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Åmund Engmark

May 2021

Abstract

In this bachelor thesis, we will consider various themes in multi-

objective optimization. In particular, we will look at some optimality

notions, existence results, scalarization results, and some problems in

uncertain multiobjective optimization.
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1 Introduction

In single-objective optimization one wishes to solve the problem

min f(x)

s.t. x ∈ Ω,

where Ω ⊆ X for a linear space X is the feasible set of the problem and

f : X → R is some scalar-valued function. In multiobjective optimization

problems (MOP) we wish to solve the problem when f is a vector-valued

function f : X → Rn. Since there exists no total order on Rn, there is no

obvious meaning of ”min f(x)” in the multiobjective case. This complicates

the problem.

The absence of a total order on Rn leads to the concept of notions of op-

timality, ways in which a solution is minimal. Popular notions of optimality

include lexicographic optimality, max-ordering optimality, and nondomina-

tion/efficiency - optimality. In this thesis we will focus on the nondomina-

tion/efficiency notion of optimality only. In short, a vector is said to be

non-dominated if it is impossible to improve one of its components without

worsening another (see Definition 1.2. An x ∈ Ω is said to be efficient if f(x)

is non-dominated. In the following, we define this more precisely and then

derive many useful results in multiobjective optimization using efficiency.

The results in this chapter relay mainly on [1].
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1.1 Efficiency and nondominance

In order to define efficiency, and the related concepts weak and strict effi-

ciency, we must first define the ordering relations 5,≤, < on Rn.

Definition 1.1. Let y, ŷ ∈ Rn be vectors. Then we write

• y ≤ ŷ if yi ≤ ŷi for i = 1, . . . , n, and y 6= ŷ,

• y < ŷ if yi < ŷi for i = 1, . . . , n,

• y 5 ŷ if yi ≤ ŷi for i = 1, . . . , n.

Definition 1.2. A feasible solution x̂ ∈ Ω is said to be

• efficient if there exist no other x ∈ Ω such that f(x) ≤ f(x̂),

• weakly efficient if there exist no other x ∈ Ω such that f(x) < f(x̂),

• strictly efficient if there exist no other x ∈ Ω \ {x̂} such that f(x) 5

f(x̂).

If x̂ is (weakly) efficient, then f(x̂) is said to be (weakly) nondominated.

Efficiency is also called Pareto-optimality.

We see that a function value f(x̂) being nondominated means that there

exist no other function values f(x) which are better than or equal to that

value in every component, and lower than the value in at least one component.

Thus f(x̂) is ”minimal” in some sense. There may still be other function

values f(x) so that fi(x) < fi(x̂) for several i ∈ {1, . . . , n} but then there will

be at least one k such that f(x) fares worse than f(x̂) in the k-th component,

fk(x) > fk(x̂). Of course, there will be many nondominated function values

for a MOP and none of these ”minimas” can be regarded as better than

another unless some additional criteria are specified.

x̂ is efficient if f(x̂) is nondominated, so an efficient solution can be

thought of as an analogue to a minimizer in single-objective optimization.

Weak/strict efficiency are weaker/stronger conditions than efficiency. In the
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former case we require only that there are no x ∈ Ω which are better than

x̂ in all components, while in the latter case we require that there are no x’s

such that f(x) either dominates f(x̂) or is equal to f(x̂) for x 6= x̂

Notation 1. The set of (weakly) nondominated points in a codomain-set Y

is denoted as YN (YwN). The set of (weakly/strictly) efficient solutions in a

feasible set X is denoted as XE (XwE/XsE).

Note that it doesn’t make sense to talk about a ”strict nondominance

set” YsN since strict efficiency refers to solutions whose function values are

unique.

Figure 1.1[1] illustrates nondominated values of f : X → R2 in red. Taking

efficient x̂ as an example, we see that f(x̂) = [f1(x̂), f2(x̂)] is nondominated

since we cannot lower f1(x) without increasing f2(x) and vice versa.

Figure 1: Nondominated points

1.2 Existence results

We give conditions ensuring that given a set Y , we have YN 6= ∅, i.e. ensuring

there exists nondominated points. Then it is easy to give conditions ensuring

XE 6= ∅, i.e. there exists efficient solutions.

Theorem 1.1 ([3, Borwein]). Suppose there exists some y0 ∈ Y s.t. Y0 =

{y ∈ Y | y 5 y0} is compact. Then YN is nonempty.
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Borweins theorem says that if Y is compact at the ’bottom’, so that

intuitively there is a solid lower border, then there will exist nondominated

points. Another way of showing YN is nonempty is Corleys theorem, which

uses the concept of Rp
=-semicompactness.

Definition 1.3. A set Y ⊆ Rn is called Rp
=-semicompact if every open cover

of Y of the form

C = {(yi − Rp
=)c : yi ∈ Y, i ∈ I }

has a finite subcover.

Theorem 1.2 ([4, Corley]). Suppose Y is Rp
=-semicompact. Then YN is

nonempty.

Corleys theorem only requires semicompactness, but it is often easier to

verify that a set Y ∈ Rp is Rp
= - compact.

Definition 1.4. A set Y is Rp
=-compact if for all y ∈ Y , (y − Rp

=) ∩ Y is

compact.

It can be shown that if Y is Rp
=- compact then it is Rp

≥-semicompact, so

Corleys theorem can be used when we know that Y is Rp
=- compact. We also

have the following intuitive result for positive Rp
=-compact sets

Theorem 1.3 ([1, Theorem 2.21]). Let Y ⊆ Rp
= be Rp

= - compact. Then YN

is externally stable, meaning Y ⊆ YN + Rp
=.

Proof. We want to show that for any y ∈ Y and the set U = (y − Rp
=) ∩ Y ,

we have U ∩ YN 6= ∅. Then we would know that y = yn + a for some

yn ∈ Yn, a ∈ Rp
=. To show U ∩ YN 6= ∅, we show UN 6= ∅ and UN ⊂ YN . By

Definition 1.4, U is compact, so that by Theorem 1.2, UN 6= ∅. Assume for

some y′ ∈ U , that y′ /∈ YN (we need not consider y′ /∈ U since then certainly

y′ /∈ UN). Then since y′ is not nondominated, there will be some y′′ ∈ Y so

that y′′ ≤ y′. Since then y′′ ≤ y so y′′ ∈ U , we must have y′ /∈ UN .
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Corley’s theorem means that if we can show that f(X) is Rp
≥- semicom-

pact, then XE 6= ∅, so there exists efficient points. To derive sufficient

conditions, we define Rp
≥ – semicontinuity.

