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This was supposed to be a PhD in data integration. Oh well.
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Preface

In 2017 I arrived in snowy Stjørdal after a long drive from Evenstad. Knut was waiting to

welcome me at the NIBIO research station when I got stuck in the snow with my car. A messy

hour with Knut on a tractor later, and I was finally inside. The first year was an eventful year,

since the research group was moved from Stjørdal to Trondheim.

Since the start of my PhD a lot has happened. On my second day, I started a course at NTNU

in “advanced computer intensive statistical methods” taught by prof. Jo Eidsvik. That was

my trial-by-fire introduction to statistics. I would say it went pretty well, though it was more

than challenging at times. I do believe that my background in ecology, before doing a PhD in

statistics, has given me an unique perspective.

In this thesis, my goal has been to provide suitable alternatives to classical ordination methods

for ecologists. In the end, it turns out to be a collection of thoughts and developments that

relate to both ordination and species distribution modelling.

This thesis is divided into three different sections, including a total of seven articles. The first

section includes developments of methods for community ecologists. The second section focuses

on two ecological applications of the GLLVM framework, the first using (joint) species distri-

bution modelling, and the second using (model-based) ordination. The model developments

in the first section, and the applications of the second section, can be seen in light of either

ordination or species distribution modelling.

In general, the choice of JSDM versus ordination is an arbitrary one, which can be demonstrated

quite straightforwardly. For example, in the first example, which includes the modelling of

species associations in a freshwater community as a function of temperature, we visualize

species associations in the form of residual correlations. In an article more focused on using

ordination for community ecology, an ordination plot might have been used instead, which

we can still do post-hoc! The figure below visualizes species associations as a function of

temperature, but using ordination plots:

The second example of a plant-pollinator system in Trondheim chooses to model and visualize

patterns in the data differently. Here, sites are modelled as a function of the environment

rather than species, so that a different ordination plot of sites can be constructed at each point

along the gradient. Alternatively, a single plot of species associations as represented by residual

correlations can be drawn:
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Figure 1: Three figures of the freshwater community in the second ecological application of the
GLLVM framework in this thesis. Species associations are modelled as a function of temper-
ature, so that an ordination plot of species can be made that visualizes specis associations at
each point along the gradient.
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Figure 2: Residual correlations of bee species and plants (abbreviated names, see appendix
in 2.2), for the model fitted to the data from the Beediverse project, as part of the second
ecological application in this thesis. Bee species are shown on the y-axis and plants on the
x-axis
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Ultimately, model-based ordination or JSDMs can be understood as the same type of hierar-

chical model. Which type of visualization is a matter of taste, or “academic upbringing”, I

suppose. In these two examples, species and sites were hierarchically modelled as a function

of environmental predictors. Of course, it is possible to take this a step further and facilitate

e.g., including spatial coordinates, functional traits or phylogenetic relationships.

These are the overarching topics and ideas from this thesis that are reviewed in the the third

and final section, which includes two review articles. The first article titled “Next generation

ordination with Generalized Linear Latent Variable Models” relates the newly developed meth-

ods to various classical ordination methods. Such a comparison has the potential to make it

more straightforward for ecologists to understand model-based ordination, and thus to lower

the threshold for transferring to the GLLVM framework for the statistical analysis of data on

ecological communities. The final article titled “Hierarchical Ordination, A unifying framework

for drivers of community processes” in this section and thesis pitches the idea of a new type

of framework for ordination and joint species distribution modelling. It encompasses the idea

of ecological processes ultimately being represented as a function of the site scores and species

loadings in a model. These are then modelled hierarchically following ecological expectations:

that space is a site-related aspect that species respond to on a site-by-site basis. Similarly, that

species relatedness is a species-specific property.

My personal experience is that ordination is used by field ecologists who love collecting data,

whereas SDMs are used by ecologists that are interested in statistical analysis (OK, admittedly

that is a bit of a general statement). Would a field resulting from the unification of those two

perspectives not be something great? I suppose it’s called community ecology.
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Background

Ecologists like to collect data, loads of it. Especially in community ecology, researchers often

enjoy an elaborate taxonomic knowledge of the species in their communities, so that they go

out in the field for days on end to register species that occur under a range of different circum-

stances. Then, after the dataset has been collected, starts the daunting task of attempting to

perform statistical analysis in order to understand the process that underlies the composition

of a community with many species.

Ecology is united through a common goal: assessment of the impacts of human-made dis-

turbances and climate change, in order to preserve patterns of biodiversity. It is after all

biodiversity that supports societal needs through providing resilience to the ecosystems that

provide crucial services (Haines-Young, Potschin, et al. 2010). Statistical ecologists and eco-

logical statisticians support this goal by developing (understanding) of complex models.

Recent years have seen a push for statistical models with increasing complexity to ensure

the accuracy of the assessments by ecologists. This includes the use of Generalized Additive

Models (GAMs, Wood 2017) and Generalized Linear Mixed-effects Models (GLMMs, Bolker

et al. 2009). But, only recently have multispecies models emerged as extension of the GLMM

framework, due to the increased need to capture processes that represent a whole ecological

community. These multispecies models are aptly named Joint Species Distribution Models

(JSDMs, Pollock et al. 2014; Clark et al. 2014). Only after noticing that the large datasets of

community ecologists provide a computational issue for JSDMs, was the Generalized Linear

Latent Variable Model framework introduced (Warton, Blanchet, et al. 2015).

The GLLVM framework now unites the statistical toolsets of community ecologists. Where

multivariate analysis and statistical models for the analysis of species distributions were pre-

viously worlds apart, they are now united in a single statistical framework. This thesis further

develops the GLLVM framework for application in ecology, by providing new models for clas-

sical ecological problems, by demonstrating their application to ecological datasets, and by

relating them to methods ecologists are more acquainted with.

After all, ecologists have applied multispecies methods for decades. Almost every community

ecologist is familiar with Principal Component Analysis or Correspondence Analysis (Pearson

1901; Hill 1973) and in contrast to GLMMs, ordination methods have the benefit of being

easy to use. They also allow for straightforward visual inspection compared to GLMMs, that
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require at least a basic understanding of maximum likelihood theory and hypothesis testing in

order to draw inference.

However, classical ordination methods make assumptions that are difficult or impossible to

verify (ter Braak 1985; Warton, Wright, and Wang 2012). This increases the potential for poor

or wrong inference, with potentially detrimental consequences. One of the main benefits of

the GL(M)M framework is that assumptions can be checked with the use of residual diagnos-

tics. GLLVMs allow for both: straightforward visual inspection of the model and checking

assumptions. However, they also inherit the steep learning curve from GLMMs.

For decades classical ordination methods have been interpreted as latent variable models, so

that the term “ordination axis” has become synonymous to “latent variable”. The word “latent”

is defined as “existing, but not yet very noticeable” (Autores 2008), in essence: missing. In

statistical models, something that is missing should not occur in the likelihood, so that it needs

to be integrated out. This is exactly what GLLVMs do, and it is this process of integration that

render GLLVMs much more complex and computationally intensive than classical ordination

methods, which treat latent variables as fixed effects instead (Walker and Jackson 2011).

Hawinkel et al. (2019) argue: “if statistical inference were the goal, then random effects would

be preferred”. They developed a framework for ordination that treats the ordination axes as

fixed effects for heuristic reasons, and state: “This (treating the latent variables as random)

renders the fitting procedure computationally intensive, without providing a clear improvement

to the ordination plot as compared to fixed effects models”. This is an arguable choice, as fitting

speed should instead be a reason to push for advances in the fitting of GLLVMs, such as with

as in Popovic et al. (2019), and not as an excuse to resort to fixed effects ordination methods.

In ecology, latent variables are understood as “gradients”. Ecological gradients represent the

environment that underlies many of the processes that generate differences in the species com-

position of ecological communities. In addition to registering species, ecologists often measure

the environment as well, which they want to include in their statistical analysis to improve

clarity of the patterns that they see. In order to better understand environmental drivers of

community composition, constrained ordination methods such as Canonical Correspondence

Analysis (ter Braak 1986) were developed to directly relate the environment to the latent

variable.

This is where the “latent” term gets confusing, as in constrained ordination methods the latent

variable is represented as a function of measured predictors. Hawinkel et al. (2019) writes that
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a constrained ordination method for latent variable models is missing, where they supposedly

mean “random effect” when they write “latent variable”. When all predictors are measured,

the meaning “latent variable” is not synonymous to the statistical term of “latent variable”

(i.e. a random effect). Then, the latent variables can be considered to be observed, so that

it is statistically accurate to treat the parameters of latent variables as a fixed effect instead,

so considering latent variable to be synonymous with random effect can be misleading. The

same principle applies to the constrained ordination methods developed by Yee (2004), thus

concluding that model-based ordination methods with constrained latent variables has been

available for decades.

It is the random effects formulation of GLLVMs that connect ordination and species distribu-

tion modelling. For decades, these two angles (JSDMs and ordination) have been considered

distinctly different. There is a lot ecologists can learn from each other by crossing over to the

other world, or by borrowing ecological theory and experience. This is a message that can be

found in each article in this thesis. Ultimately, this thesis represents a sorely needed update

for the toolset of community ecologists using random effects, in the GLLVM framework.

This year, it is 120 years since Pearson (1901) developed Principal Component Analysis. Even

though the deficiencies of that method are well known, it is still being applied by community

ecologists. Similarly, Correspondence Analysis and Detrended Correspondence Analysis are

still being applied. The GLLVM framework has the potential to replace all of these methods

for the analysis of multivariate data in ecology. Hopefully, this thesis will further spark the

interest of ecologists in modern methods for the statistical analysis of ecological communities,

so that classical ordination methods can eventually be retired.

After all, no one uses linear regression on log-transformed count data anymore either.
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The gllvm R-package

Throughout this thesis, the gllvm R-package has been used for development and dissemination

of the models (Niku, Brooks, Herliansyah, Hui, Taskinen, Warton, and van der Veen 2021),

especially in the first three articles and one of the applications. Niku, Hui, et al. (2019)

developed the original version of the R-package, which intends to make GLLVMs more accessible

and easier to fit for ecologists.

GLLVMs are computationally intensive statistical models that can take long to fit, are sensitive

to the initial values, and have a steep learning curve. The R-package addresses each of these

issues, with the use of approximate methods for integration (Niku, Warton, et al. 2017; Hui

et al. 2017), smart generation of initial values (Niku, Brooks, Herliansyah, Hui, Taskinen, and

Warton 2019), and by providing a general toolset to examine the results of fitted models (such

as creation of a biplot or triplot, tools to construct correlation plots of species associations,

and model-selection tools).

Data for examples

In order to perform a limited demonstration of the current functionalities of gllvm, I here use

two datasets: the hunting spider dataset (also used in the second article of the first section)

and the dyke dataset. They were provided by Cajo ter Braak from the example data sets

of CANOCO (ter Braak and Smilauer 2012), and have been published, with permission, on

figshare (van der Veen 2021a; van der Veen 2021b).

The hunting spider dataset includes 12 species of hunting spiders at 100 sites, which were cap-

tured using pitfall traps (see van der Aart and Smeek-Enserink 1974, for details) and includes

additional measurements of the environment at 28 sites.

The dyke vegetation data was also used for demonstration by ter Braak (1986). Detailed infor-

mation on the dataset is available in Canoco, or in the aforementioned article, but it includes

binary responses of 125 macrophyte species at 133 sites in Dutch dykes, with measurements

of electrical conductivity, phosphate and chloride content of the water, and soil type (either

clay, peat or sand). Here, Phosphates was log-transformed as in ter Braak (1986). I use the

model.matrix(·) function to create dummy predictors for the soil type variable (where (·) is a

placeholder for whatever object we put into a function).
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The quadratic response model

In this example I demonstrate how to implement the quadratic response model, as developed

in the first article in the first section of this thesis, with the hunting spider data. Quadratic

curves are frequently occurring in community ecology, specifically to describe the response of

species to the environment. When one has measured predictor variables, a quadratic function

can straightforwardly be included in a regression in R using the poly(·, 2) function. However,

in a GLLVM, latent variables are included that can represent unmeasured predictors. As such,

one might wish to test if species respond to those unknown predictors too. This is similar

to the theory behind other ordination methods, such as Correspondence Analysis (ter Braak

1985), which has been one of the key drivers for the popularity of ordination in ecology.

The unique thing about the quadratic response model, is that specifying a quadratic term

for each species separately, coincides with the assumption that species have their own unique

tolerances to the environment. A more simple model, would be to assume that species have the

same tolerances, in essence that all species are a generalist or specialist to the same degree. This

can be done using a linear response model, with random row-effects. Here, I will demonstrate

how to fit all three models, and then pick the best using information criteria.

ftEqTol <- gllvm(Y, family = "poisson", row.eff = "random", num.lv = 2,

n.init = 3)

The family argument specifies the response distribution. Since the dataset consists counts

for this example, I choose a Poisson distribution (though alternatively a negative-binomial

distribution could be used in case of overdispersion). The row.eff argument specifies the

type of random intercept, which can be an intercept per row as here, or alternatively could

specify grouping of a kind, for example if the dataset included multiple plots per site. The

num.lv argument specifies the number of latent variables to include in the model, and finally

the n.init argument specifies the number of times the model should be re-fitted, in order to

ensure that an optimal solution has been found (due to sensitivity of the approach to the initial

values).

I can then use the ordiplot(·) function to construct an ordination diagram. This function has

various options to change the visual representation. The most important argument to elaborate

on here, is the predict.region argument, which construct prediction ellipses for the sites, to

give an impression of which sites are predicted to be similar in the ordination.
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Figure 3: Ordination plot from the equal tolerances model fit to the hunting spider dataset.
Grey numbers indicate predicted locations of sites, blue names locations of species.

ordiplot(ftEqTol, s.colors = "gray", biplot = TRUE, predict.region = TRUE,

col.ellips = "gray", lty.ellips = "dashed", alpha = 0.6)

Next, I fit a model with the assumption that tolerances are the same for all species, but unique

per latent variable, which I will refer to as species common tolerances. I do this using the

quadratic flag in the gllvm(·) function, which has the options FALSE, LV (common tolerances),

and TRUE (unique tolerances for all species).

ftComTol <- gllvm(Y, family = "poisson", num.lv = 2, quadratic = "LV",

n.init = 3)

And lastly, I can fit the full quadratic model with the assumption that tolerances are species-

specific. Biologically, this model might be most realistic, but it places a heavy burden on the

dataset in terms of information required.

ftUneqTol <- gllvm(y = Y, num.lv = 2, family = "poisson", quadratic = TRUE,

n.init = 1, start.struc = "all", starting.val = "zero")

As mentioned, GLLVMs are sensitive to the initial values, and with a quadratic response model

even more so. As such, the unequal tolerances model by default fits a common tolerances model

first, to use as initial values. This option is controlled through the start.struc argument

in start.control. Here, the best set-up (in a maximum likelihood sense) was given with
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initial values of zero, and without first fitting a common tolerances model. The options for

starting.val are zero, res, and random.

Now, I can use information criteria to determine which of the models fits the hunting spider

data best.

AICc(ftEqTol, ftComTol, ftUneqTol)

## [1] 5986.312 6157.395 5733.425

The unequal tolerances model fits best, as measured by AICc. It is still important to check

if the distributional assumptions have been met, so it is always curcial to examine plots of

residuals:

plot(ftUneqTol)

The residuals calculated here are randomized quantile residuals, which are the gold standard

for models that include random effects (Dunn and Smyth 1996). Examining residual plots can

be difficult, but the main thing to remember is that there should not be any visible patterns (or

deviations in case of the QQ-plot). All lines should be straight, all dots should be (relatively)

randomly distributed. Here, I see that there is some deviation in the second plot, that shows

the residuals against the theoretical quantiles of the Poisson distribution, which means that

the distribution of the residuals is more positively skewed relative to the Poisson. This means,

that the model does not perfectly represent the data, in that I might have omitted important

terms from the model, or I might have to assume a different response distribution (such as the

negative-binomial distribution). For demonstration purposes, I will continue to examine the

results anyway!

Species optima and tolerances, and their approximate standard errors, can be extracted from

the model using the tolerances(·) and optima(·) functions.

The variance explained, which can be used to e.g. decompose variation across latent variables

or terms in the model, can be determined using the getResidualCov(·) function:
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# Residual variance per latent variable for the linear term

getResidualCov(ftUneqTol)$var.q

## LV1 LV2

## 100.8808 142.4957

# for the quadratic term

getResidualCov(ftUneqTol)$var.q2

## LV1^2 LV2^2

## 142.96587 30.83365

The ordiplot(·) function is used to construct an ordination diagram (here of species optima).

However, since species optima can be quite large if they are unobserved, or if too little in-

formation is present in the data, creating a nice figure can be challenging. One attempt to

improve readability of the species optima in a figure is to point an arrow in their general di-

rection, if species optima are “unobserved”: outside of the range of the predicted site scores.

Alternatively, a combination of the getResidualCor(·) function and the corrplot function in the

R-package with the same name can be used for visualization (Wei and Simko 2021).

ordiplot(ftUneqTol, biplot = TRUE, spp.arrows = TRUE, alpha = 0.6, s.colors = "gray")

cormat <- getResidualCor(ftUneqTol)

corrplot::corrplot(cormat, type = "lower", diag = FALSE, order = "AOE",

mar = c(0, 0, 5, 0), tl.cex = 0.8, addgrid.col = NA)

Figure 4: Ordination plot and residual correlations from the unequal tolerances model fitted
to the hunting spider dataset.
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Ordination with predictors

Until recently, the gllvm R-package only supported unconstrained ordination. As such, when

including predictor variables in the model, the interpretation of the ordination would shift to

that of a residual ordination, i.e. an ordination that is conditional on the predictors, but that

does not include the effects of the predictors, some of this is further discussed in either articles

in the last section. Here, I will demonstrate this method using the dyke dataset of binary data.

# Get the design matrix and scale the predictors

X <- model.matrix(~., X)[, -1]

X <- scale(X)

In gllvm a multivariate GLM is fitted as:

MGLM <- gllvm(Y, X = X, family = "binomial", num.lv = 0)

Such a model is also known as a “stacked SDM”, since it can also be fitted with independent

models per species, since there is a slope per predictor per species, but no terms are shared

across species or sites. As such, if the number of predictor variables is large and so is the

number of species, including predictors can result in a very large number of parameters to

estimate. For data of ecological communities, which can be quite sparse, this is not always

a reasonable model to fit. As alternative, ecologists have performed constrained ordination

for decades, with methods such as Canonical Correspondence Analysis (ter Braak 1986), or

Redundancy Analysis (Rao 1964). In the second article of the first section, we further develop

the GLLVM framework for that purpose.

Reduced rank regression is a method akin to multivariate GLMs, where the number of param-

eters is reduced by the “rank” of the matrix of predictors slopes, which is by default equal to

the number of predictors (or the number of species in case that is less). Using reduced rank

regression, I fit a model that requires that rank to be equal to a pre-specified number. This

then lends a latent variable interpretation due to the way the model is formulated (see the

second article in section one for more details). The method is known in ecology under the

name of constrained ordination. In constrained ordination, the data is regressed as a function

of sites and species, where the sites are again regressed as a function of the predictors. The

main difference with classical constrained ordination and the developments in this thesis, is

that the former omits the residual of the hierarchical regression, thus assuming that the latent
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variable can be represented perfectly by the predictor variables. A step further would be to

assume that the residuals of sites are not independent, but instead are spatially autocorrelated,

which is a step further than the developments have gone in this thesis, though some discussion

on this subjects is available in the final article in this thesis.

A classical ordination can be fitted in the VGAM R-package more accurately than with classical

ordination methods (i.e. with maximum likelihood; see Yee 2004), or with the implementation

that I have also developed for the gllvm R-package, which uses numerical optimization (unlike

in the VGAM R-package). The number of latent variables can be determined by cross-validation,

or alternatively, using information criteria (I will use the latter because it is easy!). The code

for this in the gllvm R-package, for an arbitrary choice of two latent variables, is:

RRGLM <- gllvm(Y, X = X, family = "binomial", num.RR = 2)

but unlike in other R-packages, it is now possible to formulate a constrained ordination with

residual, or with additional random effects in general. Since, let’s face it, how often can we be

100% confident that all relevant predictors have been measured, so that there is no residual?!

Thus, I assume that I can partially inform the model of what the latent variable is, using

predictors, and that there is an additional part I have only information on in the form of

species responses, which is how the residual can be understood. The R-code for this is:

CGLLVM <- gllvm(Y, X = X, family = "binomial", num.lv.c = 2, method = "LA",

starting.val = "res", optimizer = "nlminb", n.init = 5)

Here, the optimizer argument specifies which optimizer the model should be fitted with (cur-

rently the possibilities are optim or nlminb). Changing optimizers can result in a different

model fit, or better convergence, similar as in ordinary mixed effects models. So, ideally

we want to try different initial values and both optimizers to find the optimal model fit for

GLLVMs.

The number of “fully observed” latent variables (i.e. without residual), “partially observed”

latent variables (with residual), and unconstrained (or “residual” i.e. completely unmeasured)

latent variables can be freely combined using the num.RR, num.lv.c and num.lv arguments

(but caution is necessary to prevent overfitting).

Specifying the method argument allows us to influence whether the model should be fitted us-

ing the Laplace approximation, or using Variational Approximations (the latter is the default).
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I chose the Laplace approximation here, since the dataset includes presence-absences. The

Variational Approximation implemented for binary responses in the gllvm R-package has the

tendency to underestimate the variance of the latent variables, especially for the probit formu-

lation used here, which is a known deficiency of the method (Blei, Kucukelbir, and McAuliffe

2017), which was especially clear for this dataset (as VA estimated the scale of both LVs to

be zero and LA as non-zero). Recent developments of Extended Variational Approximations

might offer an alternative solution in that regard (Korhonen 2020). Thus, changing to the

Laplace approximation is a good solution here, though fitting models with the Laplace approx-

imation tends to be slower than the Variational Approximation (Niku, Brooks, Herliansyah,

Hui, Taskinen, and Warton 2019).

The reduced rank slopes (also known as canonical coefficients in e.g., CCA or RDA) are avail-

able under RRGLM$params$LvXcoef or can be retrieved with the coef(·) function, or with the

summary(·) function (see next page), and the same for the standard deviations of the latent

variables.
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summary(CGLLVM)

##

## Call:

## gllvm(y = Y, X = X, num.lv.c = 2, num.RR = 0, family = "binomial",

## method = "LA", starting.val = "res", optimizer = "nlminb",

## n.init = 5)

##

## Family: binomial

##

## AIC: 8490.816 AICc: 8511.397 BIC: 11640.03 LL: -3837 df: 408

##

## Informed LVs: 2

## Constrained LVs: 0

## Unconstrained LVs: 0

## Standard deviation of LVs: 0.3756 0.4471

##

## Formula: ~ 1

## LV formula: ~EC + Phosphates + Chlorides + Soil.TypePeat + Soil.TypeSand

##

## Coefficients LV predictors:

## Estimate Std. Error z value Pr(>|z|)

## EC(LV1) 0.1643000 0.0020912 78.569 < 2e-16 ***

## Phosphates(LV1) 0.0721775 0.0008617 83.765 < 2e-16 ***

## Chlorides(LV1) 0.1238616 0.0076877 16.112 < 2e-16 ***

## Soil.TypePeat(LV1) -0.1664809 0.0042473 -39.197 < 2e-16 ***

## Soil.TypeSand(LV1) 0.0032786 0.0010693 3.066 0.00217 **

## EC(LV2) 0.1341041 0.0075517 17.758 < 2e-16 ***

## Phosphates(LV2) 0.3118459 0.0019600 159.102 < 2e-16 ***

## Chlorides(LV2) -0.0991805 0.0021477 -46.180 < 2e-16 ***

## Soil.TypePeat(LV2) 0.0718595 0.0233883 3.072 0.00212 **

## Soil.TypeSand(LV2) 0.1168449 0.0122445 9.543 < 2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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The standard errors are all close to zero, which generally means that the model is overfitting,

i.e. the model is too complex for the dataset at hand. This is especially likely to happen with

small datasets, that contain little information. Again, I will continue here for demonstration

purposes.

The summary(·) function by default provides the estimates, standard errors, z-values (wald-

statistic) and p-values for the reduced rank predictor slopes. Note, that these do not necessarily

correspond with the arrows in an ordination plot, since there the latent variables are by default

rotated so that the first latent variable explains maximum variation (and the second, third,

etc. thereafter). The principal argument in the summary function can be used to retrieve

rotated coefficients, the Lvcoefs argument to retrieve the loadings, and there are various other

arguments. When rotating the slopes, they should not be interpreted with respect to the

responses, but relative to the ordination instead (i.e. “chlorides was significantly related to the

first latent variable”). Since the models are sensitive to initial values (and also the calculation

of the standard errors, z-values and p-values as a consequence), it is important to re-fit each

model multiple times to ensure that a stable solution has been found. This might be one of

the main downsides of the methods implemented in gllvm.

Note, that if the standard deviation of either LVs would be zero, we should switch from

num.lv.c to num.RR for those latent variables, as it is indicative of a more complex model

than supported by the data. Fortunately, the scale of both latent variables is estimated as

non-zero here.

I can now also use the anova(·) function in the package to do hypothesis testing for the predic-

tors. This function makes use of the well known result that the likelihood ratio test statistic is

asymptotically χ2-distributed with degrees of freedom equal to the difference in the parameters

of these two models (so here: one parameters per latent variable and predictor). Then, I can

calculate a p-value from from test statistic using the χ2 probability density function. Note,

that the models need to be nested for this, as they are here (the second model is a simpler

version of the first). For example, I can refit the model excluding the predictor “Chlorides”,

by specifying the lv.formula argument:

CGLLVM2 <- gllvm(Y, X = X, family = "binomial", num.lv.c = 2, method = "LA",

lv.formula = ~EC + Phosphates + Soil.TypePeat + Soil.TypeSand)

## Resid.Df D Df.diff P.value
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## 1 16219 0.00000 0

## 2 16217 20.33222 2 3.84517e-05

anova(CGLLVM,CGLLVM2)

It is also possible to combine those arguments with full rank predictors. If combining con-

strained ordination, with additional predictors, the formula interface has to be used:

PCGLLVM <- gllvm(Y, X = X, family = "binomial", num.lv.c = 2, lv.formula = ~EC +

Phosphates + Chlorides, formula = ~Soil.Type)

where lv.formula is the formula for the constrained ordination, and X.formula is the formula

which informs the model which predictors should be modelled in full-rank. Note, that those

two formulas cannot include the same predictor variables, and all predictor variables should

be provided in the X argument. In essence, this performs a partial constrained ordination with

latent variables.

Though I did not do so here, information criteria can be used to determine the correct number

of reduced ranks, or in general the correct number of constrained and unconstrained latent

variables. My recommendation is not to perform model-selection on the included predictor

variables, but to mostly focus on the rank (if this causes convergence issues, first scale and

centre predictors, and if that does not help perform model-selection on the predictors).

Finally, all the other tools in the gllvm R-package can be used for inference with these models,

such as creating an ordination diagram with arrows. The arrows that show as less intense red

(pink), are predictors of which the confidence interval for the slope includes zero, for at least

one of the two plotted dimensions. There are various arguments included in the function to

improve readability of the figure, have a look at its documentation. The arrows are always

proportional to the size of the plot, so that the predictor with the largest slope estimate is the

largest arrow. If the predictors have no effect, the reduced rank slopes will be close to zero.

Although I could fit all models and compare with information criteria and visualize the model

that fits best (which is probably what I should do), instead I let you enjoy this beautiful

ordination diagram, with prediction ellipses and arrows that indicate the predictor effects,

with the note that some additional scaling has been performed to ensure a nice visualization.
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ordiplot(CGLLVM, biplot = TRUE, xlim = c(-2.5, 2), ylim = c(-3, 3), alpha = 0.202,

arrow.scale = 0.7, s.colors = "gray", predict.region = TRUE, lty.ellips = "dashed",

col.ellips = "gray")

Figure 5: Ordination plot from a model-based ordination with constrained latent variables
fitted to the dyke data.

Now, since I have assumed that the latent variables are only partially observed, i.e. they

are a function of predictors and random effects, there are three types of distinguishable site

scores in the model: 1) “conditional”, 2) “marginal”, and 3) “residual”. The first set contains

all effects, the second set contains only fixed effects (i.e. predictor effects) and the third only

includes random effects, i.e. the configuration of the sites that is not explained by the predictors.

Naturally, if we fitted a model with only the num.RR argument, only marginal scores would be

available, and only residual scores if we had used the num.lv argument.

ordiplot(CGLLVM, type = "conditional")

ordiplot(CGLLVM, type = "marginal")

ordiplot(CGLLVM, type = "residual")
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Figure 6: Ordination plots of sites for different components of the latent variables.

Finally, though the discussion in this chapter has mostly been ordination-based, it is helpful to

note that in the perspective from the GLLVM framework, JSDMs and ordination are the same

modelling approaches. For example, for both datasets and models used here I can visualize the

residual correlation matrix to get an impression of species associations. The getResidualCor(·)
function in combination with the corrplot R-package allows for such visualization.

Figure 7: Residual correlations from the dyke dataset and model.
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cormat <- getResidualCor(CGLLVM)

corrplot::corrplot(cormat, type = "lower", diag = FALSE, order = "AOE",

addgrid.col = NA)

Clearly, for a model with many species, it is difficult to visualize residual correlations in a

readable way. Ordination plots have a similar problem, and the solution is to filter species by

e.g. functional groups.

In the correlation plot, blue means that two species have a positive relationship in terms of

co-occurrence, and red a negative relationship. The more intense the color, the stronger the

relationship is predicted to be. Ordination plots show the same information for unconstrained

ordination, so that which plot to use is a matter of taste. However, in the case of constrained

ordination methods or models using predictors in general, the residual correlation matrix only

includes information of species associations not due to the predictors, whereas the ordination

plot can include both sources of information. Similarly, residual correlation plots can be difficult

to interpret or visualize for a larger number of species.

The gllvm R-package provides an important contribution as such, as it makes these complex

models faster, and more straightforward, to fit and interpret. Some of the later perspectives in

this thesis have not yet been implemented as technical developments are still lacking. Specif-

ically, the hierarchical ordination framework (also known as double constrained ordination

e.g. as in Peng et al. 2021), requires implementing (structured) random slope models and the

ability to relate traits to the latent variables. One of my main conclusions from this PhD,

is that the gllvm framework has a lot to offer for ecology, and not nearly all possibilities for

development and application have been exhausted just yet.
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1  | INTRODUC TION

One of the key topics addressed by community ecology is the ex-
ploration of community composition. To that end, species com-
munities are surveyed at locations along environmental gradients. 
The ecological niche is then reflected in the observed distribution 
of a species. A species exhibits its maximum abundance, or has the 
highest probability of occurrence, at the optimum of the niche. The 
limits of a species distribution correspond to the limits of the niche, 
controlled by a species' tolerance to a range of environmental con-
ditions. Different species vary in their ability to tolerate deviations 

from the optimum, reflecting differences in niche width, and indicat-
ing different places on the specialist–generalist spectrum.

Correspondence analysis (CA) is often used to estimate the op-
tima of species niches with quadratic response curves. It implicitly 
approximates the fit of a quadratic model, which functions best 
under the assumptions of equally spaced optima, sites being well 
within the range of species optima, equal tolerances and equal or 
independent maxima (ter Braak, 1985). The combination of assum-
ing equally spaced optima, equal maxima and equal tolerances gives 
an early niche model called the species packing model (MacArthur 
& Levins,  1967). The relationship of the species packing model to 
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Abstract
1.	 It is common practice for ecologists to examine species niches in the study of com-

munity composition. The response curve of a species in the fundamental niche is 
usually assumed to be quadratic. The centre of a quadratic curve represents a 
species' optimal environmental conditions, and the width its ability to tolerate de-
viations from the optimum.

2.	 Most multivariate methods assume species respond linearly to niche axes, or with 
a quadratic curve that is of equal width for all species. However, it is widely under-
stood that some species have the ability to better tolerate deviations from their 
optimal environment (generalists) compared to other (specialist) species. Rare 
species often tolerate a smaller range of environments than more common spe-
cies, corresponding to a narrow niche.

3.	 We propose a new method, for ordination and fitting Joint Species Distribution 
Models, based on Generalized Linear Mixed-effects Models, which relaxes the 
assumptions of equal tolerances.

4.	 By explicitly estimating species maxima, and species optima and tolerances per 
ecological gradient, we can better explore how species relate to each other.

K E Y W O R D S

joint species distribution model, model-based ordination, niche model, unconstrained 
quadratic ordination, unimodal response
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CA has added to its popularity among applied ecologists (Wehrden 
et al., 2009).

Recent advances in the estimation of species niches have fo-
cused on performing ordination with explicit statistical models, such 
as Generalized Linear Latent Variable Models (GLLVMs; Warton 
et al. 2015). With intercepts included for row standardization, GLLVMs 
can fit a quadratic response curve, assuming species have equal tol-
erances (Hui et  al., 2015; Jamil & ter Braak, 2013). When predictor 
variables are included, a GLLVM with quadratic response model par-
titions species distributions in observed (fixed effects) and latent or 
unobserved (random effects), similar to the partitioning of fixed and 
random effects in mixed-effects models when predictors are included.

The GLLVM framework is well known for its capability to fit 
Joint Species Distribution Models (JSDMs; Ovaskainen et al., 2017; 
Pollock et  al., 2014; Tobler et  al., 2019; Zurell et  al., 2020). In the 
context of JSDMs, GLLVMs assume species abundances are cor-
related due to similarity in response to ecological gradients, mod-
elled with predictor variables and latent variables. Latent variables 
can be understood as combinations of missing predictors, so that 
GLLVMs allow us to parsimoniously model species distributions. 
They are equivalent to ordination axes, representing complex eco-
logical gradients (Halvorsen,  2012). Recently, the use of GLLVMs 
to perform model-based ordination has increased in popularity 
(Björk et al., 2018; Damgaard et al., 2020; Inoue et al., 2017; Lacoste 
et  al.,  2019; Paul,  2020). However, existing GLLVMs assume that 
species respond to latent variables linearly, just as all classical ordi-
nation methods do (Jamil & ter Braak, 2013). In contrast, it is widely 
understood that species have unequal tolerances, so that the as-
sumption of linear responses, or at best quadratic responses with 
equal tolerances, is unlikely to hold in practice.

In this paper, our goal was to overcome the assumptions of 
equal tolerances, by formulating a GLLVM where species are al-
lowed to respond to the latent variables in a quadratic fashion. 
To our knowledge, there has been no attempt to implement such 
a GLLVM until now. The quadratic term allows to fully estimate 
species niches, so that species optima and tolerances per la-
tent variable and species maxima can all be estimated explicitly. 
Explicitly estimating the combination of these three parameters 
gives unique insight into reasons for species rarity, whether it 
is due to low abundance or probability of occurrence (maxima), 
a high degree of habitat specialization (tolerance) or due to un-
suitable observed environmental conditions (optima). Due to the 
model-based nature of the proposed ordination method, it is pos-
sible to calculate confidence intervals for each set of parameters, 
providing unparalleled benefits for inference when using ordina-
tion. Additionally, assuming a quadratic response model allows 
to implement the concept of gradient length, as in Detrended 
Correspondence Analysis (DCA; Hill and Gauch, 1980), which is a 
measure of beta diversity commonly used by ecologists.

In contrast to classical ordination methods, GLLVMs model the 
latent variables as unobserved, treating them as random rather 
than fixed (Walker & Jackson, 2011), which consequently have to 
be integrated over in the likelihood. Here, we develop a variational 

approximation (VA) implementation after Hui et al. (2017) and Niku 
et al. (2019), to perform calculations quickly and efficiently. In ad-
dition to presenting the GLLVM with quadratic response model, 
we perform simulations to evaluate the accuracy of the VA im-
plementation, and the capability of the GLLVM with quadratic re-
sponse model to retrieve the true species-specific parameters and 
latent variables. We use two real-world datasets to demonstrate 
the use and interpretation of the proposed GLLVM with quadratic 
responses: (a) a small dataset of hunting spiders in a Dutch dune 
ecosystem (van der Aart & Smeek-Enserink, 1974), and (b) a larger 
dataset of Swiss alpine plant species on a strong elevation gradient 
(D'Amen et al., 2018).

2  | MODEL FORMUL ATION

The ecological niche for each species j = 1…p is described here by a 
quadratic function involving three parameters: the optimum ujq for 
latent variable q = 1…d stored in the vector uj = {uj1…ujq}, the toler-
ance tjq for latent variable q stored in the vector tj = {tj1…tjq} and a 
species' overall maximum cj. Optima uj are the locations on the eco-
logical gradients where a species exhibits its highest abundance or 
probability of occurrence (the maximum cj). The tolerances tj are a 
measure of the width or breadth of the niche, indicating if a species 
is a generalist or specialist on each ecological gradient.

Consider an n × p matrix of observations, where yij denotes the 
response of species j at sites i = 1…n. Then, we assume that condi-
tional on a vector zi ∼ �(0, I) of d latent variables where d ≪ p, the 
responses yij at site i are independent observations from a distribu-
tion whose mean, denoted here as E(yij|z i), is modelled as:

where g{·} is a known link function (e.g. the log link when responses are 
assumed to be Poisson, negative-binomial or gamma distributed, the 
probit link when the responses are assumed to be Bernoulli or ordinal 
distributed and the identity link for responses that are assumed to be 
Gaussian distributed).

For a closer comparison to the GLLVM with linear response 
model (Hui et  al.,  2015), we formulate the GLLVM with quadratic 
species response curves in terms of matrix notation:

with a species-specific intercept β0j that accounts for species mean 
abundances, and a vector of coefficients per species for the linear term 
γ j. We can see that a third term is added here to the existing structure 
of a GLLVM with linear species responses, which models tolerances 
per species and latent variable. Specifically, we introduce a diagonal 
matrix Dj of positive-only quadratic coefficients, with each diagonal 

(1)
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element being the quadratic effect for latent variable q and species 
j. The sign constraint ensures that species exhibit concave quadratic 
curves only. The proposed model could instead be used to estimate 
species minima rather than maxima, though we did not do that here as 
clear ecological foundations for such a model are lacking.

Let Djqq denote the diagonal elements of Dj for latent variable 
q. Then we are able to derive the following connections between 
the parameters in Equations (1) and (2): �0j = cj −

1

2

∑
d
q= 1

u2
jq
∕t2

jq
,   

� jq = ujq∕t
2
jq
, and Djqq = 1∕

(
2t2

jq

)
. Similarly, for the formulation in 

Equation (2), the parameters in Equation (1) can be retrieved: 
cj = �0j +

1

4

∑
d
q= 1

�2
jq
∕Djqq, ujq = � jq∕

(
2Djqq

)
, and tjq = 1∕

√
2Djqq

.
Additionally, row intercepts or predictors can be included as in 

Hui et  al.  (2017), or species traits as in Niku et  al.  (2019), though 
we have chosen to omit those terms here and focus on the case of 
unconstrained ordination.

Four special cases of the GLLVM with quadratic response model, 
as formulated in Equation (2), are worth discussing: (a) Dj  =  D,  
that is, common tolerances for species, (b) Dj = D11Id where Id is 
a d  ×  d identity matrix, that is, equal tolerances for species and 
latent variables, (c) when Dj = 0 for a subset of the p species and 
(d) when Dj  =  0 for all p species. The first case assumes toler-
ances to be the same across species, but not latent variables. This 
species-common tolerances model might prove useful in practice, 
as it requires fewer observations per species than when estimating 
quadratic coefficients for all species, but still explicitly includes 
quadratic species responses in contrast to the simpler GLLVM 
with linear responses. In the second case, the quadratic term is 
not species or latent variable specific, so that it is equivalent to 
the GLLVM with linear species responses and random row inter-
cepts as presented in Hui et al. (2015), which assumes tolerances 
to be the same for all species and latent variables. In the third case, 
some species respond to the latent variable linearly, while others 
exhibit quadratic responses. The fourth case is the most basic 
GLLVM with linear responses, which is the current standard in 
many software packages for JSDMs and model-based ordination, 
for example, boral (Hui, 2016), HMSC-R (Tikhonov et al., 2021) and 
gllvm (Niku et al., 2020).

3  | MODEL INTERPRETATION

In this section, we derive and discuss various tools that are com-
monly used in the application of JSDMs and ordination, such as cal-
culating residual correlations, partitioning or decomposing residual 
variance, calculating gradient length and visualizing the ordination, 
and demonstrate how they can be adapted to the proposed GLLVM 
with quadratic response model.

3.1 | Residual covariance matrix

One aspect of GLLVMs is known for is modelling species residual 
correlations (Blanchet et  al.,  2020; Zurell et  al.,  2018), calculated 

from the residual covariance matrix. To facilitate calculation of the 
residual covariance matrix, we can reparameterize all GLLVMs as a 
multivariate mixed-effects model with a residual term:

Here, ϵij accounts for any residual information that is not accounted for 
by fixed effects in the model, such as predictors or intercepts (Warton 
et al., 2015). Assuming the latent variables are independent for all sites, 
the elements of the residual covariance matrix are given by:

For a length p vector ϵ i, existing JSDM implementations (e.g. Pichler 
& Hartig, 2020; Pollock et al., 2014) assume �i ∼ �(0,�), that is, the 
residual term follows a multivariate normal distribution. For the 
GLLVM with linear species responses, it is straightforward to show 
that with 𝜖ij = z⊤

i
� j, then �i ∼ �

(
0,ΓΓ⊤

)
, where Γ is a p ×  d matrix 

of species linear coefficients for the latent variables γ j. In essence, 
GLLVMs preform a low rank approximation to the covariance matrix 
of a residual term. The rank of this residual covariance matrix is equal 
to the number of estimated latent variables d in the model for the 
GLLVM with linear species responses.

Turning to the GLLVM with quadratic response model, where 
𝜖ij = z⊤

i
� j − z⊤

i
Djzi, the elements of the residual covariance matrix are:

for which a proof is given in Appendix  S1. This can be rewritten in 
terms of the species optima uj and tolerances tj:

Equations (4) and (5) additionally serve to demonstrate how 
to partition and decompose the residual variance of the GLLVM 
with quadratic response model, for example, per latent variable, 
for the linear and quadratic term separately, or both. Variance 
partitioning is commonly used in the application of ordination 
methods, for example, to determine fit (Øland,  1999), or to ex-
plore causes of residual variance (Borcard et al., 1992; Øland & 
Eilertsen, 1994). Predictor variables can be included in the model 
to account for the residual variance otherwise accounted for by 
the latent variables. The residual variance can be used to iden-
tify indicator species, that is, those species that best represent an 
ecological gradient, or to calculate a measure of R2 (Nakagawa & 
Schielzeth, 2013).

Under the assumption of latent variables with zero mean, the lin-
ear and quadratic terms in the model are independent. As such, the 
rank of the residual covariance matrix is double that of a GLLVM with 
linear species responses and the same number of latent variables, 
2d. The additional quadratic term thus allows us to account for more 
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residual correlations between species, with fewer latent variables. 
This corresponds to the ecological notion that species often respond 
to few major complex ecological gradients (Halvorsen, 2012). From 
this, we see that when the number of latent variables in a GLLVM 
with quadratic response model exceeds ½p, there are more param-
eters included than in a JSDM with an unstructured residual covari-
ance matrix. However, this is not an issue here, since for ordination 
purposes we are only interested in cases where there are much 
fewer latent variables d than species p.

3.2 | Gradient length

The length of an ecological gradient is of great interest to ecolo-
gists in the use of ordination, because it is a measure of beta diver-
sity (Oksanen & Tonteri, 1995). Longer gradients indicate higher 
diversity, as spacing between sites in latent space is potentially 
larger. In the past, it has been emphasized that short gradients 
are better analysed using linear ordination methods, and longer 
with unimodal methods (ter Braak & Prentice, 1988). However, the 
GLLVM with quadratic response model allows species to exhibit 
both linear and unimodal responses, and so it is appropriate for 
both, removing the need to switch between ordination methods 
as a consequence of (the lack of) unimodal species responses. 
Regardless, gradient length could be used to decide between re-
sponse models instead of, for example, information criteria. To de-
termine gradient length from the proposed GLLVM with quadratic 
response model, we rescale the latent variables z i with a diagonal 
covariance matrix G of size d  ×  d, to calculate ecological gradi-
ents z̃i. The measure of gradient length calculated here can be in-
terpreted in the same manner as the gradient length provided by 
DCA (Hill & Gauch, 1980).

First, for a species-common tolerances model, we note that the 
quadratic term in Equation (2), that is, z⊤

i
Dzi, can instead be written as ∑

d
q= 1

z2
iq
Dqq, so that z̃iq = ziq

√
Dqq, and z̃i ∼ �(0,G), where G = 2D. Then, 

the length per ecological gradient is approximately 4G
1

2

qq
 (i.e. the ap-

proximate width of a normal distribution).
Second, for the species-specific tolerances model, we note that 

one of the uses of gradient length in the past has been to rescale the 
latent variables so that an ordination diagram can be understood in 
terms of compositional turnover (Hill & Gauch, 1980). This requires 
the mean species tolerances to be one (as is the case for the species-
common tolerances model, under the rescaling suggested above), so 
that the covariance matrix of the ecological gradient in the species-
specific tolerances model is Gqq =

1

2p

∑ p

j= 1
Djqq and the matrix of 

quadratic coefficients Dj is scaled by the inverse of the covariance 
matrix of the ecological gradient, G−1. However, we choose to use 
the median of the species tolerances tjq instead, as it more accurately 
represents gradient length with both linear and quadratic responses 
of species in the model. In general, the proposed quadratic model 
allows further exploration of measures of gradient length by, for 
example, using the mean tolerance of species with clear quadratic 
responses, rather than the median of all tolerances.

3.3 | Ordination diagram

Usually, results from an ordination are inspected visually, by jointly 
plotting site and species scores. For a GLLVM with linear responses, 
this can be done by constructing a biplot (Gabriel, 1971). Biplots per-
form a linear approximation of a matrix, and thus are expected to 
perform poorly when species exhibit quadratic responses: biplots 
will create an arch when the residual variance of the linear term is 
smaller than the residual variance of the quadratic term. When the 
linear and quadratic terms are independent, as is the case here (see 
above), a biplot can visualize them separately.

Instead, we propose that species optima and tolerances can 
be plotted directly, so that species niches are visualized in a two-
dimensional latent (ecological) space from a top-down perspective. 
However, since species are allowed to exhibit linear responses in the 
quadratic response model, optima and tolerances can be very large. 
If plotting both directly, this will lead to species with large optima and 
wide niches dominating the plot. The first issue can be prevented 
by only visualizing species optima that are close to, or within, the 
range of the estimated site scores, and by using arrows to indicate 
the location of the remaining optima (similarly as in Gabriel, 1971). 
The widths of the niches can be represented as ellipses using the 
precision of estimated species tolerances, to provide an impression 
of species co-occurrence patterns. The precision, calculated as the 
inverse of the squared species tolerances 1∕t2

jq
, can be interpreted 

as ‘narrowness’ of the ecological niche (i.e. a small precision corre-
sponds to a wide niche). Then, a larger ellipse corresponds to a larger 
residual variance of the quadratic term of a latent variable, drawing 
emphasis to potential indicator species.

Additionally, information on sites, such as the predicted locations 
and prediction regions, can be added (Hui et al., 2017). Information 
for the sites can be used to infer the distance of sites to the species 
optima (i.e. the suitability of sites for species), or to the edges of spe-
cies niches (see the hunting spiders example below).

Finally, based on the discussion in the two subsections above, 
there are two ways of scaling the ordination diagram: (a) by the re-
sidual variance per latent variable, or (b) by using the mean or median 
tolerance. In the first scaling, the diagram is scaled to draw atten-
tion to the latent variable that explains most variance in the model. 
However, the second scaling has a more ecological intuitive interpre-
tation; if the tolerances are assumed to be common for species, the 
second scaling produces an ordination diagram in units of compo-
sitional turnover (Gauch, 1982). When the linear term in the model 
does not explain a larger proportion of the total residual variance per 
latent variable relative to the quadratic term, these scalings produce 
similar results.

4  | MODEL ESTIMATION

We propose to use VAs (Hui et  al.,  2017) for estimation and in-
ference for the GLLVM with quadratic response model. Broadly 
speaking, VA is a general technique used to provide a closed-form 
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approximation to the marginal log-likelihood of a model with random 
effects or latent variables, when an analytical solution is not avail-
able. Computationally, VA can be orders of magnitude faster than 
MCMC, numerical integration or even the Laplace approximation 
(Niku et al., 2019), and without loss of accuracy (Hui et al., 2017). 
However, the calculation of the VA log-likelihood needs to be de-
rived on a case-by-case basis. In contrast, the Laplace approximation 
can be applied automatically in many cases (Kristensen et al., 2016), 
although it is not possible to apply that here for the GLLVM with 
quadratic response model (K. Kristensen, pers. comm., 8 March 
2019).

The marginal log-likelihood of a GLLVM is given by:

where f(yij|zi, Θ) is the distribution of the species responses given the 
latent variables. As mentioned previously, and as per Hui et al. (2015), 
we assume the distribution of the latent variables h(zi) to be multivar-
iate standard normal, that is, h(zi) = �(0, I). The vector Θ includes all 
parameters in the model Θ =

{
𝛽01…𝛽0j, 𝛾11…𝛾 jq,D111…Djqq

}⊤.
In VA, we construct a lower bound to Equation (6), by assuming 

that the posterior distribution of the latent variables can be approx-
imated by a closed-form distribution, for example, a multivariate 
normal distribution (this is also referred to as the variational distribu-
tion). We then treat this lower bound as our new objective function, 
on which we base estimation and inference of the model parameters, 
as well as predictions of the latent variables. More details on the mo-
tivation and background of variational approximations are available 
in the study by Ormerod and Wand (2010, 2012). Hui et al.  (2017) 
showed that, for GLLVMs with linear responses, the optimal varia-
tional distribution is multivariate normal zi ∼ �

(
ai,Ai

)
, with mean ai  

and covariance matrix Ai, so we will adopt this choice here as well. 
While we do not anticipate a multivariate normal distribution to be 
the optimal variational distribution for a GLLVM with quadratic re-
sponse model, we nevertheless choose to follow the same assump-
tion to facilitate computational efficiency and a closed form for the 
resulting VA log-likelihood. The means of the variational distribu-
tion ai can be understood as predicted locations of sites, that is, site 
scores in an ordination. The covariance matrices of the variational 
distributions Ai provide the necessary information to construct pre-
diction regions.

In Appendix S2 we provide derivations for the log-likelihood of 
common response types in community ecology, such as count data 
(Poisson, a Poisson–Gamma derivation of the negative-binomial 
distribution for overdispersed counts and both assuming a log-
link function), binary data and ordinal data (both with probit-link 
function), as well as positive continuous data (gamma, with log-
link function) and continuous data (Gaussian, with an identity-link 
function). Additionally, some information on calculating approx-
imate confidence intervals for (functions of) the parameters is 
included in Appendix  S2. Recommendations on stabilizing the 

fitting of GLLVMs with a quadratic response model are included 
in Appendix S3.

5  | SIMUL ATION STUDY

To assess how well the proposed model retrieves the true latent vari-
ables z i, optima u j and tolerances t j, we performed simulations for 
six response distributions; (1) Gaussian, (2) gamma, (3) Poisson, (4) 
negative-binomial, (5) Bernoulli and (6) ordinal. The R code used for 
the simulations is provided in Appendix S4. For each of the distribu-
tions, we simulated 1,000 datasets with different numbers of sites 
and species. A consequence of restricting the quadratic response 
model to concave shapes only is that it often simulates a large num-
ber of negative values (on the link scale, generally more so than the 
GLLVM with linear species responses), providing a challenge in test-
ing its accuracy, especially for small datasets.

First, to study the accuracy of the VA approximation, we sim-
ulated datasets of p  =  20–100 species in increments of 10, while 
keeping the number of sites constant at n = 100. Hui et al.  (2017) 
argued that the VA log-likelihood is expected to converge to the true 
likelihood as p → ∞, as with many species the posterior for the site 
scores is likely to be approximately normal due to the central limit 
theory. This will allow us to study the finite sample properties of the 
VA approximation for the proposed model. Second, to explore the 
sample size required to accurately estimate the species-specific pa-
rameters, for example, species optima uj and tolerances tj, we simu-
lated datasets of n = 20–100 sites in increments of 10, while keeping 
the number of species constant at p = 100.

As a true model, we considered a GLLVM with quadratic re-
sponse model and d = 2 latent variables, which was constructed as 
follows. The latent variables were simulated following a multivariate 
standard normal distribution, that is, zi ∼ �(0, I). Second, the species 
maxima cj were simulated as Uniform(2,6), as this was approximately 
the range of species maxima in the best fitting model for the hunt-
ing spider dataset below. Next, the true optima ujq were simulated 
within the range of the realized latent variables (approximately be-
tween −2 and 2) following a uniform distribution. Lastly, species tol-
erances were simulated as Uniform(0.2,1), corresponding to species 
niches ranging from narrow to the full width of the latent variable. 
Resulting species-specific intercepts β0j from Equation (2) approxi-
mately ranged between −15 and 20, but tended to be more positive 
than negative, with a median of 2.6. For the Gaussian, negative-
binomial and gamma distributions, the dispersion parameter for all 
species was set equal to 1. For the ordinal distribution, we assumed 
six classes with the true cut-offs being 0, 1, 2, 3, 4, 5, meaning that 
species were most often absent (category 0), while they were rarely 
very abundant (category 5). When fitting a model to each simulated 
dataset, we assumed the number of latent variables was known prior 
to fitting (i.e. we did not select the number of latent variables).

We measured performance of the GLLVM with quadratic re-
sponse model by the prediction of the latent variables zi and the 
species optima uj. The species optima are a function of both the 
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linear and quadratic coefficients and should provide a good over-
all measure of performance for retrieving the true species-specific 
parameters, in addition to being of specific interest to ecologists. 
We measured discrepancy to the true parameter values using the 
Procrustes error (Peres-Neto & Jackson,  2001). For this, we ex-
cluded the optimum of the first species on the second latent variable 
as this was fixed to zero for reasons of parameter identifiability (Hui 
et al., 2015). Since the GLLVM with quadratic response model allows 
species to exhibit linear responses, which have optima tending to in-
finity, we also chose to remove all optima larger than 10 and smaller 
than −10, that is, for those species that clearly lacked a sufficiently 
strong quadratic signal in the simulated datasets. Including these 
optima would result in a biased view of the accuracy of the optima 
that can be estimated by the model. For clarity and transparency, we 
additionally present the number of optima removed for each of the 
datasets, to further provide an impression of the data requirements 
of the proposed model.

For all of the models fitted to Gaussian and gamma response 
datasets, typically none or only a few optima were excluded, 
meaning that the median number excluded was zero. In general, 

and not surprisingly, more optima were excluded for models fitted 
to datasets where n/p was small and for discrete distributions. For 
example, when n = 20 sites and p = 100 species, so that the true 
model included a total 200 species optima, the median number of 
optima excluded for datasets with Poisson responses was 4 (2–5, 
first and third quartiles), for datasets with negative-binomial re-
sponses this was 7 (5–10), for datasets with Bernoulli responses 
this was 44 (40–47) and for datasets with ordinal responses this 
was 20 (17–24). In contrast, for datasets where n/p was large, con-
siderably fewer optima were excluded across all response types. 
For example, when n = 100 and p = 100, and for Poisson responses, 
the median of excluded optima was 1 (1–3), for negative-binomial 
response datasets this was 6 (5–7), while for Bernoulli response 
datasets the median number of optima excluded was with a me-
dian of 29 (27–32) still large and for ordinal response datasets this 
was 13 (11–15).

