Overall both the binary classification and regression-based tasks outperformed the
choice of relying solely on the thread-block size 1024. Regression-based methods
outperformed the binary classifier. The second model consisting of a self-attention
module between the LSTM encoder decoders performed somewhat worse than
the pure LSTM model. However, the semi adversarial behavior of the encoder-
decoder attention, where adjustments in the encoder or attention increase the
training difficulty for the decoder, increased the generality of the model. In the
case of the self-attention with BCE, multi-label loss, the Graph 5.13 show these
three qualities: The adversity effect is apparent in the loss graph. The test loss is
the average of the training loss. The validation performance has a high degree
of overlap between the training loss training step-wise. Combined, all of these
factors would indicate an actual learning process and not over-fitting. While not
scoring higher than the pure LSTM model, machine learning has to create general
model solutions to complex problems, and this was displayed to a much higher
degree in the self-attention-based model.

In comparison, the binary classification task showed signs of gradual over-
fitting seen in both Graphs 5.1 and 5.3, as the test loss graph diverges upwards
from the training loss, but remaining within the range of the training loss oscilla-
tion. The threshold graphs did indicate a weak correlation between the recall and
precision, which can’t give a definite answer about the learning process. Stronger
correlations would likely signal a learning process, and no correlation would con-
versely indicate memorization. The threshold influence graphs give insight into
some of the issues with this exact methodology. In this case, the easier to predict
samples does not significantly impact the performance, meaning the difference
between the two block is low when the model has high enough accuracy to more
frequently pick the correctly labeled size.

The regression method using MSE loss seen in Graph 5.9, displayed the highest
amount of over-fitting, and the validation training loss hoovered high above the
training loss.

6.3 LS-CAT ML Model Architecture Variations

Several variations in model dimensions, combinations of loss types were tried out.
At the same time, increased model complexity can lead to an increase in model
performance, at the cost of training performance, and potential over-fitting. Ex-
cept for the dense output layers, the input size determined directly or indirectly
all the other layer’s parameter count. Due to the model structure and inclusion

Chapter 6: Discussion 59

of self-attention, and having the model without self-attention being as similar as
possible. Input sizes larger than 80 incurred a significant training speed reduc-
tion, and input sizes above 240 would be unfeasible time-wise. No increase in
performance was observed at an embedder input size larger than 40. If the mod-
els did not use this self-attention model, the input size would not dictate all the
dimensions, and different values for sizes, could be tested.

Model depth is the number of layers the model uses in its internal structure.
The depth is one way to increase a model’s ability to represent abstract relation-
ships between the data and internal data structures. The models relied on 5-10
linear dense layers. Any more layers showed no increase in the model’s perfor-
mance. This was also the case for an increase in the amount of LSTM layers or
amount of stacking. The likely reason these potential improvements did nothing
was the increased distance between the target parameters and the crucial first
layer of LSTM cells. The relation between these parts would be a lot more ab-
stract with the added model depth.

By combining the cross-entropy loss with a regression loss, the model should
also be punished for not predicting the best thread-block size. Unfortunately, this
did not work, and any configuration or variation in the models using cross-entropy
loss resulted in a performance score around picking the average kernel. Therefore,
the multi-target classification was judged not to be a feasible solution to the se-
lection of adequate thread-block sizes.

6.4 Evaluation of our LS-CAT Dataset

To evaluate our LS-CAT dataset, one could start looking at the performance of
the models or compare the results achieved at LS-CAT with the results from the
[2] OpenCL dataset. However, comparing the results from each dataset would
be pretty unfair due to the difference in select-able thread-block sizes or thread-
coarsening levels. The earlier works dataset has only six levels, compared to our
LS-CAT dataset, sixteen levels.

Fewer possible choices result in a higher degree of distinction between the
choices, and this distinction might both make thread-coarsening appear more lu-
crative and also easier to perform. As an example, we can compare four levels vs.
eight levels of thread-coarsening, seen in Fig. 6.1.

60 L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

Figure 6.1: Comparison of four and eight levels of thread-coarsening - Displayed
as difference from optimal

In this case, the average performance of the thread-coarsening levels is the
same at 97 percent and has the same median of 97 percent. There is less variation
for each thread-coarsening level at the example with eight levels, making them
harder to distinguish from each other than four levels. As a test, the LS-CAT dataset
was reduced from sixteen levels to only eight levels. The consequence was an
immediate jump in perceived performance, displayed in the Graph 6.2, using only
a prototype model.

Figure 6.2: LS-CAT with only eight thread-block sizes

This reduction in choices of thread-block sizes gives also an impression of
higher performance. The process of going from sixteen to eight thread-block sizes
ends up removing a lot of the best performing scenarios, which falsely increases
the overall average performance. The different results from each dataset can there-
fore not be compared fairly.

For these reasons, our LS-CAT dataset can not be judged by making a simple
model result comparison with this earlier dataset. Instead, seeing how the models
performed on our LS-CAT, compared to random choice, and relying solely on the
best block size would be better. There was enough semantic information in the

Chapter 6: Discussion 61

kernel IR, for a model (0.9483) to outperform both random choices (0.94) and
only select the largest thread-block size (1024) (0.9437). Several models gave
results indicating strongly that a learning process and not memorization was per-
formed. Also, a model relying on only the matrix run-time and name gave results
similar to random choice. The presence of this semantic information implies both
that the LS-CAT dataset is valid and that a kernel’s source code has sufficiently
distinct information that makes abstract learning tasks possible to perform. Taken
this into account the LS-CAT dataset works.

Chapter 7

Conclusions and Future Work

Performance tuning tasks are hardly possible for humans to perform by hand.
However without tuning, software ends up lacking key low-level optimizations,
causing a drop in overall performance. Furthermore, current autotuners rely on
extensive search processes, which can end up being more time-consuming than
time-saving. As shown in this thesis, machine learning can reduce or almost nul-
lify the search process, and in turn, create better autotuners. New source code-
based ML autotuners have performed a range of different tasks but require large
datasets. With this in mind, we created a code base and dataset generator LS-CAT.
The first dataset can be used for finding thread-block sizes for a kernel matrix com-
bination. This thesis applied natural language processing and machine learning
techniques to our LS-CAT dataset.

The goal of having a model select thread-block sizes to increase the perfor-
mance was met. Two main methods and two main models proved to beat the per-
formance associated with the largest thread-block size. With the best configuration
scoring 0.9483, an increase of 0.49 percent over the largest block. The multi-label
loss-based regression proved to be the most efficient, followed by more normal re-
gression and then binary classification. While the self-attention-based models gave
a less overall performance. The network’s self adversarial properties increased the
learning difficulty and increased the generality, which is very desired in machine
learning models.

The self-attention model with multi-label loss indicated more strongly a learn-
ing process than the other models. Regression using MSE or L1 loss and the binary
classification resulted in over-fitting. Overall the results for the different models
indicated that the semantic information in the source code was enough to learn
the abstract relationship between relative performance, source code, thread-block
size, and matrix size. This would strengthen earlier claims that source code can
be used to learn abstract program features. Even if earlier attempts used a very
small dataset, it’s entirely possible that their model did learn enough features and
did not over-fit or memorize the data.

The embedding process of inst2vec, which was deemed significant in earlier
projects, had issues with data loss when transforming the intermediate represen-

62

Chapter 7: Conclusions and Future Work 63

tation to numeric data. The CUDA-based LLVM IR had around five times the data
loss as the OpenCL LLVM IR, which the earlier projects utilized. The solution to
this was implementing skip-gram-based methods using the tool FastText, as this
is a fully lossless process. A prototype learning task of binary classification was
designed as a test. In this test inst2vec was outperformed by the more uncom-
plicated skip-gram method, likely due to the data loss. The potential benefit of
a more complex embedding process that does not also include high data loss re-
mains, therefore, unexplored on our LS-CAT.

Future Work

Ideally, an embedding process more adapted to source code and handling a broader
range of tokens should be developed. This sophisticated embedder could be fairly
tested in comparison with lossless skip-gram. This could be done potentially by
improving upon the inst2vec pipeline and its interpretation of LLVM IR tokens.
inst2vec’s biggest issue revolved around data-loss. There are several ways to miti-
gate data loss. For instance, improve the handling for unseen tokens, rather than
just dropping them. Or instead, increasing the amount of seen tokens during train-
ing would directly diminish data loss. As a last alternative, have a custom user-
defined parser for the unseen tokens. This user-defined parser would avoid the
potential issue and not put too much work on the developers. There are probably
more special cases than just CUDA Clang LLVM IR tokens not being recognized
by their system, as the developers were fine with a twelve percent loss associated
with the OpenCL data.

This project focused solely on the use case of finding thread-block sizes. The
base LS-CAT source code and result generator can be used for a range of differ-
ent scenarios. For example, LS-CAT could create datasets for other tasks such as
heterogeneous device mapping, or measurements such as energy consumption,
instead of just time and thread-block sizes. Machine learned models are partly
problem agnostic and more dependent on either type of data or specific dataset,
so the models mentioned in this paper would work on other learning tasks.

Bibliography

[1] L. Bjertnes, J. O. Tørring, and C. A. Elster, “Ls-cat: A large-scale cuda au-
totuning dataset,” IEEE International Conference on Applied Artificial Intel-
ligence (ICAPAI 2021), vol. 31, May 2021.

[2] C. Cummins, P. Petoumenos, Z. Wang, and H. Leather, “End-to-End Deep
Learning of Optimization Heuristics,” en, in 2017 26th International Con-
ference on Parallel Architectures and Compilation Techniques (PACT), Port-
land, OR: IEEE, Sep. 2017, pp. 219–232, ISBN: 978-1-5090-6764-0. DOI:
10.1109/PACT.2017.24. [Online]. Available: http://ieeexplore.ieee.
org/document/8091247/ (visited on 10/31/2020).

[3] T. Ben-Nun, A. S. Jakobovits, and T. Hoefler, “Neural Code Comprehension:
A Learnable Representation of Code Semantics,” en, arXiv:1806.07336 [cs,
stat], Nov. 2018, arXiv: 1806.07336. [Online]. Available: http://arxiv.
org/abs/1806.07336 (visited on 10/31/2020).

