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Introduction

There are many tools in mathematics which we can use to study manifolds. For
example we might consider how functions on the manifold behave. By consider-
ing the critical points of functions from a manifold to the reals we can, through
Morse theory, construct the manifold up to homotopy and even diffeomorphism.
In this paper we introduce the basics of Morse theory as well as applying it to
the the special case of the unitary group U(n).

To give an intuitive explanation I will borrow some metaphors from [6].

Anyone that has ever hiked over hilly or mountainous terrain will have an in-
tuitive understanding of the basic concepts of Morse theory. Walking across
some terrain results in some change in altitude. During our hike we will come
across some critical point where, momentarily, our altitude does not increase or
decrease. These points essentially take one of three forms:

1. The top of a hill, where movement in any direction will decrease our
altitude

2. The bottom of a crater, where any movement leads to an increase in
altitude

3. The lowest point of a ridge between to mountains, i.e a saddle point.
Here movement in one direction increases altitude, while the direction
orthogonal to that decreases it.

This change in altitude may be considered as a smooth function f : R2 → R.
Let’s say that we find ourselves at the top of some mountain with at some pair
of coordinates p. That means that we can choose some coordinates around p
such that our function will look like f(x, y) = −x2 − y2. If we instead find
ourselves in the bottom of some crater, we could choose coordinates such that
we get f(x, y) = x2 + y2. And lastly if at a saddle point we can get coordinates
that give us f(x, y) = x2 − y2.

Now if some terrain has a smooth height-function such that any critical point
falls under one of these 3 types, we can gain global information about the shape
of the terrain by only studying the critical points. This is the essence of Morse
theory. We consider some function on a manifold with only non-degenerate crit-
ical points. In this case our function is called a Morse function. Given some
Morse function we obtain global information about the manifold from its critical
points.

There are however a functions that we would like to study that don’t fulfill
the requirements to be a Morse function. Therefore we must further generalize
the theory. We do this by way of so-called Morse–Bott functions. For such func-
tions on a manifold M we get that the set of critical points form submanifolds
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of M . Continuing with the above hiking example, if we’ve hiked to the top of a
volcano we can now continuously move along the rim of its crater without ever
losing or gaining height. So the height-function on such a terrain would not be
a Morse function.

At the end of this paper we will see that, given the standard matrix representa-
tion of the unitary groups, the function on U(n) given by f(A) = Re(tr(A)) is
a Morse–Bott function. The main result of this paper is then that the critical
submanifolds of f on U(n) are Grassmannian manifolds.

The paper is split into two sections. The first covers the basics of Morse theory.
We start by introducing the motivation for why we are interested in Morse the-
ory as well as essential definitions and notations. When that is done we proceed
with some fundamental results. The final of these being that any Morse func-
tion on a manifold gives a CW-complex homotopic to the manifold. We will
also give the equivalent results for Morse-Bott functions.

The second section of the paper follows [3] and [7]. Though Frankel writes
about all the classical groups, we will primarily concern ourselves with only
U(n).

1 Morse theory

1.1 Definitions and notation

To introduce Morse functions we first require a rigorous definition of what it
means for a point on a manifold to be a critical point of a function.

Definition 1.1. : Let M be a smooth n-dimensional manifold and let

f : M → R

be a smooth map. Some point p ∈M with some coordinates (x1, x2, . . . , xn) is
said to be a critical point of f if: ∂f

∂xi
= 0, i = 1, . . . , n

Definition 1.2. : Let M and f be as in Def 1.1. Then we define the Hessian

matrix at a point p, Hf (p), as the n×n matrix with entries (Hf (p))ij = ∂2f
∂xi∂xj

.

Further a critical point p is said to be non-degenerate if the Hessian matrix at
p is invertible, i.e. det(Hf (p)) 6= 0.

We remark that even though it might not be immediately obvious, this
definition is invariant under change of coordinates. That is to say in some
neighborhood of some non-degenerate critical point p ∈M it will remain a non-
degenerate critical point. Say we have some other coordinates (y1, . . . , yn) with

change of basis matrix P . Then we get that in ∂2f
∂xi∂xj

= P−1( ∂2f
∂yi∂yj

)P .

These two definitions together lead to the definition of a Morse function.

2



Definition 1.3. (Morse function) A smooth function f : M → R is said to be
a Morse function if all its critical points are non-degenerate.

Let’s give some concrete examples to familiarize ourselves with the definition.

Example 1.4. Consider the manifold S1 as a sub-manifold of R2 given by
coordinates (cos(t), sin(t)). The function f(t) = sin(t) is a Morse function. The
critical points are at t = −π

2 and t = π
2 with Hessian matrix (− sin(t)), which

has non-zero determinant at the critical points.

Example 1.5. : Let’s consider the function f(x, y) = x3 − 3xy2 on R2,
the real part of the complex function (a + bi)3. This function has Jacobian
(3x2 − 3y2,−6xy), so we see that the function has a critical point at (0, 0). The

Hessian at (x, y) is

(
6x −6y
−6y −6x

)
which is seen to be singular at (0, 0). So the

function is not a Morse function.

In our hiking example we mentioned how we get coordinates looking like
±x2 ± y2 at critical points. Our first theorem, the Morse Lemma, generalizes
this idea.

Theorem 1.6. (Morse Lemma) Let p be a non-degenerate point of a Morse
function f : M → R. Then there are local coordinates (y1, . . . , yn) about p such
that f in these coordinates is given by

f = f(p)− y12 − y22 − · · · − yi2 + yi+1
2 + · · ·+ yn

2

Proof. Before we begin the proof it’s worth noting that we can assume that
p = 0 and that f(p) = 0. This is done by an affine change in coordinates and by
considering the smooth function g = f − f(p) instead of f . Now we have that
∂f
∂xi

(0, . . . , 0) = 0 since 0 is a critical point. Since f is smooth we have that

f =

n∑
i=1

xigi(x1, . . . , xn)

where each gi is some smooth function satisfying

∂f

∂xi
(0, . . . , 0) = gi(0, . . . , 0) = 0.