Definition 1.5. f : Rn → Rp is said to be Rp
≥ – semicontinuous if f−1(y −

Rp
≥) = {x | f(x) ≤ y} is closed ∀y ∈ Rp.

Henceforth we will not bother to distinguish the feasible set Ω from the

domain X, and assume that the domain X is always feasible.

The next theorem gives a sufficient condition for knowing there exist

efficient points.

Theorem 1.4 ([1, Theorem 2.19]). Let X ∈ Rn be compact, and f : Rn → Rp

be Rp
≥-semicontinuous. Then Y = f(X) is Rp

≥-semicompact, so that XE 6= ∅.

Proof. We want to show that an open cover of Y of form {(yi − Rp
=)c : yi ∈

Y, i ∈ I } has a finite subcover. Since Y = f(X), we’ll get that

{f−1((yi − Rp
=)c) : yi ∈ Y, i ∈ I }

is a cover of X, and since f is Rp
=-semicontinuous, it is an open cover. Since

X is compact, we know this open cover has a finite subcover S. Then taking

the image again, f(S) is a finite subcover of Y , proving Y is Rp
≥-semicompact.

Now we can use Theorem 1.2 (Corleys theorem) to get that YN 6= ∅ and so

XE 6= ∅.

There are analogues to theorems 1.2 and 1.4 for weak nondominance and

efficiency:

Theorem 1.5 ([1, Theorem 2.25]). If Y ⊆ Rp is compact, then YwN is

nonempty.

Proof. If YwN is empty, then for every y ∈ Y there would be some other

ȳ ∈ Y so that ȳ < y. This means

Y ⊆
⋃
y∈Y

(y + Rp
>).
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Since Y is compact, this open cover will have a finite subcover S =
⋃
y∈F (y + Rp),

where F is a finite subset of Y . But then we could choose the lowest of the

y’s in F , ymin, and this would be in Y yet not in S since 0 /∈ Rp
>. This

contradicts Y ⊆ S.

Lemma 1.6. If X ∈ Rn is compact, and f : Rn → Rp is continuous, then

Y = f(X) is compact.

Proof. Let

U =
⋃
i∈I

Yi

be an open cover of Y . Then f−1(U) is open since f is continuous, and can

be written as an open cover of X,

C =
⋃
i∈I

Xi.

This has a finite subcover, CF , and then UF = f(CF ) will give a finite

subcover of f of elements in U .

Corollary 1.6.1 ([1, Corrolary 2.26]). Let X ⊆ Rn be compact and f be

continuous. Then XwE 6= ∅.

Proof. Since Y = f(X) is compact by Lemma 1.6, we have YwN 6= 0 by

Theorem 1.5. Then XwE 6= 0 follows.

We can characterize XE, XwE, XsE in terms of so-called level sets and

level curves to provide further intuition on efficient solutions.

Definition 1.6. For function f : X → R and x̂ ∈ X,

L≤(f(x̂)) = {x ∈ X | f(x) ≤ f(x̂)

is called the level set of f at x,

L=(f(x̂)) = {x ∈ X | f(x) = f(x̂)

7



is called the level curve of f at x̂,

L<(f(x̂)) = {x ∈ X | f(x) < f(x̂)

is called the strict level set of f at x.

Theorem 1.7 ([1, Theorem 2.30]). For function f : X → Rp and x̂ ∈ X,

we have

1. x̂ is efficient if and only if

∩pi=1L≤(fi(x̂)) = ∩pi=1L=fi(x̂)).

2. x̂ is strictly efficient if and only if

∩pi=1L≤(fi(x̂)) = x̂.

3. x̂ is weakly efficient if and only if

∩pi=1L<(fi(x̂)) = ∅.

These results are fairly clear to see. For example, the first statement says

that in the case that there are values of f that gives better or equal results

than f(x̂) in every component, then those values are definitely all equal and

not better than f(x̂), which is the definition of efficiency.

We illustrate the use of level sets for finding efficient solutions geometri-

cally with an example.

Example 1. Suppose the decision variable is the location of a building x ∈ R2

and we simultaneously want to 1) minimize the cost of constructing the

building (represented by the function f1(x)) and 2) keep it close to a num-

ber of posts A = {a1, a2, a3} (represented by the function f2(x)). This can

be interpreted as wanting to find efficient (”minimal”) solutions of f(x) =

[f1(x), f2(x)]. The construction site is an aproximately elliptical valley with

minor axis = 1 and major axis = 2, centered at the point (1, 1). Building on
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the hillsides quadratically increases construction costs. This is assumed to be

the only factor which varies construction cost in our model. We can represent

this as f1(x) = (x1− 1)2 + 2(x2− 1)2. Then 0 = f(1, 1) is the base cost, and

moving away from that center is penalized. One interpretation of minimizing

the total distance to the posts in A is to minimize the sum of the euclidean

distances from each post (see Section 5 for more about such ”location prob-

lems”), so we let f2(x) =
∑3

i=1 d2(x, ai). Now let A = {(2, 2), (−1, 3), (0, 0)}.
Now x̂ = (0.5, 1) looks like it’s reasonably close to the posts in A and to

the center of the valley, so we want to find out if x̂ = (0.5, 1) might be an

efficient solution. f1(0.5, 1) = 0.25 and f2(0.5, 1) = 5.42. In Figure 2 the

two level sets are plotted. We see that the intersections of their interiors are

nonempty, i.e. ∩2i=1L<(fi(x̂)) 6= ∅. So by Theorem 1.7, x̂ isn’t even weakly

efficient. Every point in the intersection of the sets is superior. If the two

ellipses had coincided only at the point x̂, then x̂ would have been strictly ef-

ficient. If they had coincided at several points along the edges, then x̂ would

have been only efficient (impossible in this case because of convexity).

We see from this example that level sets are good for visualizing efficient

solutions.

2 Scalarization methods

A scalarization method is a way of finding efficient solutions of a MOP by

solving a related single-objective optimization problem. We do this since

finding efficient solutions directly is complicated, while minimizing a single

objective function is straightforward. An important scalarization method is

the weighted-sum scalarization method (WSM). Here we solve the problem

of minimizing a weighted sum of the components of the multi-dimensional

objective function. If for example the objective function is

f(x) = [f1(x), f2(x), f3(x)]

9



Figure 2: Level sets used to determine that x̂ is not efficient

then we solve the problem of minimizing

λ1f1(x) + λ2f2(x) + λ3f3(x).