The symmetric Procrustes error per distribution and for the 
different sized datasets is presented in Figure 1. As expected, the 
GLLVM with quadratic responses was more accurate for datasets 
with larger p and larger n. For all distributions, the latent variables 

F I G U R E  1   Simulation results for the 1,000 GLLVMs fitted to each dataset and response distribution, with the symmetric Procrustes 
error calculated based on optima that could be estimated (optima outside the range (−10,10) were excluded). The left column shows 
simulations where the number of sites was kept constant at n = 100, and analogous for the right column with p = 100. The figure includes 
the median Procrustes Error for species optima (black) and latent variables (red), with the first and third quartiles represented as dotted 
(optima) and dashed (latent variables) lines
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were often better retrieved than the species optima. This is not 
surprising, as the species optima are a function of two parame-
ters, particularly the inverse of the quadratic coefficients, so that 
a small change in the quadratic coefficients can result in a large 
change in the species optima. When fitted to Gaussian or gamma 
response datasets, the model performed best. The accuracy of the 
estimated species optima and latent variables was only slightly 
lower for datasets with Poisson responses, and was also similar 
for datasets with negative-binomial responses and a large num-
ber of sites. If the number of sites is small, the variation in accu-
racy of the latent variable and of species optima was considerably 
larger for datasets with negative-binomial responses. Since the 
quadratic response model can, even without negative-binomial 
distribution, simulate overdispersed counts compared to the lin-
ear response model, these results were not surprising. In many 
cases, negative-binomial distributed datasets contained less infor-
mation than datasets with Poisson-distributed responses, which 
makes accurate estimation increasingly difficult. The model was 
not accurate for Bernoulli or ordinal response datasets with small 
p. Fortunately, data of ecological communities often contain many 
species. For small n, models fitted to datasets with Bernoulli re-
sponses were not accurate, whereas models fit to datasets with 
ordinal responses showed slightly better performance. This too 
was not surprising, as datasets with ordinal responses include 
more information compared to datasets with Bernoulli responses. 
When the number of sites and species increased above 40, the 
performance of the GLLVM with quadratic responses in both 
cases improved considerably. Regardless, especially for Bernoulli 
responses, the simulated datasets often included too little infor-
mation for many species to accurately estimate the parameters.

6  | APPLIC ATIONS TO RE AL DATA

We applied the proposed GLLVM with quadratic response model to 
two different datasets: (a) the well-known hunting spider dataset 
collected by van der Aart and Smeek-Enserink (1974) in Dutch dunes, 
available in the mvabund R package (Wang et al., 2012), and (b) a 
dataset of plants in the Swiss Alps (available in the dryad database; 
D'Amen et al., 2017).

6.1 | Hunting spiders

For the hunting spider dataset, van der Aart and Smeek-Enserink 
(1974) used pitfall traps to collect spiders over a 60-week period, 
resulting in a dataset of counts for each of the n = 28 sites and p = 12 
species. It has been used in the testing of ordination methods before 
(e.g. ter Braak, 1985, 1986; Hui et al., 2015; Yee, 2004), providing 
the possibility for comparison here. We used the Akaike informa-
tion criterion corrected for small sample sizes (AICc; Burnham and 
Anderson, 2002) to find the model that best fitted the hunting spi-
der dataset. We fitted GLLVMs with d = 1–3 latent variables, with 

linear and quadratic responses, including equal, common or unequal 
tolerances, and fixed row intercepts, all with Poisson or negative-
binomial distributions (see Appendix  S5 for the details). After se-
lecting the model structure and number of latent variables, we 
continued to explore different sets of initial values to find the model 
that maximizes the VA log-likelihood. The best model included d = 3 
latent variables and unequal tolerances, though a model with un-
equal tolerances d = 2 latent variables and fixed row intercepts was a 
close second contender (difference of 2.2 in AICc; see Appendix S5). 
The results for the two latent variables of the final model fit, which 
explained most residual variation, are presented in Figure 2.

We used the residual variance to determine which latent vari-
ables explained most variation, that is, were most important to con-
sider for inference. For the GLLVM with quadratic response model, 
the first and third latent variables explained most variation in the 
model; 31% and 58%, respectively, so we will discuss the results 
of these below. Overall, the GLLVM with quadratic responses ex-
plained two and a half times more residual variation than a GLLVM 
with linear responses and the same number of latent variables. The 
lengths of the ecological gradients were 5.48 (3.96–7.00, 95% confi-
dence interval), 3.68 (2.65–4.71) and 4.77 (3.10–6.44).

ter Braak (1985) interpreted the first ordination axis of DCA as 
‘a composite gradient of soil moisture and openness of habitat’, as 
determined by regressing the ordination axis on variables measuring 
the amount of bare sand, soil moisture and the percentage cover 
by mosses at sites. Yee (2004) concluded that reflection of the soil 
surface had the strongest relationship with the first latent variable 
estimated using a Vector Generalized Additive Model. Similarly, the 
first latent variable in the GLLVM here has a strong relation with 
reflection of the surface (correlation coefficient of 0.83), the per-
centage cover of moss (0.82) and the cover of fallen leaves (−0.75). 
The second latent variable was related to the cover provided by the 
herb layer (0.70), and the third latent variable with soil water content 
(0.77).

ter Braak (1985) and Yee (2004) both visualized quadratic curves 
of the first latent variable using variations of Poisson regression and 
Generalized Additive Models respectively. There are clear similari-
ties between the height and the location of species response curves 
for the first latent variable, and the corresponding response curves 
described by ter Braak (1985) and Yee (2004). Similarly, Figure  2 
here shows a similar arrangement of species as Figure 1 in ter Braak 
(1986).

ter Braak (1985) concluded that most species exhibited uni-
modal curves on the first latent variable, though the benefit of a 
quadratic response model was least to the species Alopecosa fab-
rilis, Arctosa perita and Pardosa lugubris. Similarly, the optimum of 
Pardosa lugubris could not be estimated by VGAM. Here, as in Yee 
(2004), Pardosa lugubris and Trochosa terricola were the most abun-
dant species. On the first latent variable, only the optima of Pardosa 
lugubris and Pardosa monticola were located outside the range of 
the latent variable. On the third latent variable, only the optima of 
Arctosa lutetiana were unobserved. Similar to the conclusion by ter 
Braak (1985), the confidence intervals for the quadratic coefficients 
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of Pardosa lugubris and Arctosa perita included zero on all latent vari-
ables, in addition to Arctosa lutetiana. From all species on all latent 
variables, Arctosa lutetiana had the smallest tolerance (0.33, on the 
first latent variable).

6.2 | Swiss alpine plants

In the second application, n  =  912 plots of 4  m2 each were 
used to record binary data on p  =  175 plant species. More 

species were recorded, but in the original study of this data-
set species with less than 22 presences were excluded (D'Amen 
et al., 2018). Though fitting the model with these species would 
not have presented any computational issues, their estimates 
could not necessarily be expected to be accurate. Plots were 
located on a strong elevation gradient ranging from 375  m to 
3,210  m a.s.l. (D'Amen et  al.,  2018). To improve computation 
time, we excluded 72 plots without any presences, and 103 
plots with less than six presences, so that the final dataset in-
cluded n = 737 plots.

F I G U R E  2   Ordination plot for the first 
two latent variables of the final GLLVM fit 
to the hunting spider dataset, scaled by 
the residual variances. Species optima are 
shown as letters, indicating the following 
species: a = Alopecosa accentuata, b = 
Alopecosa cuneata, c = Alopecosa fabrilis, 
d = Arctosa lutetiana, e = Arctosa perita,   
f = Alonia albimana, g = Pardosa lugubris, 
h = Pardosa monticola, i = Pardosa 
nigriceps, j = Pardosa pullata, k = Trochosa 
terricola, l = Zora spinimana. Ellipses 
represent the precision of the ecological 
niche, which can be interpreted as 
‘narrowness’, so that large or wide 
ellipses represent species with narrow 
response curves. Species quadratic curves 
are included as side panels, with 95% 
confidence interval bands. Site locations 
are represented by grey numbers, though 
prediction regions have not been included 
in favour of readability
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F I G U R E  4   Species tolerances and approximate 95% confidence intervals derived using the Delta method, of the first latent variable from 
the model with unequal tolerances, fitted to the Swiss plants dataset. When tolerances cross 1 (indicated with a red dashed line), species 
have partially unobserved niches (regardless of the location of their optima). The panels show the first and second half of species in the 
dataset, respectively, ordered by the size of their tolerances. Species of which the confidence interval for the quadratic coefficients crosses 
0 are shown in grey. Species at the top of the plot, seemingly without tolerances, exhibit near linear responses, so that their tolerances are 
very large. Grey dashed lines are added at increments of 0.5 as visual aid
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Instead of selecting the optimal number of latent variables, we 
directly fitted the proposed GLLVM with quadratic response model 
to the data, using a Bernoulli distribution and with d = 2 latent vari-
ables, for the purpose of constructing an ordination diagram. We 
tested different sets of initial values and retained the model that had 
the highest log-likelihood.

The first latent variable explained 75% of the overall residual 
variation in the model, of which 50% was accounted for by the linear 
term. The length of the first ecological gradient was 4.79 (3.94–5.64, 
95% confidence interval), and the length of the second ecological 
gradient 3.66 (2.86–4.45). Since the first latent variable explained 
considerably more residual variation than the second, we here focus 
our inference on that alone for illustration purposes. The species re-
sponse curves for the first latent variable are visualized in Figure 3a–
c. To improve readability, species are numbered by their location 
in the dataset, for which the corresponding names are included in 
Figure  4, which also shows species tolerances for the first latent 
variable, with approximate 95% confidence intervals.

The original dataset additionally included multiple predictor vari-
ables, measuring the growing degree-days above zero, a moisture 
index, total solar radiation over the year, slope, topography and ele-
vation (van der Veen et al., 2021). In an attempt to identify the eco-
logical gradient represented by the first latent variable, we post hoc 
calculated correlation coefficients between the predictors and the 
first latent variable. From all predictor variables, elevation was most 
correlated with the first latent variable (a correlation coefficient of 
0.93), though this was collinear with growing degree-days above zero 
and the moisture index. We additionally fitted two unconstrained 
GLLVMs with linear species responses and with two latent variables, 
one of which included a random row intercept, and again calculated 
a correlation coefficient between the latent variables and elevation. 
Jamil and ter Braak (2013) showed that a mixed-effects model with 
random row intercept can account for the squared term of the latent 
variable. Here, the random row intercept was indeed related to the 
square of the first latent variable (correlation coefficient of −0.82). 
The GLLVM with linear species responses but without a row inter-
cept estimated the ecological gradient less successfully (highest cor-
relation coefficient with the elevation predictor of −0.71), than when 
a row intercept was included (highest correlation coefficient of 0.92). 
To test more explicitly for the effect of elevation, we additionally fit-
ted a GLLVM with quadratic latent responses and elevation included 
as a predictor (both the linear and quadratic term, but without sign 
constraints, though most species exhibited concave curves), and 
with two latent variables. Including the predictor variable reduced 
the residual variance to 36% of that in the unconstrained model. The 
results presented here are from the unconstrained model, though 
the effect of elevation is presented in Appendix S5, Figure S1.

Of the p = 175 species included in the model, 36 had optima that 
were unobserved, of which 20 were larger than 10 or smaller than −10. 
The environmental tolerances from species of which the confidence 
interval for the quadratic coefficients on the first latent variable did 
not include zero ranged from 0.45 (Veratrum album) to 1.72 (Silene 
vulgaris) with a median tolerance of 0.73 and a standard deviation of 

0.22. We examined groups of plants at the extremes of the gradient, 
that is, plants that had optima of minus two or smaller, and plants 
with optima of two or larger, to further investigate whether the es-
timated latent variable from the GLLVM with quadratic responses 
represented an elevation gradient. This approach allowed us to dis-
tinguish two groups of plants, the first indicative of lowlands (see 
Figure 3). In contrast, plant species included on the opposite side of 
the latent variable were clearly indicative of alpine conditions. Here, 
we focus our inference on the alpine plants, as those are likely to be 
most affected by climate change (Walther et al., 2005). All species 
with optima larger than 2 had confidence intervals for the quadratic 
coefficients that included zero. Three alpine species had optima lo-
cated between 1.5 and 2: Androsace chamaejasme (1.85, −0.10 to 
3.81), Polygonum viviparum (1.59, 0.77–2.40) and Salix herbacea (1.88, 
−0.04 to 3.80). Of these three species, Salix herbacea had the lowest 
maximum: −0.34. All three species had a wide response curve on the 
first latent variable, with tolerances near 1.

Figure 4 clearly shows some species that have smaller tolerances, 
thus more specialized species are present in the dataset. Six spe-
cies had a tolerance of 0.50 or smaller: Aposeris foetida, Carex flacca, 
Nardus stricta, Pedicularis foliosa, Potentilla aurea and Veratrum album.

7  | DISCUSSION

In this article, we extended the GLLVM approach of Hui et al. (2015), 
to estimate the niches of species with quadratic responses to un-
observed ecological gradients. We fitted and performed inference 
for the GLLVM with quadratic response model by extending the VA 
approach from Hui et al. (2017). The relation between latent variable 
models (i.e. unobserved ecological gradients) and ecological niches 
has been well-described for classical ordination methods (ter Braak 
& Prentice, 1988; Jongman et al., 1995), yet a method (either classi-
cal or model-based) to perform unconstrained (residual) ordination 
without limiting assumptions for species tolerances has not been 
available to date.

The similarity in responses of species to unobserved environ-
ments can be assessed by examining optima and tolerances, for 
example, visually using an ordination diagrams, to identify overlap 
in species distributions, or alternatively by examining a matrix of re-
sidual correlations between species. Determining if species exhibit 
fully quadratic curves in response to ecological gradients, whether 
tolerances are the same for all species per ecological gradient, or if 
the equal tolerances assumption is suited for a dataset, comes down 
to a problem of model selection for GLLVMs. To that end, future 
research can further investigate approaches such as regularization 
(e.g. possibly extending the approach of Hui et al., 2018), hypothesis 
testing or the use of confidence intervals of the quadratic coeffi-
cients. Similar to DCA, the GLLVM with quadratic response model 
provides estimates of gradient length. Here, gradient length is cal-
culated from the quadratic coefficients, which are estimated via a 
variational approximation approach to maximizing the marginal like-
lihood function.
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For datasets with 50 species and 50 sites or more, the GLLVM 
with separate quadratic responses for all species accurately re-
trieved ecological gradients and species-specific parameters, though 
for continuous responses or counts it was possible to accurately es-
timate parameters with fewer species or sites. In general, when fit-
ting the GLLVM with quadratic response model to binary or ordinal 
responses, more information is required than for other data types 
(similarly as reported in Yee, 2004). However, this is conditional on 
the information content in a dataset, and the number of required 
sites and species here should only be considered as a rough rule of 
thumb. For observed environmental variables, ter Braak and Looman 
(1986) reported from simulations on estimates of species optima by 
weighted averaging that, ‘with 10–13 presences, the variances of 
species optima are appreciable’. In our simulations, even with the 
number of sites fixed at n = 100, 24% of species had 13 or fewer 
presences, indicating difficulty in achieving a sufficient information 
content in presence–absence datasets to accurately estimate spe-
cies optima.

We studied the response curves of species to ecological gradi-
ents for hunting spiders in a Dutch dune ecosystem (van der Aart 
& Smeek-Enserink,  1974), and for Swiss alpine plants (D'Amen 
et  al.,  2017), using the GLLVM with quadratic response model. 
Various specialist species can be identified in both datasets, as 
species with small tolerances on one or multiple latent variables. 
Specialist species are more likely to be affected by future changes in 
the environment, and as such their identification is of critical impor-
tance to community ecology, to better focus recommendations for 
conservation efforts.

Modelling rare species is often difficult in community ecology 
as few ordination methods have the capability to explicitly do so. 
The quadratic response model has great potential for community 
ecology, as it can simultaneously accommodate common (large tol-
erances and maximum i.e. a wide and high niche) and rare species 
(small tolerances and maximum i.e. a narrow and low niche). The 
quadratic response model naturally predicts species with unob-
served optima, narrow niches and small maxima to have the few-
est observations. Since the quadratic response model includes two 
species-specific parameters per latent variable, and thus requires 
more information in the data for accurate estimation of parameters 
than when assuming linear species responses, it potentially requires 
a large dataset to include sufficient information on rare species and 
accurately estimate the corresponding parameters. However, the 
example in this paper using the dataset of counts for hunting spi-
ders (van der Aart & Smeek-Enserink, 1974) suggests that a GLLVM 
with quadratic response model can be feasible to fit even to small 
datasets. Regardless, assuming quadratic coefficients to be the 
same for all species per latent variable might be more realistic for 
many ecological datasets, while still providing the benefit of an ex-
plicit quadratic response model, with all the benefits it provides—
calculating species optima, tolerances, maxima, gradient length 
and their corresponding statistical uncertainties. An additional 
advantage of a GLLVM-type approach is the ability to use infor-
mation from both common and rare species to improve estimation 

of ecological gradients. Even if optima of species with too few ob-
servations cannot be accurately estimated, species preferences 
can be identified based on the ecological gradient, in relation to 
the response curve of more common species, and based on the di-
rection of the maximum (slope). Without penalization or borrowing 
information for estimation from more abundant species though, the 
(quadratic) coefficients for species with few observations are not 
necessarily expected to be accurate.

An easy-to-use implementation of the quadratic response model 
with GLLVMs is available in the gllvm R package (Niku et al., 2020).
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Appendix S1: Residual covariance14

Here, we provide a derivation for the residual covariance of a GLLVM with quadratic response model. For a15

vector of latent variables zi, which is assumed to follow a multivariate standard normal distribution i.e. zi ∼16

N (0, I), where sites are assumed to be independent, and for the linear predictor ηij = Cij +z>i γj−z>i Djzi,17

where Cij is a general quantity that is constant with respect to the latent variables, with γj a vector of18

species coefficients for the linear term of the q = 1 . . . d latent variables, and Dj a species-specific positive-19

definite diagonal matrix of size d × d including a species coefficients for the quadratic term of the latent20

variables, the entries of the residual covariance matrix Σ for species j, l = 1 . . . p, are given by:21

1



cov(z>i γj − z>i Djzi, z
>
i γl − z>i Dlzi) = cov(z>i γj , z>i γl)

+ cov(z>i γj ,−z>i Dlzi)

+ cov(z>i γl,−z>i Djzi)

+ cov(−z>i Djzi,−z>i Dlzi).

Since the third order central moments of the multivariate normal distribution are zero, we only have to22

calculate the first and last term,23

cov(z>i γj − z>i Djzi, z
>
i γl − z>i Dlzi) = cov(z>i γj , z>i γl)

+ cov(−z>i Djzi,−z>i Dlzi)

= γ>j γl + 2tr(DjDl). (1)
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Appendix S2: Variational approximations24

In the derivation of the VA log-likelihoods below, we let Cij generically denote a quantity that is constant25

with respect to the latent variables zi, for example species-specific intercepts β0j , for i = 1 . . . n sites and26

j = 1 . . . p species. We start by defining the linear predictor:27

ηij = Cij + z>i γj − z>i Djzi,

where γj is a vector of species coefficients for the linear term of the q = 1 . . . d latent variables,28

and Dj is a species-specific positive-definite diagonal matrix of size d × d. All parameters are col-29

lected in Θ, including any nuisance parameters where applicable, such as cutoffs ζjk for ordinal30

responses, and dispersion parameters φj for the Gaussian, gamma, and negative-binomial responses,31

i.e. Θ = (C11 . . . Cij , γ11 . . . γjq, D111 . . . Djqq, φ1 . . . φj)>.32

Variational approximations33

The GLLVM log-likelihood is:34

L(Θ) =
n∑

i=1
log
{∫ p∏

j=1
f

(
yij |zi,Θ

)
h

(
zi

)
dzi

}
, (2)

where zi ∼ N (0, I), and where f(yij |zi,Θ) is a GLM-type distribution (e.g. in the exponential family).35

Variational approximations (VA) applies Jensen’s inequality to construct a lower bound for the marginal36

log-likelihood [see; Hui et al. (2017); Ormerod and Wand (2010)] giving:37

logLV A(Θ, ξ) =
n∑

i=1

p∑

j=1

{∫
log
(
f(yij |zi,Θ)h(zi)

q(zi|ai,Ai)

)
q(zi|ai,Ai)dzi

}
, (3)

where q(zi|ai,Ai) is a variational distribution of the latent variables, which we assume to be multivariate38

normal with mean ai and covariance matrix Ai, collected in ξ, i.e. ξ = {a11 . . . aiq, vech(A1) . . . vech(Ai)}>,39

where vech(·) is a half-vectorizing operator, converting a symmetric matrix to a vector, by retrieving its lower40

triangular entries. The variational distribution serves as a closed form approximation to the true posterior41

distribution of the latent variables. Note that in general, an optimal variational distribution (in the sense42

of minimizing the Kullback-Leibler divergence to the true posterior) of the latent variables can be found43

by following equation (5) from Ormerod and Wand (2010). On the other hand, to ensure that a tractable44

lower bound is obtained to facilitate efficient computation for the proposed GLLVM with quadratic response45

model, we can instead choose a simpler parametric form for the variational distribution, and this is the46

3



approach we adopt here by choosing q(zi) to be a multivariate normal distribution. As an aside, note that47

as a consequence of the VA framework (regardless of the form for the variational distribution chosen), the48

Kullback-Leibler divergence between the true posterior distribution of the latent variables and the variational49

distribution is minimized. This is useful, in that it at least ensures that the variational parameters estimated50

best represent the true posterior distribution (in a Kullback-Leibler sense; see Ormerod and Wand (2010)51

or Hui et al. (2017) for more details). The VA log-likelihood is then calculated by taking expectations over52

the components of equation (3):53

logLV A(Θ, ξ) =
n∑

i=1

p∑

j=1
E
[
yijηij − b{ηij}

a{φj}
+c{yij , φj}

]
− 1

2

n∑

i=1
E
[
z>i zi

]
−

n∑

i=1
E
[
log
{
q
(
zi|ai,Ai

)}]
. (4)

For brevity, we summarize the first two terms in equation (4) as E{L(Θ)}. The expectations for the second54

and third terms in equation (4) follow the standard result:55

E[log{q(zi|ai,Ai)}] ∝ −
1
2 log det(Ai)

E[z>i zi] = tr(Ai) + a>i ai

Additionally, taking expectations over the linear predictor from above, with respect to the variational dis-56

tribution of the latent variables, gives:57

η̃ij = Cij + E(z>i )γj + E(z>i Djzi) = Cij + a>i γj − a>i Djai − tr(DjAi).

These two results above are valid for all distributions, so that the general VA log-likelihood for a GLLVM58

with quadratic response model is:59

logLV A(Θ, ξ) =
n∑

i=1

p∑

j=1

[
yij η̃ij − E{b(ηij)}

a{φj}
+ c{yij , φj}

]
+ 1

2

n∑

i=1

{
log det

(
Ai

)
− tr

(
Ai

)
− a>i ai

}
, (5)

where a(·), b(·), and c(·) are known functions. Calculating E{b(ηij)} is most challenging as the solution60

has to be derived separately for most distributions. Below follow the derivations for the Gaussian, Poisson,61

negative-binomial, Bernoulli, ordinal and gamma likelihoods.62

Gaussian: continuous responses63

The joint log-likelihood for Gaussian distributed responses is:64
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L(Θ) =
n∑

i=1

p∑

j=1

{
−1

2 log
(
σ2
j

)
− 1

2σ2
j

(
yij − ηij

)2}
− 1

2

n∑

i=1
z>i zi, (6)

where terms constant with respect to the parameters have been omitted. Here, σj is a dispersion parameter65

accounting for the residual variance of the Gaussian distribution (i.e. σj = φj above). The VA log-likelihood66

is derived by working our expressions for the expectations in equation (4), with respect to the variational67

distribution of latent variables:68

E[L{Θ}] =
n∑

i=1

p∑

j=1

[
−1

2 log
{
σ2
j

}
− 1

2σ2
j

E
{(

yij − ηij
)2}]

− 1
2

n∑

i=1

{
tr
(
Ai

)
+ a>i ai

}
,

69

E[log{q(zi|ai,Ai)}] = −1
2 log det(Ai),

where terms constant with respect to the parameters have been omitted. The term E{(yij − ηij)2} can70

instead be written and expanded as:71

E{(yij − ηij)2} = E{(yij − η̃ij + η̃ij − ηij)2}

= E{(yij − η̃ij)2}+ 2E{(yij − η̃ij)(η̃ij − ηij)}+ E{(η̃ij − ηij)2}.

As the first term does not require taking expectations, and since the second term is zero, only the third term72

has to be calculated, so we note that E{(η̃ij − ηij)2} = var(ηij), and work out the expectations accordingly:73

var(ηij) = var(Cij + z>i γj − z>i Djzi)

= var(z>i γj) + var(z>i Djzi)− 2cov(z>i γj , z>i Djzi)

= tr(γjγ>j Ai) + 2tr(DjAiDjAi) + 4a>i DjAiDjai − 2cov(z>i γj , z>i Djzi).

(8)
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For the last term:74

cov(z>i γj , z>i Djzi) = cov{z>i γj − E(z>i γj), z>i Djzi − E(z>i Djzi)}

= cov{
d∑

k=1
γjk(zik − aik),

d∑

l=1
Djllz

2
il −DjllE(z2

il)}

=
d∑

k,l=1
cov{γjk(zik − aik), Djllz

2
il −DjllE(z2

il)}

=
d∑

k,l=1
E[γjk{zik − aik}{Djllz

2
il −DjllE(z2

il)}]

=
d∑

k,l=1
E{γjk(zik − aik)Djllz

2
il}

=
d∑

k,l=1
γjkDjllE{(zik − aik)(zil − ail + ail)2}

=
d∑

k,l=1
γjkDjllE{(zik − aik)(zil − ail)2 + 2ail(zik − aik)(zil − ail)}

=
d∑

k,l=1
2γjkDjllailE{(zik − aik)(zil − ail)}

= 2
d∑

k,l=1
γjkDjllailAikl

= 2a>i DjAiγj .

(9)

Thus, the Gaussian VA log-likelihood for the quadratic model is:75

LV A(Θ, ξ) =
n∑

i=1

p∑

j=1

[
−1

2 log
{
σ2
j

}
− 1

2σ2
j

{
y2
ij + η̃2

ij − 2yij η̃ij

+tr
(
γjγ

>
j Ai

)
+ 2tr

(
DjAiDjAi

)
+ 4a>i DjAiDjai − 4a>i DjAiγj

}]

+1
2

n∑

i=1

{
log det

(
Ai

)
− tr

(
Ai

)
− a>i ai

}
.

(10)

Bernoulli: presence-absence responses76

We model presence-absence data with a probit-link function and a Bernoulli distribution, giving the joint77

log-likelihood:78

L(Θ) =
n∑

i=1

p∑

j=1

[
yij log

{
I
(
νij ≥ 0

)}
+
{

1− yij
}

log
{
I
(
νij < 0

)}
− 1

2

{
νij − ηij

}2]
− 1

2

n∑

i=1
z>i zi, (11)
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where terms constant with respect to the parameters have been omitted. Here, vij is an auxiliary variable79

included to aid integration, with indicator function I(·). As in Hui et al. (2017), we assume vij ∼ N (ηij , 1),80

and by equation (5) in Ormerod and Wand (2010), we determine the optimal variational distribution for the81

auxiliary variable by taking expectations over equation (11) with respect to νij :82

log{q(νij)} ∝ E{L(Θ)}

∝ log{I(νij > 0)} − 1
2{νij − E(ηij)}2, yij = 1

∝ log{I(νij < 0)} − 1
2{νij − E(ηij)}2, yij = 0,

(12)

where terms constant with respect to the parameters have been omitted. The second term of both lines in83

equation (12) expands to νijE(ηij)− 1
2ν

2
ij − 1

2E(η2
ij), showing that the distribution of νij does not depend on84

η2
ij . As equation (12) is still quadratic after taking expectations, the optimal distribution for the auxiliary85

variable is truncated normal with location parameter E(ηij) = η̃ij and scale parameter one, as in Hui et al.86

(2017). The distribution has limits (0,∞) and (−∞,0) for yij = 1 and yij = 0 respectively.87

Due to the inclusion of the auxiliary variable, the components of the VA log-likelihood are now:88

LV A(Θ, ξ) =
n∑

i=1

p∑

j=1
E[L{Θ}]− E[log{q(νij)}]−

n∑

i=1
E[log{q(zi|ai,Ai)}]. (13)

Then, taking expectations over each of the components in equation (13),89

E[L{Θ}] =
n∑

i=1

p∑

j=1
E
[
yij log

{
I
(
νij > 0

)}
+
{

1− yij
}

log
{
I
(
νij < 0

)}]
− 1

2E
[{
νij − ηij

}2]

−1
2

n∑

i=1

{
tr
(
Ai

)
+ a>i ai

} (14)

E[log{q(νij)}] = E
[
yij log

{
I
(
νij > 0

)}
+
(

1− yij
)

log
{
I
(
νij < 0

)}]
− 1

2E
[{
νij − η̃ij

}2]

−yij log
{

Φ
(
η̃ij

)}
−
(

1− yij
)

log
{

1− Φ
(
η̃ij

)}

E[log{q(zi|ai,Ai)}] = −1
2 log det(Ai),

where terms constant with respect to the parameters have been omitted. The term E[{νij − ηij}2] can be90

rewritten to simplify taking expectations, in the following way:91
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E{(νij − ηij)2} = E{(νij − η̃ij + η̃ij − ηij)2}

= E{(νij − η̃ij)2}+ 2E{(νij − η̃ij)(η̃ij − ηij)}+ E{(η̃ij − ηij)2}.

The first term cancels with the same in the first line of equation (14), the second term is zero under the92

assumption of independent variational distributions and because ηij is not a function of νij . The solution to93

the last term is given in equation (9).94

Thus, the Bernoulli VA log-likelihood for the quadratic model is:95

LV A(Θ, ξ) =
n∑

i=1

p∑

j=1

[
yij log

{
Φ
(
η̃ij

)}
+
{

1− yij
}

log
{

1− Φ
(
η̃ij

)}
− 1

2tr
{
γjγ

>
j Ai

}
− tr

{
DjAiDjAi

}

−2a>i DjAiDjai + 2a>i DjAiγj

]
+ 1

2

n∑

i=1

{
log det

(
Ai

)
− tr

(
Ai

)
− a>i ai

}
.

(15)

Ordinal: ordered responses96

The ordered response model follows from an extension of the Bernoulli VA log-likelihood for multiple cat-97

egories. We define a p ×K matrix of cutoffs ζjk, where which serves to introduce order to the probability98

of occurrence in each of the k = 1 . . .K categories per species j. The first cutoff of each species is set to99

zero for reasons of parameter identifiability in the presence of species intercepts β0j , and so that ζj0 = −∞100

and ζjK = ∞, ensuring that the probability of occurrence in the first category is at most 1
2 , so that this101

parametrization of the ordination distribution corresponds with that of the Bernoulli distribution, when102

K = 2.103

With the assumption of species-specific cutoffs as above, comes the requirement of more than one obser-104

vation per species and category. Missing categories are not allowed, though this requirement can be relaxed,105

by noting that the categories per species are arbitrary (as they are indexes only), so that per species they106

may be renumbered to exclude categories that lack any observations (i.e. missing categories). To improve the107

practical usefulness of the ordinal model, we here introduce an additional, simpler, parametrization where108

we allow ζjk = ζk, i.e. species-common cutoffs, so that ζ0 = −∞ and ζK =∞. This relaxes the requirement109

of at least one observation per category per species to at least one observation per category in the whole110

dataset, which we deem more realistic for real world data. This has the additional benefit of optimally util-111

ising information in the dataset from both frequently and infrequently occurring species, to more accurately112

estimate the cutoffs.113

In either case, the variational distribution for auxiliary variable νij is truncated normal, but with limits114
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ζk−1, ζk for yijk > 0 in the species-common cutoff case. Additionally, we define yijk as a K-dimensional115

array, so that the VA log-likelihood with probit link, for ordinal responses and with the quadratic response116

model is:117

LV A(Θ, ξ) =
n∑

i=1

p∑

j=1

Kj∑

k=1

[
yijk log

{
Φ
(
ζjk − η̃ij

)
− Φ

(
ζjk−1 − η̃ij

)}
− 1

2tr
{
γjγ

>
j Ai

}
− tr

{
DjAiDjAi

}

−2a>i DjAiDjai + 2a>i DjAiγj

]
+ 1

2

n∑

i=1

{
log det

(
Ai

)
− tr

(
Ai

)
− a>i ai

}
.

(16)

Poisson: counted responses118

The joint log-likelihood for Poisson distributed responses with a log-link function is:119

L(Θ) =
n∑

i=1

p∑

j=1

{
yijηij − exp

(
ηij

)}
− 1

2

n∑

i=1
z>i zi, (17)

where terms constant with respect to the parameters have been omitted. The VA log-likelihood is derived120

by working out explicit expressions for the expectations in equation (4) with respect to the latent variables:121

E[L{Θ}] =
n∑

i=1

p∑

j=1

[
yijE

{
ηij

}
− E

{
exp
(
ηij

)}]
− 1

2

n∑

i=1

{
tr(Ai) + a>i ai

}

122

E[log{q(zi|ai,Ai)}] = −1
2 log det(Ai),

where terms constant with respect to the parameters have been omitted. To facilitate integration of123

E{exp(ηij)}, we rewrite the quadratic model to:124

ηij = Cij −
1
2

(
−2z>i γj + 2z>i Djzi

)
,

so that the expression that requires integration is:125

∫
exp
[
Cij −

1
2

{
2z>i Djzi − 2ziγj +

(
zi − ai

)>
A−1
i

(
zi − ai

)}]
det
(
Ai

)− 1
2

dzi.

Taking out terms that are constant with respect to the latent scores, this expression can be rewritten to:126

exp
(
Cij −

1
2a
>
i Aiai

)∫
exp
{
−1

2

(
zi − vij

)>(
2Dj +A−1

i

)(
zi − vij

)
+ 1

2v
>
ij

(
2Dj +A−1

i

)
vij

}
dzi,
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with vector vij as:127

z>i

(
2Dj +A−1

i

)
vij = z>i γj + z>i A−1

i ai

128

vij = 1
z>i

(
2Dj +A−1

i

)−1(
z>i γj + z>i A−1

i ai

)

=
(

2Dj +A−1
i

)−1(
γj +A−1

i ai

)
.

Now, since the term exp{ 1
2v
>
ij(2Dj +A−1

i )vij} is constant with respect to the latent variables too, we can129

again rewrite the expression:130

exp
[
Cij + 1

2

{
v>ij

(
2Dj +A−1

i

)
vij − a>i Aiai

}]∫
exp
{
−1

2

(
zi − vij

)>(
2Dj +A−1

i

)(
zi − vij

)}
dzi,

which leads us to conclude that the solution to the integration is the inverse of the normalizing constant131

from a normal distribution with mean vij and covariance (2Dj +A−1
i )−1:132

∫
exp
{
−1

2

(
zi−vij

)>(
2Dj+A−1

i

)(
zi−vij

)}
dzi = (2π) n

2 det
(

2Dj+A−1
i

)− 1
2

∝ det
(

2Dj+A−1
i

)− 1
2

.

Since 2π n
2 cancels with the same term from the distribution of the latent variables, this results in the final133

solution for the expectation:134

E
{

exp
(
ηij

)}
= exp

[
Cij + 1

2

{
v>ij

(
2Dj +A−1

i

)
vij − a>i A−1

i ai

}]
det
(

2Dj +A−1
i

)− 1
2

det
(
Ai

)− 1
2

.

Nothing that this solution can be further simplified by working out the term inside the exponent, provides135

the final solution for the Poisson VA log-likelihood with the quadratic response model:136

logLV A(Θ, ξ) =
n∑

i=1

p∑

j=1

[
yij

{
Cij + a>i γj − a>i Djai − tr

(
DjAi

)}

− exp
{
Cij + 1

2

(
(γj +A−1

i ai)>(2Dj +A−1
i )−1(γj +A−1

i ai)

−a>i A−1
i ai

}
det
{

2Dj +A−1
i

}− 1
2

det
{
Ai

}− 1
2
]

+ 1
2

n∑

i=1

{
log det

(
Ai

)
− tr

(
Ai

)
− a>i ai

}
.

(20)

Negative-Binomial: overdispersed counted responses137

We model overdispersed counts using a Poisson-Gamma mixture distribution with a log-link function, where138

the Poisson rate parameter follows a Gamma distribution, resulting in a negative-binomial distribution, as139
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in Hui et al. (2017), where yij ∼ Pois(νij), with νij ∼ Γ(φj , φj/µij), E(yij) = µij and var(yij) = µij +µ2
ijφj .140

This choice facilitates a closed form solution to the required integration, unlike other parametrizations of the141

negative-binomial distribution. A GLLVM with quadratic response model should only require a negative-142

binomial distribution for extremely overdispersed count data, i.e. when there is overdispersion for species143

that also have a narrow niche.144

This choice requires finding an expression for E{exp(−η)}, which has a similar solution to E{exp(η)},145

provided in the case of Poisson responses above. However, the calculation here includes the terms (Ai −146

2Dj)−1, which is required to be positive semi-definite or negative semi-definite, to determine a closed form147

solution to the integration. This assumption only fails when the resulting matrix is singular, which in practice148

happens when the off-diagonals of Ai are zero, and the diagonals of the matrices match, which should rarely149

be the case in practice.150

The log-likelihood of negative-binomial distributed responses is:151

L(Θ) =
n∑

i=1

p∑

j=1

{(
yij+φj−1

)
log
(
νij

)
−
(

1+ φj
µij

)
νij+φ(j)

(
φj
µij

)
−log Γ

(
φj

)
−log

(
yij !
)}
− 1

2

n∑

i=1
z>i zi,

(21)

where terms constant with respect to the parameters have been omitted. The optimal variational distribution152

for the latent variable νij is:153

log{q(νij)} ∝ E{L(Θ)}

∝ (yij + φj − 1) log(νij)− [1 + φjE{exp(−ηij)}]νij

∝
(
yij + φj − 1

)
log
(
νij

)
−
[
1 + φj exp

{
−Cij

+ 1
2

(
(−γj +A−1

i ai)>(A−1
i − 2Dj)−1(−γj +A−1

i ai)− a>i A−1
i ai

)}
det
(
A−1
i − 2Dj

)− 1
2

det
(
Ai

)− 1
2
]
νij ,

where terms constant with respect to the parameters have been omitted. Note, that the term det(A−1
i −154

2Dj)−
1
2 needs to be calculated as Bij = A−1

i − 2Dj with Lij = chol(Bij), so that det(A−1
i − 2Dj)−

1
2 =155

det(Lij)−1, where chol(·) represents the cholesky factorization, to prevent having to potentially calculate156

the (undefined) square root of a negative determinant. From this we conclude that q(vij) ∼ Γ(yij + φj , ζij),157

with:158

ζij = 1+φj exp
[
−Cij+ 1

2

{(
−γj+A−1

i ai

)>
B−1

(
−γj+A−1

i ai

)
−a>i A−1

i ai

}]
det
(
Lij

)−1
det
(
Ai

)− 1
2

.
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The VA log-likelihood is derived by working out explicit expressions for the expectations in equation (13):159

E[L{Θ}] =
n∑

i=1

p∑

j=1

[{
yij + φj − 1

}{
ψ

(
yij + φj

)
− log

(
ζij + φj

)}
−
{
yij + φj

}
− φj η̃ij + φj log

{
φj

}
− log Γ

{
φj

}]

−1
2

n∑

i=1

{
tr
(
Ai

)
+ a>i ai

}

E[log{q(νij)}] =
n∑

i=1

p∑

j=1

[{
yij + φj − 1

}{
ψ

(
yij + φj

)
− log

(
ζij + φj

)}
−
(
yij + φj

)
+
(
yij + φj

)
log
(
ζij + φj

)

− log Γ
(
yij + φj

)]

E[log{q(zi|ai,Ai)}] ∝ −
1
2 log det(Ai).

Thus, VA log-likelihood for overdispersed counts and the quadratic response model is:160

LV A(Θ, ξ) =
n∑

i=1

p∑

j=1

{
−φj η̃ij −

(
yij + φj

)
log
(
ζij

)
+ log Γ

(
yij + φj

)
+ φj log

(
φj

)
− log Γ

(
φj

)}

+1
2

n∑

i=1

{
log det

(
Ai

)
− tr

(
Ai

)
− a>i ai

}
.

(22)

Gamma responses: positive continuous161

The log-likelihood for gamma distributed responses with a log-link function, shape 1
φj

and scale µijφj is:162

L(Θ) =
n∑

i=1

p∑

j=1

[
− 1
φj

{
ηij + log φj − log

(
yij

)}
− yij

1
φj

exp
{
−ηij

}
− log

{
yij

}
− log Γ

{
1
φj

}]
− 1

2

n∑

i=1
z>i zi,

(23)

where terms constant with respect to the parameters have been omitted. The VA log-likelihood is derived163

by working out expressions for the expectations in equation (4) with respect to the variational distribution164

of the latent variables:165

E[L{Θ}] =
n∑

i=1

p∑

j=1

[
− 1
φj

{
E
(
ηij

)
+ log φj − log

(
yij

)}
− yij

1
φj

E
{

exp
(
−ηij

)}

− log
(
yij

)
− log Γ

{
1
φj

}]
− 1

2

n∑

i=1

{
tr
(
Ai

)
+ a>i ai

}

166

E[log{q(zi|ai,Ai)}] ∝ −
1
2 log det(Ai).
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The result for E(ηij) has been given above for all distributions, and the result for E{exp(−ηij)} in the167

derivation of the VA log-likelihood for the negative-binomial distribution. Thus, VA log-likelihood for gamma168

responses and the quadratic model is:169

L(Θ, ξ) =
n∑

i=1

p∑

j=1

[
− 1
φj

{
ηij + log

(
φj

)
− log

(
yij

)}
− yij

1
φj

exp
{
−Cij

+1
2

(
(−γj +A−1

i ai)>B−1
ij (−γj +A−1

i ai)− a>i A−1
i ai

)}
det
{
Lij

}−1
det
{
Ai

}− 1
2

− log
{
yij

}

− log Γ
{

1
φj

}]
+ 1

2

n∑

i=1
log det

(
Ai

)
− tr

(
Ai

)
− a>i ai,

(25)

with Bij = A−1
i − 2Dj and Lij = chol(Bij).170

Approximate confidence intervals171

After fitting the GLLVM by VA, confidence intervals for the parameters can be calculated from the approxi-172

mate standard errors from the Hessian matrix, as described by Hui et al. (2017). The confidence intervals of173

the quadratic coefficients can be used to determine if species exhibit quadratic response curves, but otherwise174

lack any intuitive ecological interpretation. Therefore, we propose applying the Delta method to calculate175

approximate confidence intervals for species optima uj , tolerances tj , maxima cj , and gradient lengths 4G
1
2
qq,176

i.e. the ecological quantities of interest. Calculation of these confidence intervals is straightforward, and177

provides the possibility to determine if species differ in their optima uj , maxima cj , or tolerances tj .178

As noted by Hui et al. (2017), approximate asymptotic standard errors for parameters can be retrieved179

from the Hessian matrix of the VA log-likelihood. Here, we provide a brief overview of the Delta method,180

that can be used for the calculation of approximate standard errors of derived parameters such as the species181

optima uj , tolerances tj , species maxima cj , and gradient lengths. The multivariate Delta method states,182

that approximate standard errors can be calculated for a parameter θ that is a function f(·) of a set of183

other parameters, by the gradient of the function with respect to the original parameters ∇f(·), and the184

variance-covariance matrix Σ of the original parameters. For example, the variance of the species optima, is185

given by:186

Var{f(θ)} ≈ 1
2∇f(γjq, Djqq)>Σ∇f(γjq, Djqq),

where θ is the optimum of a species response curve for a latent variable, and ∇f(γjq, Djqq) is the first187

derivative of θ with respect to the separate parameters γjq and Djqq. Similarly, the approximate covariances188

can be calculated. Tolerances and gradient lengths are only a function of the quadratic coefficient(s), not of189
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the linear coefficients.190
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Appendix S3: Fitting process191

In this appendix, details on stabilizing the fitting of a GLLVM with quadratic response model are included.192

We used Template Model Builder [TMB; Kristensen et al. (2016)] to retrieve analytical derivatives and more193

smoothly fit the models.194

Fitting195

Even with the use of VA, estimation of GLLVMs is particularly challenging due to multimodality of the log-196

likelihood function. This often results in numerical optimization techniques getting stuck in local minima. We197

largely adopt the approach developed by Niku et al. (2019), who found that fitting GLLVMs with diagonal VA198

covariance matrices before fitting the model with unstructured VA covariance matrices, tended to stabilize199

the estimation for a GLLVM with linear response model. So, to overcome the problem of multimodality,200

we recommend to: 1) fit a common tolerances model with diagonal VA covariance matrix, 2) fit a model201

with the same structure, but with unstructured VA covariance matrix, for which the final solution of 1) is202

used as initial values, after which 3) the estimated VA means are used as the initial values to fit the unequal203

tolerances model (for which the same procedure with diagonal VA covariance matrix is potentially repeated).204

In practice, we found this procedure to stabilize fitting of the proposed GLLVM (which is included as the205

default in the gllvm R-package. Alternatively, the GLLVM can be fitted with diagonal or unstructured VA206

covariance matrix immediately, thus providing different fitting algorithms. Initial values for the numerical207

optimization are generated following the same procedure implemented in Niku et al. (2019), with the most208

basic option to start the optimization with a combination of zeros for the coefficients and ones for the209

latent variables, or with randomly generated initial values, or with initial values generated by: 1) fitting a210

multivariate Generalized Linear Model, 2) retrieving the Dunn-Smyth residuals (Dunn and Smyth, 1996) of211

the model, and 3) performing factor analysis on those residuals to retrieve initial values for quantities related212

to the latent variables (i.e. VA means and coefficients for the linear term of the model). It is also possible to213

use the solution of a vanilla GLLVM as initial values, though this usually performed either similar or worse214

than the approach for initial values described by Niku et al. (2019). When using the solution of a GLLVM215

with linear response model as initial values, the options for that GLLVM can be tweaked independently to216

tweaking the algorithm for the GLLVM with quadratic response model (e.g. by running it multiple times with217

different sets of initial values), resulting in an even larger number of potential fitting algorithms. In general,218

initial values that are closer to the final solution serve to further reduce the possibility for the optimizer to219

get stuck in local minima. Fitting the model with different sets of initial values can help to assess if it is has220

properly converged.221
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Estimation of the quadratic coefficients can be started at a small constant, or on a solution that is222

maximized conditionally on the initial values. Maximizing conditionally on the initial values further reduces223

the possibility for the optimizer to get stuck in local minima, in scenarios where the initial values of other224

coefficients, and of the latent variables, are close to an optimal solution. This approach works especially225

well in combination with first fitting the species-common tolerances model. It is possible to assess if a226

model converged to the solution that optimally maximizes the VA log-likelihood by examining the analytical227

gradient, in combination with the standard errors. The gradient should be close to zero if the model has228

converged. In our experience, the standard errors tend to be larger when a model has not (completely)229

converged.230

If factor analysis cannot provide suitable initial values for the latent variables, Principal Component231

Analysis (PCA), Correspondence Analysis (CA), or Detrended Correspondence Analysis (DCA), can be232

considered instead. The software does accept externally generated initial values for the latent variables.233

Regularisation234

The quadratic model can be further extended with an additional species-common component, by changing the235

quadratic term to z>i (Dj +G) zi, where G is again a positive-definite diagonal matrix. Including a species-236

common component allows to make optimal use of the data, as parameters that are equal for all species237

can potentially be estimated with a higher degree of certainty than species-specific components G. In this238

case, Dj accounts for species-specific deviation from the species-common components. The species-common239

components can be interpreted as an average measure of tolerance. This parametrization is unidentifiable,240

thus constraints for the species-specific component are required. For example, penalized likelihood methods241

could be used to enforce parameter identifiability (Tibshirani, 1996). This parametrization provides a hybrid242

form of the species-common and species-specific tolerances models, as with a large penalty it will fit the243

species-common tolerances model, and with a small or no penalty the species-specific tolerances model.244

This can additionally serve to further stabilize the fitting process (as discussed above and in Yee, 2004).245

Alternatively, the elements of Dj can be treated as a random effect, independent for species p and latent246

variables d, following a half-normal distribution, although we leave this as an avenue of future research.247
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Appendix S3: Code for simulations

Packages required for simulations

Load required libraries

• gllvm to run the model (at moment of writing this needs to be retrieved from github)

• vegan for procrustes

• parallel and foreach for parallel processing

library(gllvm)

library(vegan)

library(foreach)

library(parallel)

library(doSNOW)

Simulate data

This chunk is the same for all distributions.

# procrustes function that excludes values larger than 10, for optima.

# Edited from the vegan package.

procrustes.gllvm <- function(X, Y, symmetric = TRUE, scale = TRUE, threshold = 10,

...) {

if (nrow(X) != nrow(Y))

stop(gettextf("matrices have different number of rows: %d and %d",

nrow(X), nrow(Y)))

if (ncol(X) != ncol(Y))

stop(gettextf("matrices have different number of columns: %d and %d",

ncol(X), ncol(Y)))

idx <- apply(X, 2, function(i) (!(i > threshold | i < (-threshold))))

idx[upper.tri(idx)] <- F #for identifiability constraint

ctrace <- function(MAT, idx) {
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sum(MAT[idx]ˆ2)

}

c <- 1

if (symmetric) {

X <- t(t(X) - sapply(1:ncol(X), function(i) mean(X[idx[, i], i])))

Y <- t(t(Y) - sapply(1:ncol(X), function(i) mean(Y[idx[, i], i])))

X <- X/sqrt(ctrace(X, idx))

Y <- Y/sqrt(ctrace(Y, idx))

}

xmean <- sapply(1:ncol(X), function(i) mean(X[idx[, i], i]))

ymean <- sapply(1:ncol(X), function(i) mean(Y[idx[, i], i]))

if (!symmetric) {

X <- t(t(X) - sapply(1:ncol(X), function(i) mean(X[idx[, i], i])))

Y <- t(t(Y) - sapply(1:ncol(X), function(i) mean(Y[idx[, i], i])))

}

XY <- matrix(0, ncol = ncol(X), nrow = ncol(X))

for (i in 1:ncol(X)) {

for (j in 1:ncol(X)) {

XY[i, j] <- sum(X[idx[, i], i] * Y[idx[, i], j])

}

}

sol <- svd(XY)

A <- sol$v %*% t(sol$u)

if (scale) {

c <- sum(sol$d)/ctrace(Y)

}

Yrot <- c * Y %*% A

b <- xmean - c * ymean %*% A

R2 <- ctrace(X, idx) + c * c * ctrace(Y, idx) - 2 * c * sum(sol$d)

reslt <- list(Yrot = Yrot, X = X, ss = R2, rotation = A, translation = b,
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scale = c, xmean = xmean, symmetric = symmetric, call = match.call())

reslt$svd <- sol

class(reslt) <- "procrustes"

reslt

}

get_eta <- function(n, p) {

x <- mvtnorm::rmvnorm(n, rep(0, 2), diag(2))

opt1 <- runif(p, range(x[, 1])[1], range(x[, 1])[2])

opt2 <- runif(p, range(x[, 2])[1], range(x[, 2])[2])

opt <- cbind(opt1, opt2)

opt[upper.tri(opt, diag = F)] <- 0

tol <- matrix(runif(p * 2, 0.2, 1), ncol = 2)

c <- runif(p, 2, 6)

linpred <- matrix(c, ncol = p, nrow = n, byrow = T) - matrix(rowSums(optˆ2/(2 *

tolˆ2)), ncol = p, nrow = n, byrow = T) - xˆ2 %*% t(1/((2 * tolˆ2))) +

2 * x %*% t(opt/(2 * tolˆ2))

return(list(eta = linpred, opt = opt, tol = tol, lv = x, max = c))

}

# function to simulate data

sim_dat <- function(eta, family, seed, phi = NULL, cutoffs = NULL) {

n <- dim(eta)[1]

p <- dim(eta)[2]

if (is.null(phi))

phi <- rep(1, p)

if (is.null(cutoffs))

cutoffs <- 1:5
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if (!(family %in% c("gaussian", "poisson", "negative.binomial", "binomial",

"ordinal", "gamma"))) {

stop("Wrong family.")