Simply choose gi to be
∫ 1

0
∂f
∂xi

(tx1, tx2, . . . , txn)dt. Since each gi is smooth we
can repeat this process for each of those. This gives us

f =

n∑
i=1

n∑
j=1

xixjhij(x1, . . . , xn)

Now if we let Hij =
hij+hji

2 we get

f =

n∑
i=1

n∑
j=1

xixjHij(x1, . . . , xn)

3



with Hij = Hji and therefore also ∂2f
∂xi∂xj

(0, . . . , 0) = 2Hij(0, . . . , 0). From our

assumption that the critical point is non-degenerate we have that the matrix
with entries Hij is invertible. We may even assume, after some linear change of
coordinates, that

2H11 =
∂2f

∂2xi
6= 0

now define

y1 =
√
|H11|

(
x1 +

n∑
i=1

xi
H1i

H11

)
The Jacobian of coordinate change from (x1, . . . , xn) to (y1, x2, . . . , xn) is invert-
ible so we have a new coordinate system (y1, x2, x3, . . . , xn). Some calculations
show that

y21 =

{
H11x

2
1 + 2

∑n
i=2 x1xiH1i +

(
∑m

i=2 xiH1i)
2

H11
H11 > 0

−(H11x
2
1 + 2

∑n
i=2 x1xiH1i +

(
∑m

i=2 xiH1i)
2

H11
) H11 < 0

and that f in these coordinates becomes

f =

{
y21 +

∑n
i=2

∑n
i=2 x1xiHij −

(
∑n

i=2 xiH1i)
2

H11
H11 > 0

−y21 +
∑n
i=2

∑n
i=2 x1xiHij −

(
∑n

i=2 xiH1i)
2

H11
H11 < 0

Since we see that all terms after y21 contain only x2, x3, . . . , xn we can repeat this
process for n steps to obtain the desired result of f = −y21 − y22 − · · · − y2i + y2i+1 + · · ·+ y2n

From the theorem we get the immediately following corollary:

Corollary 1.7. The critical points of a Morse function f : M → R are isolated.
Further if M is compact f has finitely many critical points.

Proof. I will not go into much detail for this proof. The idea is that there is only
one critical point for f = f(p) ± x21 · · · ± x2n in a neighborhood p. The second
part follows from compact manifolds being sequentially compact and the first
part.

Now observe the fact that once we have such a coordinate system satisfying
f = f(p)− y12 − y22 − · · · − yi2 + yi+1

2 + · · ·+ yn
2 then the Hessian matrix of

f at p becomes 

−2
. . .

−2
2

. . .

2


.
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That is, there is some i-dimensional subspace of the tangent space of M at p
where the Hessian is negative definite and some (n − i)-dimensional subspace
where the Hessian is positive-definite. And this notion gives us a new defintion.

Definition 1.8. Let f : M → R be a Morse Function with critical point p. The
index of p is the maximal dimension of a subspace of the tangent space TpM
on which Hf (p) is negative definite.

Example 1.9. Continuing with our Example 1.4. The top and bottom were
our critical points with Hessian ±1. So the critical point at the bottom has
index 0 and the top has index 1. Likewise if we consider the height-function on
Sn we will get two critical points with index 0 and n for the “north-pole” and
“south-pole”.

Example 1.10. : Lets consider the canonical Morse theory example: the torus
with the height function. That is if we consider T 2 = S1 × S1 with

f(θ, φ) = (R+ r cos(θ)) cos(φ)

for some R > r > 0. The gradient of this becomes

(−r sin(θ) cos(φ),−(r cos(θ) +R) sin(φ)).

So we have four critical points (0,0), (π,0), (0,π) and (π,π). The Hessian of the
function becomes(

−r cos(θ) cos(φ) r sin(θ) sin(φ)
r sin(θ) sin(φ) −(r cos(θ) +R) cos(φ)

)
.

Calculating eigenvalues one can find that the index for corresponding to the crit-
ical points above is respectively 0, 1, 1, 2. We see that at these are respectively
a local minimum, a saddle point, another saddle point and a local maximum. In
Figures 1 and 2 we have first pictured the torus with its critical points, secondly
we see how one might go about constructing the torus by gluing together such
minima, saddle points and maxima.
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(0,0)

(0,π)

(π,0)

(π,π)

Figure 1: The torus with marked critical points of the height function
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+

+

+

Figure 2: Constructing the torus

In Figure 2 we might see that before gluing we have some set that is just the
points on the torus with height less than some number a. This motivates our
next definition.

Definition 1.11. Let f : M → R and a, b ∈ R. Define the sublevel set Ma by

Ma = f−1(−∞, a] = {m ∈M | f(m) ≤ a},

and M[a,b] = {m ∈M | a ≤ f(m) ≤ b}

Example 1.12. Let M = S2,the sphere centered at (0,0) in R3, and let f be
the height function. i.e. f(x, y, z) = z Then Mc = ∅, for all c < −1, M−1 is just
the south pole, M0 is the southern hemisphere and Md = S2, for all d ≥ 1.

The next subsection is dedicated to explaining how these sublevel sets behave
and how to construct any manifold M in the way we have done with the torus
in Figure 2.

1.2 Fundamental results of Morse theory

The goal of this section will be to show that, through the lens of Morse theory,
the points of interest on a manifold are the critical points. But before showing
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how the critical points affect the shape of our manifold lets first show that
regular points leave our manifold unaffected.

Theorem 1.13. Let f : M → R be a smooth function and let a, b ∈ R such that
the interval [a, b] has no critical values and the set M[a,b] is compact. Then Ma

is diffeomorphic to Mb. Further, Ma is a deformation retract of Mb

The idea behind the proof of this theorem will be to follow the flow lines of
some nice vector fields on M . We will follow the proof of Milnor [8] . And as
such we will need to introduce the concept of a 1-parameter group of diffeomor-
phisms.

Definition 1.14. A φ is a smooth R-action on M

φ : R×M →M

is called a 1-parameter group of diffeomorphisms. That is:

1. For all s, t ∈ R, the map φt : M → M given by φt(m) = φ(t,m) is a
diffeomorphism

and

2. φt+s = φt ◦ φs
Lets give some example before we proceed with the proof of Theorem 1.13.