[4] A. Brauckmann, A. Goens, S. Ertel, and J. Castrillon, “Compiler-based graph
representations for deep learning models of code,” en, in Proceedings of the
29th International Conference on Compiler Construction, San Diego CA USA:
ACM, Feb. 2020, pp. 201–211, ISBN: 978-1-4503-7120-9. DOI: 10.1145/
3377555.3377894. [Online]. Available: https://dl.acm.org/doi/10.
1145/3377555.3377894 (visited on 10/31/2020).

[5] C. Cummins, Z. V. Fisches, T. Ben-Nun, T. Hoefler, and H. Leather, “Pro-
GraML: Graph-based Deep Learning for Program Optimization and Analy-
sis,” en, arXiv:2003.10536 [cs, stat], Mar. 2020, arXiv: 2003.10536. [On-
line]. Available: http://arxiv.org/abs/2003.10536 (visited on 10/31/2020).

[6] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed deep
learning: An in-depth concurrency analysis,” ACM Comput. Surv., vol. 52,
no. 4, Aug. 2019, ISSN: 0360-0300. DOI: 10.1145/3320060. [Online]. Avail-
able: https://doi.org/10.1145/3320060.

[7] R. C. Whaley and J. J. Dongarra, “Automatically Tuned Linear Algebra Soft-
ware,” in SC ’98: Proceedings of the 1998 ACM/IEEE Conference on Super-
computing, Nov. 1998, pp. 38–38. DOI: 10.1109/SC.1998.10004.

64

https://doi.org/10.1109/PACT.2017.24
http://ieeexplore.ieee.org/document/8091247/
http://ieeexplore.ieee.org/document/8091247/
http://arxiv.org/abs/1806.07336
http://arxiv.org/abs/1806.07336
https://doi.org/10.1145/3377555.3377894
https://doi.org/10.1145/3377555.3377894
https://dl.acm.org/doi/10.1145/3377555.3377894
https://dl.acm.org/doi/10.1145/3377555.3377894
http://arxiv.org/abs/2003.10536
https://doi.org/10.1145/3320060
https://doi.org/10.1145/3320060
https://doi.org/10.1109/SC.1998.10004

Bibliography 65

[8] M. Frigo and S. Johnson, “The Design and Implementation of FFTW3,”
en, Proceedings of the IEEE, vol. 93, no. 2, pp. 216–231, Feb. 2005, ISSN:
0018-9219. DOI: 10.1109/JPROC.2004.840301. [Online]. Available: http:
//ieeexplore.ieee.org/document/1386650/ (visited on 12/08/2020).

[9] R. Vuduc, J. W. Demmel, and K. A. Yelick, “OSKI: A library of automati-
cally tuned sparse matrix kernels,” en, Journal of Physics: Conference Series,
vol. 16, pp. 521–530, Jan. 2005, ISSN: 1742-6588, 1742-6596. DOI: 10.
1088/1742-6596/16/1/071. [Online]. Available: https://iopscience.
iop.org/article/10.1088/1742-6596/16/1/071 (visited on 12/08/2020).

[10] M. Puschel, J. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, Jianxin
Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. Johnson, and N.
Rizzolo, “SPIRAL: Code Generation for DSP Transforms,” en, Proceedings
of the IEEE, vol. 93, no. 2, pp. 232–275, Feb. 2005, ISSN: 0018-9219. DOI:
10.1109/JPROC.2004.840306. [Online]. Available: http://ieeexplore.
ieee.org/document/1386651/ (visited on 12/08/2020).

[11] A. Hartono, B. Norris, and P. Sadayappan, “Annotation-based empirical per-
formance tuning using Orio,” en, in 2009 IEEE International Symposium on
Parallel & Distributed Processing, Rome, Italy: IEEE, May 2009, pp. 1–11,
ISBN: 978-1-4244-3751-1. DOI: 10.1109/IPDPS.2009.5161004. [Online].
Available: http://ieeexplore.ieee.org/document/5161004/ (visited on
12/08/2020).

[12] Q. Liu, F. Zhou, R. Hang, and X. Yuan, “Bidirectional-convolutional lstm
based spectral-spatial feature learning for hyperspectral image classifica-
tion,” Remote Sensing, vol. 9, no. 12, 2017. [Online]. Available: https:
//www.mdpi.com/2072-4292/9/12/1330.

[13] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly
Learning to Align and Translate,” arXiv:1409.0473 [cs, stat], May 2016,
arXiv: 1409.0473. [Online]. Available: http://arxiv.org/abs/1409.0473
(visited on 05/25/2021).

[14] M.-T. Luong, H. Pham, and C. D. Manning, “Effective Approaches to Attention-
based Neural Machine Translation,” arXiv:1508.04025 [cs], Sep. 2015, arXiv:
1508.04025. [Online]. Available: http://arxiv.org/abs/1508.04025
(visited on 05/25/2021).

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.
Kaiser, and I. Polosukhin, “Attention Is All You Need,” arXiv:1706.03762
[cs], Dec. 2017, arXiv: 1706.03762. [Online]. Available: http://arxiv.
org/abs/1706.03762 (visited on 05/25/2021).

[16] D. Choi, C. J. Shallue, Z. Nado, J. Lee, C. J. Maddison, and G. E. Dahl, On
empirical comparisons of optimizers for deep learning, 2019. arXiv: 1910.
05446 [cs.LG].

https://doi.org/10.1109/JPROC.2004.840301
http://ieeexplore.ieee.org/document/1386650/
http://ieeexplore.ieee.org/document/1386650/
https://doi.org/10.1088/1742-6596/16/1/071
https://doi.org/10.1088/1742-6596/16/1/071
https://iopscience.iop.org/article/10.1088/1742-6596/16/1/071
https://iopscience.iop.org/article/10.1088/1742-6596/16/1/071
https://doi.org/10.1109/JPROC.2004.840306
http://ieeexplore.ieee.org/document/1386651/
http://ieeexplore.ieee.org/document/1386651/
https://doi.org/10.1109/IPDPS.2009.5161004
http://ieeexplore.ieee.org/document/5161004/
https://www.mdpi.com/2072-4292/9/12/1330
https://www.mdpi.com/2072-4292/9/12/1330
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1910.05446
https://arxiv.org/abs/1910.05446

Bibliography

[17] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
arXiv:1412.6980 [cs], Jan. 2017, arXiv: 1412.6980. [Online]. Available:
http://arxiv.org/abs/1412.6980 (visited on 05/25/2021).

[18] R. A. Jacobs, “Increased rates of convergence through learning rate adapta-
tion,” Neural Networks, vol. 1, no. 4, pp. 295–307, 1988, ISSN: 0893-6080.
DOI: https://doi.org/10.1016/0893- 6080(88)90003- 2. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
0893608088900032.

[19] S. L. Smith, P.-J. Kindermans, C. Ying, and Q. V. Le, “Don’t Decay the Learn-
ing Rate, Increase the Batch Size,” arXiv:1711.00489 [cs, stat], Feb. 2018,
arXiv: 1711.00489. [Online]. Available: http://arxiv.org/abs/1711.
00489 (visited on 05/25/2021).

[20] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong pro-
gram analysis transformation,” in International Symposium on Code Gener-
ation and Optimization, 2004. CGO 2004., 2004, pp. 75–86. DOI: 10.1109/
CGO.2004.1281665.

[21] J. Davis and M. Goadrich, “The Relationship between Precision-Recall and
ROC Curves,” in Proceedings of the 23rd International Conference on Machine
Learning, ser. ICML ’06, event-place: Pittsburgh, Pennsylvania, USA, New
York, NY, USA: Association for Computing Machinery, 2006, pp. 233–240,
ISBN: 1-59593-383-2. DOI: 10.1145/1143844.1143874. [Online]. Avail-
able: https://doi.org/10.1145/1143844.1143874.

[22] Compiling CUDA with clang. [Online]. Available: https://llvm.org/docs/
CompileCudaWithLLVM.html (visited on 01/24/2021).

[23] P. J. García-Laencina, J.-L. Sancho-Gómez, and A. R. Figueiras-Vidal, “Pat-
tern classification with missing data: A review,” Neural Computing and Ap-
plications, vol. 19, no. 2, pp. 263–282, Mar. 2010, ISSN: 1433-3058. DOI:
10.1007/s00521-009-0295-6. [Online]. Available: https://doi.org/10.
1007/s00521-009-0295-6.

[24] T. Tambe, C. Hooper, L. Pentecost, T. Jia, E.-Y. Yang, M. Donato, V. Sanh, P.
Whatmough, A. M. Rush, D. Brooks, and G.-Y. Wei, Edgebert: Sentence-level
energy optimizations for latency-aware multi-task nlp inference, 2021. arXiv:
2011.14203 [cs.AR].

[25] M. Neishi, J. Sakuma, S. Tohda, S. Ishiwatari, N. Yoshinaga, and M. Toyoda,
“A bag of useful tricks for practical neural machine translation: Embedding
layer initialization and large batch size,” in Proceedings of the 4th Workshop
on Asian Translation (WAT2017), 2017, pp. 99–109.

http://arxiv.org/abs/1412.6980
https://doi.org/https://doi.org/10.1016/0893-6080(88)90003-2
https://www.sciencedirect.com/science/article/pii/0893608088900032
https://www.sciencedirect.com/science/article/pii/0893608088900032
http://arxiv.org/abs/1711.00489
http://arxiv.org/abs/1711.00489
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1145/1143844.1143874
https://llvm.org/docs/CompileCudaWithLLVM.html
https://llvm.org/docs/CompileCudaWithLLVM.html
https://doi.org/10.1007/s00521-009-0295-6
https://doi.org/10.1007/s00521-009-0295-6
https://doi.org/10.1007/s00521-009-0295-6
https://arxiv.org/abs/2011.14203

Appendix A

Poster

Runtime data

Data A

Data B

Data C

Embed

Auxilliary

LSTM

LSTM
Attention

Dense

Target

Output
Loss

"LS-CAT" "Embedding"

"Model"

Kernel A
Kernel B

Kernel C

Source
code

Source
code Clang LLVM

IR

LLVM
IR

Skip
gram Embed

Embed

Auxilliary

LSTM

LSTM
Attention

Dense

Target

Output
Loss

LS-CAT consists of CUDA kernels and their runtime information The source code is transformed using Clang and Skip-gram

ML model using the embedded and auxiliary information to
predict optimal thread-block sizes.