}

if (family == "gaussian") {

if (length(phi) != p)

stop("Wrong length phi supplied.")

set.seed(seed)

mu <- eta

y <- matrix(NA, n, p)

for (j in 1:p) {

y[, j] <- rnorm(n, mean = mu[, j], sd = phi[j])

}

} else if (family == "poisson") {

set.seed(seed)

mu <- exp(eta)

y <- matrix(NA, n, p)

for (j in 1:p) {

y[, j] <- rpois(n, mu[, j])

}

}

if (family == "negative.binomial") {

if (length(phi) != p)

stop("Wrong length phi supplied.")

set.seed(seed)

mu <- exp(eta)

y <- matrix(NA, n, p)
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for (j in 1:p) {

y[, j] <- rnbinom(n, mu = mu[, j], size = mu[, j] * phi[j])

}

}

if (family == "binomial") {

set.seed(seed)

mu <- pnorm(eta)

y <- matrix(NA, n, p)

for (j in 1:p) {

y[, j] <- rbinom(n = n, size = 1, prob = mu[, j])

}

}

if (family == "ordinal") {

set.seed(seed)

k.max <- length(cutoffs) + 1

preds <- array(NA, dim = c(k.max, n, p), dimnames = list(paste("level",

1:max(k.max), sep = ""), NULL, NULL))

for (i in 1:n) {

for (j in 1:p) {

probK <- NULL

probK[1] <- pnorm(cutoffs[1] - eta[i, j], log.p = FALSE)

probK[k.max] <- 1 - pnorm(cutoffs[k.max - 1] - eta[i, j])

levels <- 2:(k.max - 1)

for (k in levels) {

probK[k] <- pnorm(cutoffs[k] - eta[i, j]) - pnorm(cutoffs[k -

1] - eta[i, j])

}

preds[, i, j] <- c(probK)

}
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}

y = matrix(NA, nrow = n, ncol = p)

k <- length(cutoffs) + 1

for (j in 1:p) {

for (i in 1:n) {

y[i, j] <- sample(k, 1, prob = preds[, i, j][!is.na(preds[,

i, j])])

}

}

} else if (family == "gamma") {

if (length(phi) != p)

stop("Wrong length phi supplied.")

set.seed(seed)

mu <- exp(eta)

y <- matrix(NA, n, p)

for (j in 1:p) {

y[, j] <- rgamma(n, shape = 1/phi[j], scale = phi[j] * mu[,

j])

}

}

return(y)

}

# function to fit models and run simulation

sim_gllvm <- function(n, p, r = 1000, family) {

progress_n <- function(i) cat(sprintf(paste(paste("task %d of", r),

"is now complete\n"), i))

opts_n <- list(progress = progress_n)
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set.seed(1)

sim <- get_eta(n, p)

eta <- sim$eta

true_opt <- sim$opt

true_lv <- sim$lv

result <- foreach(i = 1:r, .inorder = F, .packages = c("gllvm", "vegan"),

.export = c("sim_dat", "procrustes.gllvm"), .options.snow = opts_n) %dopar%

{

dat <- sim_dat(eta, family, seed = i, nsim = r)

dat2 <- dat

# Make sure that classes are sequential

if (family == "ordinal" & any(diff(sort(unique(c(dat)))) !=

1)) {

while (any(diff(sort(unique(c(dat)))) != 1)) {

maxK <- max(dat)

dat[dat == maxK] <- length(unique(c(dat))) #This might be wrong, double check

}

}

idx <- colSums(dat) != 0

idx2 <- rowSums(dat) != 0

dat <- dat[idx2, idx]

mod <- list()

mod <- try(gllvm(dat, num.lv = 2, family = family, quadratic = TRUE,

control = list(maxit = 1e+06), control.start = list(starting.val = "res",

start.struc = "LV", n.init = 1), control.va = list(diag.iter = 1),

sd.errors = F, zeta.struc = "common"), silent = T)

if (!inherits(mod, "try-error")) {

mod$start <- "res_LV_diagiter"
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}

if (inherits(mod, "try-error")) {

mod <- try(gllvm(dat, num.lv = 2, family = family, quadratic = TRUE,

control = list(maxit = 1e+06), control.start = list(starting.val = "res",

start.struc = "LV", n.init = 1), control.va = list(diag.iter = 0),

sd.errors = F, zeta.struc = "common"), silent = T)

if (!inherits(mod, "try-error")) {

mod$start <- "res_LV"

}

} else if (is.infinite(logLik(mod))) {

mod <- try(gllvm(dat, num.lv = 2, family = family, quadratic = TRUE,

control = list(maxit = 1e+06), control.start = list(starting.val = "res",

start.struc = "LV", n.init = 1), control.va = list(diag.iter = 0),

sd.errors = F, zeta.struc = "common"), silent = T)

if (!inherits(mod, "try-error")) {

mod$start <- "res_LV"

}

}

if (inherits(mod, "try-error")) {

mod <- try(gllvm(dat, num.lv = 2, family = family, quadratic = TRUE,

control = list(maxit = 1e+06), control.start = list(starting.val = "res",

start.struc = "all", n.init = 1), control.va = list(diag.iter = 1),

sd.errors = F, zeta.struc = "common"), silent = T)

if (!inherits(mod, "try-error")) {

mod$start <- "res_all_diagiter"

}

} else if (is.infinite(logLik(mod))) {

mod <- try(gllvm(dat, num.lv = 2, family = family, quadratic = TRUE,

control = list(maxit = 1e+06), control.start = list(starting.val = "res",

start.struc = "all", n.init = 1), control.va = list(diag.iter = 1),

sd.errors = F, zeta.struc = "common"), silent = T)

if (!inherits(mod, "try-error")) {
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mod$start <- "res_all_diagiter"

}

}

if (inherits(mod, "try-error")) {

mod <- try(gllvm(dat, num.lv = 2, family = family, quadratic = TRUE,

control = list(maxit = 1e+06), control.start = list(starting.val = "res",

start.struc = "all", n.init = 1), control.va = list(diag.iter = 0),

sd.errors = F, zeta.struc = "common"), silent = T)

if (!inherits(mod, "try-error")) {

mod$start <- "res_all"

}

} else if (is.infinite(logLik(mod))) {

mod <- try(gllvm(dat, num.lv = 2, family = family, quadratic = TRUE,

control = list(maxit = 1e+06), control.start = list(starting.val = "res",

start.struc = "all", n.init = 1), control.va = list(diag.iter = 0),

sd.errors = F, zeta.struc = "common"), silent = T)

if (!inherits(mod, "try-error")) {

mod$start <- "res_all"

}

}

if (inherits(mod, "try-error")) {

mod <- try(gllvm(dat, num.lv = 2, family = family, quadratic = TRUE,

control = list(maxit = 1e+06), control.start = list(starting.val = "zero",

start.struc = "LV", n.init = 1), control.va = list(diag.iter = 1),

sd.errors = F, zeta.struc = "common"), silent = T)

if (!inherits(mod, "try-error")) {

mod$start <- "zero_LV_diagiter"

}

} else if (is.infinite(logLik(mod))) {

mod <- try(gllvm(dat, num.lv = 2, family = family, quadratic = TRUE,

control = list(maxit = 1e+06), control.start = list(starting.val = "zero",
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start.struc = "LV", n.init = 1), control.va = list(diag.iter = 1),

sd.errors = F, zeta.struc = "common"), silent = T)

if (!inherits(mod, "try-error")) {

mod$start <- "zero_LV_diagiter"

}

}

if (inherits(mod, "try-error")) {

mod <- try(gllvm(dat, num.lv = 2, family = family, quadratic = TRUE,

control = list(maxit = 1e+06), control.start = list(starting.val = "zero",

start.struc = "LV", n.init = 1), control.va = list(diag.iter = 0),

sd.errors = F, zeta.struc = "common"), silent = T)

if (!inherits(mod, "try-error")) {

mod$start <- "zero_LV"

}

} else if (is.infinite(logLik(mod))) {

mod <- try(gllvm(dat, num.lv = 2, family = family, quadratic = TRUE,

control = list(maxit = 1e+06), control.start = list(starting.val = "zero",

start.struc = "LV", n.init = 1), control.va = list(diag.iter = 0),

sd.errors = F, zeta.struc = "common"), silent = T)

if (!inherits(mod, "try-error")) {

mod$start <- "zero_LV"

}

}

if (inherits(mod, "try-error")) {

mod <- try(gllvm(dat, num.lv = 2, family = family, quadratic = TRUE,

control = list(maxit = 1e+06), control.start = list(starting.val = "zero",

start.struc = "all", n.init = 1), control.va = list(diag.iter = 1),

sd.errors = F, zeta.struc = "common"), silent = T)

if (!inherits(mod, "try-error")) {

mod$start <- "zero_all_diagiter"
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}

} else if (is.infinite(logLik(mod))) {

mod <- try(gllvm(dat, num.lv = 2, family = family, quadratic = TRUE,

control = list(maxit = 1e+06), control.start = list(starting.val = "zero",

start.struc = "all", n.init = 1), control.va = list(diag.iter = 1),

sd.errors = F, zeta.struc = "common"), silent = T)

if (!inherits(mod, "try-error")) {

mod$start <- "zero_all_diagiter"

}

}

if (inherits(mod, "try-error")) {

mod <- try(gllvm(dat, num.lv = 2, family = family, quadratic = TRUE,

control = list(maxit = 1e+06), control.start = list(starting.val = "zero",

start.struc = "all", n.init = 1), control.va = list(diag.iter = 0),

sd.errors = F, zeta.struc = "common"), silent = T)

if (!inherits(mod, "try-error")) {

mod$start <- "zero_LV"

}

} else if (is.infinite(logLik(mod))) {

mod <- try(gllvm(dat, num.lv = 2, family = family, quadratic = TRUE,

control = list(maxit = 1e+06), control.start = list(starting.val = "zero",

start.struc = "all", n.init = 1), control.va = list(diag.iter = 0),

sd.errors = F, zeta.struc = "common"), silent = T)

if (!inherits(mod, "try-error")) {

mod$start <- "zero_LV"

}

}

# extra insurance to make sure we don't end up with a common tolerances

# model

if (!inherits(mod, "try-error")) {
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if (length(mod$params$theta[, 3:4][!duplicated(round(mod$params$theta[,

3:4], 2))]) == 2) {

mod <- try(gllvm(dat, num.lv = 2, family = family, quadratic = TRUE,

control = list(maxit = 1e+06), control.start = list(starting.val = "res",

start.struc = "all", n.init = 1), control.va = list(diag.iter = 1),

sd.errors = F, zeta.struc = "common"), silent = T)

if (!inherits(mod, "try-error")) {

mod$start <- "res_all_diagiter"

}

if (inherits(mod, "try-error")) {

mod <- try(gllvm(dat, num.lv = 2, family = family,

quadratic = TRUE, control = list(maxit = 1e+06),

control.start = list(starting.val = "res", start.struc = "all",

n.init = 1), control.va = list(diag.iter = 0),

sd.errors = F, zeta.struc = "common"), silent = T)

if (!inherits(mod, "try-error")) {

mod$start <- "res_all"

}

} else if (is.infinite(logLik(mod))) {

mod <- try(gllvm(dat, num.lv = 2, family = family,

quadratic = TRUE, control = list(maxit = 1e+06),

control.start = list(starting.val = "res", start.struc = "all",

n.init = 1), control.va = list(diag.iter = 0),

sd.errors = F, zeta.struc = "common"), silent = T)

if (!inherits(mod, "try-error")) {

mod$start <- "res_all"

}

}

if (inherits(mod, "try-error")) {

mod <- try(gllvm(dat, num.lv = 2, family = family,

quadratic = TRUE, control = list(maxit = 1e+06),
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control.start = list(starting.val = "zero", start.struc = "all",

n.init = 1), control.va = list(diag.iter = 1),

sd.errors = F, zeta.struc = "common"), silent = T)

if (!inherits(mod, "try-error")) {

mod$start <- "zero_all_diagiter"

}

} else if (is.infinite(logLik(mod))) {

mod <- try(gllvm(dat, num.lv = 2, family = family,

quadratic = TRUE, control = list(maxit = 1e+06),

control.start = list(starting.val = "zero", start.struc = "all",

n.init = 1), control.va = list(diag.iter = 1),

sd.errors = F, zeta.struc = "common"), silent = T)

if (!inherits(mod, "try-error")) {

mod$start <- "zero_all_diagiter"

}

}

if (inherits(mod, "try-error")) {

mod <- try(gllvm(dat, num.lv = 2, family = family,

quadratic = TRUE, control = list(maxit = 1e+06),

control.start = list(starting.val = "zero", start.struc = "all",

n.init = 1), control.va = list(diag.iter = 0),

sd.errors = F, zeta.struc = "common"), silent = T)

if (!inherits(mod, "try-error")) {

mod$start <- "zero_LV"

}

} else if (is.infinite(logLik(mod))) {

mod <- try(gllvm(dat, num.lv = 2, family = family,

quadratic = TRUE, control = list(maxit = 1e+06),

control.start = list(starting.val = "zero", start.struc = "all",

n.init = 1), control.va = list(diag.iter = 0),

sd.errors = F, zeta.struc = "common"), silent = T)

13



if (!inherits(mod, "try-error")) {

mod$start <- "zero_LV"

}

}

}

}

result <- list()

if (!inherits(mod, "try-error")) {

# exclude species without observations if any

theta <- mod$params$theta

opt <- theta[, 1:2]/(2 * abs(theta[, 3:4]))

true_opt2 <- true_opt[idx, ]

X <- opt

Y <- true_opt2

idx3 <- (X > 10 | X < (-10))

idx3[upper.tri(idx3)] <- T

X <- mod$lvs

Y <- true_lv[idx2, ]

result[[1]] <- mod$params$theta

result[[2]] <- mod$lvs

result[[3]] <- dat2

result[[4]] <- mod$call

result[[5]] <- mod$start

result[[6]] <- try(procrustes.gllvm(mod$lvs, true_lv[idx2,

], symmetric = T)$ss)

result[[7]] <- try(procrustes.gllvm(opt, true_opt2, symmetric = T)$ss)

result[[8]] <- sum(idx3) - 1

remove(mod)

} else {
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result[[1]] <- result[[2]] <- result[[4]] <- result[[5]] <- result[[6]] <- result[[7]] <- result[[8]] <- NA

result[[3]] <- dat2

}

return(result)

}

return(result)

}

Poisson

cores <- detectCores()

cl <- makeCluster(cores[1] - 1)

registerDoSNOW(cl)

# keeping n the same: high.

result1 <- sim_gllvm(100, 20, r = 1000, family = "poisson")

result2 <- sim_gllvm(100, 30, r = 1000, family = "poisson")

result3 <- sim_gllvm(100, 40, r = 1000, family = "poisson")

result4 <- sim_gllvm(100, 50, r = 1000, family = "poisson")

result5 <- sim_gllvm(100, 60, r = 1000, family = "poisson")

result6 <- sim_gllvm(100, 70, r = 1000, family = "poisson")

result7 <- sim_gllvm(100, 80, r = 1000, family = "poisson")

result8 <- sim_gllvm(100, 90, r = 1000, family = "poisson")

result9 <- sim_gllvm(100, 100, r = 1000, family = "poisson")

result <- list(result1, result2, result3, result4, result5, result6, result7,

result8, result9)

# keeping p the same: high.

result1 <- sim_gllvm(20, 100, r = 1000, family = "poisson")

result2 <- sim_gllvm(30, 100, r = 1000, family = "poisson")
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result3 <- sim_gllvm(40, 100, r = 1000, family = "poisson")

result4 <- sim_gllvm(50, 100, r = 1000, family = "poisson")

result5 <- sim_gllvm(60, 100, r = 1000, family = "poisson")

result6 <- sim_gllvm(70, 100, r = 1000, family = "poisson")

result7 <- sim_gllvm(80, 100, r = 1000, family = "poisson")

result8 <- sim_gllvm(90, 100, r = 1000, family = "poisson")

result2 <- list(result1, result2, result3, result4, result5, result6, result7,

result8, result9)

Binomial

cores <- detectCores()

cl <- makeCluster(cores[1] - 1)

registerDoSNOW(cl)

# keeping n the same: high.

result1 <- sim_gllvm(100, 20, r = 1000, family = "binomial")

result2 <- sim_gllvm(100, 30, r = 1000, family = "binomial")

result3 <- sim_gllvm(100, 40, r = 1000, family = "binomial")

result4 <- sim_gllvm(100, 50, r = 1000, family = "binomial")

result5 <- sim_gllvm(100, 60, r = 1000, family = "binomial")

result6 <- sim_gllvm(100, 70, r = 1000, family = "binomial")

result7 <- sim_gllvm(100, 80, r = 1000, family = "binomial")

result8 <- sim_gllvm(100, 90, r = 1000, family = "binomial")

result9 <- sim_gllvm(100, 100, r = 1000, family = "binomial")

result <- list(result1, result2, result3, result4, result5, result6, result7,

result8, result9)

# keeping p the same: high.

result1 <- sim_gllvm(20, 100, r = 1000, family = "binomial")

result2 <- sim_gllvm(30, 100, r = 1000, family = "binomial")

result3 <- sim_gllvm(40, 100, r = 1000, family = "binomial")
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result4 <- sim_gllvm(50, 100, r = 1000, family = "binomial")

result5 <- sim_gllvm(60, 100, r = 1000, family = "binomial")

result6 <- sim_gllvm(70, 100, r = 1000, family = "binomial")

result7 <- sim_gllvm(80, 100, r = 1000, family = "binomial")

result8 <- sim_gllvm(90, 100, r = 1000, family = "binomial")

result2 <- list(result1, result2, result3, result4, result5, result6, result7,

result8, result9)

Negative-Binomial

cores <- detectCores()

cl <- makeCluster(cores[1] - 1)

registerDoSNOW(cl)

# keeping n the same: high.

result1 <- sim_gllvm(100, 20, r = 1000, family = "negative.binomial")

result2 <- sim_gllvm(100, 30, r = 1000, family = "negative.binomial")

result3 <- sim_gllvm(100, 40, r = 1000, family = "negative.binomial")

result4 <- sim_gllvm(100, 50, r = 1000, family = "negative.binomial")

result5 <- sim_gllvm(100, 60, r = 1000, family = "negative.binomial")

result6 <- sim_gllvm(100, 70, r = 1000, family = "negative.binomial")

result7 <- sim_gllvm(100, 80, r = 1000, family = "negative.binomial")

result8 <- sim_gllvm(100, 90, r = 1000, family = "negative.binomial")

result9 <- sim_gllvm(100, 100, r = 1000, family = "negative.binomial")

result <- list(result1, result2, result3, result4, result5, result6, result7,

result8, result9)

# keeping p the same: high.

result1 <- sim_gllvm(20, 100, r = 1000, family = "negative.binomial")

result2 <- sim_gllvm(30, 100, r = 1000, family = "negative.binomial")

result3 <- sim_gllvm(40, 100, r = 1000, family = "negative.binomial")

result4 <- sim_gllvm(50, 100, r = 1000, family = "negative.binomial")
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result5 <- sim_gllvm(60, 100, r = 1000, family = "negative.binomial")

result6 <- sim_gllvm(70, 100, r = 1000, family = "negative.binomial")

result7 <- sim_gllvm(80, 100, r = 1000, family = "negative.binomial")

result8 <- sim_gllvm(90, 100, r = 1000, family = "negative.binomial")

result2 <- list(result1, result2, result3, result4, result5, result6, result7,

result8, result9)

Ordinal

cores <- detectCores()

cl <- makeCluster(cores[1] - 1)

registerDoSNOW(cl)

# keeping n the same: high.

result1 <- sim_gllvm(100, 20, r = 1000, family = "ordinal")

result2 <- sim_gllvm(100, 30, r = 1000, family = "ordinal")

result3 <- sim_gllvm(100, 40, r = 1000, family = "ordinal")

result4 <- sim_gllvm(100, 50, r = 1000, family = "ordinal")

result5 <- sim_gllvm(100, 60, r = 1000, family = "ordinal")

result6 <- sim_gllvm(100, 70, r = 1000, family = "ordinal")

result7 <- sim_gllvm(100, 80, r = 1000, family = "ordinal")

result8 <- sim_gllvm(100, 90, r = 1000, family = "ordinal")

result9 <- sim_gllvm(100, 100, r = 1000, family = "ordinal")

result <- list(result1, result2, result3, result4, result5, result6, result7,

result8, result9)

# keeping p the same: high.

result1 <- sim_gllvm(20, 100, r = 1000, family = "ordinal")

result2 <- sim_gllvm(30, 100, r = 1000, family = "ordinal")

result3 <- sim_gllvm(40, 100, r = 1000, family = "ordinal")

result4 <- sim_gllvm(50, 100, r = 1000, family = "ordinal")

result5 <- sim_gllvm(60, 100, r = 1000, family = "ordinal")
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result6 <- sim_gllvm(70, 100, r = 1000, family = "ordinal")

result7 <- sim_gllvm(80, 100, r = 1000, family = "ordinal")

result8 <- sim_gllvm(90, 100, r = 1000, family = "ordinal")

result2 <- list(result1, result2, result3, result4, result5, result6, result7,

result8, result9)

Gaussian

cores <- detectCores()

cl <- makeCluster(cores[1] - 1)

registerDoSNOW(cl)

# keeping n the same: high.

result1 <- sim_gllvm(100, 20, r = 1000, family = "gaussian")

result2 <- sim_gllvm(100, 30, r = 1000, family = "gaussian")

result3 <- sim_gllvm(100, 40, r = 1000, family = "gaussian")

result4 <- sim_gllvm(100, 50, r = 1000, family = "gaussian")

result5 <- sim_gllvm(100, 60, r = 1000, family = "gaussian")

result6 <- sim_gllvm(100, 70, r = 1000, family = "gaussian")

result7 <- sim_gllvm(100, 80, r = 1000, family = "gaussian")

result8 <- sim_gllvm(100, 90, r = 1000, family = "gaussian")

result9 <- sim_gllvm(100, 100, r = 1000, family = "gaussian")

result <- list(result1, result2, result3, result4, result5, result6, result7,

result8, result9)

# keeping p the same: high.

result1 <- sim_gllvm(20, 100, r = 1000, family = "gaussian")

result2 <- sim_gllvm(30, 100, r = 1000, family = "gaussian")

result3 <- sim_gllvm(40, 100, r = 1000, family = "gaussian")

result4 <- sim_gllvm(50, 100, r = 1000, family = "gaussian")

result5 <- sim_gllvm(60, 100, r = 1000, family = "gaussian")

result6 <- sim_gllvm(70, 100, r = 1000, family = "gaussian")
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result7 <- sim_gllvm(80, 100, r = 1000, family = "gaussian")

result8 <- sim_gllvm(90, 100, r = 1000, family = "gaussian")

result2 <- list(result1, result2, result3, result4, result5, result6, result7,

result8, result9)

Gamma

cores <- detectCores()

cl <- makeCluster(cores[1] - 1)

registerDoSNOW(cl)

# keeping n the same: high.

result1 <- sim_gllvm(100, 20, r = 1000, family = "gamma")

result2 <- sim_gllvm(100, 30, r = 1000, family = "gamma")

result3 <- sim_gllvm(100, 40, r = 1000, family = "gamma")

result4 <- sim_gllvm(100, 50, r = 1000, family = "gamma")

result5 <- sim_gllvm(100, 60, r = 1000, family = "gamma")

result6 <- sim_gllvm(100, 70, r = 1000, family = "gamma")

result7 <- sim_gllvm(100, 80, r = 1000, family = "gamma")

result8 <- sim_gllvm(100, 90, r = 1000, family = "gamma")

result9 <- sim_gllvm(100, 100, r = 1000, family = "gamma")

result <- list(result1, result2, result3, result4, result5, result6, result7,

result8, result9)

# keeping p the same: high.

result1 <- sim_gllvm(20, 100, r = 1000, family = "gamma")

result2 <- sim_gllvm(30, 100, r = 1000, family = "gamma")

result3 <- sim_gllvm(40, 100, r = 1000, family = "gamma")

result4 <- sim_gllvm(50, 100, r = 1000, family = "gamma")

result5 <- sim_gllvm(60, 100, r = 1000, family = "gamma")

result6 <- sim_gllvm(70, 100, r = 1000, family = "gamma")

result7 <- sim_gllvm(80, 100, r = 1000, family = "gamma")

20



result8 <- sim_gllvm(90, 100, r = 1000, family = "gamma")

result2 <- list(result1, result2, result3, result4, result5, result6, result7,

result8, result9)
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Appendix S5: Extra results for real data examples248

Distribution num. LV Quadratic? Start.struc Row.eff df logLik AICc delta AICc
Poisson 3 T 81.00 -626.05 1466.39 0.00
Poisson 2 T fixed 86.00 -618.25 1468.59 2.20
Poisson 3 T all 81.00 -638.27 1490.84 24.45
Poisson 3 T all random 82.00 -639.72 1497.25 30.86
Poisson 2 T 59.00 -679.40 1502.46 36.06
Poisson 2 T all random 60.00 -679.76 1506.14 39.74
Poisson 2 T all 59.00 -699.85 1543.35 76.96
NB 1 T fixed 75.00 -676.35 1546.54 80.15
Poisson 3 LV 48.00 -726.81 1566.00 99.61
Poisson 3 LV random 49.00 -726.81 1568.75 102.35
NB 2 F 47.00 -733.68 1577.03 110.63
NB 2 F random 48.00 -734.81 1582.01 115.62
NB 2 LV 49.00 -733.64 1582.41 116.01
NB 2 F fixed 74.00 -696.05 1582.63 116.24
NB 1 F fixed 63.00 -713.98 1583.60 117.21
NB 2 LV random 50.00 -733.64 1585.17 118.77
Poisson 3 F fixed 72.00 -701.20 1586.37 119.98
NB 1 LV fixed 64.00 -713.98 1586.66 120.26
NB 2 LV fixed 76.00 -695.54 1588.28 121.88
NB 1 LV 37.00 -757.81 1599.07 132.67
NB 1 F 36.00 -759.40 1599.71 133.32
NB 2 T 71.00 -709.88 1600.48 134.08
NB 1 LV random 38.00 -757.81 1601.61 135.22
NB 1 F random 37.00 -759.40 1602.24 135.85
NB 2 T random 72.00 -709.88 1603.72 137.33
Poisson 3 F random 46.00 -748.73 1604.42 138.03
NB 3 F 57.00 -733.68 1605.15 138.75
NB 3 F random 58.00 -734.81 1610.33 143.93
NB 1 T 48.00 -749.21 1610.80 144.41
NB 1 T random 49.00 -749.21 1613.55 147.15
NB 3 LV 60.00 -733.64 1613.89 147.50
NB 3 F fixed 84.00 -696.05 1617.00 150.60
NB 3 LV random 61.00 -733.85 1617.32 150.92
Poisson 3 F 45.00 -758.85 1621.97 155.58
NB 3 LV fixed 87.00 -696.05 1627.85 161.45
Poisson 2 LV fixed 64.00 -742.14 1642.98 176.59
NB 2 T fixed 98.00 -684.74 1647.35 180.96
Poisson 2 F fixed 62.00 -755.90 1664.42 198.02
NB 3 T 93.00 -709.88 1678.00 211.60
NB 3 T random 94.00 -709.88 1681.86 215.46
Poisson 2 LV random 38.00 -801.46 1688.89 222.50
Poisson 2 LV 37.00 -804.34 1692.12 225.72
Poisson 2 F random 36.00 -809.97 1700.84 234.45
NB 3 T fixed 120.00 -678.59 1732.25 265.86
Poisson 2 F 35.00 -845.83 1770.06 303.66
Poisson 1 T fixed 63.00 -889.80 1935.25 468.86
Poisson 1 T all random 37.00 -1000.41 2084.26 617.87
Poisson 1 LV fixed 52.00 -1107.98 2339.45 873.05
Poisson 1 F fixed 51.00 -1118.82 2358.31 891.92
Poisson 1 LV random 26.00 -1175.57 2407.68 941.28
Poisson 1 F random 25.00 -1181.47 2417.13 950.74
Poisson 1 T all 36.00 -1264.96 2610.83 1144.43
Poisson 1 T 36.00 -1265.04 2610.98 1144.59
Poisson 1 LV 25.00 -1402.81 2859.82 1393.42
Poisson 1 F 24.00 -1425.15 2902.16 1435.76
Poisson 3 LV fixed 75.00 -1496.10 3186.05 1719.65
Poisson 3 T fixed 108.00 -1496.10 3311.92 1845.52

Table S1: Results for GLLVMs with quadratic response model fitted to the hunting spider dataset. The
column quadratic includes species-specific tolerances (TRUE), common-tolerances (LV), and no explicit
quadratic response (FALSE). The column start.struc is applicable only to the species-specific tolerances
model, and indicates if a common-tolerances model was not fitted first (all).
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Figure S1: Plot of coefficients for elevation, from the Swiss alpine plants dataset, including 95% confidence
intervals. Though no sign constraint was added for the coefficients of the quadratic term, most species
exhibited concave response curves, as indicated by the negative coefficient in the second panel.
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Summary13

1. In community ecology, unconstrained ordination can be used to predict latent variables from a mul-14

tivariate dataset, which generated the observed species composition. 2. Latent variables can be under-15

stood as ecological gradients, which are represented as a function of measured predictors in constrained16

ordination, so that ecologists can better relate species composition to the environment while reducing17

dimensionality of the predictors and the response data. 3. However, existing constrained ordination18

methods do not explicitly account for information provided by species responses, so that they have the19

potential to misrepresent community structure if not all predictors are measured. 4. We propose a new20

method for model-based ordination with constrained latent variables in the Generalized Linear Latent21

Variable Model framework, which incorporates both measured predictors and residual covariation to22

optimally represent ecological gradients. Simulations of unconstrained and constrained ordination show23

that the proposed method outperforms CCA and RDA. keywords: model-based constrained ordination,24

unimodal response, R-squared, joint species distribution model, reduced rank regression.25
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Introduction26

Unconstrained ordination methods help ecologists to analyse multivariate data of species communities when27

measurements of the environment are missing. In ordination, species and sites are arranged by their28

(dis)similarity, so that in unconstrained ordination similarity in environmental conditions at sites can be29

inferred from species composition. For example, when species preferring wet or dry circumstances are placed30

at opposite sides of an ordination axis, this axis will often be interpreted to represent a gradient in soil31

moisture. This approach of inferring the environment of species relationships can be used to generate new32

hypotheses (Økland 1996). However, unconstrained ordination by design does not facilitate more exact33

inference of species relationships and environmental conditions at sites.34

When environmental conditions are measured, e.g. such as soil moisture or mean temperature, multi-35

variate Generalized Linear Models (MGLM, Wang et al. 2012) can be used to provide a more thorough36

understanding of species-environment relationships. However, as multivariate regression methods relate the37

response of each species to the predictors, the number of parameters increases rapidly with the number of38

species and with the number of predictors. In such instances, constrained ordination (also referred to as39

direct gradient analysis, ter Braak & Prentice 1988) has often been used to analyse community composition40

data instead. Constrained ordination assumes that an underlying complex ecological gradient can be repre-41

sented as a linear combination of measured predictor variables, so that the number of parameters related to42

the predictors scales with the number of complex ecological gradients, and not with the number of species.43

Constrained ordination describes a class of methods, with two notable ones being Canonical Correspondence44

Analysis (CCA, ter Braak 1986) and Redundancy Analysis (RDA, Rao 1964), which (also) allow researchers45

to arrange sites and species by their (dis)similarity. The number of ecological gradients is often considerably46

less than the number of predictor variables and species (Halvorsen 2012), so that constrained ordination47

leads to a more feasible and potentially more insightful approach for the analysis of datasets on ecological48

communities with a large number of predictors and species.49

The practical appeal of constrained ordination is immediately apparent in the analysis of species distri-50

butions, where bioclimatic predictor variables are often used to represent a species niche (Booth 2018). In51

such cases, and especially when the response data is sparse, constrained ordination can be used to reduce52

the number of parameters relative to standard multivariate regression (Yee & Hastie 2003). Since every53

added predictor variable provides more flexibility in defining the ecological gradient in constrained ordina-54

tion, with a large number of predictor variables, constrained and unconstrained ordination coincide in their55

arrangement of sites and species (Jongman et al. 1995; McCune 1997; ter Braak & Šmilauer 2015).56

Thus, both unconstrained and constrained ordination have their roles in the analysis of ecological com-57
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munities. All variation in a community can be explored with unconstrained ordination, whereas the variation58

due to the predictors can be explored with constrained ordination (Økland 1996; ter Braak & Šmilauer 2015).59

On the other hand, in situations where only a few (relevant) predictor variables are measured, i.e. some im-60

portant predictors remain unmeasured, constrained ordination has the potential to misrepresent community61

structure as any variation not explained by the measured predictors is not accounted for in the method62

(Økland 1996). In turn, this motivates an approach which incorporates both: 1) modelling species responses63

in a reduced rank form as existing constrained ordination approaches do, and 2) a means of accounting64

for residual variation not accounted for by the measured predictors, as standard unconstrained ordination65

approaches do.66

Various model-based alternatives to classical constrained ordination methods have been developed in67

recent years, such as those made available in the R-package VGAM (Yee & Hastie 2003; Yee 2014), and those68

in the R-package RCIM (Hawinkel et al. 2019). One of the most well-known is Reduced Rank Regression69

(RRR, Anderson 1951), which is a model-based approach to constrained ordination that allows users to70

handle a range of discrete data types, and incorporate both the linear and quadratic responses in the model71

(Yee 2004). However, similar to the classical constrained ordination methods CCA and RDA, RRR is72

a purely fixed-effects model that allows for incorporating a residual error through the specification of a73

response distribution, but not for error and/or residual covariation between species that is associated to74

an ecological gradient. This means that RRR requires the assumption that the ecological gradient can be75

perfectly represented by predictor variables. However, in practice it can often be unclear which predictors76

make up an ecological gradient, so that important predictors may remain unmeasured. As such, there is77

great potential for residual variation, invalidating the assumption of a perfect fit for the ecological gradient.78

In this article we propose a new method for model-based ordination with constrained latent variables,79

which we believe has the potential to fully utilize the information provided by the measured predictors vari-80

ables and species responses. In the model-based approach for constrained ordination propose here, a latent81

variable can be understood as a complex ecological gradient, consisting of both measured and unmeasured82

components, in contrast to unconstrained ordination where the latent variable always not measured. As83

such, the proposed model simplifies to an unconstrained ordination when no predictors are measured, or to84

RRR when there is no residual information left to account for after including predictor variables. The pro-85

posed approach builds on the existing framework of Generalized Linear Latent Variable models (GLLVMs,86

Warton et al. 2015), which have seen various developments in unconstrained ordination during recent years87

(Hui et al. 2015; Hui 2016, 2017; Niku et al. 2019; Hoegh & Roberts 2020; Damgaard et al. 2020; van88

der Veen et al. 2021; Zeng et al. 2021). However, GLLVMs still lack an implementation when it comes to89

applications in constrained ordination. Here, we extend the GLLVM framework for model-based ordination90
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to the constrained case. Performing constrained ordination in the GLLVM framework allows us to relax the91

assumption of a perfect fit of predictors to the ecological gradient, so that the latent variables are both a92

function of the predictors as in the constrained case, and include residual variation provided by the response93

data as in the unconstrained case. In doing so, this approach allows the latent variables to better represent94

ecological gradients.95

Through a series of simulations based on multivariate normal, presence-absence and count data, we96

demonstrate that even in the presence of many predictor variables, estimating species responses using RRR97

can perform just as well if not better than in multivariate regression (e.g., Wang et al. 2012) while using98

fewer parameters. These simulations provide a basis for the evaluation of the dimensionality of community99

structure and species responses. We additionally compare our proposed GLLVM approach with two popular100

constrained ordination methods, CCA and RDA, assessing their capability to retrieve the true ecological101

gradients and species responses in the presence and absence of residual variation and fixed-effects. We102

show that in the presence and absence of residual variation the proposed GLLVM with constrained latent103

variables performs similar to, if not better than, CCA and RDA in retrieving the ecological gradients and104

species responses. Further, when the predictors are unrelated to the ecological gradients, e.g., when the105

wrong predictors have been measured, the proposes GLLVM with constrained latent variables outperforms106

CCA and RDA.107

Finally, we use two real datasets from species communities to demonstrate use of the proposed GLLVM108

with constrained latent variables: a dataset of alpine plants on an elevation gradient in Switzerland (D’Amen109

et al. 2017), and a dataset of vascular plants in semi-natural grasslands collected in Norway. An easy-to-use110

software implementation for model-based ordination with constrained latent variables is available on CRAN111

in the gllvm R-package.112

Model-formulation113

For a multivariate dataset yij consisting of observations recorded for species j = 1 . . . p and sites i = 1 . . . n,114

the proposed GLLVM with constrained latent variables is defined by the following mean model. Let g(·)115

generically denote a link function that connects the mean of the assumed response distribution (e.g., the116

Bernoulli distribution for presence-absence data or the negative binomial for overdispersed counts) to a linear117

predictor ηij , with a vector xlv,i of k = 1 . . . K measured predictor variables e.g., solar radiation or available118

cover. Then we formulate the model with q = 1 . . . d constrained latent variables as:119

g{E(yij |xlv,i, ϵi)} = β0j + x⊤
lv,iBγj + ϵ⊤

i γj , (1)
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where β0j is an intercept for each species j, and B is a K×d matrix of slopes per predictor and latent variable.120

A constrained latent variable can be understood as a complex ecological gradient, of which some components121

are (un)measured. As such, the vector γj includes relative species responses to both the measured component122

of the constrained latent variables B⊤xlv,i and their residual variation ϵi ∼ N (0, σ2Id), where Id is a d × d123

identity matrix. Note, the predictors xlv,i exclude an intercept term, for reasons of parameter identifiability,124

due to the presence of species-specific intercepts β0j . More importantly, the model in equation (1) can instead125

be formulated in terms of a latent variable zi = B⊤xlv,i + ϵi, similar to the model form in unconstrained126

ordination methods (see e.g., Hui et al. 2015; van der Veen et al. 2021):127

g{E(yij |zi)} = β0j + z⊤
i γj , (2)

where zi ∼ N (B⊤xlv,i, σ2Id). The models in equation (1) and equation (2) can be straightforwardly128

extended with row-intercepts to model community composition instead, though we have chosen to omit that129

term here for ease of presentation.130

Without the residual term for the latent variables, equation (1) is an ordinary reduced rank regression131

(RRR, Anderson 1951), similar to RR-VGLMs implemented in the R-package VGAM (Yee & Hastie 2003; Yee132

2004), or classical constrained ordination methods (ter Braak & Šmilauer 2015). Then, the latent variables133

are represented only by the fixed-effects term B⊤xlv,i which represents a constrained ordination axis, and134

serves to reduce the dimensionality of the number of predictors K. Compared to standard multivariate135

regression, RRR can serve to reduce the number of parameters, as the number of parameters can be especially136

difficult to estimate for large K and small n. The matrix of coefficients for species j = 1 . . . p from a137

multivariate regression βj can be reconstructed from an RRR as βj = Bγj with accompanying standard138

errors (see Appendix S1). The number of parameters in the model is then p + d(p + K) − (d + d2)/2 for139

rank d, which can often be a more realistic assumption for ecological community data that tend to be sparse140

on information. Note that in some cases, the number of parameters in the reduced rank model can exceed141

the number of parameters used to model species responses in full rank (e.g., when d = K), though most142

commonly we assume d < K << p so that rank-reduction is achieved.143

When measurements of the environment are missing entirely, or when the predictors are unrelated to144

the ordination and have slopes close to zero, in essence when B⊤xlv,i = 0, then the model in equation (1)145

simplifies to an unconstrained ordination. In the method for model-based ordination with constrained latent146

variables proposed here, the term ϵi is used to account for the discrepancy between the true latent variable,147

and the latent variable that can be predicted using the predictor variables alone. In summary, the model148

proposed here performs simultaneous constrained and unconstrained ordination when predictor variables are149
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included.150

The model in equation (1) can be extended to include additional (separate) predictors, resulting in a151

partial constrained ordination similar to ter Braak (1988):152

g{E(yij |xi, xlv,i, ϵi)} = β0j + x⊤
i κj + x⊤

lv,iBγj + ϵ⊤
i γj , (3)

where κj are species coefficients for the predictors xi, and where we additionally assume that xi and xlv,i153

do not include the same predictor variables for reasons of parameter identifiability. Here, the effect of xi is154

excluded from the constrained ordination, and are included so that the resulting ordination is interpreted155

conditionally on the predictors xi and species slopes κj .156

The models presented so far assume that species respond linearly to the latent variables. However, it is157

widely acknowledged that species respond to the environment unimodally (see e.g., ter Braak 1987). van158

der Veen et al. (2021) recently presented a method for model-based ordination with quadratic responses,159

as a means to model species-specific environmental tolerances. All models presented here can be extended160

in a similar fashion, e.g. with quadratic response to the ecological gradients, which we further elaborate161

on in Appendix S2. Furthermore, classical constrained ordination methods are infamous for their increased162

variance of the B parameters. Although that might be due to the lack of a maximum likelihood solution,163

the model here can be extended using a random slope formulation in order to regularize the predictor slopes,164

and retrieve parameter estimates with reduced variance (see Appendix S3).165

The model in equation (1) is unidentifiable without additional constraints, due to the freely varying166

scale parameters σ for the latent variables. Consider a matrix Γ that includes all species loadings γj as167

row vectors, for which we fix the upper triangular entries to zero for reasons of parameter identifiability,168

as is usual for GLLVMs (Hui et al. 2015). In standard formulation of GLLVMs, due to scale invariance,169

the latent variables are assumed to have unit variance. Then, the species slopes γj additionally serve to170

determine the scale of the ordination. However, in model-based ordination with constrained latent variables,171

the species loadings are shared for two terms, so that without extra constraints they regulate the relative172

scale of the second and third term in equation (1). In cases where either the fixed-effects term or the residual173

term is zero, this requires the model to compensate by increasing the magnitude of the species loadings,174

and e.g., decreasing the magnitude of B if the true fixed-effects term is non-zero but the residual term is175

not. Therefore, we additionally choose to fix one parameter per latent variable to facilitate including freely176

varying scale parameters for the latent variables. Here, we choose the diagonal entries of Γ, such that in Γ177

there are only (p−d)d+d(d−1)/2 parameters to estimate. This choice of the diagonal elements is arbitrary,178

and different elements could be chosen instead. However, the current choice is guided by the magnitude of179
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the different parameters in the model, as now B determines the scale of the first (fixed-effects) term, so that180

it is (close to) zero when the predictors have no effect on the ordination. Similarly, the vector of residual181

standard deviations σ then determines the scale of the residual term, so that it is zero when there is no182

residual necessary in the ordination (i.e. when the predictors perfectly represent the latent variable, as in183

RRR).184

Consequently, the vector of standard deviations for the residual of the latent variable σ can additionally185

be used to determine when latent variables are nearly redundant, or additionally for a measure of (residual)186

gradient length, or to develop a method of regularization in GLLVMs. In comparison, van der Veen et al.187

(2021) considered the scale of the latent variables relative to the median tolerance of species curves being188

one. However, this has no meaning in models with the linear responses, and is difficult to implement in189

practice. Finally, it is important to note that this choice of identifiability constraint does not diminish the190

overall flexibility of the model, but merely clarifies the interpretation of the parameters: in essence, the191

latent variables are stretched or contracted so that certain species loadings equal one.192

Parameter estimation and model fitting193

Since the proposed method is a type of GLLVM, we are required to choose an appropriate distribution194

to model the species observations (and their associated mean-variance relationship, see e.g., Warton & Hui195

2017). For example, a Poisson or negative binomial distribution with log-link function for counts, a Binomial196

distribution with probit link-function for presence-absence data, or alternatively a Tweedie distribution with197

log-link function for biomass data. Similar to other GLLVMs proposed for model-based ordination in the198

literature, the residual error terms ϵi are assumed to be normally distributed random variables, which199

thus needs to be integrated over. Consequently, the marginal log-likelihood of the proposed GLLVM with200

constrained latent variables as in (1) is written as:201

L(Θ) =
n∑

i=1
log

{∫ p∏

j=1
f

(
yij |xi, ϵi, Θ

)
h

(
ϵi

)
dϵi

}
, (4)

where f(yij |xlv,i, ϵi, Θ) is the distribution of the responses conditional on the predictors xlv,i, the constrained202

residual error term ϵi, and a vector Θ. The vector Θ includes all parameters and an estimate of h(ϵi|yij)203

with related variational parameters if applicable. The residual error terms are assumed to follow a multi-204

variate normal distribution h(ϵi) = N (0, σ2Id). The integration can be performed with methods previously205

developed for estimation and inference in GLLVMs, such as the Laplace approximation (Niku et al. 2017)206

or Variational Approximations (VA, Hui et al. 2017; van der Veen et al. 2021) and using Template Model207
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Builder (Kristensen et al. 2016). Below, the models in the simulation studies and examples are fitted using208

VA.209

Initial values210

Both with and without residual error term, the algorithm used to fit the models presented here is sensitive211

to the initial values. In this article, we adapt the approach used in the gllvm R-package to overcome this,212

and obtain reasonable starting values. Specifically, for ordinary RRR, we followed a similar procedure to213

that described by Files et al. (2019), where we generate starting values for B and γj by first fitting a214

multivariate linear model with predictor variables to the Dunn-Smyth residuals (Dunn & Smyth 1996) of215

an intercept-only MGLM. We then performed a QR-decomposition on the matrix of regression coefficients216

to obtain the starting values for B and γj . For constrained latent variables, we performed a factor analysis217

on the Dunn-Smyth residuals of an intercept-only MGLM, and then regress the estimated factor scores to218

receive initial values for the predictor slopes B. The residuals of the regression provided initial values for ϵi,219

and the loadings from the factor analysis were taken as the initial values for γj .220

Inference221

In this section we present various tools for inference and prediction for the proposed method of model-based222

ordination with constrained latent variables.223

Constrained ordination diagram224

Separate ordination diagrams can be constructed for both terms in equation (1) to explore species relation-225

ships for the predictors and for residual variation, or an ordination diagram can be constructed including226

both terms to present species co-occurrence patterns within a single plot. In GLLVMs with unconstrained227

latent variables, we can obtain predictions of the residuals ϵi using e.g., the means of variational distribu-228

tions (Hui et al. 2017) or the maximum a-posteriori prediction from the Laplace approximation (Niku et al.229

2017). Note however these latent variables are assumed to fully consist of residual information as discussed230

previously. In contrast, with model-based ordination using constrained latent variables, we instead consider231

using the predicted site scores zi for ordination, which can be constructed based on the predicted ϵi’s along232

with the estimated value for B. We consider these site scores similar to the weighted average (WA) scores233

(Palmer 1993; McCune 1997) provided by classical constrained ordination methods such as CCA or RDA,234

since the residual term ϵi, accounts for variation in the response not explained by the predictor variables. As235
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such, B⊤xlv,i are linear predictor (LC) scores, which we will refer to here as “marginal” scores, that do not236

include additional information on the latent variable provided by the response data (Palmer 1993). Similarly,237

we denote site scores for the residual term as “residual” scores and site scores that include both terms as238

“conditional” scores. Note that RRR always only includes LC scores and unconstrained ordination always239

includes residual scores. LC scores are not generally recommended for inference by community ecologists for240

classical constrained ordination methods (McCune 1997).241

A constrained ordination diagram with conditional site scores will, in many instances, provide a similar242

ordination as when latent variables are assumed to be unconstrained. On the other hand, constrained243

ordination allows the predictor effects to be represented in an ordination diagram, in the form of arrows244

based on the rows of B. The length of the arrow is proportional to the magnitude of the parameter245

estimate, so that the predictor with the largest estimate is presented as the longest arrow, although note246

that we correct the arrow length using the standard deviation of each predictor (e.g. as in Figure 3 below).247

Statistical uncertainty of the slope estimates for the predictors can be further represented using the colour248

of the arrows, for example by colouring the arrow less intensely for predictor slope estimates for which the249

corresponding confidence interval includes zero for at least one of the ordination dimensions.250

In an ordination diagram, the predicted site scores are plotted to represent (dis)similarity between sites251

in an ordination. Furthermore, Niku (2020) constructed prediction regions using the Conditional Mean252

Squared Error of Predictions (CMSEPs, Booth & Hobert 1998) to represent the statistical uncertainty of the253

site scores in an ordination diagram. To fully and properly convey confidence in the dissimilarity of sites, we254

adopt the same approach, but adapt the calculation for the case of constrained ordination (see Appendix S4255

for details of the calculation). These prediction intervals can be used to provide a larger degree of certainty256

in the dissimilarity of sites, and tend to be larger than in unconstrained ordination, as they represent both257

the uncertainty of the fixed-effects and of the residual error term.258

Model selection259

As the number of predictors increases, and flexibility is added in the modelling of the site scores and species260

responses, the standard deviations of the residual term σ are likely to get smaller. Determining the optimal261

number of latent variables and the most suitable predictor variables for a constrained ordination is thus an262

important problem for our method, although it can be a challenging exercise as the number of potential263

models may be quite large. In the vegan R-package various tools are available to find the combination of264

predictor variables that optimally represents the latent variable, such as stepwise selection using permutation265

P-values or an adjusted R2
B (Oksanen et al. 2020). As a model-based approach, we can leverage conventional266
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methods such as hypothesis testing, information criteria (Burnham & Anderson 2002), residual diagnostics267

(Hartig 2021) among others for assessing the optimal number of latent variables and predictors, predictions,268

as well as assessing other model assumptions such as the distribution of the responses. For example, the269

importance of predictors in a model-based ordination with constrained latent variables can be assessed with270

use of a Wald-statistic and associated p-values, or with confidence intervals. We illustrate an example of271

determining predictor importance later on in our applications of two real datasets.272

Similarly, the question of whether to perform constrained or unconstrained ordination, and thus also273

which type of site scores is more suitable for representing the ecological community, can be solved using274

model-selection tools such as information criteria.275

Predictor importance276

Similarly to other GLLVMs, the residual covariance matrix associated with the latent variables can be277

calculated (see Appendix S5) to examine species associations and determine the residual variation in the278

response, beyond that due to the measured predictors. By fitting a second unconstrained model, the variation279

explained by the predictors in the response can also be determined, similar to the approach presented by280

Warton et al. (2015) based on relative differences in the trace of the residual covariance matrix. Here however,281

with model-based ordination using constrained latent variables, we focus on determining the importance282

of predictors in explaining the latent variables. Since the latent variables are by definition unmeasured,283

calculating importance of the predictors through e.g. a partial R2
B as in ordinary linear regression, is not284

directly possible. As such, to assess the importance of predictors in explaining the latent variables, we adopt285

an approach similar to that presented by Edwards et al. (2008), which also avoids having to fit a second model286

(which can be computationally intensive for a large number of sites n and species p). Specifically, Edwards287

et al. (2008) developed a measure of R2
B for linear mixed-effects models based on the fit of a single model,288

which Jaeger et al. (2017) extended to the generalized linear mixed-effects model and implemented in the289

r2glmm R-package, using a multivariate Wald-statistic for the testing of fixed-effects. Thus, the proportion290

of (generalized) variance explained by all predictors for all latent variables is:291

R2
B = ωvec(B̂)⊤(Σ̂)−1vec(B̂)(dK)−1

1 + ωvec(B̂)⊤(Σ̂)−1vec(B̂)(dK)−1
, (5)

where vec(B̂) is a vectorized version of the matrix of estimated predictor slopes B̂ with corresponding292

estimated covariance matrix Σ̂, and ω is a ratio based on the residual degrees of freedom: dK
dn−dK , for the293

total number of sites n, the number of constrained latent variables d, and the number of predictors K. Note294

this R2
B can also be calculated on a per predictor variable basis (with numerator degrees of freedom d), or295
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per latent variable and predictor (with unit numerator degrees of freedom), to retrieve a semi-partial R2
B.296

This semi-partial R2
B is interpreted as the capability of that predictor to explain the (generalized) residual297

variation unaccounted for after accounting for all other predictors in the full model (Edwards et al. 2008).298

To summarize, a high semi-partial R2
B indicates importance of a predictor in explaining the latent vari-299

ables. We demonstrate use of the semi-partial R2
B in the real data examples below.300

Simulation studies301

We performed two separate simulation studies for the proposed GLLVM with constrained latent variables: 1)302

we simulated from a MGLM (i.e. with full rank species responses) using bioclimatic predictor variables, and303

compared the accuracy of RRR (i.e. model-based ordination with constrained latent variables and ϵi = 0)304

and a MGLM to retrieve the true species responses, and 2) we simulated unconstrained and constrained305

ordinations to compare the capability of the proposed GLLVM to retrieve the true latent variables zi =306

B⊤xlv,i + ϵi and species loadings γj , in comparison to the WA scores from CCA and RDA. Since it is more307

difficult to accurately predict the latent variables when the number of species is small, and since more sites308

provide more information to estimate species responses, in both simulations we included few species but309

more sites. R-code for the simulation studies is included in Appendix S6.310

In our first simulation study, to get a realistic collinearity structure in the predictor variables, we sim-311

ulated 1000 random points across the European Union, Switzerland and Norway, using the sp R-package312

(Pebesma & Bivand 2005), at which we retrieved 19 bioclimatic variables using the raster R-package (Hij-313

mans 2020). Afterwards, we simulated K = 19 bioclimatic predictor variables at n = 100 new sites, from a314

multivariate normal distribution with a zero mean vector and the covariance matrix set equal to the sample315

covariance matrix of the 1000 random points. We then standardized the predictor variables to have mean316

zero and variance one. We removed one predictor that was almost fully collinear with another predictor,317

as it resulted in numerical issues, so that the final number of predictors was K = 18. We then used the318

extended hunting spider dataset with n = 100 sites and p = 12 species from van der Aart & Smeek-Enserink319

(1975), to fit a MGLM with a Poisson distribution and log-link for the count responses and including the320

18 predictor variables above, and subsequently used the estimated species-specific slopes from this model321

as the true slopes in our simulation. Additionally, we simulated species-specific intercepts from the uniform322

distribution Uniform(−1, 1) corresponding to species of low abundance or occurrence. We simulated 1000323

datasets assuming either Gaussian responses, Poisson counts or Bernoulli presence-absence responses. The324

variance associated with Gaussian responses was assumed to be one. For each simulated dataset, we fitted a325

MGLM along with RRR with 2-8 latent variables in equation (1). The rank of the matrix of species responses326

11



can maximally be min(p, K), so that it was 12 here. The MGLMs included the same number of parameters327

as the true model, namely 228 parameters, whereas the fitted RRR models included 69 parameters for d = 2,328

96 for d = 3, 122 for d = 4, and 147 for d = 5, 171 for d = 6, 194 for d = 7, and 216 for d = 8. We did not329

include a rank 9 model in our example, as it would have exceeded the number of parameters in the MGLM330

(237 parameters versus 228 parameters). Finally, we calculated the symmetric Procrustes error between the331

true and and estimated matrix of species responses for each simulated dataset, as to compare accuracy of332

the methods in retrieving species responses, using the vegan R-package (Oksanen et al. 2020).333

The results of the first simulation study are summarized in Figure 1, which show that as the number of334

latent variables in the RRR increased, the accuracy of the estimated species responses improved. At rank335

5, the accuracy was similar to that of the MGLM, yet the number of parameters included in the model was336

about 65% of that of the true model. In general, the estimated species responses were accurately estimated337

across all distributions, though for Bernoulli responses the error was generally higher than for Gaussian or338

Poisson responses.339

For the second simulation study, we considered datasets with n = 100 sites and with p = 30 species. We340

simulated three forms of the model in equation (1): with 1) non-zero predictor slopes B and residuals ϵi, 2)341

non-zero predictor slopes without the residuals, i.e. RRR, and 3) with B = 0 and non-zero residuals, i.e. an342

unconstrained ordination.343

To construct the true model, we first simulated K = 5 predictor variables following a multivariate344

standard normal distribution. Next, we generated the true slope coefficients B by applying a factor anal-345

ysis to the simulated predictor variables, with two dimensions. We simulated the true intercepts β0j from346

Uniform(−1, 1), and species coefficients for the latent variables γj independently from Uniform(−2, 2). Fi-347

nally, we simulated the constrained residual error ϵi by first sampling from a bivariate standard normal348

distribution, after which we regressed the sampled realization against the simulated predictor variables, and349

used the residual from the regression as the residual error in the true model. This ensures that the true350

residual error ϵi was independent of the simulated predictor variables by construction. We simulated 1000351

datasets each from the Gaussian, Bernoulli, and Poisson distributions. The variance associated with Gaus-352

sian responses was again assumed to be one. To each dataset, we fitted a GLLVM with two constrained353

latent variables while CCA was fitted to the datasets with Bernoulli and Poisson responses, and RDA to the354

datasets with Gaussian distributed responses. Both classical ordination methods were fitted using the vegan355

R-package, which we also used for the calculation of a symmetric Procrustes error between the simulated356

latent variables and the latent variables retrieved from the proposed GLLVM, CCA, and RDA, and the same357

for the species loadings (Peres-Neto & Jackson 2001; Oksanen et al. 2020). The results are summarized in358

Figure 2.359
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Figure 1: Simulation results for the 1000 multivariate GLMs and various reduced rank regressions fitted to
Gaussian, Bernoulli and Poisson response datasets simulated from a multivariate GLM, with n = 100 sites
and p = 12 species. The true model contained 18 bioclimatic predictor variables with a realistic degree of
collinearity. The symmetric Procrustes error of the estimated and true species responses is shown on the
y-axis. Numbers 2-8 indicate reduced rank models with that rank. The solid line represents the median
symmetric Procrustes error, and dashed lines the first and third quartiles.
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Figure 2: Results for ordination methods fitted to 1000 simulated datasets with Gaussian, Bernoulli, and
Poisson response datasets. Simulations labled ‘unconstrained‘ followed the same true model as simulations
labled ‘constrained‘, but instead slopes for the predictor variables were fixed to zero i.e., B = 0. For
simulations labled ‘constrained without residual‘, the true model was the same as that of ‘constrained‘, but
without the residual variation i.e., ϵi = 0. The procrustes error of the latent variables zi (yellow) and species
loadings γj are presented.