It can be shown that doing this when all weights are nonnegative will always

give efficient solutions. The other scalarization methods we will consider are

the ε−constraint method and the OWC-method, the latter of which is only

relevant for uncertain optimization problems (Section 3).

Example 2. Suppose the construction of an oil platform in the nordic sea

is being planned. We are concerned with minimizing the cost of building

the platform, represented as the function f1(x), and maximizing the yearly

amounts of raw oil that can be drawn from the ocean on the platform, repre-

sented as the function p(x), i.e. we want to minimize f2(x) := −p(x). Let

the decision variable x be the model of the oil platform. Then we can find an

optimal (efficient) platform-model x̂ by minimizing

g(x) = λ1f1(x) + λ2f2(x)

10



where λ1 and λ2 are weights representing the importance of each of the two

objectives. Below we will prove that a minimizer of g(x) is indeed an efficient

solution.

2.1 The weighted sum scalarization method (WSM)

Generally for a WSM-scalarization of a MOP, the objective function we want

to minimize is the sum of products 〈λ, y〉 =
∑p

i=1 λiyi. We write the problem

as

W(λ) : min
y∈Y
〈λ, y〉

or

W(λ) : min
x∈X
〈λ, f(x)〉

depending on the context. It is common to let
∑p

i=1 λi = 1.

Definition 2.1. For λ ∈ Rp
≥, the set

S(λ, Y ) := {ŷ ∈ Y | ŷ solves W(λ)}

is the set of optimal points for a WSM problem on the set Y.

Definition 2.2. Let the sets S(Y ) and S0(Y ) be defined as

S(y) =
⋃
λ∈Rp

>

S(λ, Y ),

S0(Y ) :=
⋃
λ∈Rp

=

S(λ, Y ).

We see that S0(Y ) is the set of solutions of all weighted sum problems on

the set Y. Clearly S(Y ) ⊆ S0(Y ). To what extent does solving a weighted

sum scalarization of a MOP give nondominated points of a set Y ⊆ Rp?

When can all efficient solutions be provided by the weighted sum method?

In other words, for which λ is it true that

S(λ, Y ) ⊆ YN ,

11



Figure 3: Rp
=-convex set

and when does the reverse set inclusion hold as well? To answer these ques-

tions, we first define Rp
≥-convexity, a notion which is enough for proving many

useful relations on WSM, and is less restrictive than requiring convexity:

Definition 2.3. Y ⊆ Rp is said to be Rp
≥- convex if Y + Rp

≥ is convex.

Rp
≥-convexity is illustrated in Figure 3, where the set Y +Rp

≥ defined by

the red line is convex, while Y is not.

Theorem 2.1 ([1, Theorem 3.4 and Theorem 3.5]). For any Y ⊆ Rp, we

have S0(Y ) ⊆ YwN . If also Y is Rp
≥-convex, then YwN = S0(Y ).

Proof. If some ŷ ∈ S0(Y ) was not weakly nondominated, there would be some

ȳ ∈ Y with ȳ < ŷ ⇒ 〈λ, y〉 < 〈λ, ŷ〉 for any λ ∈ Rp
≥. This contradicts that ŷ

would solve miny∈Y 〈λ, y〉 for some λ ∈ Rp
≥. For proof that YwN ⊆ S0(Y ) in

the case of Rp
≥-convexity, see Theorem 3.5 in [1].

Theorem 2.2 ([1, Theorem 3.6 and Corrolary 3.7]). For any Y ⊆ Rp, we

have S(Y ) ⊆ YN . If also Y is Rp
≥-convex, we have YN ⊆ S0(Y ).

Proof. If some ŷ ∈ S(Y ) was not nondominated, there would be some

ȳ ≤ ŷ ⇒ 〈λ, y〉 < 〈λ, y〉 for any λ ∈ Rp
> contradicting that ŷ would solve

12



miny∈Y 〈λ, y〉 for some λ ∈ Rp
>. That YN ⊆ S0(Y ) in the case of Rp

≥-convexity,

follows from Theorem 2.1 and YN ⊆ YwN .

From these theorems we directly obtain efficient solutions for a MOP

minx∈X f(x) :

Theorem 2.3 ([1, Proposition 3.9]). Let x̂ solve the WSM problem W(λ).

Then

1. If λ ∈ R≥, then x̂ ∈ XwE,

2. If λ ∈ R>, then x̂ ∈ XE,

3. If λ ∈ R≥ and x̂ is the unique solution, then x̂ ∈ XsE.

Proof. The first point follows from Theorem 2.1, and f(x̂) ∈ S0(f(X)). The

second point follows similarly from Theorem 2.2. The third point holds since

y = f(x̂) will be the unique element in Y = f(X) which solves W(λ). Then

y ∈ YN , otherwise y wouldn’t be the unique element solving the minimization

problem. Furthermore, since x̂ is the only element x ∈ X giving f(x) = y, it

must be strictly efficient.

We can go the other way, showing that effective solutions will solve WSM

problems. This is where we use the part of Theorem 2.1 which deals with

convexity.

Theorem 2.4 ([1, Proposition 3.10]). Let X be convex and f be such that

fi is convex for all i ∈ {1, . . . , p}. Then the following is true:

x̂ ∈ XwE ⇒ ∃λ ∈ Rp
≥ s.t. x̂ solves W(λ).

Proof. Then Y = f(X) will be convex, so that by 2.1,

YwN = S0(Y )

⇒ f(x̂) ∈ S0(Y ) =
⋃
λ∈Rp

=

S(λ, Y )

meaning that f(x̂) solves W(λ) for some λ ≥ 0.

13



Note that in this theorem there is no distinction between XE and XwE.

So even if we know x̂ ∈ XE, we can only guarantee there exists a λ ∈ Rp
≥

and not a λ ∈ Rp
>. To guarantee there exists a Rp

>, we need that x̂ is

properly efficient as well. In short, if x̂ is properly efficient, then any x which

might improve f(x) in at least one of the components of f , will give a non-

negligible worsening of f in some other component, whereas if x̂ is merely

efficient, then there might be a x which improves f in at least one component

and only marginally worsens f in some other component. We will not go in

depth into properly efficiency here.

Example 3. Implementing an algorithm (Algorithm 1) for solving a MOP

with the weighted sum method, we obtain examples of efficient solutions for

the function f(x) = (x2, (x − 3)2). With weights λ = [1, 1] , [1, 2] , [1, 3], we

respectively get the efficient solutions x = 1.5, 2.0, 2.25.