Example 1.15. (Projection onto an axis) Lets start of with a somewhat trivial
example. Lets consider the smooth map φ : R × R → R with φ(x, y) = (x, 0).
Then we get that for any t, s ∈ R

1. φt is a diffeomorphism as it is simply a translation of the line y = t and

2. φt+s = (x, 0) = φt ◦ φs
Example 1.16. (Rotations of the circle) Let M = S1 and let

φ : R× S1 → S1

be given by φ(t, (cos(θ), sin(θ))) = (cos(θ+t), sin(θ+t)) for t ∈ R and (cos(θ), sin(θ)) ∈ S1.
Clearly this is a 1-parameter group of diffeomorphism.

Now given some vector field X on a manifold M and 1-parameter group φ
we call X a generator of φ if

Xq(f) = lim
h→0

f(φh(q))− f(q)

h

for all continuous functions f and q ∈M .

To prove Theorem 1.13 we will need the following lemma.
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Lemma 1.17. Let X be a smooth vector field on a manifold M such that
X vanishes outside some compact K ⊂ M . Then X generates a unique 1-
parameter group on M.

This induced 1-parameter group is sometimes called the flow associated to
the vector field X. It sends points along their integral curves on the vector field.

Proof. Let’s start by assuming we have a 1-parameter group φ generated by
some vector field X. Then if we fix some q let’s consider the curve

t 7→ φt(q).

Such a curve will satisfy the ODE

dφt(q)

dt
= Xφt(q)

as we get the

dφt(q)

dt
(f) = lim

h→0

f(φt+h(q))− f(φt(q))

h
= lim
h→0

f(φh(p))− f(p)

h
= Xp(f).

It is a well known fact that such ODEs have unique solutions smoothly depen-
dent on initial value. So since K is compact in M we have that we can find
finitely many Ui with corresponding εi such that the Ui’s cover K and

dφt(q)

dt
= Xφt(q)

has a unique solution for q ∈ Ui and for |t| < εi. Now let ε0 be the smallest
such ε. If we let φt = id for q /∈ K then it follows that for |t| < ε0 and q ∈M we
have a unique solution to our differential equation. Further the solutions can
be considered smooth functions of both t and q and given |t|, |s|, |t + s| all less
than ε0 we have φt+s = φt ◦ φs. Now if we have some r with |r| > ε0 we can
simply write r = k ε02 + d for some integer k and some d with |d| < ε0

2 . Then we
simply define

φt = φ ε
2
◦ · · · ◦ φ ε

2︸ ︷︷ ︸
k times

◦φd.

Now clearly φ satisfies our conditions and therefore completes our proof.

With this lemma we can proceed with proving the larger theorem at hand,
i.e. Theorem 1.13.

Proof. The idea will be to define a nice vector field and to follow the inte-
gral curves (the solutions to the differential equations discussed in the previ-
ous proof) of that vector field. If we have our Morse function f and some
Riemannian metric on M let the vector field ∇f be defined by the identity〈
X, f

〉
= X(f). Where X is any vector field on M and

〈
−,−

〉
is the inner prod-

uct defined by the Riemannian metric on M . Define the function g : M → R
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given by 1〈
∇f,∇f

〉 on the set M[a,b] and vanishes on some compact neighborhood

of M[a,b]. Now using this function let’s define the vector field

Xq = g(q)∇fq.

So since this vector field vanishes outside some compact set of M it satisfies
the conditions of our lemma. That is we can find some 1-parameter group of
diffeomorphisms

φt : M →M

generated by X. Now note the following property of the tangent vector for some
curve c on M 〈dc

dt
,∇f

〉
=
d(f ◦ c)
dt

So define the curve on m given by

t 7→ f(φt(q))

for fixed q ∈M . If q in addition lies in the set M[a,b] then we get that

d(f(φt(q)))

dt
=
〈d(φt(q))

dt
,∇f

〉
=
〈
X,∇f

〉
= X(f) = +1

So we have a linear correspondence with derivative 1

t 7→ f(φt(q)).

With this construction its not hard to prove the first part of the theorem. So
to find our diffeomorphism simply choose φb−a : M → M maps Ma diffeomor-
phically onto Mb.

Finding a deformation retract is also quite easy now. Simply consider the fol-
lowing function

F : Mb × I →Mb

given by

F (q, t) =

{
id , q ∈Ma

φt−f(q)(q) , q ∈M[a,b]

This is clearly a deformation retract.

So we have now shown that for some manifold M and Morse function f , the
only change in the diffeomorphism type of the M happen at the critical points
of f . The next step for us now will be to find some way to describe how these
critical points affect M .

We have already described such a change in our example of the torus (see Figure
2), but we will have to generalize that process. Let pi ∈M be the critical points
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of a Morse function f with corresponding critical values ci such that ci 6= cj ,
for i 6= j. Order these such that c0 < c2 < · · · < cn. Now p0 is a local minimum
of f and thus f has the form f = x21 + x22 + · · ·+ x2m for some local coordinates
at p0. So the sublevel set Mc0+ε = {(x1, . . . , xm)|x21 + x22 + · · · + x2m ≤ ε} for
some small ε > 0. That is to say that M[c0−ε,c0+ε] is an downwards facing m-
dimensional disk Dm. Likewise for ck we have a local we get a local maximum
around pk and so we have that M[ck−ε,ck+ε] looks like a downwards-facing disk.
So when passing a critical point pi that is either a local max or min we get the
set Mci+ε by adding either a downwards-facing or upwards-facing disk Dm to
the set Mci−ε.

A slightly more difficult task is finding out how to describe the set M[ci−ε,ci+ε]
if pi is some critical point with index k that is neither maximal or minimal.
To this end, let’s once again consider the local coordinates around pi given by
the Morse lemma. So since pi is of index k we get that we have coordinates
(x1, . . . , xm) such that

f = ci − x21 − · · · − x2k + x2k+1 + · · ·+ x2m

Now choose some ε, δ > 0, s.t. δ � ε and that there are no other critical values
in M[ci−ε,ci+ε]. If we now consider the points in M satisfying

• x21 + · · ·+ x2k − x2k+1 − · · · − x2m

• x2k+1 + · · ·+ x2m

This set is diffeomorphic to Dk × Dm−k and is called a k-handle. It contains
within it the ek-cell Dk × 0

Figure 3 illustrates the situation.
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(x1, ..., xi)

(xi+1, ..., xm)

Mci+ε

Di × 0

Figure 3

Considering the illustration above one might see that the set does not re-
semble a manifold, given the “corners” where the handle is attached. The next
theorem seeks to find some manifold M that retracts into

Mci−ε
⋃

(Di ×Dm − i).