14



In general, for the proposed GLLVM with constrained latent variables, with and without residual360

(i.e. RRR), but also without fixed-effects (i.e. unconstrained ordination), we consistently and with little361

variability managed to retrieve the true latent variables zi and species loadings γj . For constrained ordi-362

nation and for Gaussian distributed responses, RDA compared to GLLVMs and RRR performed similarly.363

However, when RDA was fitted to datasets where the predictor variables had no relation to the latent vari-364

ables, it was unable to retrieve the latent variables or species loadings. In all cases, GLLVMs and RRR365

performed better than CCA. Similarly to RDA, CCA was not able to retrieve the latent variables or the366

species loadings if the predictor variables had no relation to the latent variables.367

Worked examples368

We demonstrate applications for the proposed GLLVM with constrained latent variables on two ecological369

datasets: 1) a dataset of Swiss alpine plants (D’Amen et al. 2018), and 2) a dataset of vascular plants370

collected in Levanger, Norway.371

Swiss alpine plants372

The first example includes a presence-absence dataset of alpine plants, collected in the western Swiss Alps.373

The dataset was collected on a strong elevation gradient, including sites in both lowland and alpine envi-374

ronments (D’Amen et al. 2018). In total the dataset includes n = 791 plots and p = 175 plant species,375

after excluding plots with fewer than two observations and species with less than three presence observa-376

tions (D’Amen et al. 2018). Six predictor variables were included in the study: degree days above zero,377

slope, moisture index, total solar radiation over the year, topography, and elevation. All predictors were378

standardized to have mean zero and variance one.379

Fitting a range of models while testing for the optimal number of dimensions and predictors would380

be computationally burdensome and time consuming, so for demonstration purposes we here fit a model381

with d = 2 latent variables and assuming a Bernoulli distribution for the responses, using all predictors,382

and with one quadratic coefficient per latent variable. Previously, van der Veen et al. (2021) found that383

using a quadratic response model lead to better predictions of the ecological gradient for this dataset, so we384

adopt that approach here. We then base our inference of predictor importance on the confidence interval385

of predictor slopes i.e., a Wald-statistic with accompanying p-values, and the approach for R2
B presented386

above.387

The results from the constrained ordination are summarized in Appendix S7: Table S1. Similar to van388

der Veen et al. (2021), elevation and degree days above zero were the two predictors most related to the two389
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Figure 3: Constrained ordination diagram for the Swiss alpine plants data. Darker colors in the left plot plot
indicate low elevation, whereas lighter colors indicate sites at higher elevation. Arrows represent predictor
slopes for each latent variable, with arrow length being proportional to the magnitude of the slope estimate.
Arrows shown in pink represent slope estimates of which the confidence intervals included zero for one of the
dimensions. The latent variables have been rotated to principal direction, so that the first latent variable
explains most variation. In the right plot, the abbreviated species names represent optima from the quadratic
response model, which are drawn as arrows if they are too far removed from the latent variable. Detailed
results, and a list of species names, are included in Appendix S7: Table S1, Table S2.

predicted latent variables. For the first latent variable, the slope for the elevation predictor was four times390

as large as the slope for degree days above zero. For the second latent variable, the magnitude of the slopes391

for elevation and degree days above zero was similar. The results are visually presented in Figure 3.392

Based on the fitted GLLVM with constrained latent variables containing all six predictor variables, the393

residual standard deviations were 0.00 (95% confidence interval: -0.02, 0.02) and 0.34 (0.32, 0.36), indicating394

that the first latent variable could be fully represented by the predictors. The R2
B for the linear regressions395

of the latent variables was 0.34. The semi-partial R2
B for the predictors was 0.08 (degree days above zero),396

0.14 (slope), 0.02 (moisture index), 0.06 (solar radiation), 0.04 (topography), and 0.15 (elevation), indicating397

that elevation and slope were most important for representing the latent variables. Our results overall were398

similar to those for CCA, where the largest correlation of a predictor with the first axis was for elevation,399

and for the second axis slope (see also Appendix S7: Figure S1).400

Semi-natural grasslands in Norway401

The second example contains observations of vascular plants collected at Levanger, Norway in 2008. In total402

n = 132 plots of 1m2 were pseudo-randomly positioned across five “zones”. For each zone, coordinates were403

sampled randomly, and plants were recorded if the coordinate was located in a semi-natural grassland. We404
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excluded sites for which there were no soil measurements available, so that the final dataset included n = 116405

sites. In total, the dataset included observations of p = 132 vascular plants, but we chose to exclude species406

with fewer than 3 observations, so that the final dataset included observations of p = 64 vascular plant407

species. Some of the grasslands were grazed by sheep and cattle, whereas others were abandoned and had no408

management. The study area was approximately five kilometres long and four kilometres wide, and located409

along a ridge with an east-west direction. The collected data is in the form of percentage cover per species in410

a plot, so that the total coverage of all plants in a plot can exceed 100 percent. In total, the dataset included411

36 different predictor variables of various water-soluble soil nutrients such as pH, phosphorus, potassium,412

calcium, and organic matter content for the first 0 - 10 centimetre of soil and additionally for the next 10 -413

20 centimetre layer. Though the soil variables for 0 - 10- and 10 - 20 centimetres soil depth to some degree414

are collinear, they represent different aspects of the edaphic site conditions; at 0 - 10 centimetre deep the415

soil properties are more affected by current conditions such as management and present vegetation. The416

results from soil samples at 10 - 20 centimetres depth were included to represent the mineral content of417

deeper soil layers less influenced by present management and vegetation. Below, soil variables for the first418

0 - 10 centimetres are indicated by a one, and for the 10 - 20 centimetres layer with a two. Various other419

predictor variables were also recorded, such as whether a plot was grazed or abandoned, the cover of trees,420

shrubs, litter, and the height of the different layers, slope, and aspect. For demonstration purposes, we focus421

on the soil property variables, and on the effects of grazing, so that the final number of predictors in the422

constrained ordination was K = 10.423

We fitted a model with two constrained latent variables, assuming a Tweedie distribution with power424

parameter 1.3, as that seemed to provide the best fit as determined from re-fitting and examining of residual425

plots. A Tweedie distribution has the potential to predict percentages larger than 100 here, and as such it426

might be more realistic to fit the model using a beta distribution. In contrast, the Tweedie will provides427

a more flexible mean-variance relationship than the beta distribution. Additionally, the data here include428

zeros, which are not possible to include with a beta distribution. To demonstrate the possibility of additional429

predictors, as per equation (3), we included whether a plot was grazed or not as an additional fixed effect.430

Thus, the ordination will be conditional on the effect of grazing, so that by colouring sites based on this431

predictor, it should then become clear that the effect has been accounted for outside of the ordination. More432

details from the constrained model for the Levanger grasslands dataset, including the effect of grazing on433

individual plant species, and a table of estimates and standard errors for the ordination, are included in434

Appendix S7: Table S3, Figure S3.435

The residual standard deviations of the constrained latent variables were 1.11 (95% confidence interval:436

0.41, 1.82) and 0.78 (0.17, 1.40). The predictors poorly explained the latent variables, as indicated by the437
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Figure 4: Constrained ordination of sites (left) and species (right) from the Levanger grasslands dataset. The
constrained ordination is conditional on the effect of grazing, so that the effect excluded from the ordination
diagram. To emphasize this, sites have been marked by their classification: yellow triangles are the reference
plots, whereas purple circles indicate grazed plots. By conditioning on the effect of grazing, this constrained
ordination now solely focuses on arranging sites (and potentially species) based on soil properties. Estimates
and standard errors of the effects are provided in Appendix S7: Table S3, though none of the effects were
statistically significant for both dimensions. A list of species names is included in Appendix S7: Table S4.

low R2
B for the latent variables of 0.08, so that the semi-partial R2

B of all predictors was close to zero, but438

largest for calcium. For CCA, the largest correlation for the first axis was for pH (0 - 10) and Ca (10 - 20),439

and K (10 - 20) for the second axis. The variation that could be explained by the predictors was less than440

18% of the overall variation (see also Appendix S7: Figure S2).441

In the light of the above results with R2
B, it was not surprising that most of the estimated predictor442

slopes i.e., elements of B, were accompanied by a large statistical uncertainty, so that no predictor estimates443

were significantly different from zero for both latent variables simultaneously (see Appendix S7: Table S3).444

For the first dimension, the effect of pH at soil depth 0 - 10 centimetres was statistically significant, as well445

as the effect of calcium. For the second dimension, the effects of potassium (0 - 10 cm) and magnesium (0 -446

10 cm and 10 - 20 cm) were statistically significant. The grazed and abandoned sites occupy a similar space447

in the ordination diagram (Figure 4), as was expected when performing a partial constrained ordination.448

Discussion449

In this article, we present a new method for model-based ordination with constrained latent variables, or450

alternatively for estimating species responses in a reduced-rank form, using the GLLVM framework (Warton451

et al. 2015). Constrained ordination allows ecologists to order sites and species using measured predictors,452
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and as such to better examine species-environment relationships (Ter Braak 1987). When there is no effect453

of the predictors, the model proposed here simplifies to an unconstrained ordination. Similarly, without454

residual term for the latent variables and with predictor variables, the model simplifies to a reduced rank455

regression (RRR) and is similar to the popular constrained ordination methods CCA and RDA.456

In studies of species distribution modelling, the bioclimatic variables often used are collinear (Júnior &457

Nóbrega 2018), so that it may not always be possible to accurately estimate all parameters. In the first sim-458

ulation study, performed competitively with MGLMs in estimating species responses, even while it included459

fewer parameters. Future research on the use and performance of RRR could attempt to further explore the460

dimensionality of species communities, which we here found to be lower than assumed by a MGLM. Though461

most ecologists consider between two and four dimensions for ordination (Halvorsen 2012), our results imply462

that at least five dimensions are necessary to accurately estimate species responses. However, the dimen-463

sionality of species responses might differ between communities based on e.g., the number of environmental464

gradients that underlay the structure of a community (see also Tobler et al. 2019).465

In classical constrained ordination methods such as CCA and RDA, latent variables are assumed to be466

perfectly represented by predictor variables, so that those methods do not account for residual information467

unaccounted for by the predictors (ter Braak & Šmilauer 2015). In contrast, the approach presented here468

is capable of simultaneous unconstrained and constrained ordination though it requires having measured469

predictors, unlike in model-based unconstrained ordination (Hui et al. 2015). In the second simulation470

study in this article, we showed that if the predictors are unrelated to the true latent variables, so that471

the true model is that of an unconstrained ordination, CCA and RDA are unable to retrieve the latent472

variables and species responses, in contrast to the proposed GLLVM. In reality, it can often be unclear473

which predictors represent the latent variables, so that accounting for additional residual information can be474

important. Though CCA and RDA do not account for residual information in the ordination explicitly, our475

results suggest that the use of WA scores sufficiently mitigates that deficiency. WA scores can be considered476

minimally constrained, unlike LC scores (Palmer 1993), which have shown to not be sufficiently robust for477

inference (McCune 1997). Accounting for residual information from species responses addresses the concern478

shared by community ecologists over discarding ecological gradients that the ecologist is unaware of (Palmer479

1993; Økland 1996; McCune 1997; ter Braak & Šmilauer 2015).480

We demonstrated how to apply model-based ordination with constrained latent variables using two ex-481

ample datasets, one of Swiss alpine plants (D’Amen et al. 2017) and another of vascular plants in Norway.482

In those instances, the residual variation unaccounted for by the predictor variables demonstrated the need483

to account for residual variation in community ecological studies using dimension reduction techniques. We484

assessed importance of the predictors in the constrained ordination using a semi-partial R2
B (Edwards et al.485
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2008), which can be calculated for our proposed model-based constrained ordination irrespective of whether486

the residual term is included or not (though omitting the residual term will affect the magnitude of the R2
B487

statistic). In the first example, elevation and slope were the most important predictors in explaining the488

latent variables for the Swiss alpine plants dataset according to their semi-partial R2
B values, and calcium for489

the Levanger grasslands dataset. For the Levanger grasslands dataset, the measured soil variables included490

as predictors did not provide a good representation of the latent variables, as indicated by a low R2
B value491

for the entire model and by the parameter estimates and their corresponding Wald-tests for the predictor492

slopes B.493

Model-based ordination with constrained latent variables provides a suitable alternative for the mod-494

elling of multiple species responses with or without residual term or other random-effects (such as random495

row-intercepts). Our proposed approach provides access to standard tools for statistical inference such as496

statistical uncertainties for parameters estimates, model-selection tools, p-values related to a Wald-statistic497

that can be used to determine significance of the effect of predictors, and more such as residual diagnos-498

tics, all of which are available as part of the gllvm R-package (Niku et al. 2020), including a vignette499

that demonstrates the use of the proposed method. To conclude, the method presented here provides an500

extended version for various types of multivariate analyses, including fixed-effects constrained ordination,501

partial constrained ordination, MGLMs, and in general has merit for the ordering of sites and species.502
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Appendix S1: Variance of products of parameters13

Here, we derive confidence intervals for the reduced rank approximated slopes. Let our model be:14

ηij = β0j + X⊤
i Bγj − X⊤

i BDjB⊤Xi. (1)

A supportnig proof can be found in Bohrnstedt and Goldberger 2012 eq. 13 (https://www.tandfonline.15

com/doi/abs/10.1080/01621459.1969.10501069).16
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Linear term17

For Bγj , where vech(B) = {b11, b21 . . . bkq} and γj = {γ1j , . . . γqj}, so that {B, γj} ∼ N (




ˆb11
...

b̂kq

γ̂1j

...

γ̂qj




, Σ), where18

∆bkq = b̂kq − E(bkq) and similar for ∆γqj (and so e.g. E(∆γ3
j1) is zero).19

var(bkγj) = var(
d∑

q=1
bkqγqj)

=
d∑

q=1

d∑

r=1
cov(bkqγqj , bkrγrj)

=
d∑

q=1

d∑

r=1

E(bkq)E(bkr)cov(γqj , γrj)+

E(bkq)E(γrj)cov(γqj , bkr)+

E(γqj)E(bkr)cov(bkq, γrj)+

E(γqj)E(γrj)cov(bkq, bkr)+

E(∆bkq∆bkr∆γqj∆γrj) − cov(bkq, γqj)cov(bkr, γrj),

(2)

By noting that20

E(∆bkq∆bkr∆γqj∆γrj) = cov(bkq, bkr)cov(γqj , γrj)+

cov(bkq, γqj)cov(bkr, γrj)+

cov(bkq, γrj)cov(bkr, γqj),

(3)

we have the final solution21

var(bkγj) =
d∑

q=1

d∑

r=1

b̂kq b̂krcov(γqj , γrj)+

γ̂rj b̂kqcov(γqj , bkr)+

γ̂qj b̂krcov(γrj , bkq)+

γ̂qj γ̂rjcov(bkq, bkr)+

cov(bkq, bkr)cov(γqj , γrj)+

cov(γrj , bkq)cov(γqj , bkr)

(4)

2



Quadratic term22

For the quadratic term, we recall that we are additionally interested in the variance of the estimator for23

BDjB⊤.24

var(BDjB⊤) = var(
d∑

q=1
bkqbqldqj)

=
d∑

q=1

d∑

q=1
cov(bkqbqldqj , bkrbrldrj)

=
d∑

q=1

d∑

q=1
E(bkqbqldqjbkrbrldrj) − E(bkqbqldqj)E(bkrbrldrj).

(5)

The first term in equation (5) is the 6th order moment of the multivariate normal distribution, and the25

second a product of two (non-central) third order moments. As such, first of the second terms has the26

solution:27

E[bkqbqldqj ] = E[{∆bkq + E(bkq)}{∆bql + E(bql)}{∆dqj + E(dqj)}]

=

E[∆bkq∆bql∆dqj + ∆bkq∆bqlE{dqj}+

∆bkqE{bql}∆dqj + ∆bkqE{bql}E{dqj}+

E{bkq}∆bql∆dqj + E{bkq}∆bqlE{dqj}+

E{bkq}E{bql}∆dqj + E{bkq}E{bql}E{dqj}]

= E[∆bkq∆bql]E[djl] + E[∆bkq∆djl]E[bql] + E[∆bql∆djl]E[bkq]

= E[djl]cov(bkq, bql) + E[bql]cov(bkq, djl) + E[bkq]cov(bql, djl).

(6)

The solution for the first term in equation (5) is calculated in a similar fashion:

E[bkqbqlbkrbrldqjdrj ] = E[{∆bkq + E(bkq)}{∆bql + E(bql)}{∆bkr + E(bkr)}{∆brl + E(brl)}{∆dqjE(dqj)}{∆drj + E(drj)}]

= E(∆bkq∆bql∆bkr∆brl∆dqj∆drj) + E(bql)E(bkq)E(∆bkr∆brl∆dqj∆drj)+

E(bql)E(bkr)E(∆bkq∆brl∆dqj∆drj) + E(bkq)E(bkr)E(∆bql∆brl∆dqj∆drj)+

E(bql)E(brl)E(∆bkq∆bkr∆dqj∆drj) + E(bkq)E(brl)E(∆bql∆bkr∆dqj∆drj)+

E(bkr)E(brl)E(∆bkq∆bql∆dqj∆drj) + E(bql)E(dqj)E(∆bkq∆bkr∆brl∆drj)+

E(bkq)E(dqj)E(∆bql∆bkr∆brl∆drj) + E(bkr)E(dqj)E(∆bkq∆bql∆brl∆drj)+

E(brl)E(dqj)E(∆bkq∆bql∆bkr∆drj) + E(bql)E(drj)E(∆bkq∆bkr∆brl∆dqj)+

E(bkq)E(drj)E(∆bql∆bkr∆brl∆dqj) + E(bkr)E(drj)E(∆bkq∆bql∆brl∆dqj)+

3



E(brl)E(drj)E(∆bkq∆bql∆bkr∆dqj) + E(dqj)E(drj)E(∆bkq∆bql∆bkr∆brl)+

E(bkq)E(bql)E(bkr)E(brl)E(∆dqj∆drj) + E(bkq)E(bql)E(bkr)E(dqj)E(∆brl∆drj)+

E(bkq)E(bql)E(brl)E(dqj)E(∆bkr∆drj) + E(bql)E(bkr)E(brl)E(dqj)E(∆bkq∆drj)+

E(bkq)E(bkr)E(brl)E(dqj)E(∆bql∆drj) + E(bkq)E(bql)E(brl)E(drj)E(∆brl∆dqj)+

E(bkq)E(bql)E(brl)E(drj)E(∆bkr∆dqj) + E(bql)E(bkr)E(brl)E(drj)E(∆bkq∆dqj)+

E(bkq)E(bkr)E(brl)E(drj)E(∆bql∆dqj) + E(bkq)E(bql)E(dqj)E(drj)E(∆bkr∆brl)+

E(bql)E(bkr)E(dqj)E(drj)E(∆bkq∆brl) + E(bkq)E(bkr)E(dqj)E(drj)E(∆bql∆brl)+

E(bql)E(brl)E(dqj)E(drj)E(∆bkq∆bkr) + E(bkq)E(brl)E(dqj)E(drj)E(∆bql∆bkr)+

E(bkr)E(brl)E(dqj)E(drj)E(∆bkq∆bql) + E(bkq)E(bql)E(bkr)E(brl)E(dqj)E(drj)

= E(∆bkq∆bql∆bkr∆brl∆dqj∆drj)+

E(bkq)E(bql){cov(bkr, brl)cov(dqj , drj) + cov(bkr, dqj)cov(brl, drj) + cov(bkr, drj)cov(brl, dqj)}+

E(bql)E(bkr){cov(bkq, brl)cov(dqj , drj) + cov(bkq, dqj)cov(brl, drj) + cov(bkq, drj)cov(brl, dqj)}+

E(bkq)E(bkr){cov(bql, brl)cov(dqj , drj) + cov(bql, dqj)cov(brl, drj) + cov(bql, drj)cov(brl, dqj)}+

E(bql)E(brl){cov(bkq, bkr)cov(dqj , drj) + cov(bkq, dqj)cov(bkr, drj) + cov(bkq, drj)cov(bkr, dqj)}+

E(bkq)E(brl){cov(bql, bkr)cov(dqj , drj) + cov(bql, dqj)cov(bkr, drj) + cov(bql, drj)cov(bkr, dqj)}+

E(bkr)E(brl){cov(bkq, bql)cov(dqj , drj) + cov(bkq, dqj)cov(bql, drj) + cov(bkq, drj)cov(bql, dqj)}+

E(bql)E(dqj){cov(bkq, bkr)cov(brl, drj) + cov(bkq, brl)cov(bkr, drj) + cov(bkq, drj)cov(bkr, brl)}+

E(bkq)E(dqj){cov(bql, bkr)cov(brl, drj) + cov(bql, brl)cov(bkr, drj) + cov(bql, drj)cov(bkr, brl)}+

E(bkr)E(dqj){cov(bkq, bql)cov(brl, drj) + cov(bkq, brl)cov(bql, drj) + cov(bkq, drj)cov(bql, brl)}+

E(brl)E(dqj){cov(bkq, bql)cov(bkr, drj) + cov(bkq, bkr)cov(bql, drj) + cov(bkq, drj)cov(bql, bkr)}+

E(bql)E(drj){cov(bkq, bkr)cov(brl, dqj) + cov(bkq, brl)cov(bkr, dqj) + cov(bkq, dqj)cov(bkr, brl)}+

E(bkq)E(drj){cov(bql, bkr)cov(brl, dqj) + cov(bql, brl)cov(bkr, dqj) + cov(bql, dqj)cov(bkr, brl)}+

E(bkr)E(drj){cov(bkq, bql)cov(brl, dqj) + cov(bkq, brl)cov(bql, dqj) + cov(bkq, dqj)cov(bql, brl)}+

E(brl)E(drj){cov(bkq, bql)cov(bkr, dqj) + cov(bkq, bkr)cov(bql, dqj) + cov(bkq, dqj)cov(bql, bkr)}+

E(dqj)E(drj){cov(bkq, bql)cov(bkr, brl) + cov(bkq, bkr)cov(bql, brl) + cov(bkq, brl)cov(bql, bkr)}+

E(bkq)E(bql)E(bkr)E(brl)cov(dqj , drj) + E(bkq)E(bql)E(bkr)E(dqj)cov(brl, drj)+

E(bkq)E(bql)E(brl)E(dqj)cov(bkr, drj) + E(bql)E(bkr)E(brl)E(dqj)cov(bkq, drj)+

E(bkq)E(bkr)E(brl)E(dqj)cov(bql, drj) + E(bkq)E(bql)E(brl)E(drj)cov(brl, dqj)+
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E(bkq)E(bql)E(brl)E(drj)cov(bkr, dqj) + E(bql)E(bkr)E(brl)E(drj)cov(bkq, dqj)+

E(bkq)E(bkr)E(brl)E(drj)cov(bql, dqj) + E(bkq)E(bql)E(dqj)E(drj)cov(bkr, brl)+

E(bql)E(bkr)E(dqj)E(drj)cov(bkq, brl) + E(bkq)E(bkr)E(dqj)E(drj)cov(bql, brl)+

E(bql)E(brl)E(dqj)E(drj)cov(bkq, bkr) + E(bkq)E(brl)E(dqj)E(drj)cov(bql, bkr)+

E(bkr)E(brl)E(dqj)E(drj)cov(bkq, bql) + E(bkq)E(bql)E(bkr)E(brl)E(dqj)E(drj)

Appendix S2: Quadratic response model28

As in van der Veen et al. (2021), the constrained GLLVM can also be extended with quadratic terms. Recall29

from equation (1) in the main text that a GLLVM with constrained latent variables is formulated as:30

g{E(yij |xlv,i, ϵi)} = β0j + x⊤
lv,iBγj + ϵ⊤

i γj . (7)

Now, with quadratic response model this model becomes:31

g{E(yij |xlv,i, ϵi)} = β0j + x⊤
lv,iBγj − x⊤

lv,iBDjB⊤xlv,i + ϵ⊤
i γj − ϵ⊤

i Djϵi − 2ϵ⊤
i DjB⊤xlv,i, (8)

where Dj is a positive-definite diagonal matrix that contains the quadratic coefficients for each species.32

Clearly this more complex model is heavily parametrized, and care should be taken to ensure that sufficient33

information is present in a dataset to accurately estimate all parameters. In fact, Yee (2004) encountered34

numerical instability when fitting the fixed-effects equivalent of this model i.e., when ϵi = 0, so that numerical35

issues are expected when attempting to fit this extended version too. Species optima, tolerances, and gradient36

length, for the latent variable zi can be calculated similarly as in van der Veen et al. (2021). For the fixed-37

effects terms alone, species optima are calculated as (2BDjB⊤)−1(Bγj − 2BDjϵi), where the second38

term is zero for constrained ordination without residual term (i.e. reduced rank regression). Similarly, for39

constrained ordination with and without residual term, species tolerances are retrieved from the diagonal of40

the matrix (2BDjB⊤)−1, which is here the (reduced rank) covariance matrix of the fixed-effects ecological41

niche. Clearly, unlike in the quadratic response model for unconstrained latent variables as in van der Veen42

et al. (2021), this matrix is not diagonal, so that off-diagonal entries represent the (dis)similarity of a species43

response to two predictors. Though the precision matrix is singular as a consequence of modelling it in a44

reduced-rank form, and tolerances are as such more difficult to retrieve, a generalized inverse calculation can45

be employed to retrieve the covariance matrix. Then, per species a correlation matrix can be calculated,46

where a one means that a species responds the same to two environmental variables, and a zero that a species47
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response to two predictors is independent (i.e. the response to one predictor is not affected by the response48

to another).49

Yee (2004) refers to this method as “Canonical Gaussian Ordination”, but later re-named it to “Quadratic50

Constrained Ordination” instead, due to potential confusion with the Gaussian probability density function51

(Yee 2015). When assuming Dj to be the same for all species and latent variables, this is indeed the more52

exact version of the method presented by ter Braak (1986), although for a larger variety of data types as the53

response distribution can be adapted flexibly.54

Due to the hierarchical formulation for the latent variable zi the model becomes quite complex. In55

terms of univariate models for each species, this model includes a second order polynomial, with interactions56

between the linear forms of predictors. Most ecologists do not tend to fit interaction terms for polynomials57

in univariate statistics, or even quadratic curves without interactions for that matter (Austin 2007), so58

that most commonly the quadratic term here is assumed to be diagonal in ecological studies. In general,59

constrained quadratic ordination should be considered relative to the full rank model it approximates with60

d dimensions. Clearly, this is a complex model due to the non-independence of a species response to various61

environmental predictors. Not surprisingly, Yee (2004) reports numerical problems with this rather complex62

model, which we also experienced with the implementation of constrained quadratic ordination in the gllvm63

R-package.64

Potentially, the numerical issues are caused by the high degree of complexity in the model, so that65

it can quickly overfit for small datasets. A more realistic assumption for many ecological datasets in66

Dj = D, i.e. the same quadratic coefficient for species on a latent variable (Yee 2004; van der Veen67

et al. 2021). Alternatively, quadratic species responses can be accommodated with a simpler struc-68

ture in the linear response model, up to the sign constraint for the quadratic coefficients by assuming69

zi = B⊤
1 xlv,i + (diag(xlv,i)B2)⊤xlv,i where B = {B1, B2} and if we assume γj = {θj , diag(D)j}:70

g{E(yij |xlv,i)} = β0j+z⊤
i γj

z⊤
i = B⊤

1 xlv,i + (diag(xlv,i)B2)⊤xlv,i

= β0j+x⊤
lvB1θj + diag(xlv,i)B2Djxlv,i,

(9)

corresponding to a standard (multivariate) quadratic regression without interaction terms and sign con-71

straints.72

Appendix S3: Random slopes formulation73

For the same model as before,74
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g{E(yij |xlv,i, ϵi)} = β0j + x⊤
lv,iBγj + ϵ⊤

i γj , (10)

we can instead assume that the slopes for the predictors B are random effects, so that for predictor K =75

1 . . . K and latent variable q = 1 . . . d, we have bkq ∼ N (0, 1). This type of random slope effect can serve to76

induce shrinkage on the constrained ordination, similar as in ridge regression.77

With ϵi ∼ N {0, diag(σ)}, and by noting that bkqxik ∼ N (0, x2
ik), we can now continue to determine the78

distribution of79

zi = (B⊤Xi + ϵi) ∼ N
{

0,




σ2
1 +

K∑
k=1

x2
ik 0 0

0 . . . 0

0 0 σ2
d +

K∑
k=1

x2
ik




}
, (11)

so that it becomes straightforward to apply the Laplace approximation or the Variational approximation,80

similar as in Niku et al. (2017) and Hui et al. (2017) or van der Veen et al. (2021). For example,81

with a variational distribution for the random slopes q(bk) = N (vk, V k), where vk is a d-sized vector82

of variational means per predictor and V k is a d × d covariance matrix, with q(ϵi) = N (ai, Ai), and with83

q(B, ϵi) = q(ϵi)
K∏

k=1
q(bk), i.e. independence of the random slopes and latent variables even for the variational84

distributions, we see that the variational distribution for the site scores becomes:85

zi ∼ N
(

ai +
K∑

k=1
vkxik, Ai +

K∑

k=1
x2

ikV k

)
, (12)

so that the same calculations can be applied for integration of a constrained model with random slopes, as86

for an unconstrained ordination.87

Appendix S4: Conditional Mean Squared Error of Predictions88

An approximate conditional mean squared errors of predictions (CMSEPs) can be calculated for the site89

scores following Niku (2020) and Booth & Hobert (1998). For the constrained GLLVM, with i = 1 . . . n sites90

and j = 1 . . . p species as in (7) we denote the true site scores as zi = xlv,iB + ϵi. Here we demonstrate the91

calculation using Variational Approximations (VA), though it is similar when using the Laplace approxima-92

tion (Niku 2020). With VA, so that we have the variational distribution q(ϵi) ∼ N (ai, Ai), the predicted93

site scores given the data, are zva,i = xlv,iB + ai, and let ẑva,i = xlv,iB̂ + âi denote the estimated site94
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scores. Then, the CMSEP are given as95

CMSEP = E{(ẑva,i − zva,i)(ẑva,i − zva,i)⊤|yi}

= E{(zi − zva,i)(zi − zva,i)⊤|yi} + E{(ẑva,i − zi)(ẑva,i − zi)⊤|yi}.

Now, if we assume the true site score given the data to be equal to the true VA estimate, i.e. E(zi|y) =96

zva,i, then the first term in the second line of equation (13) is cov(zi|yi) ≈ Ai. With a set of nuisance97

parameters vec(B, . . . Θ), for the second term in equation (13), and specifically the part ẑva,i−zi = xlv,i(B̂−98

B) + âi − ai. Using a Taylor series expansion: âi − ai ≈
(

∂2L
∂ai∂a⊤

i

)−1(
∂L

∂ai∂ϕ⊤

)
(ϕ̂ − ϕ).99

Next, xlv,i(B̂ − B) = Q(ϕ̂ − ϕ), for a Nϕ × Kd matrix Q with d replicates of xlv,i on the diagonal, so100

that we have xlv,i(B̂ − B) + âi − ai ≈ (Q +
(

∂2L
∂ai∂a⊤

i

)−1(
∂2L

∂ai∂ϕ⊤

)
)(ϕ̂ − ϕ) ∆= R(ϕ̂ − ϕ). Concluding,101

E{(ẑva,i − zi)(ẑva,i − zi)⊤|y} ≈ E{R(ϕ̂ − ϕ)I−1
ϕ R(ϕ̂ − ϕ)⊤|y}

≈ RI−1R⊤.

Appendix S5: Residual covariance102

For a model-based ordination with constrained latent variables as in equation (8), i.e. with the latent variable103

zi = B⊤xlv,i + ϵi and N (0, Σlv, where Σlv = σ2Id), the residual covariance can be calculated straightfor-104

wardly, by noting that the residual term of the model in equation (8) is:105

uij = ϵ⊤
i (γj − 2x⊤

lv,iBDj) − ϵ⊤
i Djϵi. (13)

This form allows for a similar calculation as in van der Veen et al. (2021), though it should be noted that it106

depends on the observed predictor variables xlv,i. Thus, the elements of the residual covariance matrix for107

species j, k and sites i, l are :108
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Σjl,ik = cov {uij , ukl} , i, k = 1 . . . n, j, l = 1 . . . p

= cov{ϵ⊤
i (γj − 2x⊤

lv,iBDj) − ϵ⊤
i Djϵi, ϵ⊤

k (γl − 2x⊤
k BDl) − ϵ⊤

k Dlϵk}

= cov{ϵ⊤
i (γj − 2x⊤

lv,iBDj), ϵ⊤
k (γl − 2x⊤

k BDl)}

+ cov{ϵ⊤
i (γj − 2x⊤

lv,iBDj), −ϵ⊤
k Dlϵk}

+ cov{−ϵ⊤
i Djϵi, ϵ⊤

k (γl − 2x⊤
k BDl)}

+ cov{−ϵ⊤
i Djϵi, −ϵ⊤

k Dlϵk}

= γ⊤
j Σlvγl + 2tr(DjΣlvDkΣlv) − 2x⊤

i BDjΣlvγl − 2x⊤
k BDlΣlvγj + 4x⊤

lv,iBDjΣlvDlB
⊤xk,

(14)

where only the first two terms are applicable to the GLLVM with unconstrained latent variables and quadratic109

responses, and only the first term for a GLLVM with unconstrained latent variables and linear responses110

(i.e., where Dj = 0).111

Appendix S6: R-code for simulations112

Code for the first simulation study113

library(raster)

library(rworldmap)

# get world map

world <- getMap()

eu <- c("Austria", "Belgium", "Bulgaria", "Croatia", "Cyprus", "Czech Rep.",

"Denmark", "Estonia", "Finland", "France", "Germany", "Greece", "Hungary",

"Ireland", "Italy", "Latvia", "Lithuania", "Luxembourg", "Malta", "Netherlands",

"Poland", "Portugal", "Romania", "Slovakia", "Slovenia", "Spain", "Sweden",

"Switzerland", "Norway")

# Select only the index of states member of the E.U.

eu <- world[which(world$NAME %in% eu), ]

set.seed(1)
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coords <- spsample(eu, n = 1000, type = "random")

bioclim <- getData("worldclim", var = "bio", res = 10)

bioclim_eu <- crop(bioclim, extent(eu))

bioclim_extract <- extract(bioclim, coords)

bioclim_extract <- bioclim_extract[!apply(bioclim_extract, 1, function(x) any(is.na(x))),

]

n <- 100 #number of sites

p <- 12 #number of species

set.seed(1)

X <- mvtnorm::rmvnorm(n, rep(0, ncol(bioclim_extract)), cov(bioclim_extract))[,

-7] #simulate but remove collinear predictor

X <- scale(X)

colnames(X) <- colnames(bioclim_extract)[-7]

# read spider data, not provided with article!

data <- read.csv("Spiders_100cases_1985.csv")

data <- data[-1, -c(1:2)]

data <- apply(data, 2, as.integer)

mod <- manyglm(as.matrix(data) ~ X, family = "poisson") #run model for spider data to get true values for parameters

set.seed(1)

mod$coefficients[1, ] <- runif(p, -1, 1) #replace intercept

totres <- NULL

R <- 1000 #number of simulations

for (r in 1:R) {

# generate data

set.seed(r)

y1 <- matrix(rpois(p * n, exp(eta)), ncol = p, nrow = n)

set.seed(r)

y2 <- matrix(rbinom(p * n, size = 1, prob = pnorm(eta)), ncol = p,
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nrow = n)

set.seed(r)

y3 <- matrix(rnorm(p * n, eta), ncol = p, nrow = n)

# fit multivariate GLMs

mod1 <- manyglm(y1 ~ X, family = "poisson")

mod2 <- manyglm(y2 ~ X, family = "binomial")

mod3 <- manylm(y3 ~ X)

# fit RRRs, making sure we get a model that converges. We start with

# most basic stating values

mod4 <- try(gllvm(y1, X = X, num.RR = 2, family = "poisson", sd.errors = F,

maxit = 1e+05, max.iter = 1e+05, starting.val = "res"), silent = T)

while (is.infinite(logLik(mod4))) {

mod4 <- try(gllvm(y1, X = X, num.RR = 2, family = "poisson", sd.errors = F,

maxit = 1e+05, max.iter = 1e+05, starting.val = "res"), silent = T)

}

mod5 <- try(gllvm(y2, X = X, num.RR = 2, family = "binomial", sd.errors = F,

maxit = 1e+05, max.iter = 1e+05, starting.val = "res"), silent = T)

while (is.infinite(logLik(mod5))) {

mod5 <- try(gllvm(y2, X = X, num.RR = 2, family = "binomial", sd.errors = F,

maxit = 1e+05, max.iter = 1e+05, starting.val = "res"), silent = T)

}

mod6 <- try(gllvm(y3, X = X, num.RR = 2, family = "gaussian", sd.errors = F,

maxit = 1e+05, max.iter = 1e+05, starting.val = "res"), silent = T)

while (is.infinite(logLik(mod6))) {

mod6 <- try(gllvm(y3, X = X, num.RR = 2, family = "gaussian", sd.errors = F,

maxit = 1e+05, max.iter = 1e+05, starting.val = "res"), silent = T)

}

mod4a <- try(gllvm(y1, X = X, num.RR = 3, family = "poisson", sd.errors = F,

maxit = 1e+05, max.iter = 1e+05, starting.val = "res"), silent = T)

11



while (is.infinite(logLik(mod4a))) {

mod4a <- try(gllvm(y1, X = X, num.RR = 3, family = "poisson", sd.errors = F,

maxit = 1e+05, max.iter = 1e+05, starting.val = "res"), silent = T)

}

mod5a <- try(gllvm(y2, X = X, num.RR = 3, family = "binomial", sd.errors = F,

maxit = 1e+05, max.iter = 1e+05, starting.val = "res"), silent = T)

while (is.infinite(logLik(mod5a))) {

mod5a <- try(gllvm(y2, X = X, num.RR = 3, family = "binomial",

sd.errors = F, maxit = 1e+05, max.iter = 1e+05, starting.val = "res"),

silent = T)

}

mod6a <- try(gllvm(y3, X = X, num.RR = 3, family = "gaussian", sd.errors = F,

maxit = 1e+05, max.iter = 1e+05, starting.val = "res"), silent = T)

while (is.infinite(logLik(mod6a))) {

mod6a <- try(gllvm(y3, X = X, num.RR = 3, family = "gaussian",

sd.errors = F, maxit = 1e+05, max.iter = 1e+05, starting.val = "res"),

silent = T)

}

mod4b <- try(gllvm(y1, X = X, num.RR = 4, family = "poisson", sd.errors = F,

maxit = 1e+05, max.iter = 1e+05, starting.val = "res"), silent = T)

while (is.infinite(logLik(mod4b))) {

mod4b <- try(gllvm(y1, X = X, num.RR = 4, family = "poisson", sd.errors = F,

maxit = 1e+05, max.iter = 1e+05, starting.val = "res"), silent = T)

}

mod5b <- try(gllvm(y2, X = X, num.RR = 4, family = "binomial", sd.errors = F,

maxit = 1e+05, max.iter = 1e+05, starting.val = "res"), silent = T)

while (is.infinite(logLik(mod5b))) {

mod5b <- try(gllvm(y2, X = X, num.RR = 4, family = "binomial",

sd.errors = F, maxit = 1e+05, max.iter = 1e+05, starting.val = "res"),

silent = T)

}

mod6b <- try(gllvm(y3, X = X, num.RR = 4, family = "gaussian", sd.errors = F,
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maxit = 1e+05, max.iter = 1e+05, starting.val = "res"), silent = T)

while (is.infinite(logLik(mod6b))) {

mod6b <- try(gllvm(y3, X = X, num.RR = 4, family = "gaussian",

sd.errors = F, maxit = 1e+05, max.iter = 1e+05, starting.val = "res"),

silent = T)

}

mod4c <- try(gllvm(y1, X = X, num.RR = 5, family = "poisson", sd.errors = F,

maxit = 1e+05, max.iter = 1e+05, starting.val = "res"), silent = T)

while (is.infinite(logLik(mod4c))) {

mod4c <- try(gllvm(y1, X = X, num.RR = 5, family = "poisson", sd.errors = F,

maxit = 1e+05, max.iter = 1e+05, starting.val = "res"), silent = T)

}

mod5c <- try(gllvm(y2, X = X, num.RR = 5, family = "binomial", sd.errors = F,

maxit = 1e+05, max.iter = 1e+05, starting.val = "res"), silent = T)

while (is.infinite(logLik(mod5c))) {

mod5c <- try(gllvm(y2, X = X, num.RR = 5, family = "binomial",

sd.errors = F, maxit = 1e+05, max.iter = 1e+05, starting.val = "res"),

silent = T)

}

mod6c <- try(gllvm(y3, X = X, num.RR = 5, family = "gaussian", sd.errors = F,

maxit = 1e+05, max.iter = 1e+05, starting.val = "res"), silent = T)

while (is.infinite(logLik(mod6c))) {

mod6c <- try(gllvm(y3, X = X, num.RR = 5, family = "gaussian",

sd.errors = F, maxit = 1e+05, max.iter = 1e+05, starting.val = "res"),

silent = T)

}

mod4d <- try(gllvm(y1, X = X, num.RR = 6, family = "poisson", sd.errors = F,

maxit = 1e+05, max.iter = 1e+05, starting.val = "res"), silent = T)

while (is.infinite(logLik(mod4d))) {

mod4d <- try(gllvm(y1, X = X, num.RR = 6, family = "poisson", sd.errors = F,

maxit = 1e+05, max.iter = 1e+05, starting.val = "res"), silent = T)
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}

mod5d <- try(gllvm(y2, X = X, num.RR = 6, family = "binomial", sd.errors = F,

maxit = 1e+05, max.iter = 1e+05, starting.val = "res"), silent = T)

while (is.infinite(logLik(mod5d))) {

mod5d <- try(gllvm(y2, X = X, num.RR = 6, family = "binomial",

sd.errors = F, maxit = 1e+05, max.iter = 1e+05, starting.val = "res"),

silent = T)

}

mod6d <- try(gllvm(y3, X = X, num.RR = 6, family = "gaussian", sd.errors = F,

maxit = 1e+05, max.iter = 1e+05, starting.val = "res"), silent = T)

while (is.infinite(logLik(mod6d))) {

mod6d <- try(gllvm(y3, X = X, num.RR = 6, family = "gaussian",

sd.errors = F, maxit = 1e+05, max.iter = 1e+05, starting.val = "res"),

silent = T)

}

mod4e <- try(gllvm(y1, X = X, num.RR = 7, family = "poisson", sd.errors = F,

maxit = 1e+05, max.iter = 1e+05, starting.val = "res"), silent = T)

while (is.infinite(logLik(mod4e))) {

mod4e <- try(gllvm(y1, X = X, num.RR = 7, family = "poisson", sd.errors = F,

maxit = 1e+05, max.iter = 1e+05, starting.val = "res"), silent = T)

}

mod5e <- try(gllvm(y2, X = X, num.RR = 7, family = "binomial", sd.errors = F,

maxit = 1e+05, max.iter = 1e+05, starting.val = "res"), silent = T)

while (is.infinite(logLik(mod5e))) {

mod5e <- try(gllvm(y2, X = X, num.RR = 7, family = "binomial",

sd.errors = F, maxit = 1e+05, max.iter = 1e+05, starting.val = "res"),

silent = T)

}

mod6e <- try(gllvm(y3, X = X, num.RR = 7, family = "gaussian", sd.errors = F,

maxit = 1e+05, max.iter = 1e+05, starting.val = "res"), silent = T)

while (is.infinite(logLik(mod6e))) {
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mod6e <- try(gllvm(y3, X = X, num.RR = 7, family = "gaussian",

sd.errors = F, maxit = 1e+05, max.iter = 1e+05, starting.val = "res"),

silent = T)

}

mod4f <- try(gllvm(y1, X = X, num.RR = 8, family = "poisson", sd.errors = F,

maxit = 1e+05, max.iter = 1e+05, starting.val = "res"), silent = T)

while (is.infinite(logLik(mod4f))) {

mod4f <- try(gllvm(y1, X = X, num.RR = 8, family = "poisson", sd.errors = F,

maxit = 1e+05, max.iter = 1e+05, starting.val = "res"), silent = T)

}

mod5f <- try(gllvm(y2, X = X, num.RR = 8, family = "binomial", sd.errors = F,

maxit = 1e+05, max.iter = 1e+05, starting.val = "res"), silent = T)

while (is.infinite(logLik(mod5f))) {

mod5f <- try(gllvm(y2, X = X, num.RR = 8, family = "binomial",

sd.errors = F, maxit = 1e+05, max.iter = 1e+05, starting.val = "res"),

silent = T)

}

mod6f <- try(gllvm(y3, X = X, num.RR = 8, family = "gaussian", sd.errors = F,

maxit = 1e+05, max.iter = 1e+05, starting.val = "res"), silent = T)

while (is.infinite(logLik(mod6f))) {

mod6f <- try(gllvm(y3, X = X, num.RR = 8, family = "gaussian",

sd.errors = F, maxit = 1e+05, max.iter = 1e+05, starting.val = "res"),

silent = T)

}

# Put all the results together

result <- matrix(0, ncol = 3, nrow = 24)

colnames(result) <- c("Method", "Distribution", "RMSE")

result[, 1] <- c("GLM", "GLM", "LM", paste("RRR", rep(2:8, each = 3),

sep = ""))

result[, 2] <- rep(c("Poisson", "Bernoulli", "Gaussian"), times = 8)
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result[, 3] <- c(vegan::procrustes(mod1$coefficients[-1, ], mod$coefficients[-1,

], symmetric = TRUE)$ss, vegan::procrustes(mod2$coefficients[-1,

], mod1$coefficients[-1, ], symmetric = TRUE)$ss, vegan::procrustes(mod3$coefficients[-1,

], mod$coefficients[-1, ], symmetric = TRUE)$ss, vegan::procrustes(mod4$params$LvXcoef %*%

t(mod4$params$theta), mod$coefficients[-1, ], symmetric = TRUE)$ss,

vegan::procrustes(mod5$params$LvXcoef %*% t(mod5$params$theta),

mod$coefficients[-1, ], symmetric = TRUE)$ss, vegan::procrustes(mod6$params$LvXcoef %*%

t(mod6$params$theta), mod$coefficients[-1, ], symmetric = TRUE)$ss,

vegan::procrustes(mod4a$params$LvXcoef %*% t(mod4a$params$theta),

mod$coefficients[-1, ], symmetric = TRUE)$ss, vegan::procrustes(mod5a$params$LvXcoef %*%

t(mod5a$params$theta), mod$coefficients[-1, ], symmetric = TRUE)$ss,

vegan::procrustes(mod6a$params$LvXcoef %*% t(mod6a$params$theta),

mod$coefficients[-1, ], symmetric = TRUE)$ss, vegan::procrustes(mod4b$params$LvXcoef %*%

t(mod4b$params$theta), mod$coefficients[-1, ], symmetric = TRUE)$ss,

vegan::procrustes(mod5b$params$LvXcoef %*% t(mod5b$params$theta),

mod$coefficients[-1, ], symmetric = TRUE)$ss, vegan::procrustes(mod6b$params$LvXcoef %*%

t(mod6b$params$theta), mod$coefficients[-1, ], symmetric = TRUE)$ss,

vegan::procrustes(mod4c$params$LvXcoef %*% t(mod4c$params$theta),

mod$coefficients[-1, ], symmetric = TRUE)$ss, vegan::procrustes(mod5c$params$LvXcoef %*%

t(mod5c$params$theta), mod$coefficients[-1, ], symmetric = TRUE)$ss,

vegan::procrustes(mod6c$params$LvXcoef %*% t(mod6c$params$theta),

mod$coefficients[-1, ], symmetric = TRUE)$ss, vegan::procrustes(mod4d$params$LvXcoef %*%

t(mod4d$params$theta), mod$coefficients[-1, ], symmetric = TRUE)$ss,

vegan::procrustes(mod5d$params$LvXcoef %*% t(mod5d$params$theta),

mod$coefficients[-1, ], symmetric = TRUE)$ss, vegan::procrustes(mod6d$params$LvXcoef %*%

t(mod6d$params$theta), mod$coefficients[-1, ], symmetric = TRUE)$ss,

vegan::procrustes(mod4e$params$LvXcoef %*% t(mod4e$params$theta),

mod$coefficients[-1, ], symmetric = TRUE)$ss, vegan::procrustes(mod5e$params$LvXcoef %*%

t(mod5e$params$theta), mod$coefficients[-1, ], symmetric = TRUE)$ss,

vegan::procrustes(mod6e$params$LvXcoef %*% t(mod6e$params$theta),

mod$coefficients[-1, ], symmetric = TRUE)$ss, vegan::procrustes(mod4f$params$LvXcoef %*%

t(mod4f$params$theta), mod$coefficients[-1, ], symmetric = TRUE)$ss,
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vegan::procrustes(mod5f$params$LvXcoef %*% t(mod5f$params$theta),

mod$coefficients[-1, ], symmetric = TRUE)$ss, vegan::procrustes(mod6f$params$LvXcoef %*%

t(mod6f$params$theta), mod$coefficients[-1, ], symmetric = TRUE)$ss)

print(r)

totres <- rbind(totres, cbind(result, sim = r))

}

Code for the second simulation study114

library(gllvm)

library(vegan)

R <- 1000 #number of simulations

n <- 100 #number of sites

p <- 30 #number of species

num.lv <- 2 #number of latent variables

set.seed(1)

beta0 <- matrix(runif(p, -1, 1), ncol = p, nrow = n, byrow = T)

set.seed(1)

num.X <- 5

X <- mvtnorm::rmvnorm(n, rep(0, num.X), diag(num.X))

colnames(X) <- 1:num.X

set.seed(1)

epsilon <- mvtnorm::rmvnorm(n, rep(0, num.lv), diag(num.lv))

epsilon <- resid(lm(epsilon ~ X)) #make sure that the residual is independent from the covariates as we assume

set.seed(1)

gamma <- matrix(runif(p * num.lv, -2, 2), ncol = num.lv)

gamma[upper.tri(gamma)] <- 0

diag(gamma) <- 1

set.seed(1)

beta <- matrix(factanal(X, factors = 2)$loadings, ncol = 2)

LV <- (X %*% (beta) + epsilon)

eta <- beta0 + LV %*% t(gamma)
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eta2 <- beta0 + epsilon %*% t(gamma)

totresult <- NULL

for (r in 1:R) {

set.seed(r)

y <- matrix(rpois(p * n, exp(eta)), ncol = p, nrow = n)

set.seed(r)

y2 <- matrix(rpois(p * n, exp(eta2)), ncol = p, nrow = n)

set.seed(r)

y3 <- matrix(rbinom(p * n, size = 1, prob = pnorm(eta)), ncol = p,

nrow = n)

set.seed(r)

y4 <- matrix(rbinom(p * n, size = 1, prob = pnorm(eta2)), ncol = p,

nrow = n)

set.seed(r)

y5 <- matrix(rnorm(p * n, mean = eta), ncol = p, nrow = n)

set.seed(r)

y6 <- matrix(rnorm(p * n, mean = eta2), ncol = p, nrow = n)

# only fixed-effects

set.seed(r)

y7 <- matrix(rpois(p * n, exp(eta3)), ncol = p, nrow = n)

set.seed(r)

y8 <- matrix(rbinom(p * n, size = 1, prob = pnorm(eta3)), ncol = p,

nrow = n)

set.seed(r)

y9 <- matrix(rnorm(p * n, mean = eta3), ncol = p, nrow = n)

LV1 <- LV

LV2 <- epsilon

LV3 <- LV

LV4 <- epsilon
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LV5 <- LV

LV6 <- epsilon

LV7 <- LVb

LV8 <- LVb

LV9 <- LVb

# remove empty rows here for CA and CCA...

idx1 <- rowSums(y)

idx2 <- rowSums(y2)

idx3 <- rowSums(y3)

idx4 <- rowSums(y4)

idx7 <- rowSums(y7)

idx8 <- rowSums(y8)

X1 <- X[idx1 > 0, ]

X2 <- X[idx2 > 0, ]

X3 <- X[idx3 > 0, ]

X4 <- X[idx4 > 0, ]

X7 <- X[idx7 > 0, ]

X8 <- X[idx8 > 0, ]

y <- y[idx1 > 0, ]

LV1 <- LV1[idx1 > 0, ]

y2 <- y2[idx2 > 0, ]

LV2 <- LV2[idx2 > 0, ]

y3 <- y3[idx3 > 0, ]

LV3 <- LV3[idx3 > 0, ]

y4 <- y4[idx4 > 0, ]

LV4 <- LV4[idx4 > 0, ]

y7 <- y7[idx7 > 0, ]

LV7 <- LV7[idx7 > 0, ]

y8 <- y8[idx8 > 0, ]
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LV8 <- LV8[idx8 > 0, ]

# Run the models. Loop to ensure models don't converge to infinity

# Poisson Constrained simulation

modPC <- try(gllvm(y = y, X = X1, num.lv.c = num.lv, family = "poisson",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

if (inherits(modPC, "try-error")) {

modPC <- try(gllvm(y = y, X = X1, num.lv.c = num.lv, family = "poisson",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

while (inherits(modPC, "try-error")) {

modPC <- try(gllvm(y = y, X = X1, num.lv.c = num.lv, family = "poisson",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

}

}

PCCA <- cca(y, X1)

# Unconstrained simulation

modPCa <- try(gllvm(y = y2, X = X2, num.lv.c = num.lv, family = "poisson",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

if (inherits(modPCa, "try-error")) {

modPCa <- try(gllvm(y = y2, X = X2, num.lv.c = num.lv, family = "poisson",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

while (inherits(modPCa, "try-error")) {

modPCa <- try(gllvm(y = y2, X = X2, num.lv.c = num.lv, family = "poisson",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

}
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}

PCCAa <- cca(y2, X2)

# Fixed-effects simulation

modPCb <- try(gllvm(y = y7, X = X7, num.RR = num.lv, family = "poisson",

starting.val = "zero", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

if (inherits(modPCb, "try-error")) {

modPCb <- try(gllvm(y = y7, X = X7, num.RR = num.lv, family = "poisson",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

while (inherits(modPCb, "try-error")) {

modPCb <- try(gllvm(y = y7, X = X7, num.RR = num.lv, family = "poisson",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

}

}

PCCAb <- cca(y7, X7)

# Bernoulli

modBC <- try(gllvm(y = y3, X = X3, num.lv.c = num.lv, family = "binomial",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

if (inherits(modBC, "try-error")) {

modBC <- try(gllvm(y = y3, X = X3, num.lv.c = num.lv, family = "binomial",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

while (inherits(modBC, "try-error")) {

modBC <- try(gllvm(y = y3, X = X3, num.lv.c = num.lv, family = "binomial",
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starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

}

} else if (is.infinite(logLik(modBC))) {

modBC <- try(gllvm(y = y3, X = X3, num.lv.c = num.lv, family = "binomial",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

while (inherits(modBC, "try-error")) {

modBC <- try(gllvm(y = y3, X = X3, num.lv.c = num.lv, family = "binomial",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

}

while (is.infinite(logLik(modBC))) {

modBC <- try(gllvm(y = y3, X = X3, num.lv.c = num.lv, family = "binomial",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

}

}

BCCA <- cca(y3, X3)

# Unconstrained simulation

modBCa <- try(gllvm(y = y4, X = X4, num.lv.c = num.lv, family = "binomial",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

if (inherits(modBCa, "try-error")) {

modBCa <- try(gllvm(y = y4, X = X4, num.lv.c = num.lv, family = "binomial",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

while (inherits(modBCa, "try-error")) {

modBCa <- try(gllvm(y = y4, X = X4, num.lv.c = num.lv, family = "binomial",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)
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}

} else if (is.infinite(logLik(modBCa))) {

modBCa <- try(gllvm(y = y4, X = X4, num.lv.c = num.lv, family = "binomial",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

while (inherits(modBCa, "try-error")) {

modBCa <- try(gllvm(y = y4, X = X4, num.lv.c = num.lv, family = "binomial",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

}

while (is.infinite(logLik(modBCa))) {

modBCa <- try(gllvm(y = y4, X = X4, num.lv.c = num.lv, family = "binomial",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

}

}

BCCAa <- cca(y4, X4)

# fixed-effects simulation

modBCb <- try(gllvm(y = y8, X = X8, num.RR = num.lv, family = "binomial",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

if (inherits(modBCb, "try-error")) {

modBCb <- try(gllvm(y = y8, X = X8, num.RR = num.lv, family = "binomial",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

while (inherits(modBCb, "try-error")) {

modBCb <- try(gllvm(y = y8, X = X8, num.RR = num.lv, family = "binomial",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

}

} else if (is.infinite(logLik(modBCb))) {
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modBCb <- try(gllvm(y = y8, X = X8, num.RR = num.lv, family = "binomial",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

while (inherits(modBCb, "try-error")) {

modBCb <- try(gllvm(y = y8, X = X8, num.RR = num.lv, family = "binomial",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

}

while (is.infinite(logLik(modBCb))) {

modBCb <- try(gllvm(y = y8, X = X8, num.RR = num.lv, family = "binomial",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

}

}

BCCAb <- cca(y8, X8)

# Constrained simulation

modGC <- try(gllvm(y = y5, X = X, num.lv.c = num.lv, family = "gaussian",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

if (inherits(modGC, "try-error")) {

modGC <- try(gllvm(y = y5, X = X, num.lv.c = num.lv, family = "gaussian",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

while (inherits(modGC, "try-error")) {

modGC <- try(gllvm(y = y5, X = X, num.lv.c = num.lv, family = "gaussian",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

}

} else if (is.infinite(logLik(modGC))) {

modGC <- try(gllvm(y = y5, X = X, num.lv.c = num.lv, family = "gaussian",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),
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silent = T)

while (inherits(modGC, "try-error")) {

modGC <- try(gllvm(y = y5, X = X, num.lv.c = num.lv, family = "gaussian",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

}

while (is.infinite(logLik(modGC))) {

modGC <- try(gllvm(y = y5, X = X, num.lv.c = num.lv, family = "gaussian",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

}

}

RDA <- rda(y5, X)

# Unconstrained simulation

modGCa <- try(gllvm(y = y6, X = X, num.lv.c = num.lv, family = "gaussian",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

if (inherits(modGCa, "try-error")) {

modGCa <- try(gllvm(y = y6, X = X, num.lv.c = num.lv, family = "gaussian",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

while (inherits(modGCa, "try-error")) {

modGCa <- try(gllvm(y = y6, X = X, num.lv.c = num.lv, family = "gaussian",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

}

} else if (is.infinite(logLik(modGCa))) {

modGCa <- try(gllvm(y = y6, X = X, num.lv.c = num.lv, family = "gaussian",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

while (inherits(modGCa, "try-error")) {
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modGCa <- try(gllvm(y = y6, X = X, num.lv.c = num.lv, family = "gaussian",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