2.2 The ε-constraint method

Our next scalarization method is the ε-constraint method, which transforms

the MOP into a constrained single-objective optimization problem. The

idea behind the method is that we minimize one of the function compo-

nents fj(x) under the constraint that all other components fk(x) satisfy

fk(x) ≤ εk, k 6= j, where εk is some predetermined number. Thus we want

to guarantee that all components except j is within some tolerance vector

ε−j = (ε1, . . . , εj−1, εj+1, . . . , εp), and then minimize fj under this constraint

(In general we use the subscript −j of a vector to indicate that we are re-

moving the element of index j).

Definition 2.4. The ε-contraint problem, denoted εCP , is

εCP (ε, j) : min
x∈X(ε,j)

fj(x) where X(ε, j) := {x ∈ X | f(x) 5 ε−j}.

In this definition, we see that the component εj of the p-dimensional

vector ε is not used at all. This component may then be ignored or set to

14



Figure 4: An efficient solution found by the ε-constraint method

∞. We include it mainly to simplify notation when we want to use the same

ε for several different components j ∈ {1, . . . , p}.
We’ll show that a solution is efficient if and only if it solves an ε-constraint

problem, but first we give an example.

Example 4. Solving εCP (ε, 2) for the function f(x) = [f1(x), f2(x)] and

ε = [ε1, ε2], we get the solution shown as the black dot in Figure 4.

Theorem 2.5 ([1, Proposition 4.3]). If x̂ is an optimal solution of problem

εCP (ε, i) for any i, then x̂ ∈ XwE.

Proof. If x̂ /∈ XwE, there would be some x̄ ∈ X so that f(x̄) < f(x̂). But

then fi(x̄) < fi(x̂) and also fi(x̄) ≤ ε−i, contradicting the premise.

Theorem 2.6 ([1, Proposition 4.4]). If x̂ uniquely solves problem εCP (ε, i) :

minx∈X(ε,i) fi(x) for any i and any ε, then x̂ ∈ XsE.

Proof. If x̂ /∈ XsE, there would be some x̄ ∈ X so that f(x̄) 5 f(x̂). But

then fi(x̄) ≤ fi(x̂) and also fi(x̄) ≤ ε−i, which means that there is either a

better solution to εCP (ε, i) or that x̂ is not the unique solution, contradicting

the premise.
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Theorem 2.7 ([1, Theorem 4.5]). for a feasible x̂ ∈ X, we have x̂ ∈ XE

iff there exists an ε̂ ∈ Rp s.t. x̂ an optimal solution of εCP (ε̂, i) for all

i = 1, 2, . . . , p.

Proof. (⇒) when x ∈ XE, for each j, let ε−j = f−j(x̂). In other words, let

ε = f(x̂). Then x̂ will be an optimal solution of εCP (ε, j), for otherwise

there would be some x̄ so that fj(x̄) < fj(x̂) and f−j(x̄) ≤ ε−j = f−j(x̂),

contradicting x ∈ XE.

(⇐) If there is such an ε, then if x̂ is not efficient, there is a x̄ so that

fk(x̄) < fk(x̂) for some k ∈ 1, . . . , p and f−k(x̄) 5 f−k(x̂) 5 ε−k for

some k = {1, . . . , p}. But this contradicts the existence of ε since x̄ is

better than x̂ for εCP (ε, k).

3 Uncertain multi-objective problems and ro-

bustness

We now get to the main body of this thesis, which is showing results for

uncertain multiobjective optimization problems. Many real-world problems

in optimization have uncertain parameters, denoted θ ∈ U , where U is the

uncertainty set of possible outcomes of the uncertain parameters. This means

θ is a factor that determines the outcome of the objective function f which

is unknown and can be any value in U . We describe such problems as

P (U) : min
x∈X

f(x, θ), θ ∈ U.

It might be impractical to estimate the θ-parameters or use a probability-

based approach to deal with them. In this case, we use the concept of robust-

ness to solve the minimization problem. To understand robustness, consider

first a single objective uncertain problem

P (U) : min
x∈X

f(x, θ),
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with f : X × U → R. Intuitively, a robust minimizer x̂ ∈ X of P (U) is

a point which gives tolerably small function values f(x̂, θ) across the entire

spectrum U of unknown parameters θ. When we make a robust solution,

we do not consider the probability distributions of the unknown parameters,

but instead try to make sure that every possibility of a parameter outcome

gives ”acceptable” values of the objective function f . There exist several

notions of robustness. For this thesis, we will only consider the minimax

concept of robustness. In the single objective case minimaxing means that

we minimize the objective function f in the case of the worst possible sce-

nario of a parameter realization f(x, θ). Mathematically, this means that we

solve the problem Pmm(U) : minx∈X supθ∈U f(x, θ). Of course, in the multi-

objective case, Pmm(U) is not unambiguous due to the lack of a total order,

so in the next section we expand on the analogy of minimax robustness for

multidimensional functions.

Example 5. Suppose we have the following outcome of a function for dif-

ferent realizations of the parameter θ:

Values of f(x, θ)

x/θ θ = θ1 θ = θ2 θ = θ3

x = blue 10 9 8

x = red 3 5 12

x = green 14 7 6

Following the minimax-principle, we should choose x = blue since this

minimizes the worst case scenario, f(blue, θ1) = 10 vs. f(green, θ1) = 14

and f(red, θ3) = 12.

3.1 Minimax-robustness for multiobjective problems

We will henceforth assume X ⊆ Rn and U ⊆ Rm. We have an objective

function f : X × U → Rp for which we want to find efficient solutions in the

worst-case realizations of the unknown parameters. We name such a solution
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a robust efficient solution. It is then implicit that we talk about robustness

in the minimax sense. As we mentioned in the previous section, the notions

“worst-case realizations” and thus “robust efficient solution” is not unam-

biguous for this objective function, since the worst-case θ realizations will

likely be different across the components of the function-values. To define

robust efficiency, we first define the set fU(X):

Definition 3.1. For a x ∈ X, we write fU(x) to denote the set

{f(x, θ) | θ ∈ U}

of all values f(x) can take under the possible outcomes from U .

Now, recall from Section (1.1) that a feasible point x̂ ∈ X is [weakly/·/
strictly] efficient if and only if there are no other x̄ ∈ X \ {x̂} such that

f(x̄) ∈ f(x̂) − Rp
[=/≥/>]. This can be extended to the uncertain case as

follows: If for a feasible x̂ there are no x̄ ∈ X such that

fU(x̄) ⊆ fU(x̂)− Rp
≥,

then we call x̂ a robust efficient solution of the problem P (U). In other

words, if there are no x̄ such that

∀θ ∈ U∃θ̂ ∈ U s.t. f(x̄, θ) ≤ f(x̂, θ̂),

then x̂ is robust efficient.