Additionally we’ll see thatMci+ε retracts intoM andM retracts intoMci−ε
⋃
Di × 0

Theorem 1.18. Let f be a Morse function on the manifold M . Let pi be a
critical point of index i such that M[ci−ε,ci+ε] contains no other critical values.
Then Mci+ε is of the same homotopy type as Mci−ε with an attached ei-cell.

Proof. The idea for this proof will be to construct some second function F : M → R
in such a way that F and f agree except for some small neighborhood of pi where
F < f . We will construct the aforementioned M from F−1(−∞, ci + ε). For
this proof we will use Ma only for the set f−1(−∞, a] so as not to confuse it
with the set F−1(−∞, a].

First let’s assume we have coordinates (u1, . . . , um) in a small neighborhood
U of pi such that the image of U under our coordinate chart contains the closed
ball {(x1, . . . , xm) ∈ Rm|x21 + x22 + · · · + x2n ≤ 2ε}. In the interest of making a
suitable F let’s first choose a function:

ρ : R→ R

such that
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ρ(0) > ε
ρ(t) = 0 when t ≥ 2ε
ρ′(t) ∈ (−1, 0], for all t

We also define the following two functions ν, µ : U → R+, where

ν(u1, . . . , um) =

i∑
n=1

x2n

µ(u1, . . . , um) =

m∑
n=i+1

x2n

We now define our function F by letting

F = f − ρ(u21 + · · ·+ u2i + 2u2i+1 + · · ·+ 2u2m)

on U and F = f outside of U . In terms of ν and µ we have

F = ci − ν + µ+ ρ(ν + µ)

on U . Now since outside the region bounded by the ellipsoid ν + 2µ F = f .
However in this region we have F ≤ f = ci − ν + µ ≤ ci + 1

2ν + µ ≤ ε. These
two facts combined gives us F−1(−∞, ci + ε] = Mci+ε.

If we’re able to describe the critical points of F on U we might then also be
able to use Theorem 1.13 to imply some information about M from F . Keep in
mind that we don’t require F to be a Morse function as the Theorem 1.13 only
requires a function to be smooth. Now dF = ∂T

ν dν + ∂T
µ dµ. But by our careful

choice of ρ we get the two following inequalities

∂F

∂ν
dν = −1− ρ′(ν + 2µ) < 0

and
∂F

∂µ
dµ = 1− 2(ν + 2µ) ≥ 1

Now dν and dµ only vanish at the origin so these facts combined gives us that
the only critical point is at pi. Since F ≤ f and F−1(−∞, ci + ε] we get
F−1[ci − ε, ci + ε] ⊂ M[ci−ε,ci+ε] and further F−1[ci − ε, ci + ε]. But note that
at the critical point F (p) = ci − ρ(0) < ci − ε. So F−1[ci − ε, ci + ε] contains
no critical points and is therefore a deformation retract of Mci+ε. Now all that
remains is to show that F−1[ci − ε, ci + ε] retracts into Mci−ε ∪ ei. We will
create an explicit retraction for this. Firstly let the function

r : F−1[ci − ε, ci + ε]× I → F−1[ci − ε, ci + ε]

be the identity outside of U , but split the region on U into 3 cases. These are
pictured in Figure 4
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Case 1, where ν ≤ ε: Here we will let r((u1, . . . , um), t) = (x1, . . . , xi, txi+1, . . . , txm).
We will let Di× 0 be our ei-cell. As is noted in the figure. Then it’s easy to see
that the entire described set retracts into ei.

Case 2, the region where ε ≤ ν ≤ µ + ε: First define the following function
on the unit interval.

s(t) = t+ (1− t)
√
ν − ε
µ

Then let r on this region be given by

r((x1, . . . , xm), t) = (x1, . . . , xi, s(t)x1+i, . . . , s(t)xm)

Note again that we have the identity for t = 1 and for t = 0 maps the entire re-
gion into Mci−ε. This part agrees with case 1 when the two cases meet, i.e ν = ε.

Case 3. The region Mci−ε: Here we simply let r be the identity for all t.
Again we see that this case agrees with the previous cases.

This completes the proof

case 1

case 3 case 3

case 2

ei

Figure 4

Corollary 1.19. If the preimage of some critical value c ∈ R contains n critical
points {pi} with corresponding indices λi, then Mc+ε has homotopy type that of
Mc−ε ∪ eλ1 ∪ · · · ∪ eλn

Proof. We omit the proof as it is very similar to the preceding proof.
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1.3 Handlebody Decompositions

In addition to proving the theorem, we have done a lot of the work in showing
that a Morse function defines a so called handlebody decomposition. Let’s first
define what we mean by this term.

Definition 1.20. Let X,Y be topological spaces and let A ⊂ X. Given some
continuous map f : A → Y which we will call the attaching map. Define the
attaching space

X ∪f Y

as the quotient space
X
∐
Y /∼

Where the equivalence relation ∼ is given by a ∼ f(a). We say X is attached
to Y along the attaching map f .

Example 1.21. Consider two copies of the unit interval. Let A = {0, 1} and
let i : A be the inclusion of A into I. Then I ∪f I is a space homeomorphic to
the circle S1

Example 1.22. If A is some set with one point, then the attaching space X∪fY
is X ∨ Y , the wedge sum of X and Y .

The intuition for handlebody decompositions is that it is the smooth counter-
part to CW-complexes, as the differing cells may be of differing dimensions and
attaching maps are not smooth for CW-complexes. So whereas the construc-
tions of CW-complexes often gives us information regarding the homotopy type
of a manifold, constructing a handlebody decomposition might tell us something
about the diffeomorphism type of said manifold. Our definition of a handlebody
will be inductive through the attaching of spaces of the form Di ×Dm−i. Not
unlike that of CW-complexes with attaching of cells. The space Di ×Dm−i is
called an m-dimensional i-handle, or just i-handle if the dimension m is implied
through context.

We will assume all attaching maps in the definition are smooth embeddings,
made possible by the tubular neighborhood theorem.