Applying NLP ML techniques to our
Large-Scale CUDA AutoTuning dataset

Several different methods and model variations, outperformed both
average case and the average best block size

1. 2.

3. "Results"
Future work

Adding sophisticated embedding:
The "inst2vec" [2] embedder proved unable to fully parse CUDA
Clang LLVM IR tokens, resulting in high data-loss. Either fixing the
embedders fault or creating a new more complex source code
oriented embedder would give a potential advantage over skip-gram
which is developed for plain text.

SummaryAutotuning tasks are almost impossible for humans to perform. The
relation between hardware parameters, and program performance is
far too complex, for any human to set. Without auto-tuning, software
ends up missing low-level optimizations, resulting in lower
performance. Autotuning with ML-NLP based methods uses source
code to perform autotuning oriented tasks [2-4]. There is little GPU
source code data for these tasks. The LS-CAT (Large-Scale CUDA
AutoTuning) project uses CUDA GPU based kernels, and generated
a dataset with the goal of performing thread-coarsening. This new
project implements several ML pipelines to perform thread-coarsning
on LS-CAT

Implemented an end-to-end machine learning pipeline, designed
for CUDA source code data.
First implementation applying ML NLP techniques on our earlier
LS-CAT dataset
Findings indicate a generalized learning process, not
memorization, implying that CUDA source code has learn-able
abstract features.

Beat both random choice (0.94) and best default option (0.9437),
scoring 0.9483.

Creating more learning tasks:
Currently LS-CAT has only thread-block sizes and runtimes. This
could be expanded upon by adding more measurements, adding
more parameters that are modifed, or adding device mapping.

-Master thesis Lars Bjertnes-

Supervisor Anne C. Elster,
Co supervisor Jacob O. Tørring

[1] Lars Bjertnes, Jacob O. Tørring and Anne C. Elster, ”LS-CAT: A Large-
Scale CUDA AutoTuning Dataset" (2021). IEEE International Conference on
Applied Artificial Intelligence (ICAPAI 2021).

[2]T. Ben-Nun, A. S. Jakobovits and T. Hoefler, ‘Neural Code
Comprehension:A Learnable Representation of Code Seman, Nov. 2018

[3] Cummins, Chris and Petoumenos, Pavlos and Wang, Zheng and Leather,Hugh,
“End-to-End Deep Learning of Optimization Heuristics,”, IEEE,September 2017

[4]Brauckmann, Alexander and Goens, Andr és and Ertel, Sebastian andCastrillon,
Jeronimo, “Compiler-based graph representations for deeplearning models of code,”,
ACM, February 2020

References:
4.

Appendix B

Our LS-CAT paper

LS-CAT: A Large-Scale CUDA AutoTuning Dataset
Lars Bjertnes, Jacob O. Tørring, Anne C. Elster

Department of Computer Science
Norwegian University of Science and Technology (NTNU)

Trondheim, Norway
larbje@stud.ntnu.no, jacob.torring@ntnu.no, elster@ntnu.no

Abstract—The effectiveness of Machine Learning (ML) meth-
ods depend on access to large suitable datasets. In this article,
we present how we build the LS-CAT (Large-Scale CUDA
AutoTuning) dataset sourced from GitHub for the purpose of
training NLP-based ML models. Our dataset includes 19 683
CUDA kernels focused on linear algebra. In addition to the
CUDA codes, our LS-CAT dataset contains 5 028 536 associated
runtimes, with different combinations of kernels, block sizes and
matrix sizes. The runtime are GPU benchmarks on both Nvidia
GTX 980 and Nvidia T4 systems. This information creates a
foundation upon which NLP-based models can find correlations
between source-code features and optimal choice of thread block
sizes.

There are several results that can be drawn out of our LS-CAT
database. E.g., our experimental results show that an optimal
choice in thread block size can gain an average of 6% for
the average case. We thus also analyze how much performance
increase can be achieved in general, finding that in 10% of the
cases more than 20% performance increase can be achieved by
using the optimal block. A description of current and future work
is also included.

Index Terms—CUDA codes, Autotuning, NLP, Machine Learn-
ing (ML), dataset, GitHub

I. INTRODUCTION

To get full system usage, software implementations have to
target each system. However, With the increase in hardware
variations, the interface between software and hardware is
becoming more complex. However, by parameterizing the
software, this interface could be configurable. By tuning the
parameters, the software could more efficiently interact with
the hardware, resulting in increased performance. The chal-
lenge is that there are a lot of different parameters, that each
usually have certain specific limits and legal values. Setting
good parameters for a program requires high competence,
while also being a time consuming process.

Autotuning attempts to solve this problem by computerizing
the parameter adjustments. The system adjusts each parameter
to some extent, then compiles, executes and measures the pro-
gram. By comparing different results, the optimal combination
of parameters can be found.

There is usually a complex relation between a specific
parameter and the total change in performance. A naive search
through the parameter space is therefore typically not optimal.
Since searching through all possible legal combinations of
parameters is also a highly time consuming process, some
methods have been developed [1]–[3] to search through the
parameters more efficiently.

However, these methods are still reliant on compiling and
executing the program to do gradual adjustments, which still
takes a lot of time. A better alternative would be to have an
autotuner that can find good parameters without compiling or
executing the program.

A dataset consisting of the results for each legal combina-
tion of hardware systems, and all other information that can
change the performance or the run-time, could be used to find
the absolute optimal combination of parameters for any given
configuration. Unfortunately creating such a dataset would, as
mentioned above, take incredibly long time, and the amount
of data required would make the dataset huge. However, one
could create a smaller dataset, that has a good enough coverage
of the parameter space. This dataset could be used to find
good parameters without compiling and executing everything,
if there were a method to use this smaller dataset that is almost
as good as having the entire dataset. Machine Learning (ML)
is well suited in situations where there is enough data, and
there is an unclear relationship between the start and end
point. There are several machine learning models, but they all
conceptually create an internal mathematical model typically
consisting of activation’s, weights, and biases. The weights and
biases are adjusted depending on how the models output value
compares to the target value. The model ”learns” patterns this
way, and can be used in a wide range of applications.

ML-assisted autotuning implementations have mostly fo-
cused on only the parameters and hardware information, and
mostly using source code meta features [4]. However, the
entirety of the source code plays a role in the software and
should be taken into consideration.

ML-based attempts at using the whole source code for
autotuning include finding the run time of parallel programs
[5], device mapping [6], or multiple tasks [7]–[10]. These
attempts have usually focused on the programming languages
C, C++ and OpenCL. OpenCL is a programming language
that makes it possible to utilize the GPU for more general pur-
pose programming. CUDA is designed specifically for Nvidia
GPUs. The upside is that CUDA has a higher performance
compared to OpenCL [11].

The earlier attempts at using source code to do ML-
based autotuning on OpenCL, while getting good results, have
limited themselves to a low number of distinct source codes.
A lot of the data is sourced from libraries, which might not
be representative of most written code. In this paper, we will,
however, present how we generated a larger CUDA dataset

sourced from a collection of independent developers.

II. BACKGROUND

A. GPU and CUDA

GPUs have high core count that can process a lot of data
simultaneously. CUDA, which is C++ based targets Nvidia
GPUs. CUDA functions that run on the GPU are called
kernels, and are either marked as global if run from the
host system, or device if called from the global kernel. The
global kernels take blocks of threads issued over a grid. The
block parameter is a three dimensional representation of a
collection of threads. Each block should be divisible by 32,
which is known as the warp size. A warp executes all threads
simultaneously. A block can at most run 1024 threads at
the same time. The optimal number of threads per block is
not always 1024, as several smaller blocks would have more
unhindered register access, for instance.

B. Machine learning and NLP

Machine learning relies on two important concepts, the
forward and backward pass. The forward pass is done by
iterating over mathematical functions using an input parameter.
In supervised learning, the output is then compared with the
target value for the input. This comparison is done using a loss
function that tries to find an accurate number for the difference
of all output and target values at that given training step. This
loss gives the model an adjustment target. A backward pass is
then done by adjusting its internal weights and biases.

By repeating the process of forward and backward passes,
the weights are adjusted to minimize the loss function. This, in
turn, achieves outputs with similar values to the target values.

As datatypes fed into a machine learning model have to
be represented numerically, source code can’t without any
processing be fed directly into the model.

Natural language processing (NLP), is focused on how to
best represent text as numerical vectors. By using NLP tech-
niques, source code can be transformed into distinct vectors,
which can in turn be used for machine learning.

III. RELATED WORKS

A. end2end-dl/deeptune

Manually crafted heuristics are usually not ideal and can be
challenging to create. Deeptune by Cummins et al. [7] there-
fore used an end-to-end ML-based model to create heuristics
automatically. The dataset itself consists of a handful of unique
OpenCL kernels, executed with different hardware systems
on the GPU or CPU, and with varying number of threads.
The source code is stored as raw code, but is pre-processed,
discarding unnecessary information. Each line of code is then
turned into a sequence of tokens, and turned into embeddings
by the model.

B. NCC

By using some of the methods from NLP, combined with
code dependencies, NCC [9] tries to create an embedded
representation of code based on LLVM IR or an intermediate
representation of the code. Since it uses LLVM IR, the model
should work on languages that can be compiled with LLVM.
The embedder ”inst2vec” can therefore be trained on a larger
general purpose dataset, consisting of library sources. NCC
then train on a smaller dataset that has a specific task, and the
OpenCL dataset from DeepTune is reused for the same tasks.

C. CDFG

CDFG [10] uses graph-based ML-techniques, unlike Deep-
Tune and NCC, who focus on the sequenced part of source
code learning. CDFG focuses on device mapping and thread
coarsening using the same DeepTune and inst2vec datasets.