Definition 3.2 (Robust efficiency). a point x̂ ∈ X is said to be robust

[weakly/·/ strictly] efficient (often shortened to [rwe/re/rse]) if there is no

x ∈ X \ {x̂} such that

fU(x) ⊆ fU(x̂)− Rp
[>/≥/=].

The following equivalences implies alternative, intuitive notions of robust

efficiency
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Theorem 3.1 ([2, Lemma 3.4]). For an uncertain MOP P (U), and any

x, x̂ ∈ X, the following are equivalent:

1. fU(x) ⊆ fU(x̂)− Rp
[=/≥/>],

2. fU(x)− R= ⊆ fU(x̂)− Rp
[=/≥/>],

3. ∀θ ∈ U,∃θ̂ ∈ U s.t. f(x, θ)[5 / ≤ / <]f(x̂, θ̂).

Proof.

(1⇒ 2) For any f(x, θ)−a, a = 0, since f(x, θ) = fU(x̂, θ̂)−b with b ∈ Rp
[=/≥/>],

we see that for c = (b+a) ∈ Rp
[=/≥/>]f(x, θ)−a = fU(x̂, θ̂)− c, proving

the implication.

(2⇒ 1) Clear since fU(x) ∈ fU(x)− Rp
[=/≥/>].

(1⇒ 3) means that every element of fU(x), which can be written as f(x, θ)

for some θ ∈ U , we have that the element can also be written as

an element in fU(x̂) (a point of the form f(x̂, θ̂)) minus some number

a [= / ≥ / >] 0. This in turn means that we have f(x, θ) [5 / ≤ / <] f(x̂, θ̂).

(3⇒ 1) For every θ ∈ U we get that f(x, θ) = f(x, θ̂ − a, a ∈ Rp
[=/≥/>] which

means that every element in fU(x) can be written as an element in

fU(x̂)− Rp
[=/≥/>].

Intuitively, when for a θ we are looking for a potential θ̂ as mentioned

in the discussion before Definition 3.2, we will look at the θ’s which give

“upper-right” corner of the parameter-outcome set f(x̂, θ) : θ ∈ U (the red

outline of fU(x̂) in Figure 5, where it touches fU(x̂)), and if this upper right

corner serve as an upper bound of all of f(x̄, θ) : θ ∈ U (i.e. it is worse than

that set), then we would know x̂ is not robust efficient. In Figure 5 we see

that there does indeed exist a x̄ such that fU(x̄) is completely covered by

fU(x̂), so x̂ is not re. In Figure 6 however, there is no such x̄, meaning that x̂
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Figure 5: x̂ is not efficient since fU(x̄) ⊂ fU(x̂)− Rp
=.

is re. For the problem in Figure 6, x2 is re as well, but not x1 (it is dominated

by x2). We summarize the discussion in the above paragraph, and give more

alternative definitions of (minimax) robust efficiency:

For strict and weak efficiency we also have the following two statements:

Theorem 3.2 ([2, Lemma 3.4]). For an uncertain MOP P (U), and any

x, x̂ ∈ X,

1. fU(x) ⊆ fU(x̂)− Rp
= ⇒ supθ∈U fi(x, θ) ≤ supθ̂∈U fi(x̂, θ̂)∀i ∈ 1, . . . , p

2. fU(x) ⊆ fU(x̂)− Rp
> ⇒ maxθ∈U fi(x, θ) < maxθ̂∈U fi(x̂, θ̂)∀i ∈ 1, . . . , p

If the two maxima in (2) exists.

Proof. 1. Since for any θ ∈ U , f(x, θ) is an element in fU(x̂) − Rp
=, we

have for any i that fi(x, θ) 5 fi(x̂, θ̂) for some other θ̂ ∈ U . Now we

take the suprema on both sides to get the result

2. As above, for any θ ∈ U there is another θ̂ ∈ U so that f(x, θ) < f(x̂, θ̂).

Now we take maximum on both sides. Since we take maximum and

not supremum, we know that the strict inequality is preserved.
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Figure 6: x̂ is efficient since fU(xi) 6⊂ fU(x̂)− Rp
= for i = 1, 2.

We should show that our concepts of robust efficiency are good analogues

to 1) minimax robustness for uncertain single-objective optimization prob-

lems, and 2) to the efficiency concept of deterministic MOP’s. A natural

way to do this is to show that for 1), a solution to an uncertain MOP P (U)

where the dimension of f is equal to 1 (so that it is really a single objective

problem), is re if and only if it is a solution to the minimax problem Pmm(U),

and for 2) that for an uncertain MOP P (U) with |U | = 1 (so that it is really

a deterministic MOP), a solution is re if and only if it is an element in XE

as defined in section (1.1).

Theorem 3.3 ([2, Lemma 3.6]). For a point x̂ ∈ X and a function f : X →
R we have:

x̂ is re ⇐⇒ x̂ is minimax robust.
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Proof.

x̂ is not minimax robust

⇐⇒ ∃x̄ ∈ X s.t. sup
θ∈U

f(x̄, θ) < sup
θ∈U

f(x̂, θ)

⇐⇒ f(x̄, θ̄) < f(x̂, θ̂) for some θ̂, θ̄ ∈ U
⇐⇒ fU(x̄) ⊆ fU(x̂)− Rp

≤

⇐⇒ x̂ is not re.

Theorem 3.4 ([2, Lemma 3.5]). For a point x̂ ∈ X and a function f : X →
Rp and an uncertainty set U such that |U | = 1, we have:

x̂ is re ⇐⇒ x̂ is efficient.

Proof. Let θ be the single element in U . Then:

x̂ ∈ XE

⇐⇒ ∃x̄ ∈ X s.t. f(x̄, θ) ≤ f(x̂, θ)

⇐⇒ fU(x̄) ⊆ fU(x̂)− Rp
≤ (since fU(x) = {f(x, θ)})

⇐⇒ x̂ is not re.

There exists of course completely analogous propositions to 3.3 and 3.4

for rse and rwe points. So robust efficiency is a good extension of efficiency

on the one hand and robust optimality on the other hand.