}

while (is.infinite(logLik(modGCa))) {

modGCa <- try(gllvm(y = y6, X = X, num.lv.c = num.lv, family = "gaussian",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

}

}

RDAa <- rda(y6, X)

# fixed-effects simulation

modGCb <- try(gllvm(y = y9, X = X, num.RR = num.lv, family = "gaussian",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

if (inherits(modGCb, "try-error")) {

modGCb <- try(gllvm(y = y9, X = X, num.RR = num.lv, family = "gaussian",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

while (inherits(modGCb, "try-error")) {

modGCb <- try(gllvm(y = y9, X = X, num.RR = num.lv, family = "gaussian",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

}

} else if (is.infinite(logLik(modGCb))) {

modGCb <- try(gllvm(y = y9, X = X, num.RR = num.lv, family = "gaussian",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

while (inherits(modGCb, "try-error")) {

modGCb <- try(gllvm(y = y9, X = X, num.RR = num.lv, family = "gaussian",
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starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

}

while (is.infinite(logLik(modGCb))) {

modGCb <- try(gllvm(y = y9, X = X, num.RR = num.lv, family = "gaussian",

starting.val = "res", maxit = 1e+07, num.lv = 0, sd.errors = F),

silent = T)

}

}

RDAb <- rda(y9, X)

result <- matrix(0, ncol = 5, nrow = 18)

colnames(result) <- c("Simulation", "Method", "Distribution", "SS",

"SS_spp")

result[, 1] <- rep(c("Constrained with residual", "Unconstrained",

"Constrained without residual"), times = 6)

result[, 2] <- c(rep(c("GLLVM", "CCA"), each = 6), rep(c("GLLVM", "RDA"),

each = 3))

result[, 3] <- c(rep(c(rep("Poisson", 3), rep("Bernoulli", 3)), times = 2),

rep("Gaussian", 6))

result[, 4] <- c(procrustes(getLV(modPC), LV1, symmetric = T)$ss, procrustes(getLV(modPCa),

LV2, symmetric = T)$ss, procrustes(getLV(modPCb), LV7, symmetric = T)$ss,

procrustes(getLV(modBC), LV3, symmetric = T)$ss, procrustes(getLV(modBCa),

LV4, symmetric = T)$ss, procrustes(getLV(modBCb), LV8, symmetric = T)$ss,

procrustes(scores(PCCA)$sites, LV1, symmetric = T)$ss, procrustes(scores(PCCAa)$sites,

LV2, symmetric = T)$ss, procrustes(scores(PCCAb)$sites, LV7,

symmetric = T)$ss, procrustes(scores(BCCA)$sites, LV3, symmetric = T)$ss,

procrustes(scores(BCCAa)$sites, LV4, symmetric = T)$ss, procrustes(scores(BCCAb)$sites,

LV8, symmetric = T)$ss, procrustes(getLV(modGC), LV5, symmetric = T)$ss,

procrustes(getLV(modGCa), LV6, symmetric = T)$ss, procrustes(getLV(modGCb),

LV9, symmetric = T)$ss, procrustes(scores(RDA)$sites, LV5,
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symmetric = T)$ss, procrustes(scores(RDAa)$sites, LV6, symmetric = T)$ss,

procrustes(scores(RDAb)$sites, LV9, symmetric = T)$ss)

result[, 5] <- c(procrustes(modPC$params$theta, gamma, symmetric = T)$ss,

procrustes(modPCa$params$theta, gamma, symmetric = T)$ss, procrustes(modPCb$params$theta,

gamma, symmetric = T)$ss, procrustes(modBC$params$theta, gamma,

symmetric = T)$ss, procrustes(modBCa$params$theta, gamma, symmetric = T)$ss,

procrustes(modBCb$params$theta, gamma, symmetric = T)$ss, procrustes(scores(PCCA)$species,

gamma, symmetric = T)$ss, procrustes(scores(PCCAa)$species,

gamma, symmetric = T)$ss, procrustes(scores(PCCAb)$species,

gamma, symmetric = T)$ss, procrustes(scores(BCCA)$species,

gamma, symmetric = T)$ss, procrustes(scores(BCCAa)$species,

gamma, symmetric = T)$ss, procrustes(scores(BCCAb)$species,

gamma, symmetric = T)$ss, procrustes(modGC$params$theta, gamma,

symmetric = T)$ss, procrustes(modGC$params$theta, gamma, symmetric = T)$ss,

procrustes(modGCb$params$theta, gamma, symmetric = T)$ss, procrustes(scores(RDA)$species,

gamma, symmetric = T)$ss, procrustes(scores(RDAa)$species,

gamma, symmetric = T)$ss, procrustes(scores(RDAb)$species,

gamma, symmetric = T)$ss)

totresult <- rbind(totresult, cbind(result, sim = r))

print(r)

}
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Appendix S7: Extra figures and tables for examples115

Table S1: Estimates, standard errors, Wald-statistic and accompanying p-values for predictors116

in the constrained ordination of the Swiss alpine plants data, rotated to principal direction.117

DDGE0 = Growing degree days above zero; MIND = Moisture index; SOLRAD = Total solar118

radiation over the year; TPI = Topography index.119

Estimate Std. Error z value Pr(>|z|)

LV1

DDEG0 1.126 0.238 4.742 0.000

Slope -0.601 0.062 -9.732 0.000

MIND 0.452 0.083 5.463 0.000

SOLRAD -0.684 0.070 -9.835 0.000

TPI -0.133 0.030 -4.415 0.000

Elevation 4.745 0.428 11.085 0.000

LV2

DDEG0 0.858 0.093 9.204 0.000

Slope 0.238 0.016 15.379 0.000

MIND 0.057 0.040 1.429 0.153

SOLRAD 0.109 0.019 5.598 0.000

TPI -0.074 0.014 -5.246 0.000

Elevation 0.801 0.096 8.373 0.000

120
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Figure S1: CCA for the Swiss alpine plants data121
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Table S2: List of species names for the Swiss alpine plants data123

Species name abbreviation

Achillea atrata Acat

Achillea millefolium Acmi

Acinos alpinus Acal

Agrostis capillaris Agca

Agrostis rupestris Agru

Agrostis schraderiana Agsc

Agrostis stolonifera Agst

Ajuga reptans Ajre

Alchemilla conjuncta Alco
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(continued)

Species name abbreviation

Alchemilla glabra Algl

Alchemilla vulgaris Alvu

Androsace chamaejasme Anch

Anthoxanthum odoratum Anod

Anthyllis vulneraria Anvu

Aposeris foetida Apfo

Arabis alpina Aral

Arnica montana Armo

Arrhenatherum elatius Arel

Aster bellidiastrum Asbe

Astrantia major Asma

Bartsia alpina Baal

Bellis perennis Bepe

Brachypodium pinnatum Brpi

Briza media Brme

Bromus erectus Brer

Calamagrostis varia Cava

Campanula barbata Caba

Campanula scheuchzeri Casc

Carduus defloratus Cade

Carex atrata Caat

Carex ferruginea Cafe

Carex flacca Cafl

Carex pallescens Capa

Carex sempervirens Case

Carex sylvatica Casy

Carlina acaulis Caac

Carum carvi Caca
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(continued)

Species name abbreviation

Centaurea jacea Ceja

Centaurea montana Cemo

Centaurea scabiosa Cesc

Cerastium arvense Cear

Cerastium fontanum Cefo

Chaerophyllum hirsutum Chhi

Cirsium acaule Ciac

Cirsium spinosissimum Cisp

Clinopodium vulgare Clvu

Crepis aurea Crau

Crepis pyrenaica Crpy

Cruciata laevipes Crla

Cynosurus cristatus Cycr

Dactylis glomerata Dagl

Daucus carota Daca

Deschampsia cespitosa Dece

Doronicum grandiflorum Dogr

Dryas octopetala Droc

Euphorbia cyparissias Eucy

Festuca pratensis Fepr

Festuca quadriflora Fequ

Festuca rubra Feru

Festuca violacea Fevi

Fragaria vesca Frve

Galium album Gaal

Galium anisophyllon Gaan

Galium pumilum Gapu

Gentiana acaulis Geac
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(continued)

Species name abbreviation

Gentiana campestris Geca

Gentiana lutea Gelu

Gentiana purpurea Gepu

Gentiana verna Geve

Geranium sylvaticum Gesy

Geum montanum Gemo

Geum rivale Geri

Glechoma hederacea Glhe

Globularia cordifolia Glco

Globularia nudicaulis Glnu

Hedysarum hedysaroides Hehe

Helianthemum nummularium Henu

Helictotrichon versicolor Heve

Heracleum sphondylium Hesp

Hieracium bifidum Hibi

Hieracium lactucella Hila

Hippocrepis comosa Hico

Holcus lanatus Hola

Homogyne alpina Hoal

Hypericum maculatum Hyma

Hypochaeris radicata Hyra

Knautia arvensis Knar

Knautia dipsacifolia Kndi

Laserpitium latifolium Lala

Lathyrus pratensis Lapr

Leontodon autumnalis Leau

Leontodon helveticus Lehe

Leontodon hispidus Lehi
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(continued)

Species name abbreviation

Leucanthemum vulgare Levu

Ligusticum mutellina Limu

Linum catharticum Lica

Lolium perenne Lope

Lotus corniculatus Loco

Luzula multiflora Lumu

Medicago lupulina Melu

Myosotis alpestris Myal

Nardus stricta Nast

Parnassia palustris Papa

Pedicularis foliosa Pefo

Phleum hirsutum Phhi

Phleum pratense Phpr

Phleum rhaeticum Phrh

Phyteuma orbiculare Phor

Phyteuma spicatum Phsp

Pimpinella major Pima

Plantago alpina Plal

Plantago atrata Plat

Plantago lanceolata Plla

Plantago major Plma

Plantago media Plme

Poa alpina Poal

Poa minor Pomi

Poa pratensis Popr

Polygala chamaebuxus Poch

Polygonum bistorta Pobi

Polygonum viviparum Povi
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(continued)

Species name abbreviation

Potentilla aurea Poau

Potentilla crantzii Pocr

Potentilla erecta Poer

Primula elatior Prel

Pritzelago alpina Pral

Prunella grandiflora Prgr

Prunella vulgaris Prvu

Pulsatilla alpina Pual

Ranunculus aconitifolius Raac

Ranunculus acris Raac

Ranunculus alpestris Raal

Ranunculus montanus Ramo

Ranunculus repens Rare

Rhinanthus alectorolophus Rhal

Rhinanthus minor Rhmi

Rumex acetosa Ruac

Salix herbacea Sahe

Salix reticulata Sare

Salix retusa Sare

Sanguisorba minor Sami

Saxifraga aizoides Saai

Saxifraga moschata Samo

Saxifraga oppositifolia Saop

Saxifraga paniculata Sapa

Scabiosa lucida Sclu

Sesleria caerulea Seca

Silene acaulis Siac

Silene vulgaris Sivu

Soldanella alpina Soal
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(continued)

Species name abbreviation

Solidago virgaurea Sovi

Stachys officinalis Stof

Taraxacum alpinum Taal

Taraxacum officinale Taof

Thesium alpinum Thal

Thymus praecox Thpr

Tragopogon pratensis Trpr

Trifolium badium Trba

Trifolium medium Trme

Trifolium pratense Trpr

Trifolium repens Trre

Trifolium thalii Trth

Trisetum flavescens Trfl

Trollius europaeus Treu

Vaccinium gaultherioides Vaga

Vaccinium myrtillus Vamy

Vaccinium vitisidaea Vavi

Valeriana montana Vamo

Veratrum album Veal

Veronica alpina Veal

Veronica chamaedrys Vech

Veronica officinalis Veof

Vicia cracca Vicr

Vicia sepium Vise

Viola biflora Vibi
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Figure S2: Partial CCA for the Levanger grasslands data124
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Table S3: Estimates, standard errors, Wald-statistic and accompanying p-values for predictors126

in the constrained ordination of the Levanger grasslands data, including various predictors127

of water-soluble soil nutrients for 0 - 10cm and 10 - 20cm soil depth, rotated to principal128

direction.129

Estimate Std. Error z value Pr(>|z|)

LV1

pH (0 - 10) 0.671 0.409 1.640 0.101

pH (10 - 20) -0.241 0.325 -0.743 0.458

Phosphorus (0 - 10) -0.380 0.337 -1.127 0.260

Phosphorus (10 - 20) 0.070 0.310 0.224 0.822

Potassium (0 - 10) 0.049 0.195 0.251 0.802

Potassium (10 - 20) -0.302 0.187 -1.612 0.107

Magnesium (0 - 10) 0.512 0.295 1.735 0.083

Magnesium (10 - 20) -0.218 0.265 -0.824 0.410

Calcium (0 - 10) -1.034 0.358 -2.889 0.004

Calcium (10 - 20) 0.028 0.268 0.105 0.916

LV2

pH (0 - 10) 0.556 0.278 2.000 0.045

pH (10 - 20) 0.445 0.314 1.418 0.156

Phosphorus (0 - 10) 0.612 0.412 1.486 0.137

Phosphorus (10 - 20) -0.193 0.282 -0.685 0.493

Potassium (0 - 10) 0.260 0.158 1.652 0.098

Potassium (10 - 20) -0.147 0.155 -0.947 0.344

Magnesium (0 - 10) -0.640 0.413 -1.548 0.122

Magnesium (10 - 20) 0.525 0.295 1.777 0.076

Calcium (0 - 10) -0.148 0.343 -0.431 0.666

Calcium (10 - 20) -0.310 0.226 -1.376 0.169

130

Table S4: List of species names for the Levanger grasslands data131

Species name abbreviation

Urtica dioica Urdi
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(continued)

Species name abbreviation

Rumex longifolius Rulo

Rumex acetosa Ruac

Bistorta vivipara Bivi

Stellaria media Stme

Stellaria graminea Stgr

Cerastium fontanum Cefo

Ranunculus auricomus Raau

Ranunculus acris Raac

Ranunculus repens Rare

Anemone nemorosa Anne

Filipendula ulmaria Fiul

Geum urbanum Geur

Potentilla erecta Poer

Fragaria vesca Frve

Alchemilla sp Alsp

Trifolium repens Trre

Trifolium pratense Trpr

Lotus corniculatus Loco

Vicia cracca Vicr

Lathyrus pratensis Lapr

Oxalis acetosella Oxac

Geranium sylvaticum Gesy

Hypericum maculatum Hyma

Viola riviniana Viri

Viola canina Vica

Anthriscus sylvestris Ansy

Carum carvi Caca

Pimpinella saxifraga Pisa

Heracleum sp Hesp
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(continued)

Species name abbreviation

Trientalis europaea Treu

Galium boreale Gabo

Galeopsis tetrahit Gate

Veronica chamaedrys Vech

Veronica serpyllifolia Vese

Veronica officinalis Veof

Knautia arvensis Knar

Campanula rotundifolia Caro

Achillea millefolium Acmi

Achillea ptarmica Acpt

Leontodon autumnalis Leau

Taraxacum sp Tasp

Hieracium sp Hisp

Hieracium pilosella Hipi

Maianthemum bifolium Mabi

Luzula pilosa Lupi

Carex pallescens Capa

Anthoxanthum odoratum Anod

Phleum pratense Phpr

Agrostis capillaris Agca

Avenella flexuosa Avfl

Deschampsia cespitosa Dece

Avenula pubescens Avpu

Dactylis glomerata Dagl

Poa pratensis Popr

Poa annua Poan

Poa trivialis Potr

Festuca rubra Feru
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(continued)

Species name abbreviation

Schedonorus pratensis Scpr

Lolium perenne Lope

Elytrigia repens Elre

Populus tremula Potr

Sorbus aucuparia Soau

Alnus incana Alin

Figure S3: Effects of grazing for the Levanger grasslands data132
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Summary15

The ecological niche is a fundamental concept in ecology that can be used in order better understand16

species relationships. The overlap in species niches provides a measure of the likelihood for species to co-17

occur. Most approaches that quantify niche overlap have been based on distance and similarity indices,18

for pairwise combinations of species. In this article, we present a model-based approach for the prediction19

of niche overlap for commonly used regression methods, such as (joint) species distribution models. We20

do this using an example dataset of an ecological community of Foraminifera species, to which we fit21

a Generalized Linear Latent Variable Model (GLLVM). GLLVMs are a flexible class of models that22

allow to estimate the distribution of species using both measured and unmeasured components, with23

additional benefits such as access to statistical uncertainty of parameter estimates. We demonstrate how24

to calculate niche overlap from GLLVMs for any combination of species, and separately for different25

environments. Model-based analysis of niche overlap further expands the toolset available to ecologists26

for the exploration of species co-occurrence patterns. keywords: model-based ordination, unimodal27

1



response, niche model28

Introduction29

The ecological niche of a species is a fundamental concept in ecology, describing the relationship between30

a species and the environment (Grinnell 1924; Elton 1927; Hutchinson 1959). Since popularisation of the31

niche concept (Hutchinson 1957), it has been eagerly utilized by community ecologists to infer on species32

relationships (MacArthur & Levins 1967) e.g., through calculations of niche overlap (May & Arthur 1972;33

Holt 1987).34

Measures of niche overlap help ecologists to compare species’ resource preferences (Wathne et al. 2000;35

Vogel et al. 2019) so they can understand why multiple species coexist (or not) even without competition.36

Niche overlap theory is inherently connected with species coexistence theory (Pianka 1974; Holt 1987; Ches-37

son 2000; Letten et al. 2017) e.g., as the magnitude of overlap in the exploitation of limiting resources38

between co-occurring species is key to predicting their stable coexistence or local exclusion (Chase & Leibold39

2003; Letten et al. 2017). According to the principle of competitive exclusion (Hardin 1960), two species40

competing for the same limited resource cannot coexist at constant population values (Gause 1934). Thus,41

species occur in environments where they are able to exploit resources in ways that render them competitively42

superior or able to coexist with others, and are absent from environments in which resources are insufficient43

(Godsoe & Harmon 2012).44

A range of metrics have been developed to quantify niche overlap. Early approaches were mostly based45

on the calculation of distance and similarity indices, from abundance data (Pianka 1973; Hurlbert 1978).46

Some of these indices, for example Pianka’s niche overlap index, require that the relative proportion of the47

resource in question used by each of the species can be quantified, which is often difficult or not possible48

in practice. To overcome this obstacle, distance of similarity in functional traits are often used as a proxy49

to examine and estimate niche overlap (McGill et al. 2006). Darwin’s study of beak size and beak depth50

in coexisting finch species at the Galapagos Islands is a classic example of this (Darwin 1859). Similar51

distance-based approaches have been developed to estimate niche overlap in food webs (Cohen 1977; Cohen52

1978; Cattin et al. 2004).53

Most commonly the ecological niche of a species is modelled using a regression-based approach (Austin et54

al. 1990; Guisan & Zimmermann 2000; Jansen & Oksanen 2013; van der Veen et al. 2021b). The prediction of55

species niches using regression methods corresponds well with the Hutchinsonian niche concept (Hutchinson56

1959), as the niche is represented in multiple dimensions by measured resources or the environment (e.g. with57

predictors). The shape of response curve, as represented using functions of predictors, represents a modellers’58

2



expectation for the shape of the hypersurface, i.e. the shape of a species’ niche (Austin 1987). Since the59

responses of species are generally unknown in a regression, maximum likelihood estimation can be used to60

retrieve parameter estimates, and to optimally represent species niches.61

Examples of univariate methods that can be used to estimate species niches are Generalized Linear62

Models (GLMs, Nelder & Wedderburn 1972), Generalized Linear Mixed-effects Models (GLMMs, Jamil &63

ter Braak 2013), or more generally the Maximum entropy framework (Phillips et al. 2006; Elith et al.64

2011). However, recently models that can be fitted to data from multiple species simultaneously, such as65

multivariate Generalized Linear Models (MGLMs, Wang et al. 2012) have increased in popularity. MGLMs66

can estimate parameters for the niche of all species simultaneously, which is more convenient than fitting67

a single model to each species separately as in more standard species distribution models (Warton et al.68

2015b).69

Similarly to the difference between GLMs and mixed-effects models, MGLMs do not account for residual70

variation unaccounted for by the predictors which can arise due to co-occurrence of species, and thus needs71

to be addressed to improve model fit. Generalized Linear Latent Variable Models (GLLVMs, Warton et al.72

2015a; Ovaskainen et al. 2017; Niku et al. 2019) are Joint Species Distribution Models (JSDMs, Pollock et73

al. 2014; Clark et al. 2014) in that they account for species co-occurrence patterns by modelling patterns74

of residual variation. Unlike ordinary JSDMs, the residual covariance matrix is modelled in reduced-rank75

form, so that it includes fewer parameters, and so that the models are feasible to fit even for a large number76

of species, though there are alternative approaches without latent variables (Pichler & Hartig 2021).77

Since GLLVMs are fitted to all species in a dataset at the same time, the GLLVM framework naturally78

lends itself for the calculation of niche overlap. In this article we present a model-based measure of niche79

overlap, similar to that of Swanson et al. (2015) in interpretation: the probability of observing a species80

given the predicted niche of another. The proposed measure of niche overlap is calculated by first fitting a81

model to estimate parameters for species niches, and secondly by predicting with the same model. Although82

we demonstrate the method using GLLVMs here, it is suitable to apply using any regression method, such as83

using a series of univariate models. Calculating niche overlap by predicting from a (multivariate) regression84

provides various opportunities, including; the prediction of niche overlap for unobserved values of the envi-85

ronment, niche overlap for multiple species, and the calculation of confidence intervals for niche overlap. We86

demonstrate the proposed model-based niche overlap measure by fitting a GLLVM with constrained latent87

variables and quadratic response model to abundances of Foramnifera species in the Spermonde archipelago,88

Indonesia (Cleary & Renema 2007).89
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Methods90

In this section we first present the proposed model-based measure of niche overlap, after which we present91

the model we here use to predict species niches, and lastly we describe the data used in the example.92

A species niche93

Per species, a GLLVM represents a hypersurface in k = 1 . . . K dimensions, such as with e.g., measured94

predictor variables, latent variables, ordination axes, or similar. For a single species j = 1 . . . p, let the95

following quantity denote the multidimensional niche volume:96

|j| =
∫

Fj(λ)p(λ)dλ. (1)

where Fj(·) is a generic function representing the multidimensional niche of species j in a regression, and97

p(·) the probability of observing a particular environment. The likelihood of observing a species naturally98

depends on the likelihood of observing suitable environmental conditions, hence we additionally weigh a99

species niche by the probability of the environment. This can be the proportions of various environmental100

conditions in a measured predictor variable, or alternatively, from a larger body of data such as a digital101

elevation model.102

The quantity in equation (1) forms the normalising constant for the calculation of a species’ probability103

of occurrence anywhere in its niche, so that any species’ probability to occur inside its own niche is one, and104

the probability for any species to occur outside of its niche is zero. For quadratic curves as in van der Veen et105

al. (2021b), and in a single dimension, this quantity implies an area, whereas in two dimensions it implies a106

volume, so that in three or more dimensions the ecological niche is implicitly represented as a hypervolume.107

Similarly, the number of dimensions K can be considered the number of niche axes (Hutchinson & MacArthur108

1959), representing e.g., soil properties of a grassland, or the amount of precipitation in a given time period.109

For measured predictor variables in a regression, the solution to equation (1) can be straightforwardly110

calculated by averaging over the predictions of a regression.111

Niche overlap112

Similar to the probability of observing a single species, the probability of observing two (or more) species113

j, m together, given that species j has been observed, becomes smaller when species j is predicted occur114

infrequently (and naturally even more so if species m is predicted to occur infrequently). As such, the model-115
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based measure of niche overlap presented here is small when: 1) species j is predicted to occur infrequently,116

2) species m is predicted to occur infrequently, or 3) the environment where species j and m are predicted to117

both occur is rarely observed. A species can be predicted to occur infrequently for a variety of reasons, such118

as a low mean abundance, or due to generally negative estimated responses to predictors in the regression.119

Ecologically, the reasons for a species to occur infrequently are many, but can include e.g., a narrow niche120

(few suitable environments, i.e., it is a habitat specialist), or a low maximum of the niche (the species does121

not occur in large quantities, i.e. it is rare).122

We define the proportion of the niche of species j that overlaps with the niche of species m as:123

p(Oj,m) =
∫

min(Fj(λ), Fm(λ))dλ

|j| (2)

where min(·) indicates the minimum space of the response curves Fj(·) and Fm(·), which is integrated over,124

as visualized in Figure 1, and visualized from a one-dimensional perspective in Figure 2.125

This measure can be thought of as the probability of observing both species, given the predicted niche of one,126

or as the probability of observing the environment suitable for both species, given that one of the species127

has been observed. This measure is similar to species associations represented by residual covariances of128

a JSDM. However, most commonly, species associations from a JSDM are calculated without accounting129

for other effects in a model, such as environmental predictors or species constants that account for the130

frequency at which a species is predicted to occur (e.g. the intercept, or alternatively excluding species mean131

abundances) (Pollock et al. 2014). Additionally, species associations from JSDMs can only be calculated for132

two species, whereas the measure presented here can be extended to include many more species, up to p, as133

we demonstrate in the Foraminifera example below.134

Predicting niche overlap135

Taking a model-based approach to calculating niche overlap has various benefits. In general, any regression136

method can be used to make predictions using the parameter estimates. This can be for an environment that137

has been observed, or alternatively, new measurements of the environment can be provided to predict niche138

overlap in places that have not yet been observed. For example, we might record species on an elevation139

gradient from 100 meters above sea level to 400 meters above sea level, and at 10 - 15 degrees Celsius. Then,140

with species responses to elevation and temperature estimated in the model, we can additionally predict141

niche overlap at 1000 meters above sea level and at 16 degrees Celsius.142

Similarly, by keeping specific predictors in the model constant, e.g., by fixing a predictor at a certain143

level or value, a conditional niche overlap measure is retrieved. Imagine that besides elevation a predictor144
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Figure 1: Three dimensional figure of two species quadratic niches, predicted using the Foraminifera dataset
below. The predicted niche overlap is conditional, for when Foraminifera were not exposed to oceanic
current, and for a depth of zero. Dots form the outline of the niches, with colors indicating change in
predicted abundances. The grey surface outlines the volume that represents the overlap between the two
species, corresponding with the methodology explained above.
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Figure 2: One-dimensional perspective of Figure 1, for latent variable 1. Latent variable two has been fixed
at 2, so that the view provided is that at the edge of Figure 1. The niche overlap surface is now seen as an
area (the space under the gray surface in Figure 1). The dots for each species indicate the predicted surface
for a single species’ niche, the same as in figure 1.

7



for management type is included in the model, with the levels “frequent” and “infrequent”. For a quadratic145

response curve, each category represents a separate maximum of the niche, so that niche overlap will be146

different for both categories. It is possible to average over both effects as a means to retrieve an overall147

measure of niche overlap, or two conditional measures of niche overlap can be calculated: one for each148

category of the predictor.149

The integration in equation (1) and equation (2) in most cases does not have an analytical solution.150

Thus, we use numerical integration to approximate the solution. For computational reasons, here we take a151

simulation-based approach. Note, that simulating from predictors is equivalent to predicting niche overlap152

for unobserved combinations of the environment. An alternative could be to calculate niche overlap using153

the observed site conditions, to represent “observed” niche overlap, though such a measure would be highly154

susceptible to variation in the sampling of sites. For categorical predictors we sample the observed categories155

with a probability equal to their proportion in the data. We simulate continuous predictors from a uniform156

distribution, with the minimum and maximum of each simulation equal to those in the data, i.e., by default157

we integrate over the range of the observed environment, rather than all possible environments. Alternatively,158

in the case of predictors for which data is available on a larger scale, as is the case for e.g., elevation from a159

Digital Elevation Model, or from world-wide observations for temperature, one could instead simulate from160

a larger body of data, and calculate the predicted niche overlap accordingly.161

We represent the probability of the environment for continuous predictors p(λk) using kernel density162

estimates (using the density function in the stats R-package), independently for all predictors. Alter-163

natively, a multivariate kernel density could be considered, though we consider that an avenue for future164

research. Then, we use importance sampling to more accurately perform the integration, and to evaluate165

the integrand more often in places of the environment that are more frequently sampled. We determine the166

probability of unobserved values for predictors by linear interpolation (using the approxfun function in the167

stats R-package), so that we can re-weight each of the r = 1 . . . R realizations from the uniform distributions168

by their (approximate) probabilities. Lastly, we average over the result:169

p(Oj,m) ≈ 1
R

R∑

r=1

min(Fj(λr), Fm(λr))
|j|

K∏

k=1

p(λkr)
Unif(λkr) . (3)

When random effects are additionally included in the model (as is the case for GLLVMs), one needs to170

separately consider how to treat these. For example, it is possible to predict using the conditional distribution171

of the random effects (e.g., as in Hui et al. 2017), or one simulate from the marginal distribution of the172

random effect. For unobserved combinations of predictors, it is not possible to predict using the conditional173

distribution of the random effects, so that it is necessary to simulate from the marginal distribution of the174
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random effect (and average over the predictions), which is usually assumed to be normally distributed. The175

latter approach combines especially well with the model-based measure of niche overlap proposed here, as it176

allows for straightforward implementation of the integration in equation (2).177

We demonstrate predicting (conditional) niche overlap for multiple species in the Foraminifera example178

below.179

Confidence intervals for niche overlap by bootstrap180

Since we are predicting niche overlap, presenting a statistical uncertainty of that prediction is vital for a181

thorough representation of the likelihood of niche overlap for two or more species. This can be represented182

using a confidence interval for the prediction, though this is difficult to calculate. As such, we use the183

estimated variance-covariance matrix of parameter estimates to simulate from the asymptotic (multivariate184

normal) distribution of parameter estimates. In short, we simulate new parameter estimates, predict niche185

overlap, and repeat S times to retrieve a distribution for the niche overlap between all species. Then, we186

use the 2.5 and 97.5% percentiles from that distribution to represent a confidence interval for the proposed187

model-based measure of niche overlap.188

Case study189

To demonstrate the proposed model-based measure of niche overlap we use a dataset of counts from p = 22190

species of Foraminifera at n = 31 locations (Becking et al. 2006; Cleary & Renema 2007). The dataset is191

publicly available as part of the CESTES database (Jeliazkov et al. 2020). Large benthic Foraminifera were192

collected at the Spermonde Archipelago in Indonesia, by scubadiving at various locations, during the period193

of July-October in 1997. Various environmental drivers were recorded, including the depth at which the194

sample was collected, the presence of sedimentary areas, coral formations, reef flats, distance to the nearest195

human settlement, visibility, exposure of the sample to oceanic swell, and the micro-substrate on which each196

sample was found. Cleary & Renema (2007) analysed the data using Canonical Correspondence Analysis197

(CCA, ter Braak 1986). Cleary & Renema (2007) concluded that depth, micro-substrate, and visibility were198

the most important drivers of Foraminifera distribution. Unfortunately, the micro-substrate measurements199

were not available in the CESTES database, so that we were unable to include that here. Though species200

names were not included in the database, we used the total number of counts from each species, reported in201

the original study, and species traits, to assign the species names (see Appendix S1 for a full list of species202

names and abbreviations). We excluded Laevipeneroplis malayensis and Operculina complanata, as those203

species had few observations.204
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The exposure variable included four different categories, representing how exposed a sample was to ocean205

currents, but we grouped this into two categories due to insufficient sample sizes: not exposed (N = 16) and206

exposed (N = 15).207

The dataset contains large counts of Foraminifera species and thus ample information to fit a GLLVM208

with quadratic response model, so we here fitted a GLLVM with constrained latent variables and quadratic209

response model (but species-common tolerances, see van der Veen et al. (2021b)) as implemented in the210

gllvm R-package (Niku et al. 2020), to study co-occurrence patterns of Foraminifera species.211

First, we calculate pairwise niche overlap with R = 106 realizations for the predictors and latent variables,212

and with S = 1000 simulations from the estimated covariance matrix of the parameter estimates to represent213

confidence intervals of the predicted niche overlap. Second, we calculate niche overlap for all combinations of214

overlapping species (e.g., starting at pairwise and ending at the niche overlap of all p species) with R = 104,215

which is lower than for the pairwise niche overlap for computational reasons, to study the mean trend of216

niche overlap. In total, there are O = 2 . . . p
O∑

o=1

(
p
o

)
combinations of overlapping species, so that per species217

there are
O−1∑
o=1

(
p−1

o

)
potential measures of niche overlap (for the dataset below, this is approximately four218

and two million respectively). Lastly, we present conditional niche overlap for some species as demonstration219

of the methodology, with R = 106 realizations for the predictors and latent variables, and with S = 1000220

simulations from the estimated covariance matrix of the parameter estimates. The code that was used to221

calculate (pairwise) niche overlap is included in Appendix S2.222

Results223

The predicted pairwise niche overlap of Foraminifera species is presented in Figure 3. Each panel represents224

a Foraminifera species in the dataset, and each dot the predicted niche overlap by the model, for that species225

with another species in the dataset. Since each prediction is a function of the parameter estimates of two226

species, confidence intervals tend to be wide, as they represent uncertainty in the prediction due to both227

sets of parameter estimates. Regardless, it is clear that some species are predicted to overlap with few other228

species (e.g. Operculina ammonoides) and some species with many other species (e.g. Amphistegina radiata).229

For two species, the asymmetric niche overlap measure is based on the niche overlap, but the normalization230

is different (as it is performed per species niche, so that the overlap can be for the niche of species 1 given the231

predicted niche of species two or for the niche of species two given the predicted niche of species one). Due232

to the large amount of information when calculating niche overlap for more than a few species, it is difficult233

to present in an informative manner. In Figure 4 we have chosen to visualize the average niche overlap234

for all species, and for an increasing number of overlapping species, though without confidence intervals235
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Figure 3: Pairwise niche overlap predicted with the GLLVM with constrained latent variables for three of
the Foraminifera species. Dots represent the predicted niche overlap per species, and error bars represent
95% confidence intervals of the prediction, calculated by simulating parameter estimates from the covariance
matrix of the fitted model. Each panel represents a single species, and each dot the overlap with other
Foraminifera species as part of its niche. A plot including the pairwise niche overlap for all species is
included in appendix S1.

(as these are computationally intensive to calculate using the simulation approach used here). Immediately236

when studying Figure 4, it becomes apparent that niche overlap decreases rapidly with the number of species237

involved in the calculation. Few species overlap with many other species, and as the figure shows, Peneroplis238

pertusis is the only species that is likely to be observed together with all other species.239
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Figure 4: Average niche overlap between all combinations of species. Niche overlap decreases when calculated
for an increasing number of overlapping species. Species that overlap with many other species will have a
large average niche overlap measure.

The niche overlap measures in Figure 3 and Figure 4 represent niche overlap for the whole environment.240

Instead, we could have chosen to produce figures presenting niche overlap for e.g., environments at 30 meters241

depth, or for environments with a high degree of visibility. To demonstrate, the niche overlap of all 22242

Foraminifera species for environments exposed to oceanic current, and as part of the niche of Peneroplis243
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pertusis is 0.41 (95% CI: 0.09, 0.66) in comparison to the 0.29 (0.05, 0.52) for environments not exposed244

to oceanic currents. Thus, for this example it is not possible to conclude that the predicted niche overlap245

differed between exposed and not exposed environments.246

Discussion247

In this article, we present a model-based measure of niche overlap, which can aid researchers in better248

understanding species co-occurrence patterns in ecological communities, for example by allowing for the249

identification of indicator species (Warton et al. 2015a; Hui 2016). For a community of Foraminifera species,250

we demonstrated the potential applications of model-based niche overlap by fitting a recently developed251

method for model-based ordination with constrained latent variables (van der Veen et al. 2021a). However,252

it is possible to predict niche overlap using any method for regression e.g., with stacked species distributions253

models potentially using the Maximum Entropy framework (Phillips et al. 2006), from JSDMs (Pollock et254

al. 2014), or more generally from multispecies models instead.255

In this article, species’ responses were presented with a relatively simple quadratic function. But, many256

ecologists make use of more complex functions to describe species niches, for example by fitting Generalized257

Additive Models (GAMs, Wood 2017) instead. GAMs allow researchers to specify flexible response curves in258

order to model species responses to the environment in more flexibly. Since species co-occurrence patterns are259

inherently multidimensional, specifying species responses to the environment separately for each dimension260

can make it difficult to explore species niches, increasing the potential to miss out on important patterns for261

(lack of) niche overlap. In contrast, the measure of niche overlap presented here always includes all drivers of262

co-occurrence patterns in a model. Additionally, this has the benefit of an explicit connection with classical263

niche overlap theory, which many ecologists are taught during their studies. Measures of niche overlap have264

been used in ecology for decades (Pianka 1973; Hurlbert 1978), so that presenting species co-occurrence as265

niche overlap has the potential to provide ecologists with a sense of familiarity.266

Since all information in the model is condensed into a single, straightforward to interpret measure, the267

approach presented here facilitates a more unified inference on co-occurrence patterns in ecological com-268

munities. In contrast, models that additionally include random effects, such as JSDMs or mixed-models269

in general, complicate drawing complete inference on species co-occurrence patterns even further. For pre-270

dictors, a shared environmental response is identified by similar parameter estimates for predictor slopes271

of species. However, in JSDMs additional unmeasured patterns of species co-occurrence are represented272

by the residual correlation matrix (Warton et al. 2015a). There has been a growing concern about the273

interpretation of residual correlations as evidence of species interactions (Blanchet et al. 2020). Inferring274
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species co-occurrence through a measure of niche overlap might turn the tide in that argument, since it can275

trigger ecologists to more often consider shared environmental responses as a reason for species co-occurrence276

instead.277

Most methods for the calculation of niche overlap focus on pairwise combinations of species (e.g. Geange et278

al. 2011; Blonder et al. 2014), while pairwise niche overlap can be affected by all species in the community As279

such, the choice of focussing on pairwise niche overlap does not reflect the degree of complexity expected in a280

real ecological community. Instead, in this article, we predicted niche overlap for all potential combinations of281

overlapping species, starting at pairwise and finally calculating niche overlap for all species in the community,282

and separately for different environments. For example, for the Foraminifera dataset the results here indicate283

that when an individual of Peneroplis pertusis has been observed, it is likely to also observe individuals of284

all other Foraminifera species in the dataset, whereas we could not have drawn that conclusion had we285

only studied pairwise niche overlap. This pattern did not seem to differ between environments that were286

exposed to oceanic currents with various degree. The ability to examine niche overlap between more than287

two species, and to explore how niche overlap changes along environmental gradients, or how it is influenced288

by environmental change, are interesting features of the method presented in this article with potential for289

community ecology.290

With the possibility of calculating niche overlap for all combinations of all species in a community291

comes the need to make decisions about what results to present. Here, we chose to present pairwise niche292

overlap for historical reasons, and the average predicted niche overlap for an increasing number of species293

to identify any general trends in niche overlap. Due to the large number of possible results, somewhat294

arbitrary choices need to be made for the presentation of niche overlap in ecological studies on a case-by-case295

basis. Further research could attempt to establish a best practice for the presentation of niche overlap, but296

also on improving the software implementation and the methodology presented here. Though it is possible297

to calculate niche overlap for all combinations of species using sufficient computing resources, numerical298

integration by simulation is computationally intensive. In practice, the calculation of model-based niche299

overlap presented here is restricted by the number of predictors, random effects, species, and simulations in300

the analysis. Thus, more efficient methods for computation should be considered in future studies, such as301

Laplace’s method.302
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Appendix S115

Table of species names16

Species name abbreviation

Calcarina spengleri Al-qu

Calcarina mayori Am-s1

Calcarina quoyii Am-s2

Calcarina hispida Am-le

Neorotalia calcar Am-lo

Baculogypsinoides spinosus Am-pa

1



(continued)

Species name abbreviation

Amphistegina lessonii Am-ra

Amphistegina lobifera Ba-sp

Amphistegina papillosa Ca-hi

Amphistegina radiata Ca-ma

Operculina ammonoides Ca-qu

Operculina complanata Ca-sp

Heterostegina depressa Ce-cr

Palaeonummulites venosus De-am

Celanthus craticulatum He-de

Peneroplis pertusus

Peneroplis planatus Ne-ca

Dendritina ambigua Op-am

Alveolinella quoyii

Laevipeneroplis malayensis Pa-ve

Amphisorus sp 1 Pa-sp

Amphisorus sp 2 Pe-pe

Sorites orbiculus Pe-pl

Parasorites sp 2 So-or

Figure S1: pairwise niche overlap of all species17
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Appendix S2: R-code used to calculate niche overlap19

Function used to calculate pairwise niche overlap.20

simOverlap <- function(object = 1000, nsim = 1000, newX = NULL, boot.CI = TRUE,

bootSim = 1000, seed = NULL, ...) {

set.seed(seed)

# ld <- try(library('cubature'),silent=T) if(inherits(ld,'try-error')){

# stop('Cubature R-package not installed.') }

if (!is.list(object$sd) & boot.CI) {

stop("Cannot calculate niche overlap without standard errors.")

}

if (object$family == "ordinal") {

stop("Not implemented for ordinal model.")

}

p <- ncol(object$y)

n <- nrow(object$y)

if (!is.null(newX)) {

n <- nrow(newX)

}

# Extract used predictors

is.cat <- function(x) ifelse(all(x %in% c(0, 1)), TRUE, FALSE)

if (is.null(object$lv.formula)) {

object$lv.formula <- ~1

}

if (!is.null(cbind(object$X.design, object$lv.X))) {

X <- cbind(object$X, object$lv.X)

X <- X[, unique(c(colnames(object$params$Xcoef), row.names(object$params$LvXcoef)))]

} else {

X <- NULL
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}

if (boot.CI) {

# Covariance matrix of parameters

Sigma_pars <- try(solve(object$Hess$Hess.full[object$Hess$incl,

object$Hess$incl]), silent = T)

if (inherits(Sigma_pars, "try-error")) {

Sigma_pars <- try(MASS::ginv(object$Hess$Hess.full[object$Hess$incl,

object$Hess$incl], tol = 0), silent = T)

}

if (inherits(Sigma_pars, "try-errors")) {

Sigma_pars <- object$Hess$cov.mat.mod

}

# more robust way of sampling from MVRNORM than using Sigma directly

L <- suppressWarnings(try(chol(Sigma_pars), silent = T))

if (inherits(L, "try-error")) {

if (min(diag(Sigma_pars)) > -0.01) {

# add small value to perturb the covariance matrix and try again

L <- suppressWarnings(try(chol(Sigma_pars + abs(min(diag(Sigma_pars))) +

1e-08), silent = T))

if (inherits(L, "try-error")) {

L <- suppressWarnings(try(chol(Sigma_pars, pivot = T),

silent = T))

if (inherits(L, "try-error")) {

stop("Non-singular covariance matrix of parameters.")

}

}

} else if (inherits(L, "try-error")) {

L <- suppressWarnings(try(chol(Sigma_pars, pivot = T),

silent = T))

} else if (inherits(L, "try-error")) {

stop("Non-singular covariance matrix of parameters.")
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}

}

# true parameters

par <- object$TMBfn$par[object$Hess$incl]

}

# simulate newX

if (!is.null(X)) {

newX <- matrix(0, ncol = ncol(X), nrow = nsim)

for (i in 1:ncol(X)) {

if (!is.cat(X[, i])) {

# sample from uniform is continuous

newX[, i] <- runif(nsim, min = min(X[, i]), max = max(X[,

i]))

} else {

# re-sample factors or characters with prop as prob

newX[, i] <- sample(unique(X[, i]), prob = table(X[, i])/nrow(X),

size = nsim, replace = T)

}

}

colnames(newX) <- colnames(X)

# calculate probabilities of environment importance sampling for

# continuous predictors

probs <- NULL

for (i in which(!apply(X, 2, is.cat))) {

densfun <- approxfun(density(X[, i], from = min(X[, i]), to = max(X[,

i])), yleft = 0, yright = 0)

probs <- cbind(probs, densfun(newX[, i])/dunif(newX[, i], min(X[,

i]), max(X[, i])))

}
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} else {

probs <- matrix(1, ncol = 1)

newX <- NULL

}

# Simulate from MVRNORM for LVs

if (!is.null(object$lvs)) {

newLV <- matrix(rnorm(nsim * ncol(object$lvs)), ncol = ncol(object$lvs))

# If constrained ord, ensure independence of the LV

if (object$num.lv.c > 0) {

newLV[, 1:object$num.lv.c] <- residuals.lm(lm(newLV ~ newX))

}

} else {

newLV <- NULL

}

# predict

preds <- predict.gllvm(object, newX = newX, newLV = newLV, type = "response")

# Norm constant per niche

probs <- rowProds(probs)

speciesArea <- apply(preds * probs, 2, mean)

# Calculate overlap

overlap <- matrix(0, p, p)

for (j2 in 1:(p - 1)) {

for (j in (j2 + 1):p) {

overlap[j, j2] = mean(rowMins(preds[, c(j, j2)] * probs))

overlap[j2, j] = overlap[j, j2]/speciesArea[j2]

overlap[j, j2] = overlap[j, j2]/speciesArea[j]

}

}

# bootstrap a CI

if (boot.CI) {
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sim_overlap <- array(0, dim = c(bootSim, p, p))

progress_bar = txtProgressBar(min = 0, max = bootSim, style = 3,

char = "-")

setTxtProgressBar(progress_bar, value = 0)

for (i in 1:bootSim) {

# start simulation

# First simulate from a std. normal distribution

pars <- rnorm(length(par))

# then transform with cholesky and means

pars <- pars %*% t(L) + par

# Now we start assigning parameters to the model again

names(pars) <- names(object$TMBfn$par)[object$Hess$incl]

beta <- pars[names(pars) == "b"]

# intercepts

object$params$beta0 <- beta[1:p]

beta <- beta[-c(1:p)]

# Slopes for predictors if present

if (length(beta) > 0) {

object$params$Xcoef <- matrix(beta, nrow = p)

}

# Slopes for reduced Rank

if (object$num.RR > 0 | object$num.lv.c > 0) {

b_lv <- pars[names(pars) == "b_lv"]

object$params$LvXcoef <- matrix(b_lv, ncol = object$num.RR +

object$num.lv.c)
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}

# Slopes for LV if present

if (object$num.lv > 0 | object$num.lv.c > 0 | object$num.RR >

0) {

lambda <- matrix(0, nrow = p, ncol = object$num.lv + object$num.lv.c +

object$num.RR)

diag(lambda) <- 1

lambda[lower.tri(lambda, diag = F)] <- pars[names(pars) ==

"lambda"]

}

# Quadratic coefs for LVs

if (object$quadratic != F) {

lambda2 <- pars[names(pars) == "lambda2"]

lambda2 <- matrix(lambda2, nrow = p, ncol = object$num.lv +

object$num.lv.c + object$num.RR, byrow = T)

lambda <- cbind(lambda, lambda2)

}

# Assign the lambdas

if ((object$num.lv + object$num.lv.c + object$num.RR) > 0) {

object$params$theta <- lambda

}

# Sigma for LVs

if ((object$num.lv + object$num.lv.c) > 0) {

object$params$sigma.lv <- abs(pars[names(pars) == "sigmaLV"])

}

# Nuisance parameters

if (object$family == "ZIP") {
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lg_phi <- pars[names(pars) == "lg_phi"]

object$params$inv.phi <- exp(lg_phi)

object$params$phi <- 1/object$params$inv.phi

}

# Predict

preds <- predict.gllvm(object, newX = newX, newLV = newLV,

type = "response")

# Norm constants

speciesArea <- apply(preds * probs, 2, mean)

# Calculate overlap

for (j2 in 1:(p - 1)) {

for (j in (j2 + 1):p) {

sim_overlap[i, j, j2] = mean(rowMins(preds[, c(j, j2)] *

probs))

sim_overlap[i, j2, j] = sim_overlap[i, j, j2]/speciesArea[j2]

sim_overlap[i, j, j2] = sim_overlap[i, j, j2]/speciesArea[j]

}

}

setTxtProgressBar(progress_bar, value = i)

} #end simulation for CI

# Assign everything to a dataframe

specnam <- colnames(object$y)

ovlp <- NULL

for (j in 1:p) {

for (j2 in (1:p)[-j]) {

CI <- quantile(sim_overlap[, j, j2], c(0.025, 0.975), na.rm = T) #overlap was median

ovlp <- rbind(ovlp, cbind(overlap = overlap[j, j2], lower = CI[1],

upper = CI[2], species = specnam[j], species2 = specnam[j2]))
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}

}

ovlp <- data.frame(ovlp)

ovlp$overlap <- as.numeric(ovlp$overlap)

ovlp$lower <- as.numeric(ovlp$lower)

ovlp$upper <- as.numeric(ovlp$upper)

close(progress_bar)

# }

} else {

ovlp <- overlap

}

return(ovlp)

}

Function used to calculate p-wise nicheoverlap21

simOverlapAny <- function(object = 1000, species.idx = NULL, nsim = 1000,

newX = NULL, boot.CI = TRUE, bootSim = 1000, seed = NULL, ...) {

set.seed(seed)

if (is.null(species.idx)) {

stop("Species.idx needs to be provided.")

}

# ld <- try(library('cubature'),silent=T) if(inherits(ld,'try-error')){

# stop('Cubature R-package not installed.') }

if (!is.list(object$sd) & boot.CI) {

stop("Cannot calculate niche overlap without standard errors.")

}

if (object$family == "ordinal") {

stop("Not implemented for ordinal model.")

}

if (!is.matrix(species.idx)) {

species.idx <- matrix(species.idx, nrow = 1)
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}

p <- nrow(species.idx)

n <- nrow(object$y)

if (!is.null(newX)) {

n <- nrow(newX)

}

# Extract used predictors

is.cat <- function(x) ifelse(all(x %in% c(0, 1)), TRUE, FALSE)

if (is.null(object$lv.formula)) {

object$lv.formula <- ~1

}

if (!is.null(cbind(object$X.design, object$lv.X))) {

if (is.null(newX)) {

X <- cbind(object$X, object$lv.X)

X <- X[, unique(c(colnames(object$params$Xcoef), row.names(object$params$LvXcoef))),

drop = F]

} else {

X <- newX

X <- X[, unique(c(colnames(object$params$Xcoef), row.names(object$params$LvXcoef))),

drop = F]

}

} else {

X <- NULL

}

if (boot.CI) {

# Covariance matrix of parameters
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Sigma_pars <- try(solve(object$Hess$Hess.full[object$Hess$incl,

object$Hess$incl]), silent = T)

if (inherits(Sigma_pars, "try-error")) {

Sigma_pars <- try(MASS::ginv(object$Hess$Hess.full[object$Hess$incl,

object$Hess$incl], tol = 0), silent = T)

}

if (inherits(Sigma_pars, "try-errors")) {

Sigma_pars <- object$Hess$cov.mat.mod

}

# more robust way of sampling from MVRNORM than using Sigma directly

L <- suppressWarnings(try(chol(Sigma_pars), silent = T))

if (inherits(L, "try-error")) {

if (min(diag(Sigma_pars)) > -0.01) {

# add small value to perturb the covariance matrix and try again

L <- suppressWarnings(try(chol(Sigma_pars + abs(min(diag(Sigma_pars))) +

1e-08), silent = T))

if (inherits(L, "try-error")) {

L <- suppressWarnings(try(chol(Sigma_pars, pivot = T),

silent = T))

if (inherits(L, "try-error")) {

stop("Non-singular covariance matrix of parameters.")

}

}

} else if (inherits(L, "try-error")) {

L <- suppressWarnings(try(chol(Sigma_pars, pivot = T),

silent = T))

} else if (inherits(L, "try-error")) {

stop("Non-singular covariance matrix of parameters.")

}

}
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# true parameters

par <- object$TMBfn$par[object$Hess$incl]

}

# simulate newX

if (!is.null(X)) {

newX <- matrix(0, ncol = ncol(X), nrow = nsim)

for (i in 1:ncol(X)) {

if (!is.cat(X[, i])) {

# sample from uniform is continuous

newX[, i] <- runif(nsim, min = min(X[, i]), max = max(X[,

i]))

} else {

# re-sample factors or characters with prop as prob

newX[, i] <- sample(unique(X[, i]), prob = table(X[, i])/nrow(X),

size = nsim, replace = T)

}

}

colnames(newX) <- colnames(X)

# calculate probabilities of environment importance sampling for

# continuous predictors

probs <- NULL

for (i in which(!apply(X, 2, is.cat))) {

densfun <- approxfun(density(X[, i], from = min(X[, i]), to = max(X[,

i])), yleft = 0, yright = 0)

probs <- cbind(probs, densfun(newX[, i])/dunif(newX[, i], min(X[,

i]), max(X[, i])))

}

} else {

probs <- matrix(1, ncol = 1)

newX <- NULL

}
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# Simulate from MVRNORM for LVs

if (!is.null(object$lvs)) {

newLV <- matrix(rnorm(nsim * ncol(object$lvs)), ncol = ncol(object$lvs))

# If constrained ord, ensure independence of the LV

if (object$num.lv.c > 0) {

newLV[, 1:object$num.lv.c] <- residuals.lm(lm(newLV ~ newX))

}

} else {

newLV <- NULL

}

# predict could also do hacky predict trick here to speed up..

preds <- predict.gllvm(object, newX = newX, newLV = newLV, type = "response")

# Norm constant per niche

probs <- rowProds(probs)

speciesArea <- apply(preds * probs, 2, mean)

# Calculate overlap

overlap <- rep(0, p)

progress_bar = txtProgressBar(min = 0, max = p, style = 3, char = "-")

setTxtProgressBar(progress_bar, value = 0)

for (j in 1:p) {

overlap[j] = mean(rowMins(preds[, species.idx[j, !is.na(species.idx[j,

])]] * probs))

setTxtProgressBar(progress_bar, value = j)

# /speciesArea[species.idx[j,!is.na(species.idx[j,])][1]]

}

# bootstrap a CI

if (boot.CI) {
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speciesAreaold <- speciesArea[species.idx[, 1]]

sim_overlap <- matrix(0, nrow = bootSim, ncol = p)

progress_bar = txtProgressBar(min = 0, max = bootSim, style = 3,

char = "-")

setTxtProgressBar(progress_bar, value = 0)

for (i in 1:bootSim) {

# start simulation

set.seed(i + seed)

# First simulate from a std. normal distribution

pars <- rnorm(length(par))

# then transform with cholesky and means

pars <- pars %*% t(L) + par

# Now we start assigning parameters to the model again

names(pars) <- names(object$TMBfn$par)[object$Hess$incl]

# intercepts

beta <- pars[names(pars) == "b"]

object$params$beta0 <- beta[1:ncol(object$y)]

# Slopes for predictors if present

if (length(beta) > 0) {

object$params$Xcoef <- matrix(beta, nrow = ncol(object$y))

}

# Slopes for reduced Rank

if (object$num.RR > 0 | object$num.lv.c > 0) {

b_lv <- pars[names(pars) == "b_lv"]

object$params$LvXcoef <- matrix(b_lv, ncol = object$num.RR +

object$num.lv.c)

}
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# Slopes for LV if present

if (object$num.lv > 0 | object$num.lv.c > 0 | object$num.RR >

0) {

lambda <- matrix(0, nrow = ncol(object$y), ncol = object$num.lv +

object$num.lv.c + object$num.RR)

diag(lambda) <- 1

lambda[lower.tri(lambda, diag = F)] <- pars[names(pars) ==

"lambda"]

}

# Quadratic coefs for LVs

if (object$quadratic != F) {

lambda2 <- pars[names(pars) == "lambda2"]

lambda2 <- matrix(lambda2, nrow = ncol(object$y), ncol = object$num.lv +

object$num.lv.c + object$num.RR, byrow = T)

lambda <- cbind(lambda, lambda2)

}

# Assign the lambdas

if ((object$num.lv + object$num.lv.c + object$num.RR) > 0) {

object$params$theta <- lambda

}

# Sigma for LVs

if ((object$num.lv + object$num.lv.c) > 0) {

object$params$sigma.lv <- abs(pars[names(pars) == "sigmaLV"])

}

# Nuisance parameters

if (object$family == "ZIP") {

lg_phi <- pars[names(pars) == "lg_phi"]

object$params$inv.phi <- exp(lg_phi)
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object$params$phi <- 1/object$params$inv.phi

}

# Predict

preds <- predict.gllvm(object, newX = newX, newLV = newLV,

type = "response")

# Calculate overlap

for (j in 1:p) {

# Norm constants

speciesArea <- mean(preds[, species.idx[j, 1]] * probs)

sim_overlap[i, j] = mean(rowMins(preds[, species.idx[j,

!is.na(species.idx[j, ])]] * probs))/speciesArea

}

setTxtProgressBar(progress_bar, value = i)

} #end simulation for CI

}

if (boot.CI) {

return(list(overlap = overlap/speciesAreaold, sim_overlap = sim_overlap))

} else {

return(list(overlap = overlap, speciesArea = speciesArea))

}

}
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1  |  INTRODUC TION

Due to global trends in species distribution range shifts and biodi-
versity loss, ecosystems worldwide are likely to undergo consider-
able changes in community composition (Jennings & Harris, 2017; 

Seebens et al., 2020). Along with the increased spread of non-
native species as a result of globalisation, increasing average tem-
peratures due to climate change will enable new species to make 
their way into environments previously too cold for them to either 
enter or establish in (Rahel & Olden, 2008; Sharma et al., 2007; 
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Abstract
Due to global climate change–induced shifts in species distributions, estimating 
changes in community composition through the use of Species Distribution Models 
has become a key management tool. Being able to determine how species associa-
tions change along environmental gradients is likely to be pivotal in exploring the 
magnitude of future changes in species’ distributions. This is particularly important 
in connectivity-limited ecosystems, such as freshwater ecosystems, where increased 
human translocation is creating species associations over previously unseen environ-
mental gradients. Here, we use a large-scale presence–absence dataset of freshwater 
fish from lakes across the Fennoscandian region in a Joint Species Distribution Model, 
to measure the effect of temperature on species associations. We identified a trend 
of negative associations between species tolerant of cold waters and those tolerant of 
warmer waters, as well as positive associations between several more warm-tolerant 
species, with these associations often shifting depending on local temperatures. Our 
results confirm that freshwater ecosystems can expect to see a large-scale shift to-
wards communities dominated by more warm-tolerant species. While there remains 
much work to be done to predict exactly where and when local extinctions may take 
place, the model implemented provides a starting-point for the exploration of climate-
driven community trends. This approach is especially informative in regards to de-
termining which species associations are most central in shaping future community 
composition, and which areas are most vulnerable to local extinctions.
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Walther et al., 2005). Many of these species are capable of causing 
extirpations of native species or even the restructuring of entire 
food webs once established (Nackley et al., 2017; Rockwell-Postel 
et al., 2020; Walther et al., 2009). Many species are vulnerable 
to local population declines and extinctions as increasing tem-
peratures and extreme weather events compound threats posed 
by other anthropogenic factors, among them biological invasions 
(Dawson et al., 2011).