One significant change made to the dataset is the addition of
an abstract syntax tree (AST). The AST is a graph representa-
tion of how the code parts depend on each other. CDFG also
labels all the connections so that they are not interchanged.

D. ProGraML

ProGraML [8] further build upon using graph representa-
tions, by using three different graphs derived from source code.
The goals are device mapping and algorithm classification, on
the same DeepTune dataset.

The three graphs used are control flow, data flow, and call
flow. The control flow graph represents the order the state-
ments are executed in based on their sequence and branching.
The data flow graph is a data dependency graph. The call flow
graph connects the original instruction jumps and the destina-
tions, or the connection between called functions and where
they were called from. This combined graph representation is
made by using IR that has been normalized using inst2vec.

ProGraML does not compare itself with CDFG, but with
both DeepTune and NCC. Here ProGraML achieved the best
results when compared with the others in device mapping, and
algorithm classification.

E. Public source code datasets and GH Archive

To make our large structured source code dataset from
GitHub we use GH Archive, which is a public archive of
GitHub audit logs from the period of 2011 to now. Each log
includes the JSON-encoded events reported by the GitHub
API. The entire GH Archive is also available as a public
dataset on Google BigQuery, enabling SQL searches on the
dataset.

IV. DATA GENERATION PIPELINE

A. Source code gathering

The GH Archive dataset consist of several fields, the
important ones in this case are the repository URL and
payload. The payload contains meta data, and for instance
the repository languages that have been used. To find which
of the repositories that have a connection with CUDA or is
CUDA related an SQL query to match the word CUDA can

be used. In total there were 18534 unique repositories with
the keyword CUDA.

There are several different ways to get the source code from
GitHub. GitHub has multiple APIs that can be used by for
instance Python. It is also possible to script the GitHub cloning
function. The last way to retrieve the data is by downloading
a repository as a zip file, which can also be automated by
Python. Both methods were evaluated and timed, to find the
faster one. Downloading as a zip using Python proved to be
around twice as fast as cloning.

The script that downloads the repositories creates a folder
structure that corresponds to the indices in the repository URL
file. Repositories from GitHub more often than not contains
unneeded file types, by filtering out files based on file ending.
Each repository were left with just C, C++, CUDA files and
headers for the different languages.

The total amount of downloaded repositories were lower
than the amount of URLs, which is explained by either the
repositories being changed from public to private or that the
repositories have been removed. In total 16247 repositories
were downloaded successfully.

B. Combining and executing code

This section describes how we formatted and made the
CUDA source code runnable.

To get any type of performance results from a repository,
one might naively try to compile and execute the repository.
This, however, is not a simple process at all – especially if this
process needs to be automated. The first part of compiling the
repository is very dependent on a good Makefile or something
similar, and even then any reliance on an external library
would halt the automation significantly.

Out of a hundred random repositories, only three managed
to compile ”out of the box”. Even if all the repositories com-
piled flawlessly, an even bigger problem arises. How would
one measure the performance, and the impact of modifications,
on a random program? One might measure the entire program
execution, or each CUDA kernel, but this would require to
know specific program characteristics especially if the program
had any kind of user interference.

The solution to both of these issues were to find, isolate,
and build each CUDA global function. Then each CUDA
kernel could be run on its own, and measured accurately, with
different modifications. The scripting for this process was done
in Python, due to its ease of interacting with folders, files, and
text. This is a multi-step process which can be summarized as
follows:

• Identify all global and device functions in repository.
• For each global function, find all relevant includes and

device functions.
• Store global function as new file in new sub-folder.
• For each include any iterative dependency is found and

added to the sub-folder.
• Find, format and store all global input parameters as list

of tuples with names and types.

• Lastly, a generator uses the parameter information and
naming to create a main file that can initialize all the
needed variables.

• This main file can then issue a call to the global function.

C. Sampling and restructuring

Even though the kernels are built, they still need to run, and
additional work is needed to identify working kernels. With
extra measures taken to fix broken kernels. To find out if a
kernel has been properly isolated and can also be executed,
a script is responsible for restructuring and compiling all
the isolated kernels. With Python sub-processes, Python can
execute any Linux command, including using the NVCC
compiler and executing the kernels.

This process of repeatedly fixing and compiling in Fig. 1
increased the amount of working kernels in the trial phase
from around 22% to 29%.

Fig. 1: Restructuring and sampling

After the time consuming process of compiling and fixing
the potential kernels was done, 20 251 isolated kernels were
compiling and could be executed as is. Additionally since all
the errors were stored, potential improvements in the process
of isolating the kernels could be identified by looking through
the error messages.

To get the results a new script was made which purpose was
to modify the variables belonging to the kernel, compiling and
executing, reading the outputted results and storing them.

D. Benchmarking

Our experiments showed significant variations in run time
for the same program. These were likely caused by external
uncontrollable hardware and system processes. Bad results
could make a machine learning model learn the wrong fea-
tures. To mitigate some of these discrepancies, the official
NVIDIA benchmark guide was followed [13].

This guide is divided into two parts, locking hardware GPU
and CPU clock speeds, and preheating the GPU. To preheat
the GPU the program has to be executed once before any
measurement is done on the actual program execution. This
preheating ensures that the GPU spends minimal time going

from an idle to active state, as this transition would impact
run time. Similarly locking the hardware clock speed ensures
that each program execution is stable without any boosting.
Both of these changes decreases performance, but increases
the accuracy of run time readings. On top of this the kernel
itself is executed 1000 times, to minimize the variation of
single run times.

The NVIDIA guide improved the accuracy slightly, but there
would still be some run time outliers large enough to impact
the coherency of the result data. One way of tackling this is
running the program several times, and aggregating the result
again, in a way that makes the outputted result the most stable.
Five different simple methods were tested out, by creating
a dataset of 100 000 run times, then randomly selecting ten
and aggregating, by repeating this process the variations after
aggregation can be measured. Out of the different aggregation
methods tested the median performed the best with a variation
of around one percent.

V. EXPERIMENTAL SETUP

We did initial tests of our dataset using a desktop Nvidia
GeForce GTX 980 card based on Nvidia´s Maxwell architec-
ture with 2048 CUDA Cores and 4GB of memory. We also
used a newer system with 20 Nvidia T4s based on Nvidia´s
Turing architecture with 2560 cores and 16GB memory each.

A. Choice of parameters

Of all the different parameters that could be tested the
most reasonable ones to test, were matrix sizes and thread
block sizes. This makes it also possible to compare with past
OpenCL projects [7]–[10].

To find parameter values that would be both reasonable to
pick, and not too exhaustive as this would drastically increase
the run-time, both the CUDA guidelines and similar projects
were taken into consideration.

The official CUDA guidelines, suggests using thread block
sizes divisible by 32 and as large as possible. The largest
block is 1024, and all blocks should be 32 divisible, leaving
32 different block sizes to be tested out, which is quite high.

Lim et al. [14] used the blocks in range of 0-1024 which
were divisible by 64, this should be enough to achieve
good results while also halving the amount of search space
required. Additionally the 2D blocks of sizes (8,8) (16,16),
(24,24) and (32,32) were also tested. To find a varying set of
matrix dimensions some inspiration was taken from the Intel
guide ”measure the performance of matrix multiplications by
dimensions” [15]. In the end there were seven matrix sizes
and twenty thread block sizes for a total of 140 combinations.

B. Kernel executor

The last step is the execution of all the runnable kernels,
with all the configurations needed. As the kernels were filtered
into the ones that could execute and those that could not, the
next step was modifying and setting variables, so that results
could be extracted for every parameter combination.

The variable values were set mainly by their name, as the
name-space proved to be a significant indicator for what kind

of values they were supposed to take, w for width for instance
or n for total size. The variables are split into either being
set to the width, height, size, or 1 as some variables such
as stride should remain static and within a reasonable range.
Most, around 90% of the variables, were covered by either
width, height, or size or any other common name-space used
in scientific applications, like k, the rest were also just set to
one.

The script decides first what type of template to use, and
compiles the kernel using that template. After compilation
the output executable can be executed with the Python sub-
process, and each result is stored in a Pandas dataframe with
the parameter combination, path, function name and result.

An important note is that when using the Python sub-process
module the Linux timeout functionality should be used. The
original reason it was implemented was to timeout kernel
executions that were ”hanging” and taking significantly longer
time than other kernels. This does in effect filters out some of
the kernels that might take too long to execute, and a potential
ratio of how many kernel runs can be achieved vs the total
time cost. For two seconds of timeout around one third of
the kernels had enough time to execute, and at 120 seconds
timeout only 1 in 500 did not execute, as a lower reasonable
value, 30 seconds of timeout was used for the final multi GPU
run. While two seconds as a test, were used on the GTX 980
system. A full execution on the GTX 980 took approximately
97 hours.

The cudaOccupancyMaxPotentialBlockSize is Nvidias own
solution to find the optimal thread block size for a kernel,
and was tested to see if it did indeed find the best size. These
results could also be used in comparison with the final product,
to do a comparative evaluation of a potential machine learnt
model and this API. The cudaOccupancyMaxPotentialBlock-
Size API took significant less amount of time to execute,
but was stopped halfway as the results indicated no result
difference across matrix size.

The next step was executing this script with the same source
data on our Nvidia Tesla T4 system. The T4 system has 20
GPUs. By using cudaSetDevice, the additional GPUs could
run the script in parallel.

VI. RESULTS

A. GTX 980 System

After the first full execution on the GTX 980 system we
generated a dataset with 2140796 rows, and 97% non NaN
data.

We can see from Fig. 2 the downward trend in execution
time caused by increase in thread block size, which both
substantiate the claims by Nvidia regarding picking larger
thread block sizes being the way to go, and that the results
that were achieved were realistic.

Now if the average was the best indicator and the variance
between kernels thread block performance was low, then just
picking a large thread block would always be the optimal
choice. However if the graph of just one kernel is shown Fig. 3,
this no longer seems to be the case.

Fig. 2: GTX 980 average performance of thread block sizes
on matrix sizes

Fig. 3: GTX 980 performance of thread block sizes on matrix
sizes on the kernel euclidean kernel

In this case the best performing thread block was not the
largest one, and this was also true for 83% of the kernels. The
largest block did perform on average of 98.7% of the best
block, but in around 1% of the kernels this ranges from 40
to 85%, which would signify a large performance increase, if
the better block size was used instead.