Definition 1.23. (Handlebody):

1. The m-disk Dm is an m-dimensional handlebody.

2. Let φ1 : ∂Di1 ×Dm−i1 → ∂Dm. The attaching space

Dm ∪φ1
(Di1 ×Dm−i1)

is a m-dimensional handlebody. We will denote this space as H(Dm;φ1)
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3. If we have a m-dimensional handlebody M = H(Dm;φ1, . . . , φk − 1) and
let φk : (∂Dik ×Dm−ik)→ ∂M be an attaching map. Then the attaching
space

M ∪ φk(Dik ×Dm−ik) = H(Dm;φ1, . . . , φk)

is an m-dimensional handlebody.

Example 1.24. The possibly simplest example of a handlebody, outside of the
disk Dn, is that of the n-sphere. We start as in the definition with an m-disk
Dm. We will attach another Dm. Let the attaching map φ : ∂Dm × 0→ ∂Dm

simply be given by the identity. The resulting handlebody H(D;φ) is the n-
sphere Sn.

Example 1.25. Start with the 3-disk D3. We attach a 1-handle somewhere
onto the boundary of D3 by some injective map φ. The resulting handlebody
H(D3;φ) is a space resembling a girya. I.e. H(D;φ) is diffeomorphic to a solid
torus. This process could be repeated n times to construct a genus g handlebody.

Figure 5: Girya

One might see that the structures in our definition of handlebodies very closely
resembles a lot of those in our proof of Theorem 1.18. This observation moti-
vates the following:

Theorem 1.26. If M is a compact, smooth, m-dimensional manifold and
f : M → R is a Morse function. Then f defines a handlebody decomposition
of M given by attaching an i-handle for each critical point of index i.

Proof. The proof of will proceed inductively. We will assume that f has distinct
critical values ordered such that c0 < c1 < · · · < ck and with corresponding crit-
ical points p0, . . . , pk. Our base case is that Mc0+ε is a handlebody. We quickly
see that this is true as since we ordered our critical points the way we did p0 is
a local minimum. Then Mc0+ε

∼= Dm.
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Now assume that Mci−1+ε is a handlebody H(Dm, φ1, . . . , φi−1). The interval
[ci−1+ε, ci−ε] contains no critical values. So by Theorem 1.13Mci−1+ε

∼= Mci−ε.
That is Mci−ε

∼= H(Dm, φ1, . . . , φi−1). Proceeding as we did in our proof of
Theorem 1.18 we get that if ij is the index of ci that

Mci+ε
∼= Mci−ε ∪φi

(Dij ×Dm−ij ).

Here φi is some attaching map determined by f . Thus through f we get
Mci+ε = H(Dm, φ1, . . . , φi). This completes our proof.

An important remark to this theorem is that it does not give us a unique
handlebody decomposition for the manifold M . As the theorem works for any
given Morse function, another Morse function g would give another handlebody
decompostion H(Dm, ψ1, . . . , ψh). Indeed in the general case a given manifold
X does not have a unique handlebody decompostition. As an example we have
illustrated a handlebody construction of the 2-sphere S2, differing from our
previous example.

+

+ +

Figure 6

Now we used the constructions from our proof of Theorem 1.18 to make our
handlebodies, but that theorem actually makes a statement about homotopy
and attaching of ei-cells. This may lead one to believe that a similar construction
of CW-complexes might exist. The last theorem of this section, stated below,
encapsulates this idea.

Theorem 1.27. Given some smooth manifold M and a Morse function f on M
such that each Ma is compact, then M is homotopy equivalent to a CW-complex
with a cell of dimension i for each critical point of index i.

Proof. We will state this theorem without proof. Those interested are referred
to Milnor’s proof [8, pp. 20-24].
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1.4 Morse–Bott functions

Up until now we have only considered whether or not some given function is a
Morse function or not. But a natural question to ask at this point is that of the
existence of Morse functions. I.e. given some manifold M can we be sure that
there is a Morse function f : M → R and how is it given. The first part of this
section will be dedicated to proving a stronger statement. Indeed given some
smooth compact manifold M we will show that “almost all” smooth funcitons
(in some sense) on M are Morse functions.

Theorem 1.28. Given some smooth compact manifold M and some smooth
function g : M → R, we may find another smooth function f : M → R which is
a Morse function.

Proof. The outline of the proof is as follows. Since M is compact we may cover it
with open subsets Ui and compact subsets Ki of Ui such that the Ki’s also cover
M . We will show that restricted to each of these Ui’s we may construct a Morse
function fi from g. To complete the proof we will have to combine all these fi’s
in such a way that we get a new function f which is a Morse function on all of M .

So if we are given some open subset U ⊂ Rn and a smooth function h : U → R
how do we make this function Morse? Our claim is that we may choose some
point (a1, . . . , an) ∈ R that makes the function

h(x1, . . . , xn) = h(x1, . . . , xn)− (a1x1 + · · ·+ anxn)

a Morse function. In fact we will see that most choices of (a1, . . . , an) will work.

Our first step is to prove the assertion that we can create a Morse function
for any open subset U of Rn. To do this we will utilize Sard’s Theorem. This
theorem has become quite standard and as such we will not prove it. For a more
detailed discussion we direct the reader to [5, pp. 205-207]. Simply put Sard’s
theorem states that given any smooth map between Euclidean spaces the set of
critical values in the co-domain has Lebesgue measure 0. So if we consider the
function

∇h = (
∂h

∂x1
, . . . ,

∂h

∂xn
)

This is a smooth map ∇h : Rn → Rn. Now observe that the Jacobian of ∇h
is equal to that of the Hessian of h. So p ∈ U being a critical point of ∇h is
equivalent to det(Hh(p)) = 0. Note also that Hh(p) = Hh(p).

Sard’s theorem also directly implies a weaker statement. Since we know that
the set of critical values of ∇h is 0 we at least know that there exists some
(a1, . . . , an) ∈ Rn which is not a critical value of ∇h. This will be our candidate
for the point described earlier. All that remains is to show that the function h
is indeed Morse. Now h is obviously still smooth so pick some point q ∈ U such
that q is a critical point of h . Then we have

∇h(q) = (a1, . . . , an)
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But since (a1, . . . , an) is a regular value of ∇h we get

Hh(q) = Hh(q) 6= 0

and therefore q is a non-degenerate critical point of h. This holds for any critical
point of h so it is a Morse function.