A changing climate is also capable of changing associations be-
tween species. While many species may be capable of co-occurring 
at certain temperatures, as annual temperatures increase, one spe-
cies may gain a competitive advantage. For instance, at moderate 
temperatures a beech forest may contain three or four species, yet 
as temperatures tend to either extreme, negative associations may 
occur in the form of a single species beginning to outcompete the 
others and dominate (Leathwick, 2002). Associations becoming 
more negative with temperature increases could lead to declines in 
some species’ populations, and local extinctions occurring, well be-
fore these species’ upper thermal tolerances are reached. A deeper 
understanding of changes in species associations over a temperature 
gradient would contribute greatly to our understanding of the likely 
effects of climate change on community composition (Early & Keith, 
2019; Freeman et al., 2018).

Climate change is likely to affect freshwater ecosystems partic-
ularly harshly, with a rise in temperature likely to lead to a popula-
tion increase in species with higher thermal tolerance, with species 
of lower tolerance shifting further upstream (Comte et al., 2013; 
Daufresne & Boët, 2007). Increases in human translocations over 
recent decades are leading to novel species associations (Carpio 
et al., 2019), making understanding the impacts of these associa-
tions particularly important to predict future ecosystem effects. 
Research in sub-Arctic regions – which are likely to warm substan-
tially in the coming decades – has already demonstrated a shift 
towards more warm-adapted species both within individual lakes 
and across catchments. (Hayden et al., 2017; Sharma et al., 2007; 
Van Zuiden et al., 2015; Winfield et al., 2008). Northern pike (Esox 
Lucius; Linnaeus, 1758) and brown trout (Salmo trutta; Linnaeus, 
1758) may co-occur at lower temperatures in the sub-Arctic, but 
as average annual temperatures increase, a negative association 

results in a drop in the brown trout population as pike begin to 
predate brown trout at higher rates, eventually leading to local 
brown trout extinctions (Hein et al., 2013). The accelerated nature 
of climate change in the Arctic and sub-Arctic means that these 
regions are particularly important in giving an insight into potential 
community shifts, which are likely to take place in the coming de-
cades in warmer regions.

Although much of the current research on shifts in associations 
over a temperature range concerns only a few species, or at a relatively 
small scale, attempts to increase focus on broader community models 
in predicting the impacts of climate change at a larger scale are ongoing 
(Comte et al., 2013; Radinger et al., 2019; Silknetter et al., 2020). Here, 
we construct a Joint Species Distribution Model (JSDM) as proposed 
by Tikhonov et al. (2017) to predict trends in species associations 
across a temperature gradient on a multi-national scale. JSDMs arose 
as a combination of habitat modelling and community ecology, in re-
sponse to the need to account for associations which are not explained 
by the effects of environmental covariates (Ovaskainen et al., 2017; 
Pollock et al., 2014; Warton et al., 2015). Although they are capable of 
estimating correlations between species, these correlations may be a 
product of shared habitat specialisation, not interactions (Hargreaves 
et al., 2020; Hayden et al., 2013). As such, the output of JSDMs are 
often referred to as representing species associations, as opposed to 
interactions (Blanchet et al., 2020).

Here we use a dataset containing presence-absence data of 
fish species across more than 3000 freshwater lakes in the region 
of Fennoscandia, covering large climate gradients across mainland 
Norway, Sweden and Finland (Tammi et al., 2003). Using this model-
ling framework we aim to assess (a) whether we are able to identify 
the changes in associations between species of different thermal 
tolerances over a temperature gradient at large scales, (b) the reli-
ability of our predictions based on whether these associations cor-
roborate the results of previous research into pairwise associations 
and (c) how accurately these models can be used to predict future 
community shifts in the face of climate change. We aim to provide 
ecological modellers with a promising framework to build upon 
when exploring shifts in species distributions and abundances and 
provide managers with key information regarding potential extinc-
tion and invasion hotspots going forward.

F I G U R E  1  (a) Density of the 
3308 lakes surveyed in the 1995 Nordic 
Fish Status Survey, represented by the 
number of lake centrepoints contained 
within hexagons. (b) Distribution of 
freshwater fish species richness across the 
same lakes, with species richness equal to 
average species richness of lakes found 
within hexagons
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2  |  METHODS

2.1  |  Study system

Our study system was a series of 3308  lakes throughout the 
Fennoscandian region (Norway, Sweden and Finland). The lakes 
were located between 55.4 degrees and 71.1 degrees in latitude, 4.6 
and 31.4 degrees longitude (WGS84), and at an altitudinal range of 
0 to 1540 m. Surveyed lake density is highest throughout Sweden 
(Figure 1a).

The region itself is particularly species poor, given relatively re-
cent deglaciation (Huitfeldt-Kaas, 1918). Species richness increases 
eastwards, with Finland and Sweden showing higher species richness 
than western Norway (Figure 1b). This is a product of mountainous 
regions dividing Norway, which have provided fewer immigration 
pathways for freshwater fish. Studies in the region have predicted 
that native species belonging to warmer guilds (‘cool-water species’), 
like the Northern pike, the European perch (Perca fluviatilis; Linnaeus, 
1758), and cyprinids like the common roach (Rutilus rutilus; Linnaeus, 
1758) (Elliott, 2010; Hayden et al., 2014; Hokanson, 1977; Wehrly 
et al., 2003) will expand their range (Comte et al., 2013; Hayden 
et al., 2017). This could result in the local extirpation of species like 
the brown trout, whitefish (Coregonus lavaretus; Valenciennes, 1848) 
and Arctic charr (Salvelinus alpinus; Linnaeus, 1758), which are more 
tolerant of cold waters (‘cool-cold/cold-water species’; Elliott, 2010; 
Hayden et al., 2014; Parkinson et al., 2016; Wehrly et al., 2003). 
The co-occurrence of species from various thermal guilds, within 
Fennoscandia, makes the region ideal for studying the impacts of 
climate change on freshwater communities (Comte et al., 2013).

2.2  |  Occurrence data

The occurrence data were collected from a Fennoscandian survey of 
freshwater fish, originally conducted between 1995 and 1997 (Tammi 
et al., 2003). The resulting dataset consists of presence-absence 
information on fish species in 3821  lakes across Fennoscandia 
(Table 1). Henceforth, all species will be referred to by their com-
mon name (Table 1). Species that appeared in less than 1% of total 
lakes were excluded, as it is unlikely species-specific parameters can 
be accurately estimated given such low levels of occurrence. None 
were species thought likely to have a large-scale negative impact on 
Fennoscandian freshwater communities, either through competition 
or direct predation (for the full list of species, see Appendix S1).

2.3  |  Environmental data

Temperature data were derived from the EuroLST data set for the 
centre of each lake (Metz et al., 2014). The temperature covariate 
used was the average air temperature of the warmest quarter, which 
has shown to have a strong correlation with water lake temperature 

(Livingstone & Lotter, 1998). This was the available data most likely 
to be strongly correlated with ice-off dates and spring warming tem-
peratures, both of which have been shown to have a strong effect on 
both the life histories of aquatic species and interactions between 
different species (Mehner et al., 2011; Munsch et al., 2019).

For each lake, we obtained six additional covariates describing 
either environmental properties or human impact with the potential 
to influence establishment risk. Our study focuses on the effect of 
temperature; however, other environmental covariates are likely to 
have a strong effect on community composition, and as such are in-
cluded as covariates. Environmental properties included lake surface 
area, shoreline complexity, total area of lakes situated upstream of 
focal lake, water pH, total organic carbon and human impact at the 
site. Area, shoreline complexity, and total upstream area were all de-
rived from GIS analyses. Shoreline complexity was then calculated 
as:

where P is the lake perimeter and A is the lake surface area (Wetzel, 
2001). Water chemistry covariates were taken from the 1995 Nordic 
Lake Survey (Henriksen et al., 1998). To approximate human impact on 
each site, we used the Human Footprint Index as compiled by Venter 
at al. (2016), henceforth referred to as HFI. HFI is a point score which 
combines eight human impact covariates to approximate the level of 
human pressure on nature, assigned to cells one kilometre squared in 
size (Venter et al., 2016). These impact covariates include presence of 
built environment, crop lands and roads, and local human population 
density. HFI was taken for the cell in which the centre point of the 
lake lay, with previous research suggesting that human activity in the 
immediate vicinity of freshwater sites is more likely to affect species 
occurrences than activity upstream or downstream (Chapman et al., 
2019). Lakes for which any of the environmental data was incomplete 
were disregarded (n = 119, 3.5% of total lakes). Area, total upstream 
area and total organic carbon were heavily right skewed and were 
thus log-transformed to assist with model convergence. All covariates 
were standardised by scaling to a mean of zero and a standard devia-
tion of one to assist in model convergence. Further information on all 
covariates, included expected effects on populations, are summarised 
in Table 2.

The immigration history of freshwater fish in the area and steep 
topography that makes up much of Norway's west coast mean that 
many species have historically been unable to naturally colonise this 
region (Figure 1b; Huitfeldt-Kaas, 1918; Sandlund & Hesthagen, 
2011). As such, environmental conditions which would normally re-
sult in the presence of species across other parts of Fennoscandia 
may have little to no effect on the likelihood of their presence in this 
region. This spatial divide could potentially make for a source of spa-
tial autocorrelation, so to account for this we used the historical dis-
tribution range of species which were unable to colonise Norway's 
west coast as an additional covariate (see Appendix S2).

SC =
P

2000
√
�A

,
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2.4  |  Statistical modelling

We constructed a JSDM which predicts changes in species associa-
tions over a temperature gradient. For our matrix of recorded obser-
vations, we assume that the presence-absences of species j = 1…p at 
lakes i = 1…n are independent observations, conditional on a vector 
of h = 1…nf latent factors per lake, modelled as:

where pij denotes the probability of species j being present at site i, 
and �−1 denotes the inverse of a probit link-function. We denote �ij as:

where xik denotes the value of environmental covariate k = 1…nc at 
site i, �j denotes the intercept for species j, and � jk denotes the effect 

of environmental covariate k on species j. The species-by-site random 
effects �ij ∼ N

(
0,R

(
xi
))

 are defined by a latent factor model:

where zih denotes our h = 1…nf latent factors for lake i, where �jh
(
x∗
i

)
 

denotes the responses (loading) of species j = 1…p to each of the latent 
factors. We model the loadings per species j and for each factor h as a 
function of temperature:

where � jh denotes an additional intercept for species j and latent factor 
h, ujh denotes the response of latent factor h for species j to tempera-
ture, xi denotes the temperature in degrees at site i, and nl denotes 
the total number of sites. Here, we assume nf = 3, as our Deviance 
information criteria did not improve significantly with the addition 
of more latent factors, and a few major gradients usually account for 

yij ∼ Bernoulli(pij),

withpij = �−1(�ij),

�ij = �j +

nc∑
k=1

xik� jk + �ij,

�ij =

nf∑
h=1

zih�jh
(
x∗
i

)
,

�jh
(
x∗
i

)
=

nl∑
i=1

� jh + xiujh,

TA B L E  1  Freshwater fish species surveyed in the 1995 Nordic Fish Status Survey

Common name Scientific name Family Naming authority
Frequency of 
occurrence (%)

Perch Perca fluviatilis Percidae Linnaeus, 1754 72.1

Pike Esox lucius Esocidae Linnaeus, 1754 65.8

Roach Rutilus rutilus Cyprinidae Linnaeus, 1754 52.9

Brown trout Salmo trutta Salmonidae Linnaeus, 1754 46.7

Burbot Lota lota Lotidae Linnaeus, 1754 37.8

Bream Abramis brama Cyprinidae Linnaeus, 1754 24.5

Whitefish Coregonus lavaretus Salmonidae Valenciennes, 1844 23.5

Ruffe Gymnocephalus cernuus Percidae Linnaeus, 1754 21.0

Arctic charr Salvelinus alpinus Salmonidae Linnaeus, 1754 14.9

Bleak Alburnus alburnus Cyprinidae Linnaeus, 1754 13.7

Tench Tinca tinca Cyprinidae Linnaeus, 1754 13.5

Vendace Coregonus albula Salmonidae Linnaeus, 1754 12.1

Zander Stizostedion lucioperca Percidae Linnaeus, 1754 11.7

Crucian carp Carassius carassius Cyprinidae Linnaeus, 1754 11.0

Rudd Scardinius erythrophthalmus Cyprinidae Linnaeus, 1754 10.1

Minnow Phoxinus phoxinus Cyprinidae Linnaeus, 1754 9.2

Smelt Osmerus eperlanus Osmeridae Linnaeus, 1754 8.1

White bream Blicca bjoerkna Cyprinidae Linnaeus, 1754 6.5

Grayling Thymallus thymallus Salmonidae Linnaeus, 1754 6.1

Ide Leuciscus idus Cyprinidae Linnaeus, 1754 6.0

Rainbow trout Oncorhynchus mykiss Salmonidae Walbaum, 1792 4.1

Threespine stickleback Gasterosteus aculeatus Gasterosteidae Linnaeus, 1754 1.6

Brook trout Salvelinus fontinalis Salmonidae Mitchill, 1814 1.4

Ninespine stickleback Pungitius pungitius Gasterosteidae Linnaeus, 1754 1.0

Note: Table shows species taxonomy, as well as percentage of 3308 lakes that the species were found in. Species in bold occurred in more than 10% 
of lakes and were, thus, considered high-occurrence species.
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most inter-species variation (Halvorsen, 2012). We define the matrices 
Λ
(
x∗
i

)
 with elements �jh

(
x∗
i

)
 and use these to construct a temperature-

dependent, inter-species residual covariance matrix:

We then scale this covariance matrix to an inter-species cor-
relation matrix R representing temperature-dependent associations 
between species that are not explained by fixed species-specific ef-
fects of environmental covariates:

These resulted in values between −1 and 1, with positive values 
indicative of positive associations between species, implying that 
species are likely to co-occur, and negative values implying the op-
posite. To compare species associations to the similarity in species 

responses to fixed effects in the models, we calculated an additional 
correlation matrix (Hui, 2017).

Although temperature was included in the random-effect, it was 
also included as a fixed-effect with quadratic function, to account 
for potential non-linear responses of species to temperature (Boddy 
& McIntosh, 2017; Veen et al., 2021).

We fit the model in a Bayesian framework using the greta 
R-package (Golding, 2019). All parameters were specified non-
informative normally-distributed priors with a mean of zero and a 
standard deviation of 10, with the exception of the latent factors 
zih (mean = 0, SD = 1) and alpha parameters αj (mean = −2, SD = 1). 
Alpha parameters had a lower mean to assist with convergence, as 
most species were prevalent at a low number of locations. Further 
exceptions were u and τ matrices, for which the diagonals had posi-
tively truncated non-informative normal priors, and all values in the 
upper triangle, which were set to zero to enforce identifiability (Hui 
et al., 2015). Markov Chain Monte-Carlo (MCMC) sampling was done 

Ω
(
x∗
i

)
= Λ

(
x∗
i

)
Λ
(
x∗
i

)T
+ I.

Rj1 j2 = Ωj1 j2
∕
√

Ωj1 j1
Ωj2 j2

.

TA B L E  2  Environmental covariates, description, environmental effects, units and mean (±standard deviation) used in Joint Species 
Distribution Models of freshwater fish across European freshwater lakes

Environmental covariate Description Expected biological effect Unit Mean (±SD)

Area Surface area of lake Larger area increases 
potential habitat and 
niche breadth

Square kilometres 6163 
(±52149)

Shoreline complexity Calculated using area and perimeter Increased shoreline 
complexity creates 
variation in habitat type 
(Verdiell-Cubedo et al., 
2012)

Unitless 0.20, 0.14

Temperature Average surface air temperature during 
maximum quarter

Temperature may alter 
various life history 
aspects of species 
(Magnuson et al., 1979)

Degrees 12.75, 1.74

Human Footprint Index Index comprising 10 different variables, 
which represents impact of human 
activity (Venter at al., 2016)

Higher HFI increases 
chances of local human 
introductions (Chapman 
et al., 2019)

Unitless scale from 
1 to 50

6.79, 7.03

Total upstream area Aggregated area of lakes occurring 
directly upstream from focal lake

Higher upstream area 
increases chance of 
species’ persistence

Square kilometres 388.68, 
6405.17

pH Taken from Nordic Lake Survey 
(Henriksen et al., 1998)

Acid sensitivity can 
limit local species’ 
distributions (Ohman 
et al., 2006)

Unitless scale from 
1 to 14

6.62, 0.66

Total organic carbon Taken from Nordic Lake Survey 
(Henriksen et al., 1998)

Higher levels can cause 
anoxia and limit species’ 
distributions (Ohman 
et al., 2006)

Mg per litre 7.09, 4.95

Biogeographic zone Whether or not lake was found in a 
drainage basin cut-off from the rest 
of the region by the natural dispersal 
barrier running through central 
Norway

Presence of dispersal 
barrier provides fewer 
immigration pathways 
into western Norway 
for species, which 
did not colonise area 
via Norwegian Sea 
(Sandlund & Hesthagen, 
2011)

Binary covariate NA
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using 4000 samples on one chain, with a burn-in of 2000 samples. 
Although most Bayesian analyses would use multiple chains, latent 
variable models are often invariant to sign-switching (Hui, 2017), 
so here we choose to only run one chain. We used a Hamiltonian 
Monte Carlo sampler, sampling the number of leapfrog steps at each 
iteration uniformly between 40 and 60 (these numbers were man-
ually tuned to achieve efficient sampling). The leapfrog integrator 
step sizes for each parameter were automatically tuned during the 
burn-in phase, then fixed for sampling. Parameters were considered 
to have adequately converged if their Geweke Z-score was below 
1.96 (Geweke, 1992). 96 of our 105 species association parameters 
converged adequately. Trace plots for all association parameters can 
be found in Appendix S3.

We estimated changes in species associations over a continuous 
gradient from 6.68 to 16.80 degrees Celsius, which represented the 
minimum and maximum temperature observed in the data. Three 
models were constructed. Model 1 included data from all 24 species 
(“all species” model). Model 2 included data from species which only 
occurred in more than 10% of lakes (henceforth referred to as high-
occurrence species, which are indicated as bold names in Table 1), 
as we wanted to test whether the inclusion of low-occurrence or 
low-detectability species produced a better model fit for commonly 
occurring species. Of the 24 species included in this study, 15 were 
classified as high-occurrence, and were thus used in model 2 (the 
“reduced species” model). To test whether accounting for species 
associations over a temperature gradient improved model fit, model 
3 accounted for species associations, but not over a temperature 
gradient (“base JSDM” model). In this model, �ij is defined as:

Model fit was quantified using the Bernoulli deviance Dj, where

which was calculated for each high-occurrence species j of each model 
using the posterior medians of pij. To ensure that our models were an 
improvement over single species distribution models (SDMs), we cre-
ated a stacked species distribution model (SSDM) consisting of single 
species distribution models for the fifteen species with occurrences 
in over 10% of lakes. These were also probit models with a Bernoulli 
distribution and used the same environmental covariates as our three 
previous models, but they did not include latent factors to account for 
associations between species. Model fit between the three models was 
compared using the improvement in deviance Dj from the SSDM for 
each of the high-occurrence species.

All statistical analyses were completed using R version 3.4.4 (R 
Core Team, 2017) and RStudio (RStudio Team, 2020). Additionally, 
the following R-packages were used for analysis and visualisation; 
dplyr (Wickham et al., 2019), rgeos (Bivand & Rundel, 2019), spdep 
(Bivand & Wong, 2018), postGIStools (Marchand & Ellison, 2019), 

tensorflow (Allaire & Tang, 2019), corrplot (Wei & Simko, 2017), 
ggplot2 (Wickham, 2016), magrittr (Bache & Wickham, 2014) and 
gridExtra (Auguie, 2017). A comprehensive definition of the model, 
the code, and its analysis can be found at Perrin (2021) (https://doi.
org/10.5281/zenodo.4665778).

3  |  RESULTS

Our results captured variations in species associations across a tem-
perature gradient, with many negative associations between cold-
water species and those tolerant of warmer temperatures.

Model fit was relatively similar across the all species model, re-
duced species model and base JSDM for each species (Figure 2). The 
only notable exceptions were brown trout, tench and arctic charr, 
for which the reduced species model (model two) had better model 
fit than either one of or both the other models. As such, the reduced 
species model was used for further analysis, as computing time was 
considerably lower. Biogeographic zone did not have a significant 
effect on any species and did not affect species associations, and as 
such the covariate was removed from all models.

Although several species associations at lower temperatures 
were negative – indicating a low likelihood of co-occurrence – at 
the mean and higher temperatures most associations between spe-
cies were positive or close to neutral (Figure 3). The majority of neg-
ative associations between species at mean or high temperatures 
occurred between the cold-water species (brown trout or Arctic 
charr) and other species, with the most negative associations occur-
ring between these species and those classified as belonging to a 
higher thermal guild (roach, perch and pike). Correlations in response 
to aggregated environmental variables were positive between the 
majority of species, with the exception of Arctic charr, for which 
many correlations were negative (Figure 4a). Correlations between 
species in responses to temperature were stronger than responses 
to all environmental variables, with a more even mix of positive and 
negative correlations (Figure 4b). Correlations in responses to each 
environmental covariate can be found in Appendix S4, as can species 
individual responses to environmental covariates.

As previous research has suggested potential associations be-
tween commonly occurring cool-water species (pike, perch, roach, 
whitefish) and cold-water species (brown trout and Arctic charr), 
these associations are shown in more detail in Figure 5, with ther-
mal guild classifications found in Table 3. The association between 
brown trout and Arctic charr was negative at lower temperatures, 
becoming gradually positive before peaking at the mean tempera-
ture and decreasing as temperatures further increased. Arctic charr 
associations with perch, pike and roach were all negative at the low-
est temperature, remained such until the mean temperature, and 
then increased slightly to be around neutral at higher temperatures. 
Arctic charr associations with whitefish increased consistently from 
being negative at the lowest temperature, before levelling out and 
remaining neutral at higher temperatures. Brown trout associa-
tions with perch, pike and roach all followed similar patterns, with 

�ij =

nf∑
h=1

zih�jh.

Dj = − 2 ×
∑
i

(
yijlog

(
�ij

)
+
(
1 − yij

)
log

(
1 − �ij

))
,
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associations close to neutral at the lowest temperature, becoming 
negative at the mean temperature and re-ascending towards zero as 
temperatures further increased. Associations between whitefish and 
brown trout were weakly positive at low temperatures, decreasing 

to weakly negative at the mean temperature before becoming more 
positive at higher temperatures. Whitefish associations with pike, 
perch and roach were positive at lower temperatures, and became 
weaker (although still positive) at higher temperatures. Associations 

F I G U R E  2  Model fit for three joint 
species distribution models mapping 
freshwater fish associations across 3308 
Fennoscandian freshwater lakes. Model 
one utilises data from every species 
available, whereas model two utilises 
only data from species which occurred in 
over 10% of lakes. Models one and two 
estimate changes in species associations 
over a temperature gradient. Model 
three is a basic JSDM which monitors 
species associations, but does not 
estimate changes in associations over 
a temperature gradient. Model fit was 
measured using the improvement of each 
model's deviance values over the deviance 
values given by a stacked species 
distribution model which did not account 
for associations between species

F I G U R E  3  Estimates of associations between 15 different freshwater fish species across freshwater lakes in 3308 lakes across the 
Fennoscandia region at different temperatures. Associations are shown for the region's (a) minimum (6.67 degrees), (b) mean (11.80 degrees) 
and (c) maximum (16.92 degrees) temperatures. Temperatures used represent average surface temperature during the warmest quarter of 
the year. Associations vary between 1 (most positive) and -1 (most negative)
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between perch, pike and roach were all strongly positive, with little 
variation across temperature.

Maps visualising modelled predictions of likely changes in fresh-
water species distributions can be seen in Appendix S5.

4  |  DISCUSSION

The ability to predict changes in species associations over environ-
mental gradients will be crucial to incorporate into species distribu-
tion modelling as climate change modifies temperatures (Freeman 
et al., 2018). Here, we quantify changes in species associations 
over a climate gradient on a multi-national scale, using a presence-
absence data set comprising 3308 lakes to fit a series of JSDMs of 
different freshwater fish species.

In accordance with Tikhonov et al. (2017) we demonstrate that 
large-scale presence-absence data are capable of shedding light on 
species associations over environmental gradients. Species belong-
ing to cold-water guilds are generally negatively associated (and thus 
have a low likelihood of co-occurrence) with species from warmer 
thermal guilds, and these associations may change as temperatures 
warm.

Our confidence in these results is boosted by the fact that many 
of the associations predicted by our model corroborate previous 
research performed on pairwise associations. The negative associ-
ations between the two cold-water species and the cool-water spe-
cies included here have been observed on smaller scales in this and 
similar study regions (Byström et al., 2007; Hayden et al., 2017; Hein 
et al., 2013; Winfield et al., 2008). Likewise, some of the positive as-
sociations shown among cool-water species here also have historical 
precedence (Eklöv & Hamrin, 1989; Mills & Hurley, 1990; Sharma & 
Borgstrøm, 2008).

A positive association between two species does not imply the 
lack of a negative impact of one species on another. Our results in-
dicate a positive association between whitefish and perch, despite 
past evidence suggesting that whitefish are negatively impacted by 
the presence of perch (Hayden et al., 2013). However, it is possi-
ble for the two species to co-occur, e.g. through niche segregation 
(Hayden et al., 2014). However, since our response variable is binary, 

significant impacts on habitat use or life-history would not necessar-
ily equate to a demonstrable negative impact in this study unless one 
species were driven to local extinction, unlike when fitting a latent 
variable model to abundance data.

It is important to note that predictions of species associations 
may become uninformative at certain temperatures. For example, 
when temperatures reach levels that preclude a species occurring in 
that region at all, any effect of species associations in an environmen-
tal context becomes void (Tikhonov et al., 2017). This is reflected in 
the associations between some species of different thermal guilds, 
which are predicted to increase towards zero as temperatures reach 
the higher ends of the spectrum. Summer temperatures in the re-
gion's warmer lakes are higher than the temperature range of lakes 
typically occupied by cold-water species (Mandeville et al., 2019). As 
such our predictions of associations between species should only be 
considered reliable at temperature ranges where both species are 
capable of persisting independently.

Although such models are capable of estimating future shifts 
in community composition in response to climate change, we rec-
ommend instead treating estimates provided by such models as in-
dications of potential larger trends and – similar to Wagner at al. 
(2020) – as a basis for generating hypotheses and focussing future 
research (Zurell et al., 2020). Although some of the associations 
here match previous research, others point to new potential threats 
to native cold-water species like the Arctic charr and brown trout, 
which should be studied more thoroughly. Although it was beyond 
the scope of this paper, further research could also take into account 
possible interactions between temperature and other environmen-
tal covariates, for instance habitat area, as research has suggested 
that often colder-tolerant species can withstand potential competi-
tion if there is enough available habitat and niche segregation within 
a given habitat patch (Hein et al., 2013).

These results show that on a broad, multi-national scale, shifts 
towards communities dominated by species which have higher 
thermal tolerance are likely to occur as climate change drives av-
erage temperatures higher. Although many lakes may not reach the 
thermal maximum of native species, our model confirms that local 
extinctions are likely to occur earlier, driven by changing associa-
tions between native species and either invasive non-native species, 

F I G U R E  4  Correlation due to shared 
environmental response of 15 different 
fish species across 3308 freshwater lakes 
in Fennoscandia. Figures show correlation 
due to response to (a) all environmental 
covariates used in the Joint Species 
Distribution Model and (b) average 
surface air temperature of the warmest 
quarter of the year. Associations vary 
between 1 (most positive) and -1 (most 
negative)
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F I G U R E  5  Associations between six freshwater fish species over a temperature gradient inferred from residual correlations from a joint 
species distribution model across 3308 freshwater lakes in the Fennoscandian region. Temperatures displayed on x-axes represent average 
surface temperature during the warmest quarter of the year. Associations are displayed on y-axes on a scale from −1 to 1, with ribbons 
representing 95% credible intervals. Negative values represent negative associations between species

Common name Thermal guild References

Perch Cool Hayden et al. (2014); Hokanson (1977)

Pike Cool Wehrly et al. (2003)

Roach Cool Elliott (2010)

Whitefish Cool-cold Hayden et al. (2014)

Brown trout Cold Elliott (2010); Wehrly et al. (2003)

Arctic charr Cold Elliott (2010)

TA B L E  3  Thermal guild classification 
of six freshwater fish species surveyed 
in 1995 Nordic Fish Status Survey, 
with references citing precedent for 
classification
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range shifting species or species with which native fish had previ-
ously co-occurred. The tendency of many species towards positive 
associations with an increase in temperature suggests a trend to-
wards homogenisation of freshwater communities, though a varia-
tion in species individual responses to increased temperature could 
affect this.

Previous research indicates that more cold-tolerant species are 
capable of persisting in larger, deeper lakes due to the possibility 
of spatial segregation (Hein et al., 2013). Areas with strong topo-
graphical variation could provide dispersal barriers for novel species, 
and subsequently provide refugia for species likely to be outcom-
peted (Perrin et al., 2020). However such refugia are only likely to 
be tenable if human translocation is sufficiently regulated so as to 
prevent the introduction of novel species (Hesthagen & Sandlund, 
2004; Perrin et al., 2021). As such, models like the one constructed 
here could enable researchers not only to identify environmental 
covariates which may drive changes in species associations and sub-
sequently identify areas where native species are vulnerable to local 
extinctions, but also to identify areas where such species are likely 
to persist.

The ability of large-scale SDMs to predict changes in species 
associations while corroborating smaller-scale pairwise research 
over a temperature gradient is encouraging. It implies that large-
scale presence-absence data may be capable of predicting changes 
in community composition as temperatures increase in the coming 
decades. Although much work remains to ensure the accuracy and 
reliable management application of such models, our results here 
indicate that JSDMs can be used to identify the potential impacts 
of climate change and range-shifting species on global ecosystems.
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Supplementary Information Table S1: Freshwater fish species surveyed in 1995 Nordic Fish Status 
Survey. Table shows species taxonomy and naming authority, as well as percentage of 3308 lakes 
that the species were found in. Species for which frequency of occurrence is less than 1% were not 
used in species distribution modelling. 

Common 
name 

Scientific name Family Frequency of 
occurrence (%) 

Naming 
Authority 

Perch Perca fluviatilis Percidae 72.1 Linnaeus, 1754 

Pike Esox lucius Esocidae 65.8 Linnaeus, 1754 

Roach Rutilus rutilus Cyprinidae 52.9 Linnaeus, 1754 

Brown trout Salmo trutta Salmonidae 46.7 Linnaeus, 1754 

Burbot Lota lota Lotidae 37.8 Linnaeus, 1754 

Bream Abramis brama Cyprinidae 24.5 Linnaeus, 1754 

Whitefish Coregonus lavaretus Salmonidae 23.5 Valenciennes, 1844 

Ruffe Gymnocephalus 
cernuus 

Percidae 21.0 Linnaeus, 1754 

Arctic char Salvelinus alpinus Salmonidae 14.9 Linnaeus, 1754 

Bleak Alburnus alburnus Cyprinidae 13.7 Linnaeus, 1754 

Tench Tinca tinca Cyprinidae 13.5 Linnaeus, 1754 

Vendace Coregonus albula Salmonidae 12.1 Linnaeus, 1754 

Pike-perch Stizostedion 
lucioperca 

Percidae 11.7 Linnaeus, 1754 

Crucian carp Carassius carassius Cyprinidae 11.0 Linnaeus, 1754 

Rudd Scardinius 
erythrophthalmus 

Cyprinidae 10.1 Linnaeus, 1754 

Minnow Phoxinus phoxinus Cyprinidae 9.2 Linnaeus, 1754 

Smelt Osmerus eperlanus Osmeridae 8.1 Linnaeus, 1754 

White bream Blicca bjoerkna Cyprinidae 6.5 Linnaeus, 1754 

Grayling Thymallus thymallus Salmonidae 6.1 Linnaeus, 1754 

Ide Leuciscus idus Cyprinidae 6.0 Linnaeus, 1754 

Rainbow trout Oncorhynchus 
mykiss 

Salmonidae 4.1 Walbaum, 1792 

Threespine 
stickleback 

Gasterosteus 
aculeatus 

Gasterosteidae 1.6 Linnaeus, 1754 

Brook trout Salvelinus fontinalis Salmonidae 1.4 Mitchill, 1814 

Ninespine 
stickleback 

Pungitius pungitius Gasterosteidae 1.0 Linnaeus, 1754 

European Lampetra planeri Petromyzontidae <1.0 Bloch, 1784 



lamprey 

Gudgeon Gobio gobio Cyprinidae <1.0 Linnaeus, 1754 

Danube 
catfish 

Silurus glanis Siluridae <1.0 Linnaeus, 1754 

Baltic vimba Vimba vimba Cyprinidae <1.0 Linnaeus, 1754 

Common 
dace 

Leuciscus leuciscus Cyprinidae <1.0 Linnaeus, 1754 

Spine loach Cobitis taenia Cobitidae <1.0 Linnaeus, 1754 

Common carp Cyprinus carpio Cyprinidae <1.0 Linnaeus, 1754 

Chub Leuciscus cephalus Cyprinidae <1.0 Linnaeus, 1754 

NA Leucaspius 
cephalus 

Cyprinidae <1.0 Heckel & Kner. 1858 

European 
river lamprey 

Lampetra fluviatilis Petromyzontidae <1.0 Linnaeus, 1754 

Fourhorn 
sculpin 

Myoxocephalus 
quadricornis 

Cottidae <1.0 Linnaeus, 1754 

Atlantic 
salmon 

Salmo salar Salmonidae <1.0 Linnaeus, 1754 

Lake trout Salvelinus 
namaycush 

Salmonidae <1.0 Walbaum, 1792 

NA Pelecus culturas Cyprinidae <1.0 Agassiz, 1835 

Asp Aspius aspius Cyprinidae <1.0 Linnaeus, 1754 

Alpine 
bullhead 

Cottus poecilopus Cottidae <1.0 Heckel, 1840 

Grass carp Ctenopharyngodon 
idella 

Cyprinidae <1.0 Valenciennes, 1844 

 

 



Supplementary Figures S2 for Estimating community-level 1 

changes in freshwater species associations over a temperature 2 

gradient 3 

 4 

The immigration history of freshwater fish into Fennoscandia, combined with the steep 5 

topography that makes up much of Norway’s west coast mean that many freshwater 6 

fish species have historically been unable to naturally colonise this region (Huitfeldt-7 

Kaas, 1918; Sandlund & Hesthagen, 2011). This has resulted in a stark spatial divide 8 

in species distributions across Fennoscandia, with much of Norway’s west coast only 9 

having two or three native species. As such, environmental conditions which would 10 

normally result in the presence of species across other parts of Fennoscandia may 11 

have little to no effect on the likelihood of their presence in this region. The exceptions 12 

are anadromous species which colonised the west coast of Norway via the North Sea. 13 

This spatial pattern is a potential source of spatial autocorrelation, with lakes within 14 

the same spatial boundaries - here interconnected groups of lakes found within the 15 

same water drainage basin - more likely to show similar assemblages. Distribution of 16 

lakes among water drainage basins was highly uneven, which prevented the use of 17 

drainage basins as a useful covariate. As such, we used the historical ranges of 18 

species which were unable to colonise the west coast of Norway to approximate the 19 

spatial divide across the region. 20 

Species historical ranges were estimated using surveys originally published by 21 

Huitfelt-Kaas (1918), and later digitised and georeferenced (Daverdin et al. 2019). The 22 

historical ranges were merged into one large distribution polygon using the sf R-23 

package (Pebesma, 2018), intended to represent the limitations of dispersal for 24 

species unable to colonise Norway via the west coast. Drainage basins which did not 25 



intercept this polygon were assumed to be disconnected from the rest of the region by 26 

the natural dispersal barrier. These drainage basins were explicitly found along the 27 

west coast of Norway. The resulting binary covariate was built based on whether or 28 

not a lake was found inside these drainage basins. This covariate, termed the 29 

biogeographic zone, used in the model. 30 

As our response variable took the form of discrete values, we used randomised 31 

quantile residuals to test for any residual spatial autocorrelation as defined by Bunn & 32 

Smyth (1996). Examples of spatial distribution of the residuals can be seen in Figure 33 

S2.1. A comprehensive description of the code used can be found in Perrin et al., 2021 34 

(DOI: 10.5281/zenodo.4665778). 35 

 36 



 

Figure S2.1: Spatial variation in residual variance of large-scale Joint Species Distribution Modelling 
of a) pike, b) Arctic charr, c) perch and d) brown trout. The residuals were Randomized Quantile 
Residuals (Dunn and Smyth, 1996) 
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Supplementary Figures S3 for Estimating community-level
changes in freshwater species associations over a temperature
gradient

S3: Trace plots for species association parameters as defined in a large-scale Joint Species
Distribution Model which accounted for changes in species association over a temperature
gradient. Model based on species presence-absence data which included 15 species in
3308 lakes across the Fennoscandian region.
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Supplementary Figure S4.1 for Estimating community-level 
changes in freshwater species associations over a temperature 
gradient 
 

 



 

Figure S4.1: Correlation due to shared environmental response of 15 different fish species surveyed across 
3308 freshwater lakes in Fennoscandia. Figures show correlation due to response to a) all environmental 
covariates used in Joint Species Distribution Model, b) average lake surface temperature of warmest 
quarter of the year, c) lake surface area, d)  shoreline complexity, e) upstream area, f) water chemistry (pH 
and total organic carbon content). 

 
 
 



 

Figure S3.2: 95% credible intervals (CIs) of effect of environmental covariates on presence-absence of 
15 different fish species surveyed in 3308 lakes surveyed across Fennoscandia. Dotted lines indicate 
that CIs intercepted with zero and were therefore not significant. 

 



Supplementary Figures S5 for Estimating community-level 
changes in freshwater species associations over a temperature 
gradient 

 

 

 
 

S5.1A: Likelihood of establishment of perch (Perca 
fluviatilis) in lakes surveyed during the 1995 Nordic 
Freshwater Fish Survey (Tammi et al., 2003) 
where species was registered as absent. 
Likelihoods calculated based on a joint species 
distribution model which accounted for changes in 
species association over a temperature gradient. 
Likelihood calculated for a scenario where lake 
surface temperature has increased by 2 degrees 
celsius. High likelihood dictated by percentage 
exceeding the percentage of the 3308 lakes perch 
was found in during the initial survey. Likelihood of 
establishment does not account for dispersal 
barriers. 

S5.1B: Increase in establishment likelihood of perch 
(Perca fluviatilis) in lakes surveyed during the 1995 
Nordic Freshwater Fish Survey (Tammi et al., 2003) 
given a 2 degree rise in surface temperature. 
Likelihoods calculated based on a joint species 
distribution model which accounted for changes in 
species association over a temperature gradient. 
Increase in likelihood calculated by subtracting 
likelihood of establishment calculated for scenario 
where no warming took place. Likelihood of 
establishment does not account for dispersal barriers. 
 



 

 

S5.1C: Likelihood of establishment of perch (Perca 
fluviatilis) in lakes surveyed during the 1995 Nordic 
Freshwater Fish Survey (Tammi et al., 2003) 
where species was registered as absent. 
Likelihoods calculated based on a joint species 
distribution model which accounted for changes in 
species association over a temperature gradient. 
Likelihood calculated for a scenario where lake 
surface temperature has increased by 2 degrees 
celsius. Likelihood of establishment does not 
account for dispersal barriers. 

 

 

 



 

 
 

S5.2A: Likelihood of local extinction of Arctic charr 
(Salvelinus alpinus) in lakes surveyed during the 
1995 Nordic Freshwater Fish Survey (Tammi et 
al., 2003) where species was registered as 
present. Likelihoods calculated based on a joint 
species distribution model which accounted for 
changes in species association over a temperature 
gradient. Likelihood calculated for a scenario 
where lake surface temperature has increased by 
2 degrees celsius. Low likelihood dictated by 
percentage exceeding the percentage of the 3308 
lakes Arctic charr was found in during the initial 
survey. Likelihood of extinction does not account 
for dispersal barriers preventing other species from 
establishing in relevant lakes. 

S5.2B: Decrease in persistence likelihood of Arctic 
charr (Salvelinus alpinus) in lakes surveyed during the 
1995 Nordic Freshwater Fish Survey (Tammi et al., 
2003) given a 2 degree rise in surface temperature. 
Likelihoods calculated based on a joint species 
distribution model which accounted for changes in 
species association over a temperature gradient. 
Decrease in likelihood calculated by subtracting 
likelihood of persistence calculated for scenario where 
no warming took place. Likelihood of extinction does 
not account for dispersal barriers preventing other 
species from establishing in relevant lakes. 
 



 

 

S5.2C: Likelihood of persistence of Arctic charr 
(Salvelinus alpinus) in lakes surveyed during the 
1995 Nordic Freshwater Fish Survey (Tammi et 
al., 2003) where species was registered as absent. 
Likelihoods calculated based on a joint species 
distribution model which accounted for changes in 
species association over a temperature gradient. 
Likelihood calculated for a scenario where lake 
surface temperature has increased by 2 degrees 
celsius. Likelihood of extinction does not account 
for dispersal barriers preventing other species from 
establishing in relevant lakes. 
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Abstract 13 

Habitat loss is a major contributor to the decline of pollinators worldwide, with urbanization as an 14 

important driver. Our aim in this article was to investigate how plant and pollinator communities are 15 

affected by urbanization. We investigated this effect at 28 sites for two high quality habitats (semi-natural 16 

grasslands and road verges), and with different levels of urbanization in Trondheim, Norway. To test for the 17 

effects of urbanization we modelled the distribution of plant and pollinator communities using Generalized 18 

Linear Latent Variable Models. Overall, this analysis revealed that there was an effect of urbanization on 19 

both bees and their floral resources, but that effect did not differ between road verge and semi-natural 20 

grassland habitats. The distribution of flowering plant species was evenly spread along the two latent 21 

variables included in the model, with certain floral resources being more abundant at either ends. 22 

Pollinators on the other hand, were more clustered, and certain species were only found to have greater 23 

abundance as urbanization increases. This mismatch was somewhat expected given the wider variety of 24 

plant groups included in this study. We conclude, that when managed properly, semi-natural grasslands 25 



and road verges have the potential to promote pollinator diversity and abundance both in urban and rural 26 

areas. 27 

 28 

Key words: Semi-natural grassland, plant-pollinator co-occurrence, urbanization gradient, road verge, 29 

Norway, Trondheim, Joint Species Distribution Model 30 

 31 

Introduction 32 

A major cause of the worldwide decline in pollinators and their floral resources (Potts et al. 2010) is linked 33 

to habitat loss, with urbanization being identified as an important driver (McKinney 2002, Seto et al. 2012). 34 

Urbanisation processes include not only the urban sprawl but also agricultural intensification and 35 

abandonment of extensive agriculture (Antrop 2004). Urbanisation therefore has an ecological impact on 36 

city areas as well as the surrounding agricultural and rural landscapes (Grimm et al. 2008). Urban areas are 37 

expected to triple by the year 2030, so it is likely that the process of urbanisation will increase in severity 38 

(Seto et al. 2012). It is therefore imperative that we increase our knowledge of how urbanisation affects 39 

biodiversity, and ecological communities, in order to develop management and land use planning that can 40 

safeguard biodiversity.  41 

In response to agricultural intensification and abandonment there has been a massive loss of semi-natural 42 

grasslands, which are among Europe’s most species rich habitats (Billeter et al. 2008, Veen et al. 2009). As 43 

a result, these semi-natural habitats have become smaller, and have been increasingly fragmented in the 44 

landscape (Aune et al. 2018) and are therefore now threatened (Norderhaug and Johansen 2011). Semi-45 

natural grasslands in particular are important habitats for pollinators, due to their high richness of 46 

flowering plant species that provide flower resources throughout the summer months, and due to their 47 

ability to provide nesting sites (Potts et al. 2003, Kallioniemi et al. 2017, Johansen et al. 2019). Due to the 48 

massive loss of semi-natural grasslands in the last century, environmental schemes are now in place that 49 

safeguard plant and pollinator communities (Kleijn and Sutherland 2003, Wehn et al. 2018). Few remaining 50 

semi-natural grasslands can still be found in both urban and agricultural landscapes, and so a key issue for 51 

conservation of biodiversity is to increase the connectivity between these remnant habitats (Öckinger et al. 52 



2009, Krauss et al. 2010, Beninde et al. 2015). New green infrastructure, such as road verges, forest clear 53 

cuts and power lines corridors may be high quality habitats for pollinators and plants in both agricultural 54 

and urban landscapes (Hovd and Skogen 2005, Cousins 2006, Auestad et al. 2011, Eldegard et al. 2017, Ram 55 

et al. 2020, Steinert et al. 2020). These new habitats have the potential to play an important role in the 56 

movement of plant and pollinator species between these semi-natural grasslands, thus providing an 57 

opportunity to improve connectivity and metapopulation dynamics. 58 

The persistence of high-quality habitats, such as semi-natural grasslands and road verges, is one of the most 59 

important factors affecting pollinator and plant species richness (Wenzel et al. 2020). Management that 60 

restores, or establishes, high quality habitats within cities and surrounding areas might go a long way in 61 

improving the situation for pollinators and their floral resources (Wenzel et al. 2020). However, we do first 62 

need to understand how these high-quality habitats are affected by urbanisation, so that suitable 63 

conservation schemes for pollinators and their floral resources might be developed, including urban 64 

structures.  65 

The evidence for the effects of urbanization on pollinator communities is mixed (Wenzel et al. 2020, Silva 66 

et al. 2020). Some studies show that with an increase in agricultural landscapes that are more intensively 67 

managed, urban areas have the potential to act as pollinator refugia (Baldock et al. 2015, Hall et al. 2016). 68 

Areas with intermediate urbanization often have greater environmental heterogeneity (Winfree et al. 2007, 69 

Banaszak-Cibicka et al. 2018), which can facilitate pollinator biodiversity. Within these areas, pollinators 70 

can obtain floral resources and nesting sites from semi-natural and natural habitats as well as from gardens 71 

and parks (Hinners and Hjelmroos-Koski 2009, Matteson and Langellotto 2011, Garbuzov and Ratnieks 72 

2014, Garbuzov et al. 2015).  73 

The plant-pollinator relationship can be highly asymmetric and nested (Burkle and Alarcón 2011) and to 74 

increase our understanding of the effects of urbanisation on biodiversity, it is vital to study communities at 75 

several trophic levels including both plants and pollinators simultaneously. Plants and pollinators are 76 

dependent on each other for pollination and resources, and so plant species composition is likely to affect 77 

the pollinator community (Kearns and Oliveras 2009, Bates et al. 2011, Banaszak-Cibicka and Żmihorski 78 

2012). Many studies have found that species richness between these two groups tends to be highly 79 

correlated (Steffan-Dewenter and Tscharntke 2001, Potts et al. 2003, Ebeling et al. 2008, Fründ et al. 2010, 80 



Theodorou et al. 2017), thus, to fully capture the interdependence of plants and their pollinators, effects of 81 

urbanisation on both communities needs to be considered.  82 

Factors associated with urbanization, such as turnover in floral resources and increased fragmentation, can 83 

favour pollinator species that possess certain traits. Species that are cavity nesting (Cane et al. 2006, Wojcik 84 

2011, Banaszak-Cibicka and Żmihorski 2012, Hinners et al. 2012, Cardoso and Gonçalves 2018), social 85 

(Banaszak-Cibicka and Żmihorski 2012, Hinners et al. 2012, Cardoso and Gonçalves 2018), generalist 86 

(Bergerot et al. 2010, Banaszak-Cibicka and Żmihorski 2012, Geslin et al. 2013, Wray and Elle 2015), and 87 

late emergent (Stelzer et al. 2010, Banaszak-Cibicka and Żmihorski 2012, Wray and Elle 2015) have been 88 

argued to benefit from urbanization. Another pollinator trait that is thought to be favoured with increasing 89 

urbanization is a larger body size (Banaszak-Cibicka and Żmihorski 2012, Hinners et al. 2012, Martins et al. 90 

2013, Geslin et al. 2013, Merckx et al. 2018). Large-bodied insects have higher mobility, which can be 91 

beneficial in fragmented landscapes, however the effect also depends on the sizes of the resource patches 92 

(Wenzel et al. 2020).  93 

Our aim with this paper was to investigate how plant and pollinator communities are affected by 94 

urbanization within two potentially high-quality habitats: semi-natural grasslands and road verges. To do 95 

this, we modelled the distribution of plant and pollinator communities jointly across 28 sites (14 road 96 

verges and 14 semi-natural grasslands), which were selected along a gradient of increasing urbanization. 97 

The study was conducted in the city of Trondheim, Norway, which has remnant semi-natural grasslands 98 

throughout the city, including in densely populated areas. Since road verges, like semi-natural grasslands, 99 

are considered to be high-quality habitats for both plants and pollinators (Hovd and Skogen 2005, Cousins 100 

2006, Auestad et al. 2011), we also investigated whether the effect of urbanization on species communities 101 

is the same for road verges as for semi-natural grasslands. To help explain the patterns of species 102 

distributions we investigate functional plant traits as indicators of the physical growing conditions as well 103 

as pollinator dependence and attraction. Functional traits are the key mechanism by which species respond 104 

to ecosystem properties, and can therefore provide important insights into community dynamics (de Bello 105 

et al. 2010). 106 

 107 

Methods 108 



Study sites 109 

We investigated 14 semi-natural grasslands and 14 road verges within the municipality of Trondheim, 110 

Norway. This municipality contains approximately 200.000 inhabitants. The semi-natural grasslands were 111 

chosen to best represent the range of urbanisation in the landscape and included patches of remnant semi-112 

natural grasslands even in the most populated areas. Only small roads with established vegetation were 113 

chosen (single lane tarmac or gravel road wider than 1 meter). The road verge was chosen within 100-500m 114 

from the edge of each semi-natural grassland. At this distance, we expect bees to be able to move between 115 

the semi-natural and the road verge habitats, to optimally exploit available resources. The 14 semi-natural 116 

grasslands all receive extensive management with grazing or/and mowing.  117 

 118 

Urbanization gradient  119 

Area resource maps of the study area, municipality of Trondheim (scale 1:5000 (AR5); Ahlstrøm et al. 2014) 120 

were provided by the Norwegian Mapping Authority. The area resource classes were categorised in three 121 

land cover groups (urban, agriculture, nature; Table 1).  A statistical grid for Norway at the resolution of 1 122 

x 1km (Strand and Bloch 2009) was obtained from the Statistics Norway. Using overlay analyses in QGis 123 

2.18.16 we calculated the area of each area resource class in each grid (1x1 km) throughout the 124 

municipality. The urbanization gradient was measured as the proportion of settlement and infrastructure 125 

versus the proportion of forest, bogs, mires and open land (alpine areas, parks, road verges, lawn, pastures 126 

etc.) in each grid cell, i.e. urban versus rural. Rural areas have greater forest land cover and are therefore 127 

used to represent the rurality of the site. This measure of urbanizations ranges from -1 to 1 with -1 being 128 

purely forested areas and 1 being purely settlements and infrastructure. Each habitat pair (road verge and 129 

semi-natural grassland sampled within the same site) will then also have the same measure of urbanization.  130 

 131 

Floral resources 132 

All flowering vascular plants except grasses and sedges were registered in 100x1m transects in each semi-133 

natural grassland and road verge. If a transect of 100 meters did not fit within the shape of the semi-natural 134 

grassland, the transect was divided in two parallel transects of 50 m with a distance of at least five meters 135 



between them. For each flowering plant species, the number of flowers was counted in five 5x1m plots 136 

placed regularly with 20 m distance along the transect. A flower was defined as a floral unit if a medium 137 

sized bee can visit without flying. In the study area the main flowering season ranges from early June to 138 

early September. Flowers were counted three times during the flowering season in June, July, and August. 139 

 140 

Bee community 141 

At each transect, the bee community was sampled in five pan traps three times over the flowering season 142 

(in June, July and August) within a week of the floral abundance counts. The traps were placed randomly 143 

along the transect but at least 5 meters apart to avoid any interference between them. Each pan trap was 144 

made up of three plastic pans (ml) painted in three different UV florescent colors: yellow, blue, and white 145 

(Sparvar RAL luminescent spray 1026, 3107, and 3108, respectively) to attract bees with different flower 146 

color preference. Pans were placed at the height of the surrounding vegetation to keep them visible to bees. 147 

Pans were filled with water and a drop of soap to break the surface tension. Pan traps were left out for 148 

approximately 48h and the content of each trap was then filtered from the water and conserved in 70% 149 

ethanol. In an attempt to control for environmental effects on sampling, pan traps were only left out when 150 

the weather was expected to be warm and sunny, with low windspeeds. This was confirmed when testing 151 

for effects of temperature on bee abundance and diversity (see appendix). All bees were identified in the 152 

laboratory using relevant identification keys. 153 

 154 

Plant traits 155 

The functional traits of the flowering plant species were requested from the databases LEDA (Kleyer et al. 156 

2008), Ecoflora (Fitter and Peat 1994) and Biolflor (Kühn et al. 2004) using the R-package TR8, and were 157 

downloaded on October 11th, 2021. The traits selected for this study were used to help explore the 158 

distribution of species across the sites. The traits were selected to gain insight into the physical conditions 159 

along the urbanization gradient and their dependence on pollination by bees. Plants have commonly been 160 

used as environmental indicators and therefore we collected information about the conditions using the 161 

Ellenberg indicator values for nitrogen (EIVN), moisture (EIVF) and light (EIVL). Life strategy (C-S-R) reflects 162 

these conditions (nitrogen, moisture and light) and was also collected from the database for interpretation. 163 



We investigated the proportion of species with short life spans (annuals) and ruderal life strategies because 164 

these traits are commonly associated with urban landscapes and disturbed habitats (Albrecht and Haider 165 