B. T4 System

There was some small changes made to the matrix sizes, and
an increase in timeout factor which did increase the amount

Fig. 4: T4 Average performance of thread block sizes on
matrix sizes

Fig. 5: T4 performance of thread block sizes on matrix sizes
on the kernel euclidean kernel

of kernels with a run-time to 19683.
For the average kernel thread performance for each matrix

size, there was quite a difference compared to GTX 980 Fig. 4.
No longer is the average 1024 the best in all the average

cases, which might either be due to increase in the amount of
kernels which were recorded, or the change in hardware.

Results from the same single kernel as in GTX 980, Fig. 5.
It becomes quite evident that 1024 is not the perfect size

in all cases, and a closer look shows that the 1024 block size

has a 86% performance compared to the best block. In 12%
of the cases a 1024 block would perform less than 85% in
comparison with the optimal block.

VII. DISCUSSION

Compared to the other related works which are based upon
Cummins et al. [7] original dataset, our LS-CAT dataset is
significantly larger. We present over 19 683 kernels compared
to the Cummins et al. dataset of 256 kernels [7]. The amount
of variance in our dataset’s programming style should also be
impactful.

The range of different ”topics” covered by the sheer dif-
ference in kernel amount would also be of help to more
realistically evaluate the efficiency of machine learning on
code, as unsupervised topic modeling could be used to see
if some kernel topics are easier to evaluate than others.

To actually check the quality of the LS-CAT dataset for
machine learning purposes, the dataset has to be used with a
thread coarsening task in future works. If the machine learnt
model performs well, the dataset is of sufficient quality. If
the model performs poorly then either the dataset, or the
methodology of using kernel code to find thread blocks is
insufficient.

If the LS-CAT dataset is proven to be insufficient, for
whatever reason, there is enough modularity in the data
processing pipeline and enough error information, from stored
logs, to reconfigure the process to either increase data volume
or quality. The public LS-CAT dataset will be updated in this
case.

Another key finding was that 1024 proved to be a reasonable
thread size for most cases, it might therefore be easier to
identify the kernels for which this is not the case, than to
find the best block for each kernel.

VIII. CONCLUSIONS AND FUTURE WORK

In machine learning (ML), access to large enough datasets
are very important for how well the resulting models perform.
Previous work on using ML for autotuning CUDA codes, have
had mixed results due to the lack of access to suitable code
databases.

In this paper, we described how we generated a large-
scale real-world dataset of CUDA kernels (LS-CAT1) for the
purpose of training NLP-based ML-models for autotuning. The
kernels were constructed by using source codes from GitHub
via the GH Archive project [12].

We successfully downloaded 16 247 projects, out of the
18 534 projects that GH Archive showed as available, after
pruning old and non-existent ones. Out of these, 20 251
runnable kernels were generated and compiled, and out of
them again, 19 683 have results that we could use as a database
of runable CUDA codes.

In addition to the CUDA codes, our LS-CAT dataset con-
tains 5 028 536 associated runtimes (including both GTX 980
and T4 results), with different combinations of kernels, block
sizes and matrix sizes.

1Available through https://www.ntnu.edu/idi/hpc-lab/

Our experimental results coincided with what NVIDIA
themselves have found, that increase in thread block size is
usually enough, however, this is only true for the average case.

The results also indicate that always picking the optimal
block over the largest, would net a 6% performance increase
on average, and in 10% of the cases more than 20% perfor-
mance increase can be achieved by using the optimal block.
Both of these findings are promising.

The cudaOccupancyMaxPotentialBlockSize API was also
tested to some extent, but proved insensitive to matrix sizes
which does play a role in choice of blocks.

Current and future work includes testing our LS-CAT
dataset using NLP-ML models.

ACKNOWLEDGMENT

The authors would like to thank the Department of Com-
puter Science and its HPC-Lab at NTNU for their support
which enabled this project. The authors and the SFI Center
for Geophysical Forecasting also plan to build on our LS-CAT
dataset.

REFERENCES

[1] Puschel, M. and Moura, J.M.F. and Johnson, J.R. and Padua, D. and
Veloso, M.M. and Singer, B.W. and Jianxin Xiong and Franchetti, F.
and Gacic, A. and Voronenko, Y. and Chen, K. and Johnson, R.W.
and Rizzolo, N., “SPIRAL: Code Generation for DSP Transforms,”
Proceedings of the IEEE, 232–275, February 2005.

[2] Hartono, Albert and Norris, Boyana and Sadayappan, P., Annotation-
based empirical performance tuning using Orio, IEEE International
Symposium on Parallel Distributed Processing, 2009, pp.1–11.

[3] Falch, Thomas L., and Anne C. Elster. “Machine Learning-Based Auto-
Tuning for Enhanced Performance Portability of OpenCL Applications.”
Concurrency and Computation: Practice and Experience 29, no. 8
(2017): e4029. https://doi.org/10.1002/cpe.4029.

[4] Amir H. Ashouri, William Killian, John Cavazos, Gianluca Palermo,
Cristina Silvano “A Survey on Compiler Autotuning using Machine
Learning,“ ACM Computing Surveys 2018.

[5] Zhang, W., Hao, M. & Snir, Marc “Predicting HPC parallel program
performance based on LLVM compiler.“ Cluster Comput 20, 1179–1192
2017.

[6] Mishra, Alok and Malik, Abid M and Chapman, Barbara, “Using
Machine Learning for OpenMP GPU Offloading in LLVM,”, ACM SRC
to be held at SC20, 2020.

[7] Cummins, Chris and Petoumenos, Pavlos and Wang, Zheng and Leather,
Hugh, “End-to-End Deep Learning of Optimization Heuristics,”, IEEE,
September 2017, p219–232.

[8] Cummins, Chris and Fisches, Zacharias V. and Ben-Nun, Tal and
Hoefler, Torsten and Leather, Hugh, “ProGraML: Graph-based Deep
Learning for Program Optimization and Analysis,”, March 2020.

[9] Ben-Nun, Tal and Jakobovits, Alice Shoshana and Hoefler, Torsten,
“Neural Code Comprehension: A Learnable Representation of Code
Semantics,”, IEEE, November 2018, p219–232.

[10] Brauckmann, Alexander and Goens, Andrés and Ertel, Sebastian and
Castrillon, Jeronimo, “Compiler-based graph representations for deep
learning models of code,”, ACM, February 2020, p201–211.

[11] Kuznetsov, Evgeny & Kondratyuk, Nikolay & Logunov, Mikhail &
Nikolskiy, Vsevolod & Stegailov, Vladimir. “Performance and Porta-
bility of State-of-Art Molecular Dynamics Software on Modern GPUs.“
2020.

[12] Ilya Grigorik “GH Archive.“, Accessed January 31, 2021.
https://www.gharchive.org/.

[13] Bill Fiser, Sebastian Jodłowski “BEST PRACTICES WHEN BENCH-
MARKING CUDA APPLICATIONS“, accessed: 01.10.2020

[14] Lim, Robert V. and Norris, Boyana and Malony, Allen D. “Autotuning
GPU Kernels via Static and Predictive Analysis“, 2017

[15] Ying Hu, Shane A Story, “Tips to Measure the Performance of Matrix
Multiplication Using Intel® MKL“, accessed: 07.011.2020

Appendix C

Source Code

import collections
import datetime
import pickle
from utils.utils3 import *
from utils.data_loader3 import load_data
#from model.lstm import LSTM
from model.lstm import LSTM
from config.default import cfg
from model.multiattention2f import seq2seq
from model.transformers import Transformer
from sklearn.preprocessing import MinMaxScaler
import torch
import pathlib
import matplotlib.pyplot as plt
import time
import typing
from torch import nn
import os
import gc
import numpy as np
import collections
import matplotlib.pyplot as plt
from torch.autograd import Variable
import sys
from sklearn.metrics import precision_recall_curve
class Trainer:

def __init__(self, cfg):
"""

Initialize our trainer class.
"""

self.cfg=cfg
self.device = get_default_device()
self.model = to_device(seq2seq(self.device),self.device)
self.checkpoint_dir = pathlib.Path("outputs")

self.loss_criterion = nn.BCEWithLogitsLoss()

Define our optimizer. SGD = Stochastich Gradient Descent
#self.optimizer=torch.optim.SGD(self.model.parameters(), lr=cfg.TRAINER.LR,

,→ weight_decay=cfg.TRAINER.WEIGHT_DECAY,momentum=cfg.TRAINER.

L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

,→ MOMENTUM)
self.optimizer=torch.optim.Adam(self.model.parameters(), lr=cfg.TRAINER.LR,

,→ weight_decay=cfg.TRAINER.WEIGHT_DECAY)
Load our dataset

self.dataloader_val = load_data(cfg,’test’,self.device)
self.load_last_model()

def prec_rec_curve(self, name):
self.model.eval()

labels = []
predictions = []
with torch.no_grad():

for (X_batch,lengths, aux_batch, Y_batch, Y2_batch) in self.
,→ dataloader_val:
output_probs = self.model(X_batch.float(),lengths.float(),aux_batch

,→)
labels.append(Y_batch.cpu().detach().numpy())
predictions.append(torch.sigmoid(output_probs).cpu().detach().numpy

,→ ())
labels = np.stack(labels, axis=0).flatten()

predictions = np.stack(predictions, axis=0).flatten()

precision, recall, thresholds = precision_recall_curve(labels,predictions)

plot_path = pathlib.Path("plots")
plt.title("Precision␣recall")
plt.plot(recall,precision)
plt.savefig(plot_path.joinpath(f"{name}_plot.png"))

def validate(self,tresh):
self.model.eval()
average_loss = 0
accuracy = 0
precisions = 0
recalls = 0
counter = 0
first = True
with torch.no_grad():

for (X_batch,lengths, aux_batch, Y_batch, Y2_batch) in self.
,→ dataloader_val:
output_probs = self.model(X_batch.float(),lengths.float(),aux_batch

,→)
counter+=1

#_, predicted = torch.max(output_probs, 1)
ones=to_device(torch.ones(output_probs.shape),self.device)
zeros=to_device(torch.zeros(output_probs.shape),self.device)
treshed=torch.where(torch.sigmoid(output_probs) > tresh, ones,

,→ zeros)
predicted=treshed+to_device(2*torch.arange(len(ones)),self.device)
Compute Loss and Accuracy
accuracy += Y2_batch.flatten()[predicted.long()].mean()
if first:

print("Output␣probabilities")
print(torch.sigmoid(output_probs[:10]).cpu().detach().numpy())

Chapter C: Source Code

print("Tresholded")
print(treshed[:10].cpu().detach().numpy())
print("Indiced")
print(predicted[:10].cpu().detach().numpy())
print("Targets")
print(Y2_batch[:10].cpu().detach().numpy())
print("Selected␣values")
print(Y2_batch.flatten()[predicted.long()][:10].cpu().detach().