Now since M is compact we cover M with open coordinate neighborhoods
U1, . . . , Un. We can also choose some compact K1, . . . ,Kn lying in their re-
specting Ui such that

⋃n
i Ki = M . We will construct our Morse function f as

above in such a way that it agrees with g outside some compact sets Li con-
tained in Ui and containing Ki, for i = 1, . . . , n. If we choose such a Li’s we
can construct a smooth bump function bi : Ui → R satisfying the following:

bi(x) = 1 when x ∈ Ki

bi(x) = 0 when x ∈ Ui \ Li

bi(x) ∈ [0, 1] when x ∈ Li

That we can indeed construct such functions is a basic fact of manifold theory
and as such we will not bother to prove it. We now have all the building blocks
required to construct f . First, set f0 = g. Define

fi =

{
fi−1(x1, . . . , xn)− (a1ix1 + · · ·+ anixn)bi(x1, . . . , xn), (x1, . . . , xn) ∈ Ui
fi−1 otherwise

where (a1i, . . . , ani) is chosen as above. Note that fi = fi outside of Li. Re-
peating this process for all i’s we get a function fn = f which is Morse on all of
M . This completes our proof

Despite it being possible to create very many Morse functions, our theory
still has some shortcomings. Creating Morse functions as we did in our above
proof will tend to be a bit tedious. Further, many of the “nice” functions that we
would like to work with, such as the trace which we consider in the next section,
admit some sort of symmetry that stops them from being Morse functions. The
symmetry of the function might for example cause the critical points to not be
isolated. The conclusion one might reach is that we will have to expand our
theory. Motivated by this we give the following more general definition:

Definition 1.29. (Morse–Bott function): Let M be a smooth manifold and
let f be a smooth real-valued function on M . Then f is called a Morse-Bott
function if it satisfies:

1. The critical points of f form a submanifold C of M made of a union of
connected submanifolds C = ∪iCi

2. The null-space of the Hessian Hf at every point c ∈ C coincides with the
tangent space of C at c.
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The manifolds Ci is called a non-degenerate critical submanifolds or simply
critical manifolds of M .

Let’s look at some examples to make ourselves comfortable with this defini-
tion.

Example 1.30. Any Morse function is also automatically a Morse-Bott func-
tion where the critical submanifolds are 0-dimensional.

Example 1.31. We’ve used as an example throughout the text so far the height
function on an upright torus. We see that if we instead let f be the height
function of the torus oriented such that it lies flat on the plane, i.e. the way one
might usually depict it, then it is no longer a Morse function. It is however a
Morse-Bott function. The critical submanifolds then become two copies of S1.

Example 1.32. As we did with the normal Morse functions let’s see if we can
find some function on a manifold which is not a Morse–Bott function. Con-
sider the manifold U which is just some neighborhood of (0, 0) ∈ R2 and let
f : R2 → R be given by x2y2. The critical set C of f is then just the union of
the x-axis and the y-axis in U . As C is not even a manifold f can not be a
Morse–Bott function.

Figure 7: The torus, marked with critical submanifold

As for the standard Morse functions, the concept of indices of critical points is
central to Morse–Bott functions. It will be defined in a similar fashion.

Definition 1.33. (Index of a critical submanifold): If Ci is a critical subman-
ifold of M . The index of Ci is the dimension of the largest subspace of the
tangent space at some c ∈ Ci on which the Hessian Hf is negative definite.

Note that this definition is identical to that of Morse functions. Since the
nullspace of Hf coincides with the tangent space on all of Ci, by our definition,
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and since each Ci is connected the index is independent on our choice of c. The
following definition will also prove useful.

Definition 1.34. Let M be a smooth manifold and let f : M → R be a Morse–
Bott function. Then the normal bundle of a critical submanifold Ci splits into
P ⊕N such that the Hessian is positive definite when restricted to P and neg-
ative definite when restricted to N . The subbundle N is called the negative
bundle of Ci.

Remark: The bundle P is simply the negative bundle of the function −f .
Then the normal bundle of Ci is simply the direct product of the negative bun-
dles of −f and f

Though we do not prove this some of the theorems described in 2.2 have equiv-
alent theorems for Morse–Bott functions. We state all of these in the following
theorem. Proofs may be found in [2, pp. 324-325]

Theorem 1.35. Let M be a smooth compact manifold and let f be a Morse-Bott
function on M . Then:

1. If [a, b] contains no critical values, then Ma is a deformation retract of
Mb and Ma is diffeomorphic to Mb.

2. If M[a,b] contains a single critical submanifold C, then the space Mb has
the same homotopy type as the attaching space

Ma ∪NC

where NC is the negative bundle of C. Attached along the sphere bundle
of NC .

3. With the same setup of 2) Mb = Ma ∪ e1 ∪ · · · ∪ ek where each el is a cell
of dimension larger than or equal to the index of C

2 The trace function and the unitary group

2.1 Introduction

Now that we have developed some theory, we should try to apply it in a setting
that is a bit less trivial than the examples we have mentioned. Inspired by T.
Frankel we will consider the unitary group U(n) = {U ∈Mn×n(C) | U∗U = I}.
I.e. the group of unitary matrices with matrix-multiplication as binary opera-
tion. This group may also be endowed with the structure of a manifold. We
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will now quickly prove this fact.

Theorem 2.1. The unitary groups, U(n), are each endowed with a Lie-group
structure.

Proof. Lets start by proving that U(n), with the binary operation of matrix
multiplication, is indeed a group. U(n), as a set, is a subset of the set of in-
vertible matrices with complex entries. This is known to be a group so we only
need to show that we have totality and inverses. If A and B are unitary then we
have (AB)∗(AB) = B∗A∗AB = B∗IB = B∗B = I. So their product is again
unitary. Now clearly for A ∈ U(n) we have that A∗ = A−1 ∈ U(n).