4 Scalarization

Scalarization methods as introduced in section (2) can be used to obtain

re/rwe/rse solutions for uncertain MOP’s. We must then obtain a robust

version of the method for each of the methods.
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4.1 Weighted sum scalarization

Recall that for a deterministic MOP the WSM problem is written as

WP (λ) : min
x∈X
〈λ, f(x)〉

(assume λ ≥ 0 as always). The analogue to this for an uncertain MOP P (U)

is then to find efficient solutions of the function

〈λ, f(x, θ)〉,

which we know can be found using minimax robustness, leading to the de-

terministic single objective problem

WP (U)(λ) : min
x∈X

sup
θ∈U
〈λ, f(x, θ)〉,

How useful is solvingWP (U)(λ) for finding re/rwe/rse solutions? We recall

from section (2.1) that solvingWP (λ), λ > 0 for deterministic MOP’s always

gives efficient solution (Theorem 2.2). We also recall that if the feasible

set X is convex, then we can obtain all efficient solutions with the WSM.

For uncertain MOP’s, we do have a theorem that says solving the problem

WP (U) will give re/rse/rwe solutions. But unfortunately, there are no similar

theorems to Theorem 2.4 so we cannot guarantee that all re/rse/rwe solutions

can be found by solving WSM-problems. We will show in example 6 a MOP

where the feasible set is convex but we cannot obtain all re solutions with

WSM.

Theorem 4.1 ([2, Theorem 4.3]). For an uncertain MOP P (U) the following

hold:

1. If x̂ ∈ X is the unique optimal solution to WP (U)(λ), then x̂ is rse.

2. If x̂ is an optimal solution to WP (U)(λ) and maxθ∈U 〈λ, f(x, θ)〉 exists

for all x ∈ X, then x̂ is re.

3. If the conditions in (2) hold and λ > 0, then x̂ is rwe.
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Proof. Assume x̂ is not rse/re/rwe under the conditions described. Fixate a

weight λ ∈ Rp
[≥/≥/>]. Then:

∃x̄ ∈ X s.t. fU(x̄) ⊆ fU(x̂)− Rp
[=/≥/>]

⇒∀θ̄ ∈ U ∃θ̂ ∈ U s.t. 〈λ, f(x̄, θ̄)〉 [≤ / < / <] 〈λ, f(x̂, θ̂)〉
⇒ sup

θ∈U
〈λ, f(x̄, θ)〉 [≤ / < / <] sup

θ∈U
〈λ, f(x̂, θ)〉,

where strict inequality is preserved since maxθ∈U 〈λ, f(x, θ)〉 exists in the

re/rwe cases. So x̂ does not [uniquely/·/·] solve WP (U)(λ).

Example 6. In Figure 7 we see that x2 solves the robust weighted sum prob-

lem

WP (U)(λ = [2, 1]) : min
x∈X

max
θ∈U

2f1(x, θ) + f2(x, θ),

since by maximizing the values of 2f1(x) + f2(x) over all θ for the three

possibilities of x, x2 gives the smallest value f(x2) = 6. Thus x2 must be

efficient. In Figure 8 we see a MOP where, although all solutions are efficient,

only x1 and x3 will be obtained from the robust WSM for any value of λ ≥
0. This shows that we cannot guarantee that WSM will give all efficient

solutions.

We solve a practical problem using the WSM-method

Example 7. We wish to place a refinery near industrial sites a1 = 5, a2 = 6

and a3 = 8 (positions along a one-dimensional line). Additionally, around

some unknown spot between x = 4 and x = 6, represented as θ, we know

there is unsteady building ground, so we would prefer to not build there. We

don’t have any information on theta so we let it be an uncertain parameter

in the uncertainty set U = [4, 6]. We want to let the building be in the

interval [0, 10]. This location problem can be modelled as the problem of

finding efficient solutions of

f(x) = [5e−2(x−θ)
2

, (x− 5)2, (x− 6)2, (x− 8)2].
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Figure 7: WSM used to obtain that x2 is efficient

Figure 8: WSM not obtaining the efficient solution x2
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Figure 9: Efficient solutions for a location problem, using various weights
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The first term is a punishment term for building close to the unsteady grounds

at θ, being = 5 at θ and decreasing in a gaussian way the further we move

from it. The other terms are the costs of building far from the sites, assumed

to be quadratical. We implement the robust weighted sum method in Python 3

(Algorithm 2), using three different values of λ, and get the solutions in

Figure 9 shown as the red dots on the plots of supθ∈U 〈λ, f(x, θ)〉. So by

Theorem 4.1, the solutions x = 6.5, 5.8, 6.9 are efficient and equally optimal

unless we specify additional priorities.

In the previous example, an efficient x̂ was relatively easy to find since X

and U were one-dimensional closed intervals, and f was continuous. There

are no general algorithms for solvingWP (U)(λ) without knowing specific prop-

erties of f , X, and U .

4.2 ε - constraint method

We give a robust analogue for the ε-constraint method. Recall from Section

2.2 that the deterministic ε-constraint scalarization problem is written as

εCP (ε, i) : min
x∈X

fi(x, θ) s.t f−i(x, θ) 5 ε−i.

To make εCP robust, we take the minimum of supθ∈U fi(x, θ) over the set of

all feasible x which satisfies fj(x, θ) 5 εj,∀θ ∈ U,∀j 6= i, which we’ll denote

X(ε, i). Then we are assured that all components of f other than fi will be

as low as desired no matter the uncertain parameter outcome. We call this

the robust ε-constraint method εCP (U):

εCP (U)(ε, i) : min
x∈X(ε,i)

sup
θ∈U

fi(x, θ),

where X(ε, i) := {x ∈ X | f−i(x, θ) 5 ε−i, ∀θ ∈ U}
Now we present the analogues to theorems 2.5, 2.6 for the uncertain case:

Theorem 4.2 ([2, Theorem 4.6]). For a MOP P (U), any ε ∈ Rp, any index

i ∈ {1, . . . , p}, and an x̂ ∈ X:
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Figure 10: Situation where efficient x2 can not be found

1. x̂ uniquely solves εCP (U)(ε, i) ⇐⇒ x̂ is rse.

2. x̂ solves εCP (U)(ε, i) and maxθ∈U fi(x, θ) exists for all x ∈ X ⇐⇒ x̂ is

rwe.

There are no similar analogues for Theorem 2.7 to the uncertain case. So

if we want to obtain re solutions using the ε-constraint method, we search

for rse solutions.