,→ numpy())
#print(output_probs.shape, predicted.shape, Y2_batch.shape)
first=False

print(accuracy/counter)
def load_last_model(self):

state_dict = load_last_checkpoint(self.checkpoint_dir)
if state_dict is None:

print(
f"Could␣not␣load␣best␣checkpoint.␣Did␣not␣find␣under:␣{self.

,→ checkpoint_dir}")
return

self.model.load_state_dict(state_dict)

def load_best_model(self):
state_dict = load_best_checkpoint(self.checkpoint_dir,self.cfg.DATASETS.

,→ NAME)
if state_dict is None:

print(
f"Could␣not␣load␣best␣checkpoint.␣Did␣not␣find␣under:␣{self.

,→ checkpoint_dir}")
return

self.model.load_state_dict(state_dict)

if __name__ == ’__main__’:
print(sys.argv[:1])
trainer = Trainer(cfg)
if sys.argv[1]=="rec":

trainer.prec_rec_curve(sys.argv[2])
else:

trainer.validate(float(sys.argv[2]))

Code listing C.1: Evaluation script for the binary classifier

import fasttext
import glob
import numpy as np
import re
def create_embeds():

model = fasttext.load_model("../outputs/embedder.bin")

path = "../data/raw/ir/"

files = glob.glob(path+"*.ll")
Lines = []
for f in files:

file1 = open(f, ’r’)
lines = []
flag=False
for l in (file1.readlines()):

L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

l=l.rstrip("\n")
if l.find("}")!=-1:

flag=False
if flag:

l=re.sub(r’\[.*?\]’, lambda x: ’’.join(x.group(0).split()), l)
l=re.sub(r’\(.*?\)’, "", l)
#l=re.sub(r’\d’, "", l)
l=re.sub(’\(’, ’␣’,l)
l=re.sub(’\)’, ’␣’,l)
l=re.sub(’,’, ’␣’,l)
l=re.sub(’␣+’, ’␣’,l)
lines.append(l)

if(l.find("define␣dso_local␣void")!=-1):
flag=True

Lines = "␣".join(lines)
Lines = Lines.split("␣")
to_save=np.array([model.get_word_vector(x) for x in Lines])
print(f)
name=f.split("/")[4].split(".")[0]
np.save("../data/raw/embedded/"+name+".npy", to_save)

create_embeds()

Code listing C.2: Creation of the embeds

import fasttext
import glob
import re
def create_data():

path = "../data/raw/ir/"

files = glob.glob(path+"*.ll")
Lines = []
for f in files:

file1 = open(f, ’r’)
lines = []
flag=False
for l in (file1.readlines()):

l=l.rstrip("\n")
if l.find("}")!=-1:

flag=False
if flag:

l=re.sub(r’\[.*?\]’, lambda x: ’’.join(x.group(0).split()), l)
l=re.sub(r’\(.*?\)’, "", l)
#l=re.sub(r’\d’, "", l)
l=re.sub(’\(’, ’␣’,l)
l=re.sub(’\)’, ’␣’,l)
l=re.sub(’,’, ’␣’,l)
l=re.sub(’␣+’, ’␣’,l)
lines.append(l)

if(l.find("define␣dso_local␣void")!=-1):
flag=True

Lines.append(re.sub(’␣+’, ’␣’,"␣".join(lines)))

with open(’data.txt’, ’w’) as f:
for item in Lines:

f.write("%s\n" % item)

Chapter C: Source Code

create_data()
model = fasttext.train_unsupervised(’data.txt’, model=’skipgram’, dim=40,epoch=10)
model.save_model("../outputs/embedder.bin")

Code listing C.3: The FastText embed trainer class

import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import fasttext
from utils.utils import *
class EncoderRNN(nn.Module):

def __init__(self, hidden_size, embedding, n_layers=1, dropout=0):
super(EncoderRNN, self).__init__()
self.n_layers = n_layers
self.hidden_size = hidden_size

Initialize GRU; the input_size and hidden_size params are both set to ’
,→ hidden_size’

because our input size is a word embedding with number of features ==
,→ hidden_size

self.gru = nn.LSTM(embedding, hidden_size, n_layers,
dropout=(0 if n_layers == 1 else dropout), bidirectional=

,→ True)

def forward(self, input_seq, input_lengths, hidden=None):
type: (Tensor, Tensor, Optional[Tensor]) -> Tuple[Tensor, Tensor]
Convert word indexes to embeddings

Pack padded batch of sequences for RNN module
packed = torch.nn.utils.rnn.pack_padded_sequence(input_seq, input_lengths,

,→ enforce_sorted=False)
Forward pass through GRU
outputs, hidden = self.gru(packed, hidden)
Unpack padding
outputs, _ = torch.nn.utils.rnn.pad_packed_sequence(outputs)
Sum bidirectional GRU outputs
outputs = outputs[:, :, :self.hidden_size] + outputs[:, : ,self.hidden_size

,→ :]
Return output and final hidden state
return outputs, hidden

class DecoderRNN(nn.Module):
def __init__(self, hidden_size, embedding, n_layers=1, dropout=0.1):

super(DecoderRNN, self).__init__()

Keep for reference
self.hidden_size = hidden_size
self.n_layers = n_layers
self.dropout = dropout

Define layers

L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

self.gru = nn.LSTM(embedding, hidden_size, n_layers, dropout=(0 if n_layers
,→ == 1 else dropout))

def forward(self, encoder_outputs, last_hidden,last_c):

Forward through unidirectional GRU

rnn_output, hidden = self.gru(encoder_outputs, (last_hidden,last_c))

return rnn_output, hidden

class seq2seq(nn.Module):
def __init__(self,device):

super(seq2seq, self).__init__()

hidden_size=40
embedding=40
output_size=40

self.attention = nn.MultiheadAttention(embedding,4)
self.encoder1 = to_device(EncoderRNN(hidden_size,embedding,n_layers=1),

,→ device)
self.decoder1 = to_device(DecoderRNN(hidden_size,embedding,n_layers=1),

,→ device)

self._device = device
self._decoder_n_layers = 1

self.embed=nn.Embedding(7, 50)
h_size=500
self.linear1=nn.Linear(2*12000,h_size-50)
self.seq=create_linear_layers(10,h_size)
self.linear4=nn.Linear(h_size,25)
self.linear5=nn.Linear(25,4)

self.act = nn.ELU()
self.bn1 = nn.BatchNorm1d(h_size-50)

self.bn4 = nn.BatchNorm1d(25)

self.out_act = nn.Softmax(dim=1)
nn.init.xavier_uniform_(self.linear1.weight)
self.seq.apply(weights_init)
nn.init.xavier_uniform_(self.linear4.weight)
nn.init.xavier_uniform_(self.linear5.weight)

def forward(self, input_seq : torch.Tensor, input_length : torch.Tensor,aux):
#input_seq sequence of tokens embedded, input_length length of sequences,

,→ aux, the matrix size vector
input_length=input_length.cpu()
length = int(np.max(input_length.numpy()))

encoder_outputs1, encoder_hidden1 = self.encoder1(torch.transpose(input_seq
,→ , 0, 1), input_length)

Chapter C: Source Code

attn_output, _ = self.attention(encoder_outputs1, encoder_outputs1,
,→ encoder_outputs1)

encoder_outputs1 = attn_output * encoder_outputs1
e_h1, e_c1 = encoder_hidden1

Prepare encoder’s final hidden layer to be first hidden input to the
,→ decoder

decoder_hidden1 = e_h1[:self._decoder_n_layers]
decoder_c1 = e_c1[:self._decoder_n_layers]

decoder_output1, decoder_hidden1 = self.decoder1(encoder_outputs1,
,→ decoder_hidden1,decoder_c1)

out = torch.transpose(encoder_outputs1,0,1)

out = out.contiguous().view(128,-1)

x = to_device(torch.zeros(128,2*12000),self._device)
x[:,:length*40] = out

out = self.linear1(x)
out = self.act(out)
out = self.bn1(out)

aux = self.embed(aux)
out = torch.cat((out,aux),1)

out = self.seq(out)

out = self.linear4(out)
out = self.act(out)
out = self.bn4(out)
#aux = self.embed(aux)

#out = torch.cat((out, aux),1)
out = self.linear5(out)
#out = self.out_act(out)

return out

def create_linear_layers(n,size):
layers = []
for i in range(n):

layers.append(nn.Linear(size,size))
layers.append(nn.ELU())
layers.append(nn.BatchNorm1d(size))

return nn.Sequential(*layers)
def weights_init(m):

if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight)

Code listing C.4: The model class

import torch
import pandas as pd
import numpy as np
from utils.utils import to_device

L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

def one_hot(a,a_max):
a = a.astype("int")
b = np.zeros((a.size, a_max+1))
b[np.arange(a.size),a] = 1
return b

def load_data(cfg,prefix,device):
"""

Loads the labels from the judge test train sets transforms labels into
,→ numeric values creates a dataset and returns the dataset

"""
df=None

if(prefix==’train’):
df = pd.read_csv(’data/train/’+cfg.DATASETS.NAME+’_train.csv’, low_memory =

,→ False) #[[’path’, ’matrix_id’, ’time_14’, ’time_15’, ’diff_14’,’
,→ diff_15’]]

elif(prefix==’val’):
df = pd.read_csv(’data/val/’+cfg.DATASETS.NAME+’_val.csv’, low_memory =