So now we only need to show that U(n) is a manifold. For this purpose we
will utilize the Regular Value Theorem. As this is a basic theorem of manifold
theory we refer the reader to [5, pp.21]. To this end let’s consider the map
Φ : Mn×n(C) → Hn×n(C) given by A 7→ A∗A, where Mn×n(C) is the space
of n × n matrices with complex entries and Hn×n(C) is the space hermitian
matrices. Indeed we can see that φ maps into Hn×n(C) as

Φ(A) = A∗A = A∗A∗∗ = (A∗A)∗ = (Φ(A))∗

. Then at some A ∈Mn×n(C) we get the tangent map

DfA(V ) =
d

dt
|t=0 (A+ tV )∗(A+ tV ) = V ∗A+A∗V

. So then we need to show that this map is surjective if A is unitary. In other
words, if W ∈ Hn×n(C) is there some X such that DfA(X) = W? We see that
this is the case if we simply choose X = 1

2AW as then we have

DfA(X) =
1

2
W ∗A∗A+

1

2
A∗AW =

1

2
W ∗ +

1

2
W = W

. This concludes the proof.

Now for n > 2 the topology of U(n) becomes rather intricate. For n = 1, the
set U(n) is simply all complex numbers with norm equal to 1. So U(1) = S1.
Already for n = 2 things become a bit hard to visualize. Though it is indeed
known that U(2) is diffeomorphic to S3 × S1. So one might ask if we can find
some Morse function that we might use to describe the shape of U(n) in general.
To this end let’s try the function f : U(n) → R with A 7→ Re(tr(A)), the real
part of the trace. However a problem with this arises straight away. The trace,
and thus also the real part of the trace, is a class function. Meaning that for
all A ∈ U(n), we have f(A) = f(gAg−1), for all g ∈ U(n). Thus, if f ′ = 0 at
some A ∈ U(n) we also have that f ′ = 0 for all B ∈ ΞA = {gAg−1 | g ∈ U(n)}.
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As we will see later, the subset ΞA is a (connected, positive dimensional) man-
ifold. And therefore the critical points of the trace function are not isolated.
By Corollary 1.7 we have that f can not be a Morse function. As we will see
however, it is a Morse-Bott function.

Remark: Knudson actually gives an explicit Morse function on U(n) in [6,
pp. 38-39] by modifying the trace in the following way. If we choose some real
numbers 1 < c1 < c2 < · · · < cn, then Knudson shows that the function

f(A) = Re(c1A11 + c2A22 + · · ·+ cnAnn)

is a Morse function.

2.2 The trace and its critical submanifolds

Before we go about describing U(n) we should discuss a fundamental Lie group
property. Specifically we will talk about maximal tori and of a theorem regard-
ing them. Though the theorem holds for any Lie-group, we will only give the
motivational proof from U(n).

Definition 2.2. A torus T in a compact Lie group G is any connected, compact
and abelian Lie subgroup of G. If is T is maximal among such subgroups then
it is called a maximal torus of G.

In U(n) one maximal torus is given by the set of diagonal matrices in U(n)

D(n) = {diag(eit1 , . . . , eitn)|t1, . . . , tn ∈ [0, 2π)}

Theorem 2.3. Let T ⊂ G be a maximal torus, then any element g ∈ G is
conjugate to some element in T . That is, there exists some t ∈ T and some
h ∈ G s.t. g = hth−1

Proof. For U(n) this is simply a restatement of the Spectral Theorem from
linear algebra. For a proof see [4, pp. 401-402]

The first result towards describing U(n) will be used to show that instead of
finding all critical points of the trace we may instead only consider its critical
points along some maximal torus. In this theorem and the rest of the section
we will discuss notions of orthogonality of vectors and of vectors being tangent,
as well as that of the gradient. This is with respect to the metric given by the
inner-product inherited from the Riemannian metric on U(n) given by the inner
product 〈

A,B
〉

= tr(A∗B)

.
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Theorem 2.4. Let f : U(n) → R be given by x 7→ Re(tr(x)). Then ∇f is
tangent to D(n) at every point t ∈ D(n)

Proof. First note that we may assume ∇f is non-zero as if it is zero then it is
trivially tangent to all of U(n). So if ∇f 6= 0 at t then it is also non-zero on
some neighborhood V of t. Consider the subset of G such that f(g) = f(t).
This is the level set of value of f at t. We will denote it

Lt(f) = {g ∈ U(n) | f(g) = f(t)} = f−1(f(t))

.

Let’s briefly consider an example similar to that in the beginning of the thesis.
We will imagine we are hiking up a mountain. At some point we might come
to a very steep section. We essentially have two options in proceeding with our
goal of reaching the top. If we are experienced climbers or perhaps just a bit
brave we might try continuing our climb straight upwards. That is choose the
path where the height increases the most. If we are a bit more concerned for our
safety we might want to find a less treacherous path. We proceed by walking
along the level set of the height function at this height until we find a less steep
part. These two paths will be perpendicular to each-other. In more technical
terms: Lt(f) is a n2− 1 dimensional submanifold which is tangent the gradient
∇f .

As we discussed in the introduction to this section the trace is a class func-
tion, i.e. tr(gtg−1) = tr(t). This means that the set {gtg−1 | g ∈ U(n)} is a
subset of Lt(f). We will denote this subset Ξt. Let’s try to describe this subset
in more details as it is, as we will see, in fact a submanifold of U(n). Define
the map % : U(n) → Ξt by g 7→ gtg−1. This map is by definition of Ξt onto.
Let C(t) be the centralizer of t, i.e. all elements of U(n) commuting with t, i.e.
{g ∈ U(n) | gtg−1 = t}. Note that for some element c ∈ C(t) we have that
%(gc) = %(g). So this defines a new 1-1 map

% : (U(n)
/
C(t) )→ Ξt

. Then we simply have that the manifold Ξt is given by

Ξt = %(U(n)
/
C(h) )

. As an example let’s consider the special case of t = I, the identity ma-
trix. Then the subset Ξt is again just I. Likewise C(t) = U(n) and so

U(n)
/
C(t) = I.

Now let’s choose some φ ∈ D(n) and some β be in the tangent space TφU(n) of
U(n) at φ. Then as U(n) is just some submanifold of Mn×n(C) then an element
of the tangent space to U(n) is also just such a matrix. Now the tangent space
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is just the kernel of the tangent map described in 2.1. So the defining equation
for the tangent space at φ is

β∗φ+ φ∗β = 0.