2013, Petersen et al. 2021).  166 

Mating system (selfing, outcrossing and mixed-mating) and type of reproduction (seed or vegetatively) are 167 

traits relating to pollinator dependence and were therefore also included to help interpret co-occurrence 168 

patterns of plants with pollinators. For flowering plant species that are mainly dependent on pollination by 169 

pollinators to reproduce, we used traits relating to traditional pollination syndromes, i.e. floral symmetry 170 

and color (Rosas-Guerrero et al. 2014, Dellinger 2020), to assess what pollen vectors it attracts and whether 171 

they are specialized.  172 

 173 

Statistical analysis 174 

To investigate how plant and pollinator communities are jointly affected by urbanization within semi-175 

natural grasslands and road verges we fitted Generalized Linear Latent Variable Models (GLLVMs, see Niku 176 

et al. 2017, 2019). GLLVMs are Joint Species Distribution Models that can alternatively be understood as 177 

model-based ordination (similar to e.g (Canonical) Correspondence Analysis), as they are applied here. The 178 

dataset used for the model only included species with more than two non-zero observations. Thus, the count 179 

of flowers for plants and individuals for bees were used as the (multivariate) response. Jointly analysing 180 

flower and pollinator abundance allows us to better predict underlying ecological gradients, and thus 181 

species distributions. Specifically, we applied the approach developed by van der Veen et al. (2021) where 182 

ecological gradients are modelled by measured and unmeasured components, where the measured 183 

components are the predictors. The predictors of this model are the urbanization gradient and a binary 184 

variable indicating whether a site was a semi-natural grassland or a road verge. This approach can be 185 

understood as a combination of unconstrained and constrained ordination, where the ecological gradient is 186 

always optimally represented, but with the benefits of constrained ordination. Alternatively, the model can 187 

be understood as a Joint Species Distribution Model with the same rank constraints for the matrix of species 188 

predictor slopes as for the residual covariance matrix. The GLLVMs were fitted with a negative-binomial 189 

distribution, since after fitting models with a Poisson distribution, residual diagnostics confirmed that 190 

distributional assumptions were violated due to overdispersion. We assumed that the negative-binomial 191 



distribution had a different dispersion parameter for plants than for bees, but that it was the same for 192 

species within the two groups. We first fitted models without predictors to determine the dimensionality of 193 

the data, with 1-5 latent variables. Since the latent variables in these (first) models are unconstrained, this 194 

will inform us of the required number of dimensions to optimally represent the co-occurrence patterns in 195 

the data. Since the model with two latent variables best fitted the data, we then continued with two latent 196 

variables, and fitted six different models, three models with an interaction between the urbanization 197 

gradient and the habitat predictor (as to model the slope to the urbanization gradient separately for semi-198 

natural grasslands and roads), and three models with the two predictors as additive effects. We included 199 

models with only fixed effects, a single random effect, or random effects for both latent variables. Including 200 

the habitat variable equals the hypothesis that the mean abundance of the community differs at roads 201 

compared to semi-natural grasslands. From this analysis we can investigate how plant and pollinator 202 

communities change with urbanization and whether road verges and semi-natural grasslands are similarly 203 

affected.  204 

From the models that all included the additive effects of habitat and urbanization predictors, we considered 205 

models within delta two AIC to be equivalent, and then chose the most parsimonious model as the best 206 

model (Burnham and Anderson 2002). 207 

 208 

Results 209 

A total of 89 plant species (recorded flowering in the transect) and 42 bee species were registered across 210 

all sites. In road verges 67 plant species and 31 bee species were found while there were 69 plant species 211 

and 41 bee species in semi-natural grasslands. 212 

 213 

Effects of urbanization and habitat type 214 

The best model for flower and bee abundance excluded the interaction between the habitat predictor and 215 

the urbanization gradient and included one latent variable with an additional random effect related to it. 216 

Only one other model was within delta two AIC, which also included only the additive effect of the 217 

predictors, but additionally included a random effect for the second latent variable. Since the standard 218 



deviation for the random effect of this latent variable was close to zero, we determined that it was redundant 219 

(van der Veen et al. 2021), so that the second latent variable was sufficiently represented by fixed effects 220 

alone. 221 

This joint model on both plants and pollinators showed that urbanization was related to both latent 222 

variables, whereas we found no relation with habitat type (LV1: -6.39, CI: -31.45 - 18.67 and LV2: -0.74, CI: 223 

-7.26 - 5.79). From the two latent variables, the effect of urbanisation was stronger for LV2 (-1.94, CI: -0.83 224 

- -3.05) than LV1 (0.46, CI: 0.18-0.75), though the confidence interval did not cross zero in either case. For 225 

pollinators, the distribution of approximately half of the species along the two latent variables co-occurred 226 

in the center of the ordination. The abundances of these species were not affected by urbanization (see Fig. 227 

1). The other half of the bee species were predicted to be most abundant at high degrees of urbanization 228 

(Fig. 1). Plants, on the other hand, varied more evenly across the urbanization gradient than the bees (see 229 

Fig. 2). This indicates a higher degree of negative co-occurrences and species turnover between floral 230 

resources compared to bees along the urbanization gradient. The effects of urbanisation on the abundance 231 

of flower resources varied considerably, with the effect being positive for some species and negative for 232 

others.  233 

 234 



 235 

Figure 1: The effects of urbanization in the model on species abundances, including the effects for both 236 

latent variables. Effects for bee species are shown on the left and effects for floral resources (flowering plant 237 

species) on the right. The solid line indicates zero, the x represents the estimate for each species, and the 238 

accompanying solid line is a 95% confidence interval. Species effects of which the confidence interval 239 

crossed zero are indicated in grey. See appendix S1: table S1 for the full species names. 240 

 241 



 242 

Figure 2: Ordination diagram for the model-based ordination with constrained latent variables. Red dots 243 

indicate road verges of sites whereas black dots indicate meadows (though this effect was not significant in 244 

the model or ordination). Blue species are plants and green are bees. The red arrow indicates the effect of 245 

urbanization, while the effect of the habitat variable in the model was excluded as it was not significant. 246 

Higher values of latent variable 2 are indicative of rural areas, and low values of urbanized areas. See 247 

appendix S1: table S1 for the full species names. 248 

 249 

Plant traits 250 

The broader distribution of flowering plant species away from the bee species was to some degree 251 

associated with traits relating to pollinator dependent reproduction (see Fig. 3). Majority of the plants in 252 

this study were categorized as insect pollinated but many had alternative strategies for reproduction. Plant 253 

species that reproduce solely through outcrossing were equally spread along the latent variables (fig. 3; top 254 

right; blue x). However, the outcrossing species that did not overlap with the bee species distributions were 255 

also able to reproduce vegetatively (fig. 3; top left; blue plus sign). This was especially true at low 256 

urbanization.  257 



  258 

Figure 3: Ordination plot colored by the plant traits; type of reproduction (S = seed, SV = both seed and/or 259 

vegetatively), breeding system (A = obligate selfing, X = obligate outcrossing, XF = mixed mating), strategy 260 

(C = competitive, CR = competitors/ruderals, CS = competitors/stress-tolerators CSR = competitors/stress-261 

tolerators/ruderals, R = ruderals) and flower color. Bee species are shown as black dots. 262 

 263 

Additionally, we found that the pollen vector of these plants may differ as indicated by the flower color. 264 

Purple flowers were situated close to the center of the bee distribution, whereas flowering plant species not 265 

associated with the bees were either yellow or white. The white flowered species were observed at lower 266 

values of both latent variables and yellow flowers more abundant in the higher values.  267 

The greater turnover of flowering plant species was also linked to the physical conditions of the sites (see 268 

Fig. 4). Nitrogen affinity seemed to increase with decreasing values of both latent variables and the species 269 

with highest affinity (EIVN values between 7-9) were Aegopodium podagraria, Anthriscus sylvestris, 270 

Heracleum mantegazzianum, and Urtica dioica. Moisture and light did not show any clear patterns along 271 

these latent variables. Overall, we found very few species commonly associated with annual species (6%) 272 

and species with a purely ruderal (6%) and ruderal-competitive (5%) life strategies. Species with strategies 273 

related to stress-tolerance (s, sr, cs, csr; 54%) and competitive species (c, cr, cs, csr; 89%) make up most of 274 

the species recorded. Species associated with stress tolerance, mainly csr, seem to be distributed around 275 



sites of intermediate and lower ranges of urbanization whereas the competitive species were found 276 

throughout.  277 

 278 

Figure 4: Ordination plot colored by the plant traits related to floral symmetry (Bilateral and radial) and 279 

traits indicative of the physical conditions (nitrogen richness = EIVN, moisture = EIVF and light = EIVL) 280 

ranging from 1 to 9. Black dots represent the coordinates for bee species. 281 

 282 

Discussion 283 

In this article we studied changes in the distribution of bees and floral resources jointly, in order to provide 284 

a comprehensive overview of how the pollinator community might change with floral resources in an urban 285 

landscape. The inclusion of flower resources is commonly used as predictors in a model for the distribution 286 

of bee species (e.g. Potts et al. 2003, Ahrné et al. 2009). The approach used here has the benefit of including 287 

both bee and plant species in the same model, as to allow for joint inference based on the relative distances 288 

between species coordinates in the ordination. Including abundances of flower resources and bees provides 289 

additional information, so that the effect of urbanisation may be determined with a higher degree of 290 



confidence. Overall, the analysis reveals that urbanisation affects the abundance of both bees and floral 291 

resources, albeit in different ways (positive for some species and negative for others). We could not 292 

conclude that there were any effects of the type of habitat (i.e. semi-natural grassland or road verge) on 293 

species abundances. Generally, the distribution of flowering plant species was evenly spread along the two 294 

latent variables, whereas pollinators were more clustered. This mismatch was somewhat expected given 295 

the wider variety of plant groups included in this study.   296 

The flowering plant species in this study were to some degree insect pollinated, however, many of the 297 

recorded flowering plant species had alternative methods for reproduction, i.e., self-pollination, vegetative 298 

reproduction or having several pollen vectors. Furthermore, we found that the composition of flowering 299 

plant species changed more along the urbanisation gradient than the composition of bee species, with 300 

weaker associations between plant and pollinator species at the extremes of the urbanization gradient. 301 

Potentially, the distribution of these flowering plant species is not determined by pollinator availability as 302 

a result, but rather by other factors. Specifically, at high levels of urbanization, the species in our study that 303 

were not strongly associated with bee species were all white and belonged to the family Apiaceae 304 

(Heracleum mantegazzianum, Anthriscus sylvestris and Pimpinella saxifraga). This family is commonly 305 

considered as a generalist and can be pollinated by a wide variety of pollinator groups, such as Coleopterans, 306 

Dipterans, Hemipterans, and Hymenopterans (Faegri and van der Pijl 1966, Proctor et al. 1996, Corbet 307 

2006, Zych et al. 2019). Although these species can be pollinated by wild bees (Nielsen et al. 2008, Nichols 308 

et al. 2019, Gemeinholzer et al. 2020), our findings suggest that they are unlikely to be their main foraging 309 

resource in the landscape. The plant species that were clustered more towards the rural end of the gradient, 310 

were less strongly associated with bee species. They were either strong selfers (Melampyrum sylvaticum, 311 

Melampyrum pratense), fly pollinated (Potentilla erecta; Hegland and Totland 2005) or species that 312 

commonly reproduce vegetatively (Veronica chamaedrys, and Bistorta vivipara). And so, the fact that these 313 

flowering plant species are more abundant outside the distribution of the bee species, is potentially due to 314 

their ability to reproduce, despite low abundance of pollinators in the same places (thus are suspected of 315 

having alternative means of reproduction). We could further speculate that this independence from 316 

pollinators causes plants to invest less in floral rewards, making them less attractive to pollinators in the 317 

community. Given that the deviance of these flowering plant species was mainly explained by lower 318 

pollinator dependence, flower color was not as essential in the interpretation of our findings. 319 



Changes in the bee community along the urbanization gradient were driven by solitary bee species that 320 

were positively associated with the most urban sites. Various studies, e.g. including Banaszak-Cibicka and 321 

Zmihorski (2012), Hinners et al. (2012), Cardoso and Goncalves (2018) have shown that solitary bees are 322 

sensitive to urbanization due to their relatively small body size and specialised resource use. However, 323 

compared to cities in these studies, Trondheim has a relatively low population density, and an intermediate 324 

level of disturbance may explain the positive relationship between bee diversity and urbanisation (Wenzel 325 

et al. 2020). Even more likely, the high bee diversity in Trondheim is the positive outcome from a long 326 

management history of remnant semi-natural grasslands in the city center, which are mown regularly to 327 

maintain biodiversity (Johansen et al. 2019). Higher diversity and abundance of bees suggests better 328 

delivery of pollination services to wild plants in road verges and semi-natural grasslands in the city.   329 

In this paper we focused on the effects of urbanisation of plants and pollinators but there are potentially 330 

other factors that can be important in explaining this distribution. Other studies investigating the effects of 331 

urbanization have considered variables such as connectivity (Fortel et al. 2014), geographical distances 332 

between habitats, grazing intensity (Potts et al. 2003), and age and size of the habitat (Ahrné et al. 2009). 333 

Patterns of occurrence in plant species were indicative of a nitrogen gradient, where nitrogen seems to 334 

decrease with increase in urbanisation, but additionally seems related to unexplained variation in the 335 

analysis. The unexplained variation in the analysis could be attributed to the change in nitrogen contents of 336 

the soil. Unlike semi-natural grasslands, management at road verges does not include the removal of 337 

vegetation after cutting. From this practice, the decomposing vegetation at the road verges could create a 338 

more nutrient rich soil depending on the management and explain the pattern of increasing nitrogen affinity 339 

across the study sites. Although we could not conclude that the type of habitat was important to explain the 340 

distribution of species in this study, we do speculate that nitrogen could be an important driver for the 341 

composition of plant species in our study area. 342 

It is imperative to increase our understanding of how the interactions between plants and pollinators are 343 

influenced by drivers of global change, such as the urbanisation process. Our study highlights that there is 344 

an effect of urbanisation on pollinator communities and their floral resources resulting in a turnover in 345 

species present in the city center compared to more rural areas. However, both the city areas and the 346 

surrounding cultural landscapes provide high quality habitats of semi-natural grasslands and road verges 347 

for pollinators and their floral resources. Therefore, when managed properly, semi-natural grasslands and 348 



road verges have the potential to promote pollinator species diversity and abundance both in urban and 349 

rural areas.  350 

 351 

Aknowledgements 352 

We thank Arnstein Staverløkk for verifying identified bee species and Julio Morales Can, Per Vesterbukt, 353 

Synnøve Nordal Grenne and Annette Bär for their field assistance. BV was supported by a scholarship from 354 

the Research Council of Norway (grant number 272408/F40). 355 

 356 

Author contributions 357 

MVH, LJ and SW initiated the study. MVH, BV and LJ collected the data. BV performed statistical analysis. 358 

EA wrote the manuscript with contributions from all authors.  359 

 360 

  361 



References: 362 

Ahrné, K., J. Bengtsson, and T. Elmqvist. 2009. Bumble Bees (Bombus spp) along a Gradient of Increasing 363 
Urbanization. PLOS ONE 4:e5574. 364 

Albrecht, H., and S. Haider. 2013. Species diversity and life history traits in calcareous grasslands vary 365 
along an urbanization gradient. Biodiversity and Conservation 22:2243–2267. 366 

Antrop, M. 2004. Landscape change and the urbanization process in Europe. Landscape and Urban 367 
Planning 67:9–26. 368 

Auestad, I., K. Rydgren, and I. Austad. 2011. Road verges: potential refuges for declining grassland species 369 
despite remnant vegetation dynamics. Annales Botanici Fennici 48:289–303. 370 

Aune, S., A. Bryn, and K. A. Hovstad. 2018. Loss of semi-natural grassland in a boreal landscape: impacts of 371 
agricultural intensification and abandonment. Journal of Land Use Science 13:375–390. 372 

Baldock, K. C. R., M. A. Goddard, D. M. Hicks, W. E. Kunin, N. Mitschunas, L. M. Osgathorpe, S. G. Potts, K. M. 373 
Robertson, A. V. Scott, G. N. Stone, I. P. Vaughan, and J. Memmott. 2015. Where is the UK’s pollinator 374 
biodiversity? The importance of urban areas for flower-visiting insects. Proceedings of the Royal 375 
Society B: Biological Sciences 282. 376 

Banaszak-Cibicka, W., L. Twerd, M. Fliszkiewicz, K. Giejdasz, and A. Langowska. 2018. City parks vs. 377 
natural areas - is it possible to preserve a natural level of bee richness and abundance in a city park? 378 
Urban Ecosystems 21:599–613. 379 

Banaszak-Cibicka, W., and M. Żmihorski. 2012. Wild bees along an urban gradient: winners and losers. 380 
Journal of Insect Conservation 16:331–343. 381 

Bates, A. J., J. P. Sadler, A. J. Fairbrass, S. J. Falk, J. D. Hale, and T. J. Matthews. 2011. Changing bee and 382 
hoverfly pollinator assemblages along an urban-rural gradient. PLOS ONE 6:e23459. 383 

de Bello, F., S. Lavorel, S. Díaz, R. Harrington, J. H. C. Cornelissen, R. D. Bardgett, M. P. Berg, P. Cipriotti, C. K. 384 
Feld, D. Hering, P. M. da Silva, S. G. Potts, L. Sandin, J. P. Sousa, J. Storkey, D. A. Wardle, and P. A. 385 
Harrison. 2010. Towards an assessment of multiple ecosystem processes and services via functional 386 
traits. Biodiversity and Conservation 19:2873–2893. 387 

Beninde, J., M. Veith, and A. Hochkirch. 2015. Biodiversity in cities needs space: a meta-analysis of factors 388 
determining intra-urban biodiversity variation. Ecology Letters 18:581–592. 389 

Bergerot, B., B. Fontaine, and M. Renard. 2010. Preferences for exotic flowers do not promote urban life in 390 
butterflies. Landscape and Urban Planning 96:98–107. 391 

Billeter, R., J. Liira, D. Bailey, R. Bugter, P. Arens, I. Augenstein, S. Aviron, J. Baudry, R. Bukacek, F. Burel, M. 392 
Cerny, G. De Blust, R. De Cock, T. Diekötter, H. Dietz, J. Dirksen, C. Dormann, W. Durka, M. Frenzel, R. 393 
Hamersky, F. Hendrickx, F. Herzog, S. Klotz, B. Koolstra, A. Lausch, D. Le Coeur, J. P. Maelfait, P. 394 
Opdam, M. Roubalova, A. Schermann, N. Schermann, T. Schmidt, O. Schweiger, M. J. M. Smulders, M. 395 
Speelmans, P. Simova, J. Verboom, W. K. R. E. Van Wingerden, M. Zobel, and P. J. Edwards. 2008. 396 
Indicators for biodiversity in agricultural landscapes: a pan-European study. Journal of Applied 397 
Ecology 45:141–150. 398 

Burkle, L. A., and R. Alarcón. 2011. The future of plant–pollinator diversity: Understanding interaction 399 
networks across time, space, and global change. American Journal of Botany 98:528–538. 400 

Burnham, K. P., and D. R. Anderson. 2002. Information and likelihood theory: a basis for model selection 401 
and inference. Model selection and multimodel inference: a practical information-theoretic approach 402 
2:49–97. 403 

Cane, J. H., R. L. Minckley, L. J. Kervin, A. H. Roulston, and N. M. Williams. 2006. Complex responses within a 404 
desert bee guild (Hymenoptera: Apiformes) to urban habitat fragmentation. Wiley Online Library 405 
16:632–644. 406 

Cardoso, M. C., and R. B. Gonçalves. 2018. Reduction by half: the impact on bees of 34 years of 407 
urbanization. Urban Ecosystems 21:943–949. 408 



Corbet, S. 2006. A typology of pollination systems: implications for crop management and the 409 
conservation of wild plants. Pages 315–340 Plant-pollinator interactions. From specialization to 410 
generalization. The University of Chicago Press, Chicago. 411 

Cousins, S. A. O. 2006. Plant species richness in midfield islets and road verges – The effect of landscape 412 
fragmentation. Biological Conservation 127:500–509. 413 

Dellinger, A. S. 2020. Pollination syndromes in the 21st century: where do we stand and where may we 414 
go? New Phytologist 228:1193–1213. 415 

Ebeling, A., A. M. Klein, J. Schumacher, W. W. Weisser, and T. Tscharntke. 2008. How does plant richness 416 
affect pollinator richness and temporal stability of flower visits? Oikos 117:1808–1815. 417 

Eldegard, K., D. L. Eyitayo, M. H. Lie, and S. R. Moe. 2017. Can powerline clearings be managed to promote 418 
insect-pollinated plants and species associated with semi-natural grasslands? Landscape and Urban 419 
Planning 167:419–428. 420 

Faegri, K., and L. van der Pijl. 1966. The principles of pollination ecology. [1st ed.]. Pergamon Press, New 421 
York. 422 

Fitter, A. H., and H. J. Peat. 1994. The ecological flora database. The Journal of Ecology 82:415. 423 

Fortel, L., M. Henry, L. Guilbaud, A. L. Guirao, M. Kuhlmann, H. Mouret, O. Rollin, and B. E. Vaissière. 2014. 424 
Decreasing abundance, increasing diversity and changing structure of the wild bee community 425 
(Hymenoptera: Anthophila) along an urbanization gradient. PLOS ONE 9:e104679. 426 

Fründ, J., K. E. Linsenmair, and N. Blüthgen. 2010. Pollinator diversity and specialization in relation to 427 
flower diversity. Oikos 119:1581–1590. 428 

Garbuzov, M., and F. L. W. Ratnieks. 2014. Quantifying variation among garden plants in attractiveness to 429 
bees and other flower-visiting insects. Functional Ecology 28:364–374. 430 

Garbuzov, M., E. E. W. Samuelson, and F. L. W. Ratnieks. 2015. Survey of insect visitation of ornamental 431 
flowers in Southover Grange garden, Lewes, UK. Insect Science 22:700–705. 432 

Gemeinholzer, B., J. Reiker, C. M. Müller, and V. Wissemann. 2020. Genotypic and phenotypic distinctness 433 
of restored and indigenous populations of Pimpinella saxifraga L. 8 or more years after restoration. 434 
Plant Biology 22:1092–1101. 435 

Geslin, B., B. Gauzens, E. Thébault, and I. Dajoz. 2013. Plant pollinator networks along a gradient of 436 
urbanisation. PLoS ONE 8. 437 

Grimm, N. B., S. H. Faeth, N. E. Golubiewski, C. L. Redman, J. Wu, X. Bai, and J. M. Briggs. 2008. Global change 438 
and the ecology of cities. Science 319:756–760. 439 

Hall, D. M., G. R. Camilo, R. K. Tonietto, J. Ollerton, K. Ahrné, M. Arduser, J. S. Ascher, K. C. R. Baldock, R. 440 
Fowler, G. Frankie, D. Goulson, B. Gunnarsson, M. E. Hanley, J. I. Jackson, G. Langellotto, D. 441 
Lowenstein, E. S. Minor, S. M. Philpott, S. G. Potts, M. H. Sirohi, E. M. Spevak, G. N. Stone, and C. G. 442 
Threlfall. 2016. The city as a refuge for insect pollinators. Conservation biology 31:24–29. 443 

Hinners, S. J., and M. K. Hjelmroos-Koski. 2009. Receptiveness of foraging wild bees to exotic landscape 444 
elements. https://doi.org/10.1674/0003-0031-162.2.253 162:253–265. 445 

Hinners, S. J., C. A. Kearns, and C. A. Wessman. 2012. Roles of scale, matrix, and native habitat in supporting 446 
a diverse suburban pollinator assemblage. Ecological Applications 22:1923–1935. 447 

Hovd, H., and A. Skogen. 2005. Plant species in arable field margins and road verges of central Norway. 448 
Agriculture, Ecosystems & Environment 110:257–265. 449 

Johansen, L., A. Westin, S. Wehn, A. Iuga, C. M. Ivascu, E. Kallioniemi, and T. Lennartsson. 2019. Traditional 450 
semi-natural grassland management with heterogeneous mowing times enhances flower resources 451 
for pollinators in agricultural landscapes. Global Ecology and Conservation 18:e00619. 452 

Kallioniemi, E., J. Åström, G. M. Rusch, S. Dahle, S. Åström, and J. O. Gjershaug. 2017. Local resources, linear 453 
elements and mass-flowering crops determine bumblebee occurrences in moderately intensified 454 



farmlands. Agriculture, Ecosystems & Environment 239:90–100. 455 

Kearns, C. A., and D. M. Oliveras. 2009. Environmental factors affecting bee diversity in urban and remote 456 
grassland plots in Boulder, Colorado. Journal of Insect Conservation 13:655–665. 457 

Kleijn, D., and W. J. Sutherland. 2003. How effective are European agri-environment schemes in conserving 458 
and promoting biodiversity? Journal of Applied Ecology 40:947–969. 459 

Kleyer, M., R. M. Bekker, I. C. Knevel, J. P. Bakker, K. Thompson, M. Sonnenschein, P. Poschlod, J. M. Van 460 
Groenendael, L. Klimeš, J. Klimešová, S. Klotz, G. M. Rusch, M. Hermy, D. Adriaens, G. Boedeltje, B. 461 
Bossuyt, A. Dannemann, P. Endels, L. Götzenberger, J. G. Hodgson, A. K. Jackel, I. Kühn, D. Kunzmann, 462 
W. A. Ozinga, C. Römermann, M. Stadler, J. Schlegelmilch, H. J. Steendam, O. Tackenberg, B. Wilmann, 463 
J. H. C. Cornelissen, O. Eriksson, E. Garnier, and B. Peco. 2008. The LEDA Traitbase: a database of life-464 
history traits of the Northwest European flora. Journal of Ecology 96:1266–1274. 465 

Krauss, J., R. Bommarco, M. Guardiola, R. K. Heikkinen, A. Helm, M. Kuussaari, R. Lindborg, E. Öckinger, M. 466 
Pärtel, J. Pino, J. Pöyry, K. M. Raatikainen, A. Sang, C. Stefanescu, T. Teder, M. Zobel, and I. Steffan-467 
Dewenter. 2010. Habitat fragmentation causes immediate and time-delayed biodiversity loss at 468 
different trophic levels. Ecology Letters 13:597–605. 469 

Kühn, I., W. Durka, and S. Klotz. 2004. BiolFlor: a new plant-trait database as a tool for plant invasion 470 
ecology. Diversity and Distributions 10:363–365. 471 

Martins, A., R. Gonçalves, and G. Melo. 2013. Changes in wild bee fauna of a grassland in Brazil reveal 472 
negative effects associated with growing urbanization during the last 40 years. Zoologia 30:157–176. 473 

Matteson, K. C., and G. A. Langellotto. 2011. Small scale additions of native plants fail to increase beneficial 474 
insect richness in urban gardens. Insect Conservation and Diversity 4:89–98. 475 

McKinney, M. L. 2002. Urbanization, biodiversity, and conservation. BioScience 52:883–890. 476 

Merckx, T., A. Kaiser, and H. Van Dyck. 2018. Increased body size along urbanization gradients at both 477 
community and intraspecific level in macro-moths. Global Change Biology 24:3837–3848. 478 

Nichols, R. N., D. Goulson, and J. M. Holland. 2019. The best wildflowers for wild bees. Journal of Insect 479 
Conservation 23:819–830. 480 

Nielsen, C., C. Heimes, and J. Kollmann. 2008. Little evidence for negative effects of an invasive alien plant 481 
on pollinator services. Biological Invasions 10:1353–1363. 482 

Niku, J., W. Brooks, R. Herliansyah, F. K. C. Hui, S. Taskinen, D. I. Warton, and B. van der Veen. 2017. 483 
Package “gllvm.” R Project 326. 484 

Niku, J., F. K. C. Hui, S. Taskinen, and D. I. Warton. 2019. gllvm: Fast analysis of multivariate abundance 485 
data with generalized linear latent variable models in r. Methods in Ecology and Evolution 10:2173–486 
2182. 487 

Norderhaug, A., and J. Johansen. 2011. Semi-natural sites and boreal heaths. Page in M. Lindgaard, A., 488 
Henriksen, S., Hoem, S., A, & Ødegården, editor. The 2011 Norwegian Red List for Ecosystems and 489 
Habitat Types. Norwegian Biodiversity Information Centre. 490 

Öckinger, E., M. Franzén, M. Rundlöf, and H. G. Smith. 2009. Mobility-dependent effects on species richness 491 
in fragmented landscapes. Basic and Applied Ecology 10:573–578. 492 

Petersen, T. K., J. D. M. Speed, V. Grøtan, and G. Austrheim. 2021. Competitors and ruderals go to town: 493 
plant community composition and function along an urbanisation gradient. Nordic Journal of Botany 494 
39. 495 

Potts, S. G., J. C. Biesmeijer, C. Kremen, P. Neumann, O. Schweiger, and W. E. Kunin. 2010. Global pollinator 496 
declines: Trends, impacts and drivers. Trends in Ecology and Evolution 25:345–353. 497 

Potts, S. G., B. Vulliamy, A. Dafni, G. Ne’eman, and P. Willmer. 2003. Linking bees and flowers: How do floral 498 
communities structure pollinator communities? Ecology 84:2628–2642. 499 

Proctor, M., P. Yeo, and A. Lack. 1996. The natural history of pollination. HarperCollins Publishers, London. 500 



Ram, D., Å. Lindström, L. B. Pettersson, and P. Caplat. 2020. Forest clear-cuts as habitat for farmland birds 501 
and butterflies. Forest Ecology and Management 473:118239. 502 

Rosas-Guerrero, V., R. Aguilar, S. Martén-Rodríguez, L. Ashworth, M. Lopezaraiza-Mikel, J. M. Bastida, and 503 
M. Quesada. 2014. A quantitative review of pollination syndromes: do floral traits predict effective 504 
pollinators? Ecology Letters 17:388–400. 505 

Seto, K. C., B. Güneralp, and L. R. Hutyra. 2012. Global forecasts of urban expansion to 2030 and direct 506 
impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences of the 507 
United States of America 109:16083–16088. 508 

Silva, J. L. S., M. T. P. de Oliveira, O. Cruz-Neto, M. Tabarelli, and A. V. Lopes. 2020. Plant–pollinator 509 
interactions in urban ecosystems worldwide: A comprehensive review including research funding 510 
and policy actions. Ambio 2020 50:4 50:884–900. 511 

Steffan-Dewenter, I., and T. Tscharntke. 2001. Succession of bee communities on fallows. Ecography 512 
24:83–93. 513 

Steinert, M., K. Eldegard, M. A. K. Sydenham, and S. R. Moe. 2020. Bumble bee communities in power-line 514 
clearings: Effects of experimental management practices. Insect Conservation and 515 
Diversity:icad.12463. 516 

Stelzer, R. J., L. Chittka, M. Carlton, and T. C. Ings. 2010. Winter active bumblebees (Bombus terrestris) 517 
achieve high foraging rates in urban Britain. PLoS ONE 5. 518 

Theodorou, P., K. Albig, R. Radzevičiūtė, J. Settele, O. Schweiger, T. E. Murray, and R. J. Paxton. 2017. The 519 
structure of flower visitor networks in relation to pollination across an agricultural to urban 520 
gradient. Functional Ecology 31:838–847. 521 

van der Veen, B., F. Hui, K. Hovstad, and Rb. O’Hara. 2021. Model-based ordination with constrained latent 522 
variables. bioRxiv. 523 

Veen, P., R. Jefferson, J. De Smidt, and J. Van Der Straaten. 2009. Grasslands in Europe: of high nature value. 524 
KNNV publishing. 525 

Wehn, S., R. Burton, M. Riley, L. Johansen, K. A. Hovstad, and K. Rønningen. 2018. Adaptive biodiversity 526 
management of semi-natural hay meadows: The case of West-Norway. Land Use Policy 72:259–269. 527 

Wenzel, A., I. Grass, V. V. Belavadi, and T. Tscharntke. 2020. How urbanization is driving pollinator 528 
diversity and pollination – A systematic review. Biological Conservation 241:108321. 529 

Winfree, R., T. Griswold, and C. Kremen. 2007. Effect of human disturbance on bee communities in a 530 
forested ecosystem. Conservation Biology 21:213–223. 531 

Wojcik, V. A. 2011. Bees (Hymenoptera: Apoidea) utilizing Tecoma stans (L.) Juss. ex Kunth 532 
(Bignoniaceae) in urban landscapes: A comparison of occurrence patterns and community 533 
composition in three cities in northwestern Costa Rica. Journal of the Kansas Entomological Society 534 
84:197–208. 535 

Wray, J. C., and E. Elle. 2015. Flowering phenology and nesting resources influence pollinator community 536 
composition in a fragmented ecosystem. Landscape Ecology 30:261–272. 537 

Zych, M., R. R. Junker, M. Nepi, M. Stpiczyńska, B. Stolarska, and K. Roguz. 2019. Spatiotemporal variation 538 
in the pollination systems of a supergeneralist plant: is Angelica sylvestris (Apiaceae) locally adapted 539 
to its most effective pollinators? Annals of Botany 123:415–428. 540 

 541 

 542 

  543 



Appendix S1 544 

Temperature can affect bee activity and so the number of bees caught within pan trap may vary as a result 545 

of this. To account for these effects, we placed temperature loggers at each transect for the same duration 546 

as the pan traps. To test for any effects, we analysed the data using a generalized mixed effect model with 547 

either bee abundance or bee species richness as the response and temperature, flower abundance and 548 

number of flowering species as the explanatory variables. This model also accounted for the time that the 549 

survey was completed and the nested sampling design (two habitats within each site). Since flower 550 

abundance and richness can also affect bee activity, we included flowering data to control for any 551 

confounding effects. When accounting for flowering, temperature did not have a significant effect on bee 552 

abundance and species richness in the pan traps and was therefore not used as an explanatory variable in 553 

the main analysis.  554 

 555 

Table S1: Abbreviated and scientific species names. 556 

Abbreviated Full name 

Apismell Apis mellifera 

Bombcamp Bombus campestris 

Bombhort Bombus hortorum 

Bombpasc Bombus pascuorum 

Bombprat Bombus pratorum 

Bombstr Bombus s. str. 

Bombsoro Bombus soroeensis 

Bombsylv Bombus sylvestris 

Hylaannu Hylaeus annulatus 

Lasialbi Lasioglossum albipes 

Lasicalc Lasioglossum calceatum 

Lasifrat Lasioglossum fratellum 

Lasileuc Lasioglossum leucopus 

Lasirufi Lasioglossum rufitarse 

Nomaflav Nomada flavoguttata 

Andrhaem Andrena haemorrhoa 

Bombhypn Bombus hypnorum 

Andrfuca Andrena fucata 

Bombbohe Bombus bohemicus 

Bombcing Bombus cingulatus 

Bombjone Bombus jonellus 

Bombnorv Bombus norvegicus 



Sphehyal Sphecodes hyalinatus 

Hylahyal Hylaeus hyalinatus 

Sphegeof Sphecodes geoffrellus 

Andrsemi Andrena semilaevis 

Bomblapi Bombus lapidarius 

Halirubi Halictus rubicundus 

Megavers Megachile versicolor 

Osmibico Osmia bicornis 

Andrsubo Andrena subopaca 

Nomapanz Nomada panzeri 

Achimill Achillea millefolium 

Achiptar Achillea ptarmica 

Alchemll Alchemilla 

Anthsylv Anthriscus sylvestris 

Carucarv Carum carvi 

Epilmont Epilobium montanum 

Galialbu Galium album 

Gerasylv Geranium sylvaticum 

Geumriva Geum rivale 

Heramant Heracleum mantegazzianum 

Hypemacu Hypericum maculatum 

Hypeperf Hypericum perforatum 

Leonautu Leontodon autumnalis 

Poteerec Potentilla erecta 

Ranuacri Ranunculus acris 

Rhinmino Rhinanthus minor 

Rubuidae Rubus idaeus 

Rumeacet Rumex acetosa 

Stelgram Stellaria graminea 

Trifprat Trifolium pratense 

Trifrepe Trifolium repens 

Verooffi Veronica officinalis 

Vicisepi Vicia sepium 

Aegopoda Aegopodium podagraria 

Camprotu Campanula rotundifolia 

Fragvesc Fragaria vesca 

Galibore Galium boreale 

Hiervulg Hieracium vulgata 

Knauarve Knautia arvensis 

Lathprat Lathyrus pratensis 

Leucvulg Leucanthemum vulgare 

Prunvulg Prunella vulgaris 

Urtidioi Urtica dioica 

Vicicrac Vicia cracca 

Hierlact Hieracium lactucella 

Lotucorn Lotus corniculatus 



Melaprat Melampyrum pratense 

Succprat Succisa pratensis 

Verocham Veronica chamaedrys 

Cerafont Cerastium fontanum 

Hierumbe Hieracium umbellatum 

Bistvivi Bistorta vivipara 

Euphrasi Euphrasia 

Pimpsaxi Pimpinella saxifraga 

Melasylv Melampyrum sylvaticum 

Euphstri Euphrasia stricta 

 557 
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Abstract15

Techniques for the dimension reduction of multivariate datasets are a commonly used tool in ecology.16

By reducing dimensions, it becomes more straightforward to explore the latent processes that underlay17

ecological data. Ordination methods such as Correspondence Analysis and non-metric Multidimensional18

Scaling are well studied, and frequently applied in ecology. However, in recent years newly developed or-19

dination methods using Generalized Linear Latent Variable Models have increased in popularity. Model-20

based ordination is, in contrast to classical ordination, a more flexible and transparent framework for21

dimension reduction. The model-based framework allows users to include random effects in the appli-22

cation of ordination and to validate any assumptions that are made during the analysis. This synthesis23

provides an overview of the similarities between popular classical ordination methods in ecology and24

model-based ordination, while arguing that Generalized Linear Latent Variable Models are the next25

generation of ordination methods.26

1



Introduction27

Many multivariate datasets in ecology can be considered as generated by some latent process (Austin 1985;28

ter Braak & Prentice 1988). Techniques that reduce dimensions of multivariate datasets attempt to capture29

that process as best as possible in few dimensions. Each dimension then represents an aspect of the process,30

in essence a latent variable (ter Braak & Prentice 1988), to which meaning is attributed using the relative31

distance of coordinates for rows and columns to each other in the multidimensional space (Gower 1966;32

Gabriel 1971). Reducing dimensions is useful for high dimensional data, as it allows researchers to better33

capture and visualize patterns in their data, or to perform inference more straightforwardly.34

In ecology, dimension reduction techniques for multivariate datasets are termed “ordination” (Goodall35

1954), and are used to analyse abundances or binary data that are generated by the environment at a36

collection of sites. Each aspect of the environment is referred to as an environmental gradient, and the37

combination of multiple environmental gradients is referred to as a “complex ecological gradient” (Whittaker38

1967; Halvorsen 2012). It is this interpretation to which ordination methods owe their popularity, since39

unmeasured ecological gradients can be interpreted as a latent variable, so that ordination is a type of latent40

variable modelling, where the species responses are then modelled as a linear combination of latent variables.41

A geometric interpretation of ordination methods follows from the view that they can be understood as42

methods to summarize a matrix (Jongman et al. 1995), e.g. as in Kidziński et al. (2021). Unsurprisingly,43

techniques for matrix decomposition such as an eigendecomposition or singular value decomposition underlie44

many ordination techniques such as Principal Component Analysis (Pearson 1901), but also Correspondence45

Analysis (CA, Hirschfeld 1935) and Principal Coordinate Analysis (PCoA, Gower 1966; Anderson & Willis46

2003).47

Species and sites, corresponding to the columns and rows of a multivariate dataset, are positioned by48

ordination methods in a lower dimensional space by their dissimilarity. The ordination space can then be49

visually inspected using a biplot. Gabriel (1971) developed the biplot as a visual display for application to50

high dimensional data, specifically in the context of PCA. Since its development, the biplot has been applied51

to many ordination methods (ter Braak & Looman 1994; Niku et al. 2019; Hawinkel et al. 2019).52

Two schools of ordination methods each attempt to describe patterns in the data based on conceptually53

different frameworks (Roberts 2020): the distance-based school which includes methods such as Princi-54

pal Coordinate Analysis (PCoA, Gower 1966) and Non-metric Multidimensional Scaling (NMDS, Kruskal55

1964a,b), and the model-based school (ter Braak 1985; Walker & Jackson 2011; Hui et al. 2015). Recent56

years have seen a push in the development of model-based ordination methods, in the form of row-column57

interaction models (Yee & Hadi 2014; Hawinkel et al. 2019) and with Generalized Linear Latent Variable58
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Models (GLLVMs, Warton et al. 2015a). PCA and CA can be considered to have a foot in both worlds, since59

those methods can be connected to a distance measure (Mardia et al. 1980 p. 405; Legendre & Legendre60

2012 pp. 466–467), but at the same time have an (implicit) statistical model that they relate to (Jongman61

et al. 1995).62

In this article, we describe some popular ordination methods, and summarize some of their properties, in63

order to demonstrate that the GLLVM framework can be considered as a new, more advanced and flexible64

framework for next generation ordination methods. GLLVMs are a modelling framework that builds on65

the ideas of Generalized Linear Models (Nelder & Wedderburn 1972) and Generalized Linear Mixed-effects66

Models (Bolker et al. 2009), but facilitate a latent variable interpretation, so that researchers are able to67

reduce dimensions of ecological data in a more model-oriented, and more statistically rigorous, manner. In68

various articles, GLLVMs have been shown to retrieve similar ordinations, or even outperform, classical69

ordination methods (Hui et al. 2015; Popovic et al. 2019; Jupke & Schäfer 2020; van der Veen et al. 2021a;70

but also see Roberts 2017; and Hawinkel et al. 2019). All methods described in this article are a type of71

(model-based) (residual) ordination with (un)constrained latent variables, but for different data types. In72

the first section, we start by describing PCA in order to explain the purpose of ordination in more detail,73

since it is the oldest, most well known, and most analytically accessible ordination method, at least when74

data are well behaved. In the second section we will discuss popular ordination methods in ecology, most75

notably NMDS and (D)CA. Thirdly, we explain the model-based ordination framework for unconstrained76

ordination. Thereafter we discuss ordination methods that constrain latent variables using an additional77

matrix of predictors, using explicit statistical models. Finally, we conclude this article with a discussion of78

the potential and flexibility of the GLLVM framework for the ordination of ecological communities.79

Introducing ordination80

PCA was first applied in ecology by Goodall (1954) in order to study species co-occurrence patterns in a81

plant community. Nowadays PCA is infrequently used for the analysis of ecological communities due to its82

“flaws” (Swan 1970; Legendre & Legendre 2012).83

For a matrix Y of observations in j = 1 . . . p columns with i = 1 . . . n rows, with column means ȳj84

PCA rotates the sample covariance matrix of the data to a coordinate system with orthogonal axes using an85

eigendecomposition:86

Σ̂ = V diag(λ)V ⊤ (1)

where Σ̂ = (Y − ȳj)⊤(Y − ȳj)(n − 1)−1, where V is a p × p unitary matrix whose columns are referred to as87

loadings or eigenvectors (i.e., vj the coordinates for each column in the data as part of the multidimensional88
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space) which are orthonormal (i.e. orthogonal and have unit length, so that we have the constraint v⊤
j vj = 1),89

and where λ = {1 ≥ λ1 > . . . λd} are eigenvalues which are ordered in a decreasing manner (Mardia et al.90

1980). The order constraint on the eigenvalues emphasises that the first axis explains most variance, the91

second axis thereafter and so forth, so that PCA can be thought of as the method that finds a p dimensional92

hyperplane with maximum variance order constraint, and with additional constraints on the loadings. Mardia93

et al. (1980) (pp. 229) summarizes some properties of PCA for maximum likelihood estimation of normal94

responses but also see Lynn et al. (1995) and Lynn & McCulloch (2000).95

Inspecting the ordination96

When inspecting a PCA through a biplot, the eigenvectors for d specific (by the user chosen, but generally97

the first two) dimensions are plotted as arrows that start at the origin of Principal Component (PC) axes98

and extend to the column coordinate calculated by PCA. The angle of an arrow to the PC axes represent99

the relation of that column to the PC axes, and the length of the arrow reflects the importance of a PC axis100

in explaining that column.101

For a complete overview of patterns in the data, coordinates of rows (also known as row scores) for a102

PCA can be retrieved by using a singular value decomposition:103

Ȳ = Udiag(λ0.5)V ⊤, (2)

for the orthonormal matrix U that holds all row scores, also known as the left singular vectors (i.e. the104

eigenvectors of the eigendecomposition for (Y − ȳj)(Y − ȳj)⊤(n − 1)−1), λ0.5 are singular values (i.e. the105

square root of the eigenvalues, representing the scale of the eigenvectors), and where the right singular106

vectors are the same as the eigenvectors above (Legendre & Legendre 2012 pp. 461–462). Note that the107

right singular vectors can be calculated using the left singular vectors, since U = Ȳ V ⊤diag(λ−0.5), so that108

both sets of scores can be retrieved with a single eigendecomposition.109

Naturally, in the context of a latent variable model, the coordinate system can be rotated or scaled in110

any other way while retaining a similar interpretation, but the maximum variance rotation of PCA has an111

appealing property for applied research. With any other rotation it might be difficult to determine which of112

the dimensions should be chosen to draw a low-dimensional plot (Gabriel 1971) in order to explore patterns113

in the subjected matrix. Here, since the eigenvectors explain the maximum possible variation each after each114

other, it is now possible to simply take the first few dimensions that account for most of the variation in the115

matrix, for example using a screeplot (Cattell 1966).116
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Distance-based view117

An alternative way of considering PCA, instead of based on the sample covariance matrix, is by the distances118

between the coordinates on a hyperplane. The distance between the coordinates is Euclidean in nature119

(Legendre & Legendre 2012 p. 433; Greenacre 2017), which can be seen by noting that the PCs are a120

linear transformation of the original columns in the data, and by noting that the sample covariance matrix121

is proportional to the (element-wise squared) Euclidean distance matrix (Mardia et al. 1980 pp. 404–405;122

Hastie et al. 2016 p. 671). For a column-centred matrix of observations Ȳ with entries ȳij for row i = 1 . . . n123

and column j, m = 1 . . . p we can write Σ̂jm = σ2
j + σ2

m − 2σjm and set σ2
j =

n∑
i=1

ȳ2
ij , σ2

m =
n∑

i=1
ȳ2

im, and124

σjm =
n∑

i=1
ȳij ȳim as in the squared Euclidean distance. Then, for j = m i.e. the diagonal entries, we have125

Σ̂jj = 0 as expected. As such, the eigendecomposition of the two matrices is identical. It is this view that126

connects PCA to the other distance-based methods discussed in this article.127

Model-based view128

PCA can alternatively be re-formulated as a method for multivariate linear regression (Jong & Kotz 1999),129

and in general can be considered a multivariate equivalent of linear regression (ter Braak & Prentice 1988;130

Lynn et al. 1995; Jongman et al. 1995; Lynn & McCulloch 2000), so that PCA performs best under the131

assumption of multivariate normality. If we remove the (p − d) eigenvectors with the smallest eigenvalues,132

PCA approximates the data with the following linear latent variable model:133

yij = z⊤
i γj , (3)

where zi is a vector of d scores for row i treated as fixed effect, and γj is a vector of d column loadings for134

column j. Omitting the first d eigenvectors that explain comparably little variation in the response implies135

a residual error ϵij . Since the row scores, column loadings, and residual are linear combinations of the data,136

they too follow a normal distribution if the responses are normally distributed.137

Factor Analysis (FA, Spearman 1904) is a method akin to PCA, that was developed for application in138

psychology. FA also fits a linear latent variable model, but with an explicit error term:139

140

yij = β0j + z⊤
i γj + ϵij , (4)

where zi ∼ N (0, I) is a vector of d row scores, and γj is a vector of d column loadings which are similar to141

the eigenvectors for PCA (Bartholomew 2011 p. 61), and where ϵi ∼ N (0, diag(σ2
j )). In PCA the data are142

column-centred by the sample mean, corresponding to the maximum likelihood estimator for the intercept in143
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the factor analysis model, if the data is normally distributed. From the same perspective, PCA finds latent144

variables under the assumption that σj = 0, i.e. PCA assumes the data can be perfectly represented by the145

latent variables alone, so that the solutions can be expected to be similar when the error variances are small146

(Bartholomew 2011 p. 61), so that PC axes are contaminated with residual error otherwise.147

FA finds the a-priori determined number of latent variables that are most important to describe the148

data, but in a maximum likelihood sense (Bartholomew 2011 p. 181). But, where PCA assumes that the149

latent variables are orthogonal to each other, the factor analytic model can instead be adapted to all kinds150

of rotations (e.g. oblique, Bartholomew 2011 p. 70). In general, the factor analytic model is rotational151

invariant (Bartholomew 2011 p. 10), so that the solution can be rotated in any way without affecting the152

final fit. The most striking difference between PCA and FA is that PCA treats the row scores as fixed and153

FA as standard normally distributed random effects (Bartholomew 2011 p. 8).154

FA is rarely applied in ecology (Kent & Ballard 1988; Kent 2006; Von Wehrden et al. 2009) since155

observations of ecological communities are not often normally distributed. A straightforward example is156

that of a count of individuals, which first and foremost counts cannot be negative. In such a case, unlike for157

normally distributed responses, patterns in the data are not well described by the sample covariance matrix158

(as in PCA), since it is a particularly naive estimator for the maximum likelihood solution of the covariance159

matrix for a latent variable model with a non-normal response distribution, so that generally more complex160

expressions are required in combination with iterative algorithms.161

Popular unconstrained ordination methods in ecology162

There are two different approaches in ordination to accommodate non-normal data and non-normal response163

models. Either: 1) a different distance measure is assumed to accommodate differences in data types, or164

2) a different response distribution aside from normality is assumed. Roughly, these two groups can be165

considered as the most distinct branches in ordination methods to date, and as such we will examine each166

in more detail.167

Distance-based ordination forms a separate group of methods within ordination that instead of directly168

working on the raw data, are applied to a matrix of distances or dissimilarities between the rows of a169

multivariate dataset. Use of the Euclidean distance measure, as in PCA, is discouraged in ecology for170

various reasons, relating to flaws of PCA for the analysis of ecological communities: e.g. the horseshoe effect.171

The horseshoe effect concerns the tendency of PCA to exhibit non-linear distortions, which is considered172

a mathematical artefact in ecology, and which is not due to any real ecological process that underlays the173

data generation (Swan 1970). As such, PCA is not recommended for the analysis of ecological communities174
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(Gauch & Whittaker 1972; Beals 1973; Kessell & Whittaker 1976; Nichols 1977; Rydgren 1996).175

To improve on this, distance-based ordination methods instead rely on a n × n symmetric matrix of a176

type of a-priori chosen distances or (dis)similarities between rows, so that the information on the column177

identities is condensed (i.e. hidden, and cannot be retrieved in a meaningful way post-hoc). Retrieving178

a successful ordering of row coordinates with distance-based ordination methods thus largely depends on179

selecting a distance measure that appropriately accommodates the properties of a dataset. A range of studies180

have summarized the properties of dissimilarity measures, and for which data type they should be applied181

(Gauch & Whittaker 1972; Faith et al. 1987; Legendre & Gallagher 2001; Podani & Miklós 2002; Greenacre182

2017; Roberts 2017). Faith et al. (1987) and Legendre & Gallagher (2001) studied the performance of some183

distance measures for ecological applications, and determined that various frequently used dissimilarity184

measures performed poorly.185

PCoA performs an eigendecomposition of the matrix of dissimilarities, so that it is equivalent (up to the186

constant in the calculation for the sample covariance matrix) to PCA for an Euclidean distance (Mardia et187

al. 1980 p. 405). A dissimilarity measure is considered metric when a matrix is symmetric, has a diagonal188

of zeros, and where all off-diagonal entries are positive (Mardia et al. 1980 p. 395). The use of non-metric189

measures in PCoA can cause negative eigenvalues, which is considered one of the largest issues of the method190

(Cailliez 1983; Legendre & Legendre 2012 p. 501).191

Note, that few modern advances have been made for distance-based ordination methods, such as t-192

distributed stochastic neighbour embedding (Van der Maaten & Hinton 2008). However, such methods have193

not yet been frequently applied in community ecology, and as such we do not discuss them here (but see e.g.194

Roberts 2020).195

Non-metric multidimensional scaling196

Arguably the most popular and well-known ordination method in ecology is NMDS. In contrast to PCoA,197

NMDS has been shown resistant to difficulties with mathematical artefacts (Minchin 1987), though see198

Ruokolainen & Salo (2006).199

Unlike eigenvector methods, NMDS is an iterative algorithm that, just as eigenvector based methods,200

attempts to best project distances or dissimilarities between rows in the data, into a lower dimensional space201

where the distance between coordinates is Euclidean. However, NMDS has the unique property that the202

assumption of Euclidean distances in the ordination space can be adjusted (though this is rarely done to203

our knowledge). Minchin (1987) showed that NMDS performs especially well for ecological datasets, better204

than some other popular ordination methods (e.g. CA and DCA as discussed below).205
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At its core, the NMDS algorithm performs an (ordered by increasing values) isotonic regression of the206

original data dissimilarities on the dissimilarity matrix of row coordinates in the ordination space. Note207

that NMDS is prone to getting stuck in a suboptimal solution, so that it requires multiple fittings to ensure208

an optimal solution. Although the philosophy of NMDS is unlike other ordination methods, its properties209

are surprisingly similar to that of FA, since the dimension of the ordination space is also chosen a-priori to210

fitting in NMDS. Then, based on the chosen number of dimensions, NMDS finds the solution that minimizes211

the (scaled) squared residual of the rank order of the (dis)similarities in the data, and the rank order of rows212

in the ordination dimensional space. This objective function in NMDS is named “stress” (Kruskal 1964a,b).213

As such, the solution of NMDS does not directly depend on the original matrix of row dissimilarities, but214

only on the rank order of the rows, which is origin of the method its robustness to issues with mathematical215

artefacts.216

In general, little research has been done on the statistical properties of NMDS. Brady (1985) attempted217

to do so by specifying different models, including:218

d1(Y ) = f{d2(Z)} + ϵ, (5)

where d1(·) and d2(·) are distance functions that are not required to be the same, f(·) is a non-parametric219

monotonic function, Z a matrix holding vectors row scores zi, and ϵi an normally distributed error term.220

Clearly, similarly to other ordination methods, NMDS finds the latent variables that best fit the data (albeit221

“fit” is measured in a different manner). This model serves to provide an impression of how NMDS relates222

to the other ordination methods described above. For further details on e.g. the development of a maximum223

likelihood estimator, and consistency of the NMDS estimator, see Brady (1985). Note, that here too the224

ordination is invariant to rotations, since for any two sets of row coordinates and with an orthogonal matrix225

R we can write d1(Rz1, Rz2) = d1(z1, z2), so that the distances in the ordination do not change with226

changes in rotation or flipping of the axes.227

Ruokolainen & Salo (2006) concluded that NMDS did not outperform eigenvector based methods, but228

instead drew the more nuanced conclusion that both groups of methods have their place for the analysis of229

community ecological data. This is similar to the “multiple parallel ordinations” procedure described by van230

Son & Halvorsen (2014).231

Correspondence analysis232

In this article, we use CA to connect the worlds of distance-based and model-based ordination. ter Braak233

& Barendregt (1986) and ter Braak (1985) showed that CA can be related to model-based ordination as a234
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type of latent variable model, so that rather than changing the distance measure to accommodate different235

data types as in PCoA and NMDS, we now change the response distribution for the latent variable model236

instead. Although, it is often noted that CA can be considered as a distance-based method too, namely by237

retrieving the solution by first calculating a matrix of χ2 distances, and subjecting that to a singular value238

decomposition (Legendre & Legendre 2012 pp. 466–467), so that CA has a foot in both the distance-based239

and model-based ordination worlds.240

CA was developed independently by a range of authors (Legendre & Legendre 2012 p. 464), most241

recently under the synonym “reciprocal averaging” (Hill 1973), for the analysis of contingency tables. Due242

to its simplicity and straightforward connection, below in equation (6a) we present the solution for CA that243

uses a weighted singular value decomposition of the data, where rows and columns are standardized by their244

sums, as presented by ter Braak (1985).245

diag(
p∑

j=1
yij)−0.5Y diag(

n∑

i=1
yij)−0.5 = Udiag(λ0.5)V ⊤ (6a)