,→ False) #[[’path’, ’matrix_id’,’time_14’, ’time_15’, ’diff_14’,’
,→ diff_15’]]

elif(prefix==’test’):
df = pd.read_csv(’data/test/’+cfg.DATASETS.NAME+’_test.csv’, low_memory =

,→ False) #[[’path’, ’matrix_id’, ’time_14’, ’time_15’,’diff_14’,’
,→ diff_15’]]

dataset = Dataset(df,cfg)
data_set=torch.utils.data.DataLoader(dataset,batch_size=cfg.TRAINER.BATCH_SIZE,

,→ shuffle=True, num_workers=2,drop_last=True)
data_set=DeviceDataLoader(data_set,device)
return data_set

class Dataset(torch.utils.data.Dataset):
’Characterizes␣a␣dataset␣for␣PyTorch’
def __init__(self,df,cfg):

’Initialization’
self.df=df
self.length=len(df)
self.task=cfg.DATASETS.NAME

def __len__(self):
’Denotes␣the␣total␣number␣of␣samples’

return self.length

def __getitem__(self, index):
’Generates␣one␣sample␣of␣data’
Select sample
Load data and get label
path=self.df["path"].iloc[index]
path="_".join(path.split("/")[1:3])
aux = int(self.df["matrix_id"].iloc[index])
Y=self.df.iloc[index].to_numpy()

Chapter C: Source Code

Y1=Y[6:10].astype(float) #2:8
#print(Y1)
#print(len(Y1))
#Y1=Y1/Y1.max()
#Y1 = np.exp(Y1 *5)
#Y1 /= np.sum(Y1)
Y2=Y[10].astype(float)

X = np.zeros((600,40))
t = np.load(’data/raw/embedded/’+path+".npy")
X[:len(t),:]=t
return X,len(t),aux,Y1, Y2

class DeviceDataLoader():
"""Wrap a dataloader to move data to a device"""
def __init__(self, dl, device):

self.dl = dl
self.device = device

def __iter__(self):
"""Yield a batch of data after moving it to device"""
for b in self.dl:

yield to_device(b, self.device)
def __len__(self):

"""Number of batches"""
return len(self.dl)

Code listing C.5: The data loader class

import torch
import matplotlib.pyplot as plt
import numpy as np
import pathlib
np.random.seed(0)
torch.manual_seed(0)

torch.backends.cudnn.deterministic = True
from sklearn.metrics import recall_score, precision_score

torch.cuda.is_available()

def get_default_device():
"""Pick GPU if available, else CPU"""
if torch.cuda.is_available():

return torch.device(’cuda’)
else:

return torch.device(’cpu’)

def to_device(data, device):
"""Move tensor(s) to chosen device"""
if isinstance(data, (list,tuple)):

return [to_device(x, device) for x in data]
return data.to(device, non_blocking=True)

def plot_loss(Z: int,loss_dict: dict, label: str = None, fmt="-"):
"""

L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

Args:
loss_dict: a dictionary where keys are the global step and values are the

,→ given loss / accuracy
label: a string to use as label in plot legend

"""
global_steps = list(loss_dict.keys())
loss = list(loss_dict.values())
plt.plot(global_steps, loss, fmt, label=label,zorder=Z)

def save_checkpoint(state_dict: dict,
filepath: pathlib.Path,
is_best: bool,
max_keep: int = 1,
dataset_name: str = "unnamed"):

"""
Saves state_dict to filepath. Deletes old checkpoints as time passes.
If is_best is toggled, saves a checkpoint to best.ckpt
"""
filepath.parent.mkdir(exist_ok=True, parents=True)
list_path = filepath.parent.joinpath("latest_checkpoint")
torch.save(state_dict, filepath)
if is_best:

torch.save(state_dict, filepath.parent.joinpath(dataset_name+".ckpt"))
previous_checkpoints = get_previous_checkpoints(filepath.parent)
if filepath.name not in previous_checkpoints:

previous_checkpoints = [filepath.name] + previous_checkpoints
if len(previous_checkpoints) > max_keep:

for ckpt in previous_checkpoints[max_keep:]:
path = filepath.parent.joinpath(ckpt)
if path.exists():

path.unlink()
previous_checkpoints = previous_checkpoints[:max_keep]
with open(list_path, ’w’) as fp:

fp.write("\n".join(previous_checkpoints))

def get_previous_checkpoints(directory: pathlib.Path) -> list:
assert directory.is_dir()
list_path = directory.joinpath("latest_checkpoint")
list_path.touch(exist_ok=True)
with open(list_path) as fp:

ckpt_list = fp.readlines()
return [_.strip() for _ in ckpt_list]

def load_last_checkpoint(directory: pathlib.Path):
loc = get_previous_checkpoints(directory)
print(loc)
filepath = directory.joinpath(loc[-1])
if not filepath.is_file():

return None
return torch.load(directory.joinpath(loc[-1]))

def load_best_checkpoint(directory: pathlib.Path,dataset):
filepath = directory.joinpath(dataset+".ckpt")
if not filepath.is_file():

return None
return torch.load(directory.joinpath(dataset+".ckpt"))

def plot_loss(loss_dict: dict, label: str = None, fmt="-"):

Chapter C: Source Code

"""
Args:

loss_dict: a dictionary where keys are the global step and values are the
,→ given loss / accuracy

label: a string to use as label in plot legend
"""
global_steps = list(loss_dict.keys())
loss = list(loss_dict.values())
plt.plot(global_steps, loss, fmt, label=label)

def compute_loss_and_accuracy(
dataloader: torch.utils.data.DataLoader,
model: torch.nn.Module,
loss_criterion: torch.nn.modules.loss._Loss,
device):

"""
Computes the average precisions, recalls, loss and the accuracy over the whole

,→ dataset
in dataloader.
Args:

dataloder: Validation/Test dataloader
model: torch.nn.Module
loss_criterion: The loss criterion, e.g: torch.nn.CrossEntropyLoss()

Returns:
[average_loss, accuracy, precision, recall]: both scalar.

"""
average_loss = 0
accuracy = 0
precisions = 0
recalls = 0
counter = 0
first = True
with torch.no_grad():

for (X_batch,lengths, aux_batch, Y1_batch, Y2_batch) in dataloader:
output_probs = model(X_batch.float(),lengths.float(),aux_batch)
counter+=1

average_loss+=loss_criterion(output_probs,Y1_batch.float())
#_, predicted = torch.max(output_probs, 1)

if first:
first=False
#print(output_probs.shape)
print(output_probs[0])
print(Y1_batch[0])

Compute Loss and Accuracy
accuracy += Y1_batch.flatten()[output_probs.argmax(dim=1)+output_probs.

,→ shape[1]*torch.arange(output_probs.shape[0])].mean()
return average_loss/counter, accuracy/counter

Code listing C.6: The utility class

import collections
import datetime
import pickle
from utils.utils2 import *

L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

from utils.data_loader2 import load_data
#from model.lstm import LSTM
from model.lstm import LSTM
from model.reg_enc_dec_attn import seq2seq
from model.transformers import Transformer
from sklearn.preprocessing import MinMaxScaler
import torch
import pathlib
import matplotlib.pyplot as plt
import time
import typing
from torch import nn
import os
import gc
import numpy as np
import collections
import matplotlib.pyplot as plt
from torch.autograd import Variable

class Trainer:

def __init__(self, cfg, name):
"""

Initialize our trainer class.
"""
self.batch_size = cfg.TRAINER.BATCH_SIZE
self.epochs = cfg.TRAINER.EPOCH
self.plot_name=name
self.cfg=cfg
self.device = get_default_device()
self.model = to_device(seq2seq(self.device),self.device)

self.loss_criterion = nn.MSELoss() #reduction="sum")
self.extra_loss = nn.CrossEntropyLoss()
Define our optimizer. SGD = Stochastich Gradient Descent
#self.optimizer=torch.optim.SGD(self.model.parameters(), lr=cfg.TRAINER.LR,

,→ weight_decay=cfg.TRAINER.WEIGHT_DECAY,momentum=cfg.TRAINER.
,→ MOMENTUM)

self.optimizer=torch.optim.Adam(self.model.parameters(), lr=cfg.TRAINER.LR,
,→ weight_decay=cfg.TRAINER.WEIGHT_DECAY)

Load our dataset

self.dataloader_train = None
self.dataloader_test = None
self.dataloader_val = None

self.alpha = 0.5
self.gamma = 0.01

Tests model for each five steps
self.num_steps_per_test = 150
self.num_steps_per_val = 500
self.global_step = 0
self.start_time = time.time()

Tracking variables
self.TEST_LOSS = collections.OrderedDict()
self.TRAIN_LOSS = collections.OrderedDict()

Chapter C: Source Code

#self.TRAIN_CL = collections.OrderedDict()
self.TEST_ACC = collections.OrderedDict()
self.VAL_LOSS = collections.OrderedDict()
self.VAL_ACC = collections.OrderedDict()

self.checkpoint_dir = pathlib.Path("outputs")
if cfg.TRAINER.SHOULD_TRAIN:

self.dataloader_train = load_data(cfg,’train’,self.device)
self.dataloader_test = load_data(cfg,’test’,self.device)
self.dataloader_val = load_data(cfg,’val’,self.device)
if cfg.TRAINER.LOAD_LAST==1:

self.load_best_model()
elif cfg.TRAINER.LOAD_LAST==2:

self.load_last_model()
self.train(cfg)

else:
self.load_best_model()

def predict(self,df,cfg):
print("not␣implemented")

def validation_epoch(self):
"""

Computes the loss/accuracy and precision/recall/f1
Train, validation and test.