Further the tangent space TφD(n) of D(n) at φ is given by the set of diagonal
matrices satisfying the same defining equation.

Let’s now assume that β is orthogonal to D(n). Then we have that for some
η ∈ TφD(n) we have β ⊥ η. Now let δ be the matrix obtained by replacing all
non-diagonal with zero. Then δ ∈ TφD(n) and so δ ⊥ β. Specifically we get
that

df(β) = 0

as
Re(tr(β)) = 0.

This completes our proof.

The reason this proof is useful is that we have the following consequence
The set of critical values of f on D(n) are the same as the critical values of
f |D(n). Then computing critical values is far easier. For some φ = (φ1, . . . , φn),

f(φ) =

n∑
i

cos(φi)

further making

df(φ) =

n∑
i

−sin(φi)

Then the critical values, call them α, along D(n) are simply the matrices of the
form 

±1 0
±1

...
0 ±1


Two such α, α′ are conjugate if they have the same amount of negative signs. For

convenience we will denote the set of block matrices given by

(
U(k) 0

0 U(n− k)

)
simply by U(k)× U(n− k). Likewise denote matrices of the form

1 0
. . .

1
−1

. . .

0 −1
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with k positive signs by I(k) × I(n − k). So since having the same amount
of negative signs makes α, α′ conjugate our search for the critical submanifolds
reduces to finding the Ξα’s where each α is of the form I(k) × −I(n − k) for
some k. Now its not too hard to see that for such an α the centralizer is
C(α) = U(k)× U(n− k). So the our critical manifolds become

Ξα = U(n)
/
U(k)× U(n− k) = Grk(Cn), for k = 1, . . . , n

the Grassmannian manifold of complex k-planes in complex n-space.

What remains is to verify that f is indeed a Morse–Bott function as well as
determining the index of each Ξα. For this part we will require another defini-
tion.

Definition 2.5. (Stable and unstable manifolds) Let F be some vector field on
a manifold M vanishing on some set of points C and let c ∈ C. Then let ψt be
the induced 1-parameter group. The stable submanifold of c is then

SF (c) = {m ∈M | lim
t→∞

(m)ψt = c}.

It is a submanifold(by the Stable Manifold Theorem) of M made from all the
integral curves that end at c. Dually we can define the submanifold of integral
curves with trajectories that diverge from c. We call it the unstable manifold
and it is defined as the stable manifold of −F at c:

UF (c) = S−F (c)

The stable manifold of C is

SF (C) = ∪iSF (ci), ci ∈ C.

It maps diffeomorphically to the negative normal bundle of C. [1] We are now
ready to state the main theorem of this section

Theorem 2.6. Given a critical point α = I(k) × I(n − k) of f on D(n), α
has as stable submanifold U(k) × −I(n − k) and therefore the index of Ξα is
dim(U(k)×−I(n− k)) = k2.

Proof. First, given α=I(k)×−I(n−k), consider the subgroup C(α) of the cen-
tralizer given by matrices of the form = U(k)× I(n− k). Now the left translate
of this subgroup αC(α) is U(n)×−I(n− k), namely our candidate for the sta-
ble submanifold wf α. As with the torus D(n) we will want to show that it is
tangent to ∇f .

Choose some c ∈ αC(α) and and let β be a vector of the tangent space
of U(n) at c. Now at any point c ∈ U(n) the tangent space is given by
TcU(n) = {X ∈ Mn×n(C)|X∗c + c∗X = 0}. Since c ∈ αC(α) it is some
block matrix of the form (

c′ 0
0 −I

)
.

26



Let us write β as a block matrix of same dimensions

β =

(
b11 b12
b21 b22

)
.

Written in this way a simple matrix calculation shows that the defining equation
for the tangent space gives:

b∗11c
′ + c′∗b11 = 0 (2.7)

b∗22 + b22 = 0 (2.8)

Now if we assume that β is orthogonal to αC(α) at c then we are done if we
can show that df(β) = 0; i.e.

Re(tr(b11)) +Re(tr(b22)) = 0.

From 2.8 it is easy to see that we have Re(tr(b22)) = 0. Then what remains is
to show that the first term is also zero. Choose some vector γ tangent to αC(α)
at c. It is not to hard to see that for γ to be tangent it will have to be of the
form (

γ11 0
0 0

)
.

But under our assumption that β is orthogonal to any such γ we get that β is

orthogonal to

(
b11 0
0 0

)
it follows that b11 = 0

The next part of the proof will be to confirm that αC(α) is indeed the stable
manifold of α. First we will need some 1-parameter group on C(α). Call this
ψt. Then ψt takes on the form ψt× I(n− k). In order to get a curve tangent to
αC(α) we make αψt. This is clearly tangent to αC(α) and has the property that
αψ0 = α. We can now choose some k ∈ C(α) such that the curve kψtk

−1 travels
along a maximal torus of C(α). That is kψtk

−1 = eitθ1×· · ·×eitθk×I(n−k). The
corresponding curve αkψtk

−1 becomes, for some constant non-zero (θ1, . . . , θk)

eitθ1 × · · · × eitθk ×−I(n− k)

Evaluating our function along αψt we get

f(αkψtk
−1) = (

k∑
i

cos(tiri))− (n− k) ≤ f(α)

and

d2

d2t
f(αkψ0k

−1) = −
k∑
i

r2i .

So we have that on αC(α), the function f obtains its maximum at α. Also,
more importantly, the stable manifold of α in C(α) is αC(α). This concludes
the proof.
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Remark:As shown in [3] this theorem may be generalized to all the clas-
sical groups. The simplest of which, given our proof for U(n), is probably the
symplectic group Sp(n) as Sp(n) ⊂ U(2n). One choice of maximal torus in
Sp(n) is that of the diagonal matrices in U(2n) of the form

diag(eit1 × e−it1 × · · · × eitn × e−itn)

. The critical points are of the form α = I(2k)× I(2n− 2k) with

C(α) = Sp(k)× Sp(n− k)

and therefore again we get the critical submanifolds

Ξα = Sp(n)
/
Sp(k)× Sp(n− k) = Grk(Hn)

the Grassmanian manifold of quaternionic k-planes in quaternionic n-space. The
result is similar for the orthogonal group with real Grassmannians, but to show
that requires a bit more work.
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