Example 8. Figure 10 shows a situation where we will never obtain the re

solution x2 with the ε-constraint method no matter what ε we choose. This

is because x1 will always be in X(ε, 1) or X(ε, 2) whenever x2 is, and the

supremum of fi(x1, θ) over θ ∈ U will always be smaller than that of fi(x2, θ),

for i = 1, 2. This contrasts with Theorem (2.7) for the deterministic case,

where the ε-constraint method will always find all efficient solutions under

suitable conditions.
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4.3 Objective-wise worst case method

We now provide a method which does not have a deterministic analogue for

finding efficient solutions for uncertain MOP’s. For WSM and ε-constraint

scalarization, we turn an uncertain MOP into an uncertain single-objective

problem which we then solve using a minimax approach. For the objective-

wise worst case method (OWC) we instead turn the uncertain MOP into

a deterministic MOP which we find efficeint solutions of, typically via a

deterministic scalarization method, such as those presented in this section

(2). This is done by defining the functionfOWC
U : X → Rp such that

fOWC
U (x) = [supθ∈U f1(x, θ) . . . supθ∈U fp(x, θ)],

and then solving the problem

OWCP (U) : min
x∈X

fOWC
U (x).

So for each individual x ∈ X we take the θ-parameter which gives the supre-

mum of f -component j for j = 1, 2, . . . , p and minimize this over all x ∈ X
(we minimize it in the pareto-optimality sense here, but the method of course

also allows for other types of minimization).

Remark. The method makes sense intuitively since when |U | = 1 it is re-

duced to a deterministic MOP and for p = 1 it is reduced to a single dimen-

sional minimax problem.

We show that solving the OWC problem gives efficient solutions.

Theorem 4.3 ([2, Theorem 4.11]). Let x̂ ∈ X be a strictly/weakly efficient

solution to OWCP (U). Then x̂ is rse/rwe for P (U).

Proof. 1. (strict) Assume x̂ is not rse. Then there is some x̄ 6= x̂ such

that fU(x̄) ⊆ fU(x̂)− Rp
=. Then by 3.2 we’d get

sup
θ∈U

fi(x̄, θ) ≤ sup
θ∈U

fi(x̂, θ)∀i ∈, . . . , p.

This means fOWC
U (x̄) 5 fOWC

U (x̂), so x̂ is not a strictly efficient solution

to OWCP (U)
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Figure 11: Candidates for efficient solutions found with OWC

2. (weak) Assume x̂ is not rwe. Then there is some x̄ such that fU(x̄) ∈
fU(x̂)− Rp

>. Then by 3.2 we’d get

max
θ∈U

fi(x̄, θ) < max
θ∈U

fi(x̂, θ)∀i ∈ 1, . . . , p.

(we assume the maximas exist) This means fOWC
U (x̄) < fOWC

U (x̂), so x̂

is not a weakly efficient solution to OWCP (U).

Example 9. Figure 11 illustrates Theorem 4.3. Here fOWC
U (x) is shown for

x = x1, x2, x3. We see that x1 is strictly efficient for the problem OWCP (U)

and x3 is weakly efficient. Then we know x1 is rse and x3 is rwe for P (U).

4.4 Objective-wise uncertain problems

One problem with the OWC-method is that there might not exist any pa-

rameter realization θmax so that fOWC
U (x) = f(x, θmax) for some or any

x. This is because θi = arg maxθ∈U fi(x, θ) might not be the same θ as

θj = arg maxθ∈U fj(x, θ), j 6= i (assuming here that the maximum does in
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fact exist). If we could guarantee that a single parameter θmax would pro-

vide the maximum for each component of the objective function, we could

prove additional theorems on the OWC method. This would also be useful

for solving practical problems. We thus introduce objective-wise uncertain

problems, which concerns special classes of MOP’s where the sought param-

eter realization θR is guaranteed to exist.

Definition 4.1. A problem is said to be objective-wise uncertain (owu) if the

uncertainties of each objective function component fj are independent of each

other, meaning that each function component fj(x, θ) is either deterministic

or is a function of an independent subset of the uncertainty set U only, so

that

U = U1 × U2 × . . .× Uk,

where each Ui is independent of the others. If a problem is owu, we can write

fj(x, θ) = fj(x, θi(j)), θi(j) ∈ Ui(j),

where the uncertainty index i = i(j) ∈ {1, . . . , k} uniquely corresponds to the

function index j, but is not neccesarily equal.

It is clear to see that for an owu set, we can find the sought θmax for a

given x by simply solving arg maxθi(j)∈Ui(j)
fj(x, θi(j)) =: θmax

i(j) (x) And then set

θmax(x) = [θmax
1 (x), . . . , θmax

k (x)] ∈ U1 × . . .× Uk = U. (1)

The following theorem summarizes our discussion:

Theorem 4.4 ([2, Corrolary 5.3]). For an owu problem where maxθ∈U fj(x)

exists for all j =∈ 1, . . . , p and all x ∈ X, we have

fOWC
U (x) = f(x, θmax(x)),

where θmax(x) is as defined in equation (1).
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For owu problems P (U), we have two very useful theorems which shows

the strength of the OWC-method. The first says that the solution set of the

problem is identical to the solution set of the corresponding deterministic

OWC-problem OWCP (U). So an owu problem is really a deterministic prob-

lem. The second theorem, which is a corollary to the first one, tells us that

all its solutions can be found with the robust ε-constraint method. Recall

for the next theorem that we use the [re/rwe/rse] – terminology when talk-

ing about uncertain MOP’s and the [strictly/·/weakly] efficient- terminology

when talking about deterministic MOP’s.

Theorem 4.5. For an owu problem P (U), where we assume that maxθ∈Ufj(x, θ)

exists, we have: x̂ is rse/re/rwe for P (U) if and only if it is strictly/·/weakly

efficient for OWCP (U).

Proof. Since f 0WC
U (x) = f(x, θmax(x)) where θmax ∈ U by 4.4 is in fU(x), we

have fOWC
U (x) ∈ fU(x), so that

fOWC
U (x)− Rp

[=/≥/>] ⊆ fU(x)− Rp
[=/≥/>].

But since fOWC
U (x) exceeds all elements in fU(x) in every element, we also

have the reverse set inclusion, so that

fOWC
U (x)− Rp

[=/≥/>] = fU(x)− Rp
[=/≥/>].

Using Theorem 3.1, this means that x̂ is rse/re/rwe for P (U) if and only if

it is rse/re/rwe for OWCP (U). Since the latter problem is deterministic, this

is the same as saying if and only if x̂ is strictly/·/weakly efficient for that

problem.