246

Y = diag(
p∑

j=1
yij)0.5Udiag(λ0.5)V ⊤diag(

n∑

i=1
yij)0.5. (6b)

247

Equation (6b) additionally serves to demonstrate how CA relates to the unstandardised data. The first248

eigenvector from this calculation represents an ordination axis where all loadings and the eigenvalue are one,249

i.e. a type of row specific intercept as in other latent variables models (see e.g. Hui 2016). This equally250

serves to demonstrate that the eigenvalues for CA are all in the range {0, 1}. The loadings of CA are251

γj = diag(λ0.5)vj(
n∑

i=1
yij)−0.5 and row scores zi = ui(

p∑
j=1

yij)−0.5.252

ter Braak & Barendregt (1986) derived conditions under which CA successfully approximates the max-253

imum likelihood solution for a latent variable model with Poisson (with log-link function), Bernoulli (with254

logit-link function), or gamma (with inverse-link function) distributed responses, by repeated weighted aver-255

aging, and using unimodal responses. In ecology, the unimodal response model was considered more realistic256

than the linear model response model, so that CA was a more appealing ordination method to apply for257

ecologists than PCA (Hill 1973; Gauch 1982; ter Braak 2014). From that perspective, choosing between258

PCA or CA for the ordination of ecological data does not only indicate a change in response distribution,259

but also a change in model structure and complexity.260

A few years after the introduction of CA in ecology by Hill (1973), ecologists had noticed flaws in CA261

some of which were similar to that of PCA (Gauch et al. 1977; Hill & Gauch 1980). In particular, CA262

can exhibit non-linear distortions which are not considered to be due to any real ecological patterns in the263
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data, which ecologists refer to as the arch effect (Legendre & Legendre 2012 pp. 482–483). Additionally, CA264

also suffers a phenomena referred as the edge effect, which is caused by the erroneous clustering of column265

loadings closer together at the ends of the latent variables (also see Hill & Gauch 1980 Fig. 2), as a result266

of partially unobserved niches for species (Hill & Gauch 1980).267

Consequently, Detrended Correspondence Analysis (DCA, Hill & Gauch 1980) was developed as an268

attempt to to improve on these issues with the arch effect and the edge effect in CA. DCA detrends and269

performs non-linear rescaling of the axes to improve these issues. The non-linear rescaling often successfully270

manages to eliminate the arch effect (J. Oksanen, pers. comm., November 22nd 2018). Unfortunately, the271

detrending and rescaling in DCA lacks any clear theoretical or statistical basis, and the solution is sensitive272

to choice in the number of segments (Jackson & Somers 1991). An alternative method for removal of the273

arch effect is detrending by polynomials, although this process was abandoned quickly (Knox 1989).274

Since its development, DCA has been controversial at best (Wartenberg et al. 1987; Peet et al. 1988;275

Knox 1989; Jackson & Somers 1991). DCA introduces yet another mathematical artefact referred to as the276

tongue effect (Minchin 1987), so that it is also not the most suited method for the dimension reduction277

of data on ecological communities. Removal of the arch effect can even lead to removal of real patterns278

in the data (Pielou 1984). Minchin (1987) showed that PCA and (D)CA perform poorly when faced with279

various degrees of non-linearity in the latent variable model, resulting in the arch and tongue effects. Various280

distance-based methods do not exhibit such issues, so that Minchin (1987) advocated for the use of NMDS281

instead.282

Model-based ordination with unconstrained latent variables283

More recently, Warton et al. (2012) and Warton & Hui (2017) studied various solutions of distance-based284

ordination methods, and concluded that those methods have the tendency to confound effects on the mean285

of a distribution and its variance, so that they should be applied to ecological data only with great care. In286

turn, Warton et al. (2015b) advocated for the use of more explicit statistical models in the analysis of data287

on ecological communities.288

We have previously discussed one ordination method that poses an explicit statistical model, namely289

FA. FA is that ordination method with an explicit statistical method. Warton et al. (2015b) advocated for290

the use of more explicit statistical models in the analysis of data on ecological communities. However, for291

non-normally distributed responses the assumption of normally distributed residuals in FA is often not even292

approximately satisfied, and so the response distribution needs to be changed. This subsequently leads to a293

generalization of FA into Generalized Linear Latent Variable Models or GLLVMs (Skrondal & Rabe-Hesketh294
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2004), which allow the user to flexibly choose a response distribution and accommodate all common data295

types in ecology. GLLVMs are flexible in the model posed, so that it can be linear in form as in PCA and296

PCoA (Hui et al. 2015), and non-linear models for the latent variables are possible (see our discussion later297

on and in van der Veen et al. 2021b). In ecology, the default GLLVM assumed is:298

ηij = β0j + z⊤
i γj , (7)

where we recall that β0j is an intercept for column j, zi ∼ N (0, I) are normally distributed scores or latent299

variables for row i, and γj are the loadings for column j. When fitting GLLVMs, we have to integrate over300

the unobserved latent variables, so that the likelihood is given as:301

L(Θ) =
n∑

i=1
log

{ ∞∫

−∞

p∏

j=1
f

(
yij |zi, Θ

)
h

(
zi

)
dzi

}
, (8)

where f(yij |zi, Θ) is the distribution of the responses given the latent variables, with mean g(ηij) for a known302

link-function g(·) such as the log-link for Poisson responses or the logit-link function for binary responses,303

and where the vector Θ includes all parameters in the model, including any nuisance parameters as part of304

the distribution (e.g., the variance parameters σ2
j in the Gaussian distribution).305

Treating the latent variables as fixed effects instead of as random effects in a GLLVM, results in a solution306

that is similar to that of classical ordination method. We can demonstrate this by first assuming that the307

normal distribution for the latent variables has a mean with some variance zi ∼ N (µi, Σi). If we now assume308

that the covariance matrix equals zero, the latent variables simplify to means of the normal distribution, and309

equation (8) simplifies to the likelihood of any other multivariate GLM, but instead of including predictors310

provided by a researcher, they are estimated by maximizing the likelihood.311

Though it is more straightforward to make such a comparison for model-based ordination and eigenvector312

based methods such as PCA, CA, model-based ordination are compared to distance-based ordinations on313

a regular basis and are expected to provide similar solutions by researchers (Hui et al. 2015; Popovic et314

al. 2019; Jupke & Schäfer 2020; Roberts 2020). Alternatively, GLLVMs are understood as modelling the315

residual covariance of the data on the linear predictor scale (Warton et al. 2015a). This is straightforward316

to see, as the combination of equation (7), and the standard normality assumption of the row scores, implies317

the residual variance γ⊤
j γj for column j, and similarly for the covariance between two column, so that the318

size of the residual covariance matrix is p × p, with the element for species (j, k) given as γ⊤
j γk (Hui et al.319

2015). The residual covariance matrix includes the dissimilarity between the columns, which ecologically is320

interpreted as associations (due to e.g., interacting species Ovaskainen et al. 2017). If instead a researcher321
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is interested in the predicted dissimilarity of rows, as in distance-based ordination, transposing the data (so322

that the rows become the columns and vice versa) and fitting the same model, results in a n × n residual323

covariance matrix of row dissimilarity. This is also the orientation used in e.g. the example of Gauch (1982)324

(pp. 138), where they used PCA to determine coordinates of rows, rather than coordinates of columns. Note325

however, that the resulting assumption of independent species is not appropriate.326

Popular constrained ordination methods in ecology327

So far, we have discussed ordinations that are constructed from information in the n × p response data328

matrix. Often however, measurements on the rows of the data matrix are additionally available in a separate329

matrix of predictors. There are multiple possibilities to include predictors in a multivariate analysis, which330

we discuss in this section.331

Predictors can be directly included in multivariate GLM as in Wang et al. (2012):332

ηij = β0j + x⊤
i βj , (9)

where xi are the k = 1 . . . K predictors for row i, and βj are the corresponding slopes for column j of333

the responses. A multivariate GLM is a stack of independent univariate GLMs, so that the fixed effects334

parameters can be estimated by fitting models to each column of the data separately. Using GLLVMs it is335

possible to include an unconstrained ordination after including the predictors, as to perform an ordination336

on the residuals (i.e. left-over information, Carleton 1984) of the model:337

ηij = β0j + x⊤
i βj + z⊤

i γj , (10)

where the last term on the right hand side is an ordination, which is z⊤
i γj , and has the same set up as in338

equation (7). However, here the ordination is conditional on the fixed effects, and for that reason such an339

ordination is referred to as a “residual ordination”, since the latent variables still consist of residual informa-340

tion as in unconstrained ordination. However, unlike in an unconstrained ordination, a residual ordination341

excludes certain patterns from that unconstrained ordination, which are specified using the predictors. Typ-342

ically, a residual ordination is used when the effect of a predictor needs to be accounted for, but is not of343

direct interest.344

An alternative interpretation of residual ordination follows from the perspective that, after accounting345

for the effects of the predictors, there might be residual correlation left to explain between the columns of the346
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data. Depending on the research question at hand, these predictors may or may not be of interest, so that347

the residual ordination might be of more importance to answering a research question than the predictors348

(or vice-versa).349

Constraining latent variables350

ter Braak & Prentice (1988) unified unconstrained and constrained ordination in a single framework for351

ordination. Unlike in residual ordination, we now perform our inference on the latent variables, so that the352

latent variables can be considered as (partially) observed. Constrained ordination is so named, as it places353

constraints on the latent variables relative to latent variables made up from residual information alone,354

by using the measured predictor variables. For example, in constrained ordination we could assume that355

the latent variables are represented by the parallel change in various predictors simultaneously (Halvorsen356

2012). Constrained ordination is the most popular way of including predictors in an ordination, at least in357

community ecology, and is a special case of a multivariate GLM or GLLVM.358

Unconstrained or residual ordination methods are especially useful for community ecologists to generate359

hypotheses when measurements of the environment at sites are not available or of interest, whereas con-360

strained ordination methods can serve also to test hypotheses on species-environment relationships (Økland361

1996). Similar to unconstrained ordination, constrained ordination can be performed conditional on a set of362

predictors, a method that is referred to as partial constrained ordination (ter Braak 1988).363

For constrained ordination methods we will assume the following model:364

g{E(yij |xlv,i, ϵi)} = β0j + z⊤
i γj ; where z⊤

i = x⊤
lv,iB, (11)

where xlv,i is a matrix of predictors for the ordination, and where B is a d × K matrix of predictor slopes365

common to all columns and rows of the data. This model can be fitted in e.g., the VGAM R-package (Yee &366

Hastie 2003), the gllvm R-package (Niku et al. 2017a), or using the vegan R-package (Oksanen et al. 2020).367

The ordination resulting from equation (11) can be visualized using a triplot (ter Braak & Verdonschot 1995),368

where arrows are drawn using the estimates of B (so that three quantities: rows, column and predictors are369

represented, hence a “triplot”), to represent the correlation of each predictor with the latent variable. The370

location of row scores and column loadings can then be interpreted in relation to those arrows.371

Constrained ordination is a type of hierarchical regression where the latent variables are assumed to be372

(weighted) linear combinations of measured predictors. Indeed, Each of the classical ordination methods373

mentioned previously also has a constrained variant. For PCA this is Redundancy Analysis (RDA, Rao374

1964), for NMDS it is constrained NMDS (Heiser & Meulman 1983), for (D)CA it is (Detrended) Canonical375
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Correspondence Analysis ((D)CCA, ter Braak 1986), and for model-based ordination it is reduced rank376

regression (Anderson 1951; ter Braak & Looman 1994; Yee 2015; van der Veen et al. 2021a). Constrained377

ordination can be considered as attempting to summarize information in two matrices at the same time (the378

responses and the predictors).379

In a multivariate GLM as in equation (9), the rank of the matrix of predictor slopes is equal to the380

maximal number of linearly independent columns i.e. min(p, K) so that the number of parameters is p+pK.381

Reduced rank regression serves to reduce the number of parameters by imposing a rank constraint on the382

matrix of predictor slopes, with the additional benefit of being an ordination (ter Braak & Prentice 1988;383

van der Veen et al. 2021a). From equation (11) we can set β0j = Bγj to again retrieve a multivariate384

GLM as in equation (9). Since zi can be interpreted as a latent variable, this leads to a similar procedure385

for selecting the rank constraint as in model-based unconstrained ordination. When d < K, the number of386

parameters is reduced compared to a multivariate GLM, and the dimension of both the response dataset387

and the matrix of predictors is reduced.388

Classical constrained ordination methods such as RDA and CCA do not reduce dimension of the matrix389

of predictors, but instead relate predictors to the responses, and consecutively perform a maximum variance390

rotation. As such, methods such as RDA and CCA assume that d = min(K, p), i.e. the number of ordination391

axes is at maximum equal to the number of predictors or the number of column, whichever is least, so that392

dimension-reduction is performed post-hoc based on criteria for variances related to the latent variables as393

in unconstrained ordination. We now review each of these constrained ordination approaches in more detail.394

Redundancy analysis395

Redundancy analysis is the equivalent of multivariate regression, but adopts a post-hoc rotation to maximum396

variance for the fitted values. It was developed by Rao (1964), but termed by van den Wollenberg (1977).397

It is generally considered as the equivalent of PCA, but for constrained ordination (ter Braak & Šmilauer398

2015). Similarly to in PCA, RDA has only limited applicability to ecological data, due to its linear response399

model and due to the assumption of multivariate normality (McCune et al. 2002).400

In RDA, the data is first regressed against the predictors using multivariate regression, after which the401

matrix is subjected to a singular value decomposition of rank K, in order to retrieve dimensions that satisfy a402

maximum variance rotation, and to retrieve the row scores and column loadings for the ordination space. As403

such, we can formulate RDA as follows, for a column-centred matrix of predictors X̄ and a column-centred404

matrix of observations Ȳ :405

X̄β = Udiag(λ0.5)V ⊤; where β = (X̄⊤
X̄)−1X̄

⊤
Ȳ (n − 1)−1, (12)
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In order to relate RDA to the model in equation (11), we now set β = BV as in equation (11) (for V = Γ with406

γj on the rows of that matrix) and note that, as for the latent variable models above, this solution is invariant407

to changes in rotation or scale, and that the maximum rank of β is K. Since we can set BRR−1V for any408

K × K non-singular R, we see that XRR−1BV = Udiag(λ0.5)V ⊤ for U = XR, diag(λ0.5) = R−1B, so409

that RDA is the equivalent of reduced rank regression for normally distributed responses and for a maximum410

variance rotation. ter Braak & Prentice (1988) (pp. 246) notes that for two ordination axes, RDA includes411

p + d(K + p) parameters, which is exactly the case here, since there are p intercepts, K × d slopes for the412

predictors, and p × d column loadings: p + K × d + p × d = p + d(K + p).413

Similar to PCA, dimension-reduction is performed post-hoc in RDA, whereas in reduced rank regression414

the latent variables that provide the best fit are estimated, given the pre-selected number of latent variables415

that a researcher is interested in. For the latter case, the number of latent variables that optimally represent416

a dataset can be determined using information criteria.417

Also, analogous to distance-bassed unconstrained ordination, a constrained ordination can be performed418

by first calculating a matrix of dissimilarities of rows. Distance-based constrained ordination methods have419

been developed based on RDA including transformation-based or distance-based RDA (tb-RDA and db-RDA,420

Legendre & Anderson 1999; Legendre & Gallagher 2001; Anderson & Willis 2003). In transformation-based421

RDA, RDA is applied directly to a transformed version of the data (Legendre & Gallagher 2001). Unlike422

db-RDA, tb-RDA provides both row scores and column loadings. Other distance-based methods in general423

only determine row scores, and not column loadings. For example, in distance-based RDA, a PCoA is first424

performed, after which RDA is applied to the results of PCoA.425

Constrained Non-Metric Multidimensional Scaling426

NMDS can be extended to a constrained ordination method, similarly to RDA for PCA (Heiser & Meulman427

1983; McCune et al. 2002 p. 137), although we note that software developments are lacking (ter Braak &428

Šmilauer 2015 p. 687).429

It is relatively straightforward to develop an algorithm for constrained NMDS by optimizing with respect430

to a set of (reduced rank) predictor slopes instead of a set of unconstrained row scores, as in latent variable431

models (van der Veen et al. 2021a), for example as in algorithm 1 where vech(·) is a half-vectorizing432

operator, converting a symmetric matrix to a vector, by retrieving its lower triangular entries. Translating433

the constrained NMDS algorithm to a software implementation in the R programming language can be done434

using derivative-free optimization, since isotonic regression is by default provided in R (see appendix S1 for435

an implementation of constrained NMDS).436

Naturally, constrained NMDS inherits similar issues with the use of distances between rows as for uncon-437
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Algorithm 1 constrained NMDS
1: Specify the matrix of dissimilarities dY = vech{d1(Y )}
2: Specify the number of ordination axes d
3: initialise the matrix of d slopes for K predictors
4: Order dY increasingly
5: Z = X⊤

i B
6: Let dZ = vech{d2(Z)}
7: Order dZ by the ordering of dY
8: Isotonic regression: dY = f(dZ) + ϵ
9: let iY be the locations on the isotonic fit for the data

10: let iX be the fitted values for dZ

11: argmin
B

s =
√∑

(iY − iX)2/
∑

dY 2

strained ordination (Warton et al. 2012; Warton & Hui 2017). Additionally, NMDS places the constraint438

that the rank order of dissimilarities of rows in lower dimensional space should correspond to that of the data.439

Thus, in a situation where the dissimilarity of rows due to the predictors is different from the dissimilarity440

of rows due to the response data, the constraint placed by the predictors most likely prevents constrained441

NMDS from reaching an optimal solution. Naturally, this is an issue for classical constrained ordination442

methods in general, when important drivers of patterns in the data are missing, so that a residual effect443

should be added instead (see van der Veen et al. 2021a, and the discussion on this subject below).444

Canonical Correspondence Analysis445

Canonical Correspondence Analysis is the most popular constrained ordination method to date in community446

ecology (Von Wehrden et al. 2009; Warton et al. 2012). It was developed by ter Braak (1986) as the447

constrained counterpart of CA (but also see ter Braak 1987), and has been described as “the counterpart of448

RDA” (ter Braak 2014). CCA can be calculated in a similar manner as RDA (Legendre & Legendre 2012449

p. 664), but for a matrix of observations Y ∗ which is weighted by row and column sums as in CA, and a450

matrix X∗ which is row standardized and column centred, then:451

diag(
p∑

j=1
y0.5

ij )X∗β = Udiag(λ0.5)V ⊤; where β = (X∗⊤X∗)−1X∗⊤Y ∗, (13)

so that CCA has a similar connection to equation (11) as RDA.1452

Due to its suitability for common data types in ecology such as counts and binary data, CCA has been453

widely applied in community ecology. Similarly to CA, CCA has a quadratic “face”, so that it has been454

used in order to account for non-linear responses (ter Braak 1986; Johnson & Altman 1999; Yee 2004). More455

1After completion of the chapter, it was brought to our attention that equation (13) is not precise. For a precise formulation
see ter Braak and Verdonschot (1995).
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importantly, Palmer (1993) concluded that CCA performs well, as the arch effect rarely crops up due to the456

constraints on the latent variables, so that CCA performs well also for noisy real world settings in ecology457

(Jupke & Schäfer 2020; but see McCune 1997). Johnson & Altman (1999) concluded that variability of the458

reduced rank slopes B estimated by CCA is large, and care should be taken in their interpretation. As such,459

the reduced rank predictor slopes are rarely used, and the current R implementation in the vegan R-package,460

uses sample correlations between the estimated latent variables and the predictors to draw arrows in a triplot461

(see also ter Braak 1986).462

Model-based ordination with constrained latent variables463

For models fitted to non-normally distributed responses, such as those that CCA approximately fits, reduced464

Rank regression exactly fits the model in equation (11), but connects the linear predictor ηij to the mean of465

the response distribution using a non-linear link function g(·), such as the log-link for counts. As such, each466

of the aforementioned (classical) ordination methods can be understood as (either exactly or approximately)467

fitting a model-based constrained ordination, with slight differences in scaling, standardisation of data, or468

rotation of the solution.469

Model-based constrained ordination methods have been available for latent variable models for decades.470

For example, Yee (2004) developed a more exact counterpart for CCA using Reduced Rank Vector General-471

ized Linear Models. Most recently, van der Veen et al. (2021a) developed a method for constrained ordination472

that can include both fixed effects and random effects, for when the latent variable is only partially observed,473

which we further address in the next section.474

GLLVMs: a flexible framework for ordination475

The GLLVM framework has the ability to account for difficulties encountered in the application of classical476

ordination methods over the last century, which includes difficulties with the use of distance measures, the477

double-zero problem, and the arch effect. In the GLLVM framework researchers have the possibility to478

include additional random-effects to account for some of these issues, and more generally to find the most479

appropriate model structure in a non-arbitrary way by adapting known statistical model-building techniques.480

In general, explicitly assuming a statistical model allows the mean-variance relationships of ecological481

data to be appropriately accounted for (see e.g. Wang et al. 2012), and offers access to standard tools482

for regression, such as residual diagnostics for checking assumptions (Hartig 2021), tools for model-selection483

(Burnham & Anderson 2002), and a principle means by which to account for the statistical uncertainties of484

all parameter estimates, not available when using classical ordination methods.485
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Model-based ordination completely circumvents the specification of a distance measure for the data, but486

instead requires specifying a probability distribution for the response as in equation (8). The probability487

distribution is chosen as to accommodate the properties of a dataset, and the choice is validated by checking488

residual assumptions. The main difference with using a distance or dissimilarity measure is that, rather489

than transforming the data, the mean of the data is transformed instead using a link function. Here, it is490

important to note that directly transforming data can have negative side-effects on the results of an analysis491

(O’Hara & Kotze 2010; Warton & Hui 2011; Warton 2018), so that adhering to the properties of data using492

a probability distribution is more appropriate.493

That is not to say that difficulties with classical ordination methods cannot arise at all in model-based494

ordination, but merely that the GLLVM framework has the tools to adjust when those difficulties do arise.495

For example, the problem with double zeros, i.e. the tendency of unconstrained ordination methods to treat496

all zeros in a similar fashion while the underlying process generating the zeros can differ, can still be an497

issue. Ecologically, zeros can be generated when two different processes generated data, which in regression498

is acknowledged by assuming a zero-inflated or hurdle models (say Niku et al. 2017b; or Lambert 1992).499

Similarly, the arch effect can crop up in model-based unconstrained ordination (Hui et al. 2015). Legendre500

& Legendre (2012) writes that it is due to the non-linear species responses to the ordination axis, while501

earlier Hill (1973) writes: “It (the arch effect) arises because the second axis (canonical variate) of reciprocal502

averaging is constrained to be uncorrelated with the first axis, but is in no way constrained to be independent503

of it”, and similar arguments exist for other ordination methods. Since model-based ordination methods are504

a relatively new development, little research is available on how to use model-based ordination as a tool to505

address the problems that plague classical ordination methods. One of the few references to potential issues506

with the non-linear distortions in the ordination, as the arch effect is occasionally referred to, is in Hui et al.507

(2015).508

The assumption of normality for the latent variables in GLLVMs is an appealing choice, also in light of509

the arch effect. It improves on the deficit of (P)CA that ordination axes are only required to be linearly510

independent (Gauch 1982 p. 153). That is, assuming (standard) normality of the latent variables, as is the511

default in GLLVMs, results in orthogonality of the latent variables. Fortunately, assuming orthogonality is512

equivalent to assuming independence for standard normal random variables, since for the case of d = 2 with513

zi = (zi,1, zi,2) ∼ N (0, I) we see that E(zi,1zi,2) = E(zi,1)E(zi,2) = 0, a result which is naturally independent514

of the choice for the number of latent variables.515

However, that is not to say that the linear and quadratic (or higher order polynomial terms) are inde-516

pendent as well. van der Veen et al. (2021b) showed that under the assumption of multivariate normality,517

quadratic and linear terms of all latent variables are independent, so that assuming standard normality can518
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be considered as a form of simultaneous estimation and detrending by polynomials (ter Braak & Prentice519

1988), and a similar result holds for higher order polynomials. Unfortunately, this same result serves to show520

that unless accounted for using an explicit quadratic model, a linear ordination can visualize the quadratic521

term as a separate ordination axis, since the independence assumption can still be adhered to.522

Though the prior assumption for the latent variables is to be standard normally distributed, no such523

assumption is made for the (predicted) conditional distribution of the latent variables given the data p(zi|yi).524

The prediction for the latent variables is commonly used for the visualization of an ordination with GLLVMs.525

For example, GLLVMs fitted with Variational Approximations approximate the conditional distribution of526

the random-effect with a (fully) parametrized version of the normal distribution (referred to as the variational527

distribution, Hui et al. 2017), and Laplace’s method makes similar assumptions (Niku et al. 2017b), so that528

we can expect arch-like distortions to also crop up in model-based ordination.529

Due to the non-linear nature of the arch effect, adjusting the model structure to include quadratic terms530

can accommodate such issues. Alternatively, since an ordination is conditional on other terms in the model,531

variation that leads to the arch effect in an ordination can be accounted for by including additional terms,532

such as random effects in the form of random intercepts (Jamil & ter Braak 2013; Hui et al. 2015).533

Other random effects can be included in the model to accommodate other properties of the dataset534

under study. For example, van der Veen et al. (2021a) extended constrained ordination by including a535

random effects term, so that the latent variables can be modelled as partially (un)observed, compared536

to the assumption of fully observed latent variables in classical constrained ordination. This addresses537

the difficulty of classical constrained ordination, where patterns in the data can be misrepresented if few538

predictors are measured. Their model unifies the constrained and unconstrained ordination frameworks,539

as it always optimally represents the ordination (in an unconstrained sense), even when few predictors are540

measured. Additionally, as in any other mixed effects model, structured random effects can account for541

non-independence of residuals due to e.g., nested or spatially structured sampling designs. For example, in542

the gllvm R-package (Niku et al. 2017a), but also in the boral R-package (Hui 2016) or the glmmTMB543

R-package (Brooks et al. 2017), optional random effects can be included with various structures including544

an autoregressive or spatial auto-correlation structure. Additionally, the HMSC R-package (Tikhonov et al.545

2020) offers many other tools for random effects modelling with latent variables.546

Finally, adding random effects naturally increases the complexity of models. Historically, there is a547

considerable difference in the method for determining the complexity of a latent variable model as fitted548

with eigenvector methods including PCA, D(C)CA and PCoA, in contrast to latent variable models fitted549

with methods that require selecting the number of dimensions prior to fitting, including NMDS, FA, and550

GLLVMs. Choosing the correct complexity of the model is critical to ensuring correct interpretation of an551
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ordination, and reduce undue computational burden. In eigenvector methods, the number of dimensions552

for inference is chosen based on an arbitrary threshold for the magnitude of the eigenvalues. One way to553

determine this threshold is using a screeplot, which is a type of barplot with the explained variance on the554

y-axis, and the latent variables on the x-axis, which provides a straightforward overview of reducing variance555

with an increase in the number of latent variables (Cattell 1966).556

In model-based ordination, the correct level of model complexity is determined by finding the number557

of latent variables and random effects that provide the best fit. The model structure is then generally558

determined using information criteria (Preacher et al. 2013), or through other measures such as cross-559

validation or regularization (Bhattacharya & Dunson 2011; see also Hui et al. 2018). As such, it is possible560

to determine the number of dimensions for an ordination in a less arbitrary manner compared to eigenvector561

based methods. Unfortunately, it is also this issue that provides model-based ordination methods a steeper562

learning curve, as it requires researchers to be familiar with a wider range of tools for regression.563

Discussion564

Here, we have provided an overview of popular classical ordination methods and newly developed alternatives565

based on explicit statistical models. Pearson (1901) developed the first ordination method 120 years ago.566

Since then, many different ordination methods have been developed, come into use, and have been retired in567

favour of other ordination methods. For example, polar ordination (also known as Bray-Curtis ordination,568

Bray & Curtis 1957) is an ordination method that was frequently applied in the previous century in favour569

of PCA, but which has now fully been retired (Kent & Ballard 1988). When Hill & Gauch (1980) developed570

DCA to tend to the arch and edge effect issues in CA, that method was quickly adopted by ecologists,571

after which many researchers started to favour NMDS when Minchin (1987) showed that method to perform572

better. Confusingly, PCA remains a popular method of ordination, despite the many deficiencies it exhibits573

when used for the ordination of data on ecological communities (Swan 1970; Kent & Ballard 1988; Von574

Wehrden et al. 2009).575

Similarly, Warton & Hui (2017) and Warton et al. (2012) studied the properties of distance measures576

and concluded that distance-based ordination methods perform poorly, though some researchers continue577

to favour those methods over more modern developments (see Roberts 2020; but also Hoegh & Roberts578

2020). Distance-based ordination methods approximate the solution of a latent variable model by first579

calculating distances between the rows of the data, and afterwards attempting to retrieve latent variables. As580

a consequence, distance-based methods cannot estimate coordinates for columns in an ordination, making full581

exploration of patterns in the data impossible. Additionally, relating distance-based methods to predictors582
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is difficult since software implementations for distance-based constrained ordination are lacking, so that one583

of the few available alternatives to distance-based constrained ordination for non-normal data is post-hoc584

use of Generalized Additive Models (Wood 2017) in a NMDS (e.g. as implemented in the vegan R-package,585

Oksanen et al. 2020).586

All ordination methods, whether distance-based or not, are used by ecologists to explain an underlying587

latent process in few dimensions. As such, applications of ordination methods in ecology can be under-588

stood as attempts to fitting a latent variable model, leading to the conclusion that model-based ordination589

methods provide a suitable alternative to all classical ordination methods. Model-based ordination methods590

are fully statistical nature, so that the statistical model can be adapted to accommodate any researchers’591

wishes. For example, Roberts (2020) writes that model-based ordinations are (too) heavily parametrized,592

yet developments to decrease the information burden and assume that certain parameters are the same for593

the whole community are well under way (see e.g. van der Veen et al. 2021b). One of the main benefits594

of the GLLVM framework is that it always has an explicit statistical model, that can be readily adapted595

to accommodate the hypotheses of any study or the wishes of any researcher. For example, Ovaskainen et596

al. (2017) include phylogenetic relatedness in their model to account for correlation between the columns597

of a multivariate dataset, and Niku et al. (2021b) includes functional traits. Thorson et al. (2015) includes598

spatial coordinates to account for non-independence between the row observations, while Tobler et al. (2019)599

accommodates an additional process model for imperfect detection. Further developments could consider600

better accommodating sparse ecological datasets, multiple datasets as in ter Braak & Schaffers (2004), or601

could instead account for error in the measurement of predictors in model-based ordination with constrained602

latent variables (McCune 1997).603

With the developments of computational frameworks for fitting hierarchical models such as Template604

Model Builder (Kristensen et al. 2016) or NIMBLE (de Valpine et al. 2017), it has become more straightfor-605

ward for quantitatively minded researchers to develop their own ordination methods as part of the GLLVM606

framework. However, mature and easy-to-use software implementations for model-based ordination methods607

are still a ways down the road for applied ecologists. The recent implementation of model-based ordination608

in the glmmTMB R-package (Brooks et al. 2017) is a promising development in that regard. Furthermore, the609

gllvm R-package (Niku et al. 2021a) provides various tools to perform (residual) model-based (un)constrained610

ordination for ecologists. The Boral R-package or the HMSC R-package provide yet again different tools to611

explore species distributions using the same latent variable approach (Hui 2016; Tikhonov et al. 2020).612

Jupke & Schäfer (2020) argue that both model-based ordination and classical ordination have a place in613

the statistical toolset of ecologists. We instead wish to suggest that model-based ordination methods will be614

the next generation of ordination methods for the dimension reduction of multivariate datasets in ecology.615
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Classical ordination methods exhibit serious flaws that are difficult to adjust for in an analysis or when616

drawing inference. Model-based ordination methods improve on classical ordination methods in many ways,617

especially when it comes to the flexibility for future extensions (Hui 2017; Tikhonov et al. 2020; Damgaard et618

al. 2020; van der Veen et al. 2021a; van der Veen et al. 2021b), and with respect to validating assumptions619

that they make (Hui et al. 2015; Warton et al. 2015b). It is this flexibility that empowers ecologists to use620

the model-based ordination framework in a way that overcomes the weaknesses of the classical framework, as621

well as going beyond that framework to explore new questions in community ecology. Finally, it is important622

to recognize, that classical ordination methods are well studied, so that there exists a large body of literature623

on their application. That body of literature is vital for the understanding and application of model-based624

ordination, and will continue to be relevant in light of the modern developments discussed in this article.625
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Appendix S1: Code for constrained NMDS15

library(nloptr)

library(pracma)

library(vegan)

stress <- function(x, dY, d, X, type) {

# x is a vector of parameter values dY is a symmetric matrix of

# dissimilarities d is the number of axes X is a matrix of predictors

if (!is.matrix(dY)) {

dY <- as.matrix(dY)

1



}

# Step 1: Vectorize distance matrix

if (type == "global") {

dY <- as.vector(dY[lower.tri(dY)])

} else if (type == "local") {

dY <- t(dY)

dY <- dY[col(dY) != row(dY)]

}

# add global local etc

# Step 2: d is the number of ordination axes

# Step 3: Organise matrix of coefficients

B <- matrix(x, ncol = d)

# Order distance matrix

ord <- order(dY)

dY <- dY[ord]

# Step 5: Calculate ordination axis

Z <- X %*% B

# Step 6: Calculate (euclidean) distances in the lower dimensional

# space

dZ <- dist(Z)

dZ <- as.matrix(dZ)

if (type == "global") {

dZ <- as.vector(dZ[lower.tri(dZ)])

} else if (type == "local") {

dZ <- t(dZ)
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dZ <- dZ[col(dZ) != row(dZ)]

}

# Step 7: Order dZ by the order of dY

dZ <- dZ[ord]

# Step 8: Isotonic regression. This is where the magic happens

iReg <- isoreg(dY, dZ)

# Step 9

iY <- iReg$y

# Step 10

iX <- iReg$yf

# Specify stress

s <- (iY - iX)ˆ2

s <- sqrt(sum(s)/sum(iYˆ2))

return(s)

}

doCNMDS <- function(Y, distance = "bray", d, X, type = "global", seed = NULL,

n.init = 20, opt.control = list(maxeval = 1000, xtol_rel = 1e-08)) {

X <- as.matrix(X)

# Generate initial values

fa <- factanal(Y, factors = d, scores = "regression")

initMod <- lm(fa$scores ~ -1 + X)

# jitter starting values a little

dY = vegdist(Y, method = distance)

resBest <- NULL
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if (n.init > 1)

seed <- sample(1:10000, n.init)

for (i in 1:n.init) {

set.seed(seed[i])

init <- c(coef(initMod) + matrix(rnorm(d * ncol(X), sd = 0.05),

ncol = d))

res <- nloptr::bobyqa(init, stress, dY = dY, d = d, X = X, type = type,

control = opt.control)

if (!is.null(resBest)) {

if (res$value < resBest$value) {

resBest <- res

}

} else {

resBest <- res

}

}

B <- matrix(resBest$par, ncol = d)

row.names(B) <- colnames(X)

colnames(B) <- paste("Ordination axis", 1:d, sep = "_")

# finite differences approximation for variance of estimates hess <-

# pracma::hessian(stress,res$par, dY = dY, d = d, X = X, type = type)

# se <- sqrt(diag(solve(hess))) se <- matrix(se, ncol = d) colnames(se)

# <- colnames(B) row.names(se) <- row.names(B) return(list(B = B, se =

# se))

return(list(B = B, stress = resBest$value, iter = resBest$iter, convergence = resBest$convergence))

}

# example

library(mvabund)

data(spider)
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y <- as.matrix(spider$abund)

X <- model.matrix(~-1 + ., data = data.frame(scale(spider$x)))

result <- doCNMDS(spider$abund, d = 2, X = X)

B <- result$B

LV <- X %*% B

plot(LV, type = "n")

text(LV)

# Do some funky scaling stuff

marg <- par("usr")

origin <- c(mean(marg[1:2]), mean(marg[3:4]))

Xlength <- sum(abs(marg[1:2]))/2

Ylength <- sum(abs(marg[3:4]))/2

B <- B/max(abs(B)) * min(Xlength, Ylength) * 0.8

# Make a plot

arrows(x0 = origin[1], y0 = origin[2], y1 = B[, 2] + origin[2], x1 = B[,

1] + origin[1], col = "red")

text(x = (B[, 1] + origin[1]) * (1 + 0.2), y = (B[, 2] + origin[2]) * (1 +

0.2), labels = colnames(X), col = "red")
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Abstract11

Ordination methods have been used by community ecologists to describe and explore the communities12

they sample by reducing this variation down to a small number of dimensions. More recently, Joint13

Species Distribution Models have been developed to model and predict the distributions of several species14

simultaneously. Contemporary models for the data for both of these problems are essentially the same,15

called Generalised Linear Latent Variable Models (GLLVMs). Based on this we suggest some avenues16

of cross-fertilisation between the two areas of research. We also describe some of the extensions to17

GLLVMs, and from this suggest the development of Hierarchical Ordination, as a way of efficiently18

modelling communities of species in space. keywords: Ordination, JSDM, GLLVM19

Word count: 403920

Introduction21

Community ecology is the study of groups of species. One important set of questions relate to how and why22

species are distributed relative to each other. For example, do particular species tend to occur together, and23

can this be explained by similar responses to the environment. These same questions can be asked across24

1



different scales, e.g. by looking at samples from different Dutch sand dunes, or the complete distributions of25

different species across the globe. Statistical methods have been developed to look at this type of data for26

both of these scales, but their similarities have not been widely appreciated.27

The methods we consider in this article assume that species are observed at a number of sites, so the data is28

a site by species matrix, with entries being a measure of abundance or incidence, e.g. whether a species was29

observed on that site, or the number of individuals observed. Historically, these data have been summarised30

by ordination methods (e.g. Gower 1966; ter Braak 1985), which look to reduce the variation between sites31

down to a small number (usually two) of dimensions, so that similar sites are closer together. This means32

that they can be plotted on an ordination diagram, which can be inspected visually. Of relevance here,33

a model-based approach to ordination has been developed, leading to Generalised Linear Latent Variable34

Models (Hui et al. 2015).35

The analysis of communities has been approached by extending species distribution models (SDMs). SDMs36

were developed to look at the distributions of single species, but the perceived importance of species inter-37

actions (Kissling et al. 2012; Wisz et al. 2013) lead to the development of Joint Species Distribution Models38

(JSDMs: Pollock et al. 2014), which could incorporate several species. These model the response of each39

species to the environment, and then add a correlation matrix to allow for additional covariance between40

species. It was quickly realised that this matrix becomes unmanageable for many species, as it has so many41

parameters to estimate. Thus, extensions were developed to model the matrix as the sum of a smaller set of42

linear effects (e.g. Warton et al. 2015; Ovaskainen et al. 2017b). Because these models are based on a formal43

probabilistic model (which can be written as a likelihood, and thus fitted to data with flexible statistical44

methods), they have been extended in a variety of directions (see below).45

The ecological differences between ordination and JSDMs largely revolve around the aims of the data collec-46

tion and analysis, which has been a reflection of the types of ecologist using them. Ordination has typically47

been used by field ecologists wanting to describe the differences between communities they have sampled48

at different sites or different times, and possibly look at how these differences are correlated with environ-49

mental variables. Thus the focus has been on exploration of correlations between species and communities.50

In contrast, JSDMs were developed by and for macro-ecologists, wanting to look at the full distributions of51

species as extensions of SDMs, with the primary aim of estimating the effects of environmental covariates on52

the distribution of species, and thus being able to predict the current and future distributions of the species.53

The role of the residual correlation was to improve the predictions, rather than to be interpretable: problems54

with interpreting the correlations as interactions between species were pointed out early on (Pollock et al.55

2014).56
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Thus, JSDMs tend to focus on a larger spatial scale, and have a bigger emphasis on the effects of covariates.57

As a practical matter, they are also generally based on presence/absence (but see Björk et al. 2018a for a58

counter-example), whereas ordination has been carried out on a wider range of data. Despite these differences,59

the underlying idea - to reduce covariation down to a smaller number of dimensions - is the same. Here we60

will point out the similarities between the two approaches, and use this to suggest that each can learn from61

the other. We then suggest a scheme to flexibly extend these methods without making them too unwieldy.62

The Models63

We will first develop a model that is a simple example of model-based ordination and JSDMs, and use this64

to explain the more complex models that have been developed.65

In the simplest case, the data are a matrix, with rows being sites, and columns being species. The entries66

are observations of the species, which can take several forms, e.g. counts, percent cover, or (particularly for67

JSDMs) binary presence/absence. In addition to this, we can have covariates which are associated with the68

rows or columns, such as measures of the environment (temperature, habitat etc.) for each site, or traits69

(size, diet etc.) for each species.70

From this data we can create a straightforward model, and then extend it. Each observation of species j71

(j = 1, . . . , p) at sites i (i = 1, . . . , n) is denoted yij . We call the full matrix of observations Y . We can72

model Y as an extension of a generalised linear model, with g(E(yij)) = ηij , where g(·) is a link function73

(e.g. logit or cloglog for presence/absence). On the link scale we model the expected value of each datum as74

ηij = αi + ϕj + εij , (1)

where αi is the site effect for site i, and ϕj is species effect of species j. εij is an error term, which is modelled75

as being correlated between species, i.e.76

εi ∼ MVN(0,Σ), (2)

where Σ is a p×p covariance matrix, with off-diagonal terms being the covariances. The number of parameters77

in Σ increases quadratically with the number of species, which makes the matrix difficult to estimate for large78

p, and the large number of parameters also makes the matrix difficult to interpret. The ordination/JSDM79

approach to handling this is to write the matrix as the sum of a product of row- and column- effects. Each80
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product defines one of L latent dimensions. The model is then81

ηij = αi + ϕj +
L∑

l=1
zilγjl. (3)

In ordination, zil is called a site score (or latent variable), and γjl is called a species loading. We can interpret82

zil as a location along environmental gradient l, or informally that there are L unobserved covariates, with83

γjl being the regression parameter for the effect of covariate l on species j. The scale is arbitrary, so it84

is convenient to scale the site scores so that Var(zil) = 1. Then, the covariance between species 1 and 285

becomes
∑L

l=1 γ1lγ2l. This model can be extended in many ways, as described below, by putting further86

models on αi, ϕj , zil, and γjl.87

Adding Covariates88

The model described above projects the correlation matrix down into L dimensions, where L is relatively89

small. But, as written, it does not include covariates. There are several ways to add them: for example,90

Ovaskainen et al. (2017b) outlined an approach where αi and ϕj are made functions of species- and site-level91

covariates respectively, i.e. we could use a model such as92

ηij =
K∑

k=1
βjkXik +

S∑

s=1
θjsWjs +

L∑

l=1
z⊤

il γjl, (4)

where there are K site-level covariates (e.g. climate variables), and S species-level covariates (e.g. traits).93

The differences between some of the terms is, whether the terms are known (i.e. covariates), or whether they94

have to be estimated. Thus, the model incorporates responses of species to environmental conditions, as well95

as the effects of species’ characteristics on their site response.96

The regression coefficient matrices β and θ can become large if there are many covariates, so some way to97

reduce this is desirable. This is simply a variable selection problem, for which there are several solutions98

available, through either selecting which variables are “in” and “out”, or some form of regularisation (e.g.99

O’Hara & Sillanpää 2009 for some Bayesian methods; Tredennick et al. 2021 for some non-Bayesian ap-100

proaches). Random effects can be added, for example βjk, the effect of the kth covariate on species j can be101

be modelled as to take phylogenetic correlation into account, i.e. so that species with a more recent common102

ancestor tend to have more similar values of βjk. This approach was developed more fully by Ovaskainen et103

al. (2017b).104

4



In classical ordination, covariates are included through constrained ordination (e.g. ter Braak 1986),105

where the site scores are forced to be linear functions of covariates, i.e.106

zil =
K∑

k=1
Xikψkl. (5)

This implies that the latent variables are fully explained by the observed covariates. van der Veen et107

al. (2021a) extended this approach to allow a latent variable to be affected by covariates, plus additional108

(unmodelled) effects:109

zil =
K∑

k=1
Xikψkl + εil. (6)

This assumes that the environmental gradient is affected by (or, at least, correlated with) measures of the110

environment. Random effects can also be added, in particular the gradient can be modelled spatially as a111

continuous field, leading to a type of spatial factor analysis (Thorson et al. 2015), where sites that are112

closer to each other tend to have more similar site effects. In essence, both fixed and random effects can be113

used to put structure on zil. Another variation on this is to use more than one set of latent variables, with114

some responding to the environment, and others being unconstrained. For example, Björk et al. (2018a)115

modelled host-associated microbiota by including separate ordinations for the host species and the samples116

(within host species).117

The response of a species to the gradient can also be modelled as being affected by the environment (e.g.118

Tikhonov et al. 2017; Perrin et al. 2021):119

γijl =
n∑

i=1

K∑

k=1
Xikψjkl. (7)

This allows the species effect to depend on the environment, so that the covariance between species j and120

h on site i is proportional to
∑K

k=1 Xikψjklψhkl, i.e. is a linear function of the covariate. So the correlation121

can change across environments, and potentially change sign.122

Learning From Each Other123

Within the development of the GLLVM framework, we can see that JSDMs and model-based ordination are124

equivalent mathematically. The biological differences stem from the data and the questions being asked.125
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Ordination has typically looked at a set of sites that have been sampled, and asks about the similarities126

between the communities on these sites. JSDMs, in contrast, try to model and predict the distributions of127

the species across their whole ranges, i.e. they operate at a larger spatial scale, and also are interested in the128

full distribution rather than a subset of sites. So for ordination, the relationship between species (or of sites)129

is in focus, whereas JSDMs are primarily intended to predict the distribution of each species. In contrast,130

JSDMs are primarily intended to predict the distribution of each species: the covariance between species is131

mainly of interest because it improves the prediction (Wilkinson et al. 2021).132

The equivalence between ordination and JSDMs suggests that each area should be able to help the other.133

At the conceptual level, the questions being asked in the ordination world can also be asked by the SDM134

world. Most usefully, the methods and theory developed in one area can be transferred across and used in135

the other.136

What can JSDMs learn from Ordination?137

The focus of ordination has usually been on the whole community, rather than looking at individual species.138

Because of this, the typical summaries are visualisations, i.e. ordination plots, which condense information139

from sites and species into plots that can be interpreted. These can help with understanding co-occurrence140

patterns, and help to guide further modelling and interpretation (e.g. if several species cluster together).141

Using ordination plots into the analysis of JSDM should thus help with summarising and interpreting the142

correlations between species and sites.143

The ecological interpretation of ordinations is also more advanced. If the ordination axes are interpreted144

as ecological gradients, then the site scores represent the locations of the species on the gradient, and the145

species loadings are the species’ optima. Thus the ordination axes can be interpreted as part of the species’s146

niche. Mathematically, the ordination model is a simplification of the species packing model (Jamil & Ter147

Braak 2013), where each species has an equal tolerance to the gradient. Adding a quadratic term in the148

ordination relaxes the equal tolerance assumption, so species can be generalists or specialists with respect to149

the gradient (van der Veen et al. 2021b). On top of this, a constrained ordination, can be used to efficiently150

model the niches of many species together. This will be useful when a large number of species are being151

considered, e.g. from meta-barcoding data, and particularly when properties of the whole community, rather152

than of each species, will be important.153
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What can Ordination learn from JSDMs?154

Ordination can take advantage of the flexibility of the modelling framework, which has been developed155

more fully in the JSDM world. As described above, Ovaskainen et al. (2017b) developed a framework to156

incorporate a wide range of effects on both the species and sites, and spatial effects on the site effects can be157

added through spatial factor analysis (Thorson et al. 2015). The statistical modelling framework that has158

been used in the development of JSDMs is explicitly linear, which makes it straightforward to write down159

models with extra effects. Although fitting these models may not be easy, flexible Bayesian packages such160

as JAGS (Plummer 2021) and NIMBLE (de Valpine et al. 2017) can be used to specify these models in a161

straightforward language.162

The JSDM approach also helps with incorporating better sampling models (e.g. Beissinger et al. 2016;163

Björk et al. 2018a; Tobler et al. 2019), so that having replicate information at a site, or other aspects of164

sampling design, can be properly incorporated into the model. Thus, for example, multiple traps or visits165

at a site can be treated as replicate samples from the same community: with binary data this can be used166

in an occupancy model (Tobler et al. 2019), but when the data estimate abundance (e.g. through counts),167

the repeated samples can be used to estimate the amount of sampling error.168

Another area where ordination can follow methods developed in the JSDM world is the use of temporally169

explicit models. Because the approach is based on an explicit model, it can include a temporal autocorrelation170

(Ovaskainen et al. 2017a; e.g. Björk et al. 2018b). This is preferable to the approach that classical ordination171

takes, where the order of the years is ignored in the ordination, although it can be incorporated into the172

graphical presentation (e.g. Blanchette & Pearson 2013). This links the temporal changes more directly173

to models of community dynamics, as it is a multi-species Gompertz model where environmental effects on174

growth rates can be incorporated (e.g. Mutshinda et al. 2011).175

Hierarchical Ordination; a unifying framework for drivers of com-176

munity processes177

The GLLVM framework is flexible enough to be developed in several directions. Site scores have already178

been modelled a functions of covariates, through a constrained GLLVM (van der Veen et al. 2021a), and179

also as a spatial field (allowing for spatial autocorrelation), in a spatial factor analysis (e.g. Thorson et al.180

2015). If we transpose the data matrix, we can model the species effects, e.g. as traits. This can thus link181

ordination to trait-based analyses.182
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In the fixed effects, estimating the interactions between site and species covariates are the “fourth corner183

problem”. This can be parameter heavy when there are several covariates (e.g. see Niku et al. 2021 in the184

context of GLLVMs). One possible approach is to extend the constrained ordination idea, so that both site185

scores and species loading are modelled further. This leads us to the idea of a hierarchical ordination, an186

extension of double constrained ordination (ter Braak et al. 2018). As before we have187

ηij = αi + ϕj +
L∑

l=1
zilγjl, (8)

But now we extend the models for both zil and γjl:188

zil =
K∑

k=1
Xikψkl + εil, (9)

and189

γjl =
S∑

s=1
Wjsωsl + ϵjl. (10)

Because both zil and γjl can be written as sums of other terms, it is straightforward to model them both190

hierarchically, as we would for any other hierarchical model. For example, a spatial effect can be added191

to the site scores, similar to the spatial factor analysis idea, but trait and phylogenetic effects can also be192

added to the species loadings. The method developed by ter Braak et al. (2018) is similar, but they assume193

zil =
K∑

k=1
Xikψkl and γjl =

S∑
s=1

Wjsωsl, i.e. the site scores and species effects are fully determined by the194

covariates.195

Expanding the model, and for clarity using only one latent variable and one species- and site- covariate, we196

get197

ηij = αi + ϕj + (ψ⊤Xi + εi)⊤(W jω + ϵj)

= αi + ϕj +X⊤
i ψW jω + ε⊤

i W jω +X⊤
i ψϵj + ε⊤

i ϵj .

(11)

This model acts as an efficient model for the fourth corner effect because it incorporates trait by environment198

interactions by relating them through the latent variables, rather than directly interacting with each other.199

Thus not all trait and species combination needs to be considered. Going through the ordination terms we200

have201

8



• X⊤
i W jψω: the fourth-corner term, approximated in reduced rank,202

• ε⊤
i W jω: a constrained ordination where the species loadings are constrained by traits alone,203

• X⊤
i ψϵj : a constrained ordination with site effects determined by environmental covariates,204

• ε⊤
i ϵj : a residual ordination.205

Each of which would have a different place in the analysis of co-occurrence patterns in ecological communities.206

Of course, these terms can also include structured random effects.207

Another way to look at this model is that it can model the change in associations between species with the208

environment (Tikhonov et al. 2017; Perrin et al. 2021). This comes from the fourth corner term, which209

models the interaction between traits and environment, so plays the same role as equation (7).210

One advantage of having an explicit hierarchical ordination framework is that visualisation and interpretation211

can be based on current ordination methods, for example biplots can be drawn for both site and species212

effects. Thus the advantages of ordination as a way of summarising correlation, and the effects of covariates213

on the correlations, are retained with this model.214

There may be problems where a single hierarchical ordination is not sufficient. For example, a species-specific215

covariate effect may be needed, leading to this model:216

ηij = αi + ϕj +
K∑

k=1
Xikβjk +

L∑

l=1
z⊤

il γjl. (12)

Potentially, more than one ordination could also be used. For example Björk et al. (2018a) analysed217

host-associated microbiota in a single model with ordinations at both the sample and host species levels.218

An equivalent model using the hierarchical ordination approach proposed here would use the same species219

loadings for both levels. Thus the framework is flexible, although there is a cost in adding extra latent220

levels, both computationally and in terms of interpretation. Using a single ordination, with effects on either221

species or sites, we simplify the model into manageable parts. The choice of whether to use one or two sets222

of ordination will depend on whether a single ordination is reasonable ecologically, and whether multiple223

ordinations are feasible computationally. Whilst the complexity of additional ordinations is attractive, the224

price is that more data will be needed to estimate the parameters of the model, and the fitting will be more225

difficult.226
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Discussion227

We have shown that ordination and JSDMs have converged onto a similar set of models, GLLVMs, providing a228

common framework that is available to both groups of ecologists. The differences between the two approaches229

largely came from scale and the questions being asked, but the models are flexible enough to handle these.230

Having a single set of models should help to unify these different approaches to community ecology, and the231

link to temporal models should improve connections to ecological theory, efficiently integrating data into the232

frameworks that are being developed.233

A model-based approach allows for a lot of flexibility, as we can see in our overview. One downside of this234

flexibility is the possibility that the model becomes too complex to be interpretable. With a large number of235

species and sites, it is easy to develop models that ask for all of this information to be used. Our suggestion236

of a hierarchical approach to ordination tries to reduce this complexity by making the parameters either site-237

or species- specific. Interactions between the two sets of parameters are made through the latent variables.238

This is one simplification of the model, so the response of a community to changes in the environment are239

measured by how the site scores change, and then how this affects species, through their loadings. This240

shifts focus from individual species or sites to the community, and the gradients.241

It is one thing to write down a model, but another to fit it. For “power users” flexible software, like Nimble242

(de Valpine et al. 2017), which takes advantage of the flexibility and simplicity of the BUGS language, can243

be used to develop and extend these models. But for most ecologists it would be better to have bespoke244

software, which would mean developing packages like HMSC (Ovaskainen et al. 2017b) and gllvm (Niku et245

al. 2019) to fit models in the full framework.246

We would not want to suggest that every ordination should use this framework: there will be times when the247

question being asked requires a different model. However, we feel that our framework is sufficiently flexible for248

many problems, and will build on both the modelling strengths developed from JSDMs and the visualisation249

and interpretation provided by the ordination world1. If extensions are needed, we would suggest that our250

model provides a starting point, both in terms of writing down the extended model and also in justifying251

why such an extension is needed. For example, when Björk et al. (2018a) used two ordinations to model252

two levels of sampling, a natural question is whether it would have been better to use one ordination, with253

sample and host species levels in the site effects, and with the same species loading. The answer to this254

question is not just one of modelling, it is also ecologically informative, i.e. about the extent to which species255

were responding to hosts, or to site effects.256

1a world that is, of course, only two dimensional
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Though the modelling framework suggested here is statistical in nature, this approach can serve to provide257

new insight into ecological theories on community assemblages. Further extensions of the framework towards258

spatiotemporal processes can serve to develop a theoretical model for how species interact in space and time,259

and how species-specific properties relate to site-specific properties, as in the case of functional traits.260

The modelling of multispecies communities is being changed by the application of model sophisticated261

statistical techniques. Here we are suggesting that they can unify different fields, as they are modelling262

similar processes, and so can open up the fields to new questions. This is done both by moving ideas from263

one field to another (e.g. using ordination plots in JSDMs), and also by opening up new ways of analysing264

the data, with flexible models that can handle the problems associated with having many sites and species.265

To quote one of the world’s great philosophers, let’s go exploring (Watterso 1995).266

Author Contributions267

Usually a manuscript with a student and their supervisor comes about when the supervisor has a brilliant268
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