"""
self.model.eval()

val_loss, val_acc = compute_loss_and_accuracy(
self.dataloader_test, self.model, self.loss_criterion,self.device

)
used_time = time.time() - self.start_time

self.VAL_ACC[self.global_step] = val_acc
self.VAL_LOSS[self.global_step] = val_loss.cpu().detach().numpy()
print(

f"Epoch:␣{self.epoch:>2}",
f"Batches␣per␣seconds:␣{self.global_step␣/␣used_time:.2f}",
f"Global␣step:␣{self.global_step:>6}",
f"Validation␣Loss:␣{val_loss:.3f},",
f"Validation␣Accuracy:␣{val_acc:.3f}",
sep="\t")

self.model.train()

def test_epoch(self):
"""

Computes the loss/accuracy and precision/recall/f1
Train, validation and test.

"""
self.model.eval()
test_loss, test_acc = compute_loss_and_accuracy(

self.dataloader_test, self.model, self.loss_criterion,self.device
)
used_time = time.time() - self.start_time

L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

self.TEST_ACC[self.global_step] = test_acc
self.TEST_LOSS[self.global_step] = test_loss.cpu().detach().numpy()
print(

f"Epoch:␣{self.epoch:>2}",
f"Batches␣per␣seconds:␣{self.global_step␣/␣used_time:.2f}",
f"Global␣step:␣{self.global_step:>6}",
f"Test␣Loss:␣{test_loss:.3f},",
f"Test␣Accuracy:␣{test_acc:.3f}",
sep="\t")

self.model.train()

def train(self,cfg):
"""
Trains the model for [self.epochs] epochs.
"""
Track initial loss/accuracy
def should_test_model():

return self.global_step % self.num_steps_per_test == 0
def should_validate_model():

return self.global_step % self.num_steps_per_val == 0

for epoch in range(self.epochs):
self.epoch = epoch
Perform a full pass through all the training samples
for X_batch,lengths, aux_batch, Y1_batch,Y2_batch in self.

,→ dataloader_train:

Perform the forward pass
#self.model.lstm1.init_hidden(cfg.TRAINER.BATCH_SIZE,self.device)

#torch.cuda.empty_cache()

predictions = self.model(X_batch.float(),lengths.float(),aux_batch)
Compute the cross entropy loss for the batch

loss = self.loss_criterion(predictions, Y1_batch.float())
los2 = self.extra_loss(predictions, Y2_batch.long())

#loss, loss_shape, loss_temporal = dilate_loss(predictions,Y_batch.
,→ float(),self.alpha, self.gamma, self.device)

#loss = Variable(loss, requires_grad = True)

#self.TRAIN_LOSS[self.global_step] = loss.cpu().detach().numpy()
#self.TRAIN_CL[self.global_step] = los2.cpu().detach().numpy()
#loss.backward()
Backpropagation
self.optimizer.zero_grad()
#los3=loss+2*los2
los3=los2
los3.backward()
self.TRAIN_LOSS[self.global_step] = los3.cpu().detach().numpy()
self.optimizer.step()
self.global_step += 1
Compute loss/accuracy for all three datasets.
if(self.global_step%self.num_steps_per_test==0):

print(f"Train␣Loss:␣{loss:.3f},␣train␣CEL:␣{los2:.3f}")
if should_test_model():

Chapter C: Source Code

self.test_epoch()
self.save_model()

if should_validate_model():
self.validation_epoch()

create_plots(self, self.plot_name)

def save_model(self):
def is_best_model():

"""
Returns True if current model has the lowest validation loss

"""
validation_losses = list(self.TEST_LOSS.values())
return validation_losses[-1] == min(validation_losses)

state_dict = self.model.state_dict()
filepath = self.checkpoint_dir.joinpath(f"{self.global_step}.ckpt")

save_checkpoint(state_dict, filepath, is_best_model(),dataset_name=self.cfg
,→ .DATASETS.NAME)

def load_last_model(self):
state_dict = load_last_checkpoint(self.checkpoint_dir)
if state_dict is None:

print(
f"Could␣not␣load␣best␣checkpoint.␣Did␣not␣find␣under:␣{self.

,→ checkpoint_dir}")
return

self.model.load_state_dict(state_dict)

def load_best_model(self):
state_dict = load_best_checkpoint(self.checkpoint_dir,self.cfg.DATASETS.

,→ NAME)
if state_dict is None:

print(
f"Could␣not␣load␣best␣checkpoint.␣Did␣not␣find␣under:␣{self.

,→ checkpoint_dir}")
return

self.model.load_state_dict(state_dict)

def display(self):
self.model.eval()
with torch.no_grad():

for X_batch, Y_batch in self.dataloader_val:

output_probs = self.model(X_batch.float())

x = output_probs[0].cpu()
y = Y_batch[0].cpu()

return x, y

def create_plots(trainer: Trainer, name: str):

plot_path = pathlib.Path("plots")
plot_path.mkdir(exist_ok=True)
Save plots and show them

L. Bjertnes: Applying NLP-Based ML Techniques to our LS-CAT Dataset

plt.figure(figsize=(20, 8))
plt.subplot(1, 2, 1)
plt.title("Loss")
plot_loss(trainer.TRAIN_LOSS, label="Training␣loss")
plot_loss(trainer.TEST_LOSS, label="Test␣loss")
plot_loss(trainer.VAL_LOSS, label="Val␣loss")
plt.legend()
plt.subplot(1, 2, 2)
plt.title("Accuracy")
plt.title("Accuracy")
plot_loss(trainer.VAL_ACC, label="Val␣accuracy")
plot_loss(trainer.TEST_ACC, label="Test␣accuracy")
plt.legend()
f = open(plot_path.joinpath(f"{name}.pkl"),"wb")
pickle.dump([trainer.TRAIN_LOSS,trainer.TEST_LOSS,trainer.VAL_LOSS,trainer.

,→ VAL_ACC,trainer.TEST_ACC],f)
f.close()
plt.legend()
plt.savefig(plot_path.joinpath(f"{name}_plot.png"))

Code listing C.7: The trainer class

from trainer.trainer2 import Trainer
from config.default import cfg
import sys
import time
#raw2data(cfg)

#data_to_one_hots(cfg)
if __name__ == ’__main__’:

print(sys.argv[:1])
cfg.TRAINER.LOAD_LAST = 0
for i in range(int(sys.argv[2])):

trainer = Trainer(cfg,sys.argv[1]+"_"+str(i))
cfg.TRAINER.LOAD_LAST = 2
if i > int(sys.argv[2])/8 and cfg.TRAINER.LR>0.000005:

cfg.TRAINER.LR -= 0.0000002
del trainer
time.sleep(10)

Code listing C.8: The Regression task

from yacs.config import CfgNode as CN

cfg = CN()
cfg.MODEL = CN()
--
Embed
--
cfg.MODEL.EMBED = CN()
cfg.MODEL.EMBED.TRESHOLD = 1 #unused variable
cfg.MODEL.EMBED.OUTDIM = 3 #Outdim is the size of timepart, placepart, buspart,

,→ capacity, direction has default of one

--
Regression forecaster lstm
--

Chapter C: Source Code

cfg.MODEL.LSTM = CN()
cfg.MODEL.LSTM.TRESHOLD = 1 #unused variable

Dataset

cfg.DATASETS = CN()
cfg.DATASETS.NAME = ’anomaly2’
cfg.DATASETS.REBUILD=False #rebuilds dataset
cfg.DATASETS.TRAIN=150 #amount of days added to the training set
cfg.DATASETS.TEST= 21 #amount of days added to the training set
cfg.DATASETS.VAL= 14 #amount of days added to the training set
cfg.DATASETS.LONG_MEM= 1000 #amount of trips remembered
cfg.DATASETS.SHORT_MIS= 300 #amount of trips forgotten
cfg.DATASETS.SEQ_LEN= 28 #Longest trip

Trainer

cfg.TRAINER = CN()
cfg.TRAINER.GAMMA = 0.1
cfg.TRAINER.BATCH_SIZE = 128
cfg.TRAINER.LR = 0.00001 #0.0001
cfg.TRAINER.MOMENTUM = 0.9

cfg.TRAINER.EPOCH = 10
cfg.TRAINER.WEIGHT_DECAY = 5e-4
cfg.TRAINER.SHOULD_TRAIN = True #retrains the model
cfg.TRAINER.LOAD_LAST = 0 #loads the last checkpoint to continue training

Code listing C.9: Configuration file

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

Larrs Bjertnes
Applying N

LP-Based M
L Techniques to our LS-CAT D

ataset

Lars Bjertnes

Applying Natural-Language-
Processing-Based Machine-Learning
Techniques to our Large Scale CUDA
AutoTuning Dataset

Master’s thesis in Computer Science

October 2020M
as

te
r’s

 th
es

is

	Problem description
	Acknowledgements
	Contents
	Figures
	Tables
	Code Listings
	Abbreviations
	Introduction
	Background and Related Works
	Autotuning
	GPU
	CUDA
	Traditional Autotuning
	ATLAS
	FFTW3
	OSKI
	SPIRAL
	Orio

	LS-CAT

	Machine Learning and ML-based Autotuners
	Machine Learning
	Activation Functions
	Learning Tasks
	Embedding
	Recurrent Neural Network (RNN)
	Attention Mechanisms
	Optimizers
	SGD With Momentum
	Hyperparameters
	Changing Settings While Training

	Intermediate Representation
	Benchmarking
	Python and Libraries
	Autotuners Using Source Code Based ML Methods
	end2end-dl/deeptune
	NCC
	CDFG
	ProGraML

	Applying NLP-ML Techniques to our LS-CAT Dataset
	Source Code to Intermediate Representation
	The inst2vec Pipeline and NCC
	FastText Embedding
	ML Pipeline
	Embedder
	CSV Data Pre-Processing
	Data
	Configuration
	Data-Loader
	Utilities
	Trainer
	Model

	Evaluation of FastText
	Binary Classification Model
	Regression Oriented Models

	Results and Benchmarks
	Binary Classifier
	LS-CAT LSTM Model
	LS-CAT LSTM Self-Attention
	LS-CAT LSTM Self-Attention

	Regression Results
	LS-CAT LSTM Model
	LS-CAT LSTM Self-Attention

	Discussion
	Embedding
	LS-CAT ML Models Results
	LS-CAT ML Model Architecture Variations
	Evaluation of our LS-CAT Dataset

	Conclusions and Future Work
	Bibliography
	Poster
	Our LS-CAT paper
	Source Code