To prove the next theorem, which shows all the solutions of an owu prob-

lem may be found with the robust ε-constraint method, we need a lemma:

Lemma 4.6 ([2, Theorem 5.5]). For an uncertain MOP P (U), the set of

solutions to the deterministic single objective problems εCP (U) and εCOWCP (U)

are identical.
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Proof. To clarify the statement: The first problem means that we use the

minimax robust ε-constraint method on P (U), and the second problem means

that we use the deterministic ε-constraint on OWCP (U). The first problem

can be written as min supθ∈U fi(x, θ) over all x ∈ X such that fk(x, θ) ≤
εk ∀k 6= i, ∀θ ∈ U . The second problem can be written as min gi(x) over all

x ∈ X such that gk(x) ≤ εk∀k 6= i, where gj(x) := supθ∈U fj(x, ). Since these

two inequalities/sets are equivalent, the lemma follows.

Theorem 4.7 ([2, Theorem 5.6]). For an owu problem P (U), where we

assume that maxθ∈U fj(x, θ) exists, we have that x̂ ∈ X is re ⇐⇒ ∃ε̂ ∈ Rp

such that x̂ is an optimal solution to εCP (U)(ε̂, i)∀i ∈ 1, . . . , p.

Proof. By Theorem 4.5 we have that x̂ is efficient for OWCP (U). We know

by Theorem 2.7 that there exists an ε̂ ∈ Rp s.t. x̂ solve εCOWCP (U)
(ε̂, i)∀i ∈

1, . . . , p. But then by Lemma 4.6, we have that x̂ also solves εCP (U)(ε̂, i).

5 A practical problem presented as a MOP

For the rest of this thesis, we will consider an application of multi objective

programming to solving a practical problem. We will consider so-called lo-

cation problems. These are problems where we have a set of several points

ai, . . . , am ∈ Rn scattered in the Rn-plane, denoted A, and want to find a

point x̂ in Rnwhich is closest to those points in some sense. This is relevant

in problems from industry and logistics, among others.

Example 10. Suppose we have several docks on a coast where fish are deliv-

ered by the trawlers, and we want to find the optimal location for a processing

factory in terms of proximity. Then the set L is the R2-coordinates of the

docks, and the point x̂ is the location of the factory.

A natural notion of a closest point x̂ to A is one which is an efficient

solution of the problem

P : min
x∈X

D(x) = [d(a1, x), d(a2, x), . . . , d(am, x)],
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where d(x) = d(ai, x) is a distance metric from ai to x. For d, we will use the

euclidean distance d2(x, y) =
√
x2 + y2, although there exists many possible

choices for this metric.

5.1 Solving the location problem using WSM

We use the WSM-method to solve the location problem. So we want to solve

WP (λ) : min
x

m∑
i=1

λid2(ai, x).

The WSM method is particularly well-suited to location problems since there

is a clear relationship between the weights λi and the importance of mini-

mizing the distance from x to ai. In our example, the size of dock i and/or

relatively poor quality of the roads from dock i to x will lead to an increased

priority of a close distance to that dock, so that λi will be increased.

WSM-problems with Euclidean distance may be approximately solved

using Weiszfeld’s algorithm ([5]). This algorithm is centered around the

iteration xk+1 = T (xk), where

T (x) :=

∑m
i=1 v

i ai

d2(ai,x)∑m
i=1 v

i 1
d2(ai,x)

.

xp is the previous estimator of the minimizer and xk+1 is the new one. We

know from single-objective optimization that for a continuous convex func-

tion f : Rn, a point x∗ ∈ Rn is a minimizer of f if and only ∇f(x∗) = 0.

Denote by xj the j-th component of x. It can be shown that

∂D(x)

∂xj
= xj

m∑
i=1

vi
1

d2(ai, x)
−

m∑
i=1

vi
aji

d2(ai, x)
,

so we see that ∇f(x∗) = 0 only when x = T (x). For most practical problem

the iteration xk+1 = T (xk) will converge to a fixed point, so the procedure is

reasonable.
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Figure 12: Optimal location of the refinery

Example 11. Continuing our example with the fishing dock stations, if there

are docks on locations a1 = [0, 0], a2 = [0, 2], a3 = [2, 1], a4 = [1,−2], a5 =

[3, 3], and all places are considered equally important (λ = [1, 1, 1, 1, 1]),

then D(x) = [d2(a1, x), . . . , d2(a5, x)], and implementing the WSM-method

in Python 3 (Algorithm 3) using Weiszfeld’s algorithm, we get the optimal

location of the refinery as x = [1.230, 0.887], shown as the red dot in Figure

12.

5.2 Solving an uncertain location problem using the

OWC-method

Assume now that in Example 11 there is some uncertainty as to the number

of fish that will be brought in at docks i = 1, 2. This can be represented

as an additional term θi ∈ Ui = [0.5, 1.5], i ∈ 1, 2, that is multiplied with

the first two components of D(x) to represent lowered/increased importance

of getting that component as small as possible (a high θi representing more
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fish at dock i and thus an increased importance of proximity to that dock).

Assume also that there is the potential of some kind of catastrophe at dock 3,

determined by θ3 = 0 if nothing happens and θ3 = 1 if there is a catastrophe.

So U3 = {0, 1}. Let then the third term of D be replaced by f(x) = (1 −
θ3)d2(a3, x) + θ3

10
d2(a3,x)

, so that in the case of a catastrophe, the closer the

factory is to dock 3, the bigger are the negative effects on the cost. We see

that the uncertainty set U can be written as U1×U2×U3, so that the problem

is owu (Section 4.4).

We solve this problem with the OWC-method. We have:

θmax
i = 1.5, i = 1, 2,

θmax
3 (x) =

{
1, if d2(a3, x) ≤ 10

d2(a3,x)
,

0, else

}
.

That θmax
3 = 0 is possible might seem strange, since that means a catastro-

phe could increase profitability. But this is imaginable if, for example, we

are required by the local government to use all the docks even when it is

unprofitable to use some of them. Then if something happens at for example

dock 3, so that we are permitted to not use it, then this could actually be

good for minimizing D(x). So we get

DOWC
U (x) = [1.5d2(a1, x), 1.5d2(a2, x), f(x), d2(a4, x), d2(a5, x)].

This is deterministic and easily solved by the ε-constraint method. By The-

orem 4.7, solving for all possible ε-constraints will give all possible optimal

solutions. We could then for example use a discretization of ε-vectors over a

suitably large ball in R5 to obtain a good idea of what all efficient solutions

will look like.
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Notes

1. All the figures appearing in the examples in this thesis have been created by myself, but

I have had help in the programming aspect of producing the figures, based on handdrawn

illustrations.
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