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Abstract

The goal of this thesis is to prove that the stable category of a Frobenius cate-
gory is triangulated. This thesis is divided into two parts. Part one consists of
an introduction to triangulated categories, with emphasis on intuition and mo-
tivation. Part two is an introduction to exact and quotient categories, leading
up to the triangulation of the stable Frobenius category.
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1 Introduction

The notion of a triangulated category was introduced independently in alge-
braic geometry by Jean-Louis Verdier [11], based on ideas on ideas of Alexander
Groethendieck, and in algebraic topology by Dieter Puppe in the 1960’s [8].
These constructions have since played prominent roles in algebraic topology,
algebraic geometry and representation theory.

In the modern landscape of mathematics, triangulated categories mainly arise
in two ways: either as stable homotopy categories of model categories, or as
the stable category of a Frobenius category. These are called topological and
algebraic triangulated categories respectively.

In this thesis we assume no prior knowledge of triangulated and exact categories.
However, the reader should be familiar with additive and abelian categories, and
elementary concepts from category theory. Some knowledge of general abstract
algebra is of use, mostly to understand the motivation behind the theory pre-
sented. The text is written so that little is left to the reader, but it is nonetheless
recommended to bring along pen and paper for the ride.

We begin with an elementary introduction, and give a thorough comparison
of triangulated and abelian categories. From there we move on to the notion of
exact categories and quotient categories, which enables us to define the stable
Frobenius category. Finally, we show that the stable Frobenius category carries
a triangulated structure.
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2 Triangulated categories

In this section we give an introduction to the theory of triangulated categories,
with emphasis on intuition and motivation. We present some rather remarkable
consequences of the axioms, give an in depth proof of the fact that the category
of vector spaces is triangulated and conclude with a comparison of triangulated
and abelian categories.

Definition 2.1. A functor Σ between additive categories is called additive if for
every pair of objects X, Y , the associated map Hom(X,Y )→ Hom(ΣX,ΣY ) is
a homomorphism of abelian groups.

Let T be an additive category, and Σ : T → T be an additive autoequiv-
alence. Being an additive autoequivalence means that there exists an additive
functor Σ−1 : T → T such that Σ−1 ◦ Σ and Σ ◦ Σ−1 are naturally isomorphic
to the identity functor on T . A triangle is a sequence in T of the form

X → Y → Z → ΣX.

A morphism of triangles is a triple (f, g, h) of morphisms, making the following
diagram commutative in T

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′

f

u

g

v

h

w

Σf

u′ v′ w′

If f, g and h are all isomorphisms, then (f, g, h) is called an isomorphism of
triangles.

Definition 2.2 (Triangulated category). A triangulated category is a triple
(T ,Σ,∆) of an additive category T , an additive autoequivalence Σ and a col-
lection of distinguished triangles ∆ satisfying the following axioms:

TR1 - Any triangle isomorphic to a distinguished triangle is distinguished.

- For every object X, the triangle

X
idX−−→ X −→ 0 −→ ΣX

is distinguished.

- For every morphism f : X −→ Y , there exists a distinguished triangle

X
f−−→ Y −→ Z −→ ΣX.

TR2 (Rotation axiom)

For any X
f−→ Y

g−→ Z
h−→ ΣX in ∆, the triangles

Y
g−→ Z

h−→ ΣX
−Σf−−−→ ΣY
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and

Σ−1Z
−Σ−1h−−−−−→ X

f−→ Y
g−→ Z

are also in ∆.

TR3 (Morphism axiom)
Given the solid part of the following diagram

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′

f

u

g

v

h

w

Σf

u′ v′ w′

where the rows are in ∆, there exists an h such that (f, g, h) is a morphism
of triangles.

TR4 (Octahedral axiom)
Given distinguished triangles

X
u−→ Y → Z ′ → ΣX,

Y
v−→ Z → X ′ → ΣY

and
X

vu−→ Z → Y ′ → ΣX,

there exists a distinguished triangle

Z ′ → Y ′ → X ′ → ΣZ ′,

making the following diagram commutative

X Y Z ′ ΣX

X Z Y ′ ΣX

X ′ X ′ ΣY

ΣY ΣZ ′

u

v

vu

Σu

Remark 2.3. The third object in a distinguished triangle is called the cone of
the first morphism.

Remark 2.4. An additive category satisfying TR1 through TR3 is called pre-
triangulated.

Remark 2.5. TR2 and TR3 give us a ’2 out of 3’-property for morphisms of
triangles. The reason for this is that by TR2 we can just rotate the triangle
to get the missing morphism in the right spot, before using TR3. If we have 2
morphisms connecting two distinguished triangles, we always have the third.
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Remark 2.6. One rather annoying remark is that the cone is not in general
functorial, i.e the morphism h in TR3 is typically not unique. A quick example
of this is the following

X 0 ΣX ΣX

0 ΣX ΣX 0

h

Both h = 0 and h = id makes the diagram commute. In fact, any morphism in
Hom(ΣX,ΣX) will make the diagram commute.

The axioms presented here can be weakened. The morphism axiom has been
shown to be redundant by J. P. May in [7]. Moreover, in the next section we
will give a short proof that half of TR2 is sufficient. By half of TR2 we mean
the following.

Definition 2.7 (TR2’). If X
f−→ Y

g−→ Z
h−→ ΣX is a distinguished triangle,

then so is the triangle Y
g−→ Z

h−→ ΣX
−Σf−−−→ ΣY .

When proving that a category is triangulated, the octahedral axiom is often
the crux of the proof. Therefore the convenience of being able to use results for
pre-triangulated categories to show TR4 overshadows the redundancies in the
axioms presented.

2.1 Elementary properties

The definition of triangulated categories might at a first glance seem both un-
intuitive and unmotivated. By looking at some immediate consequences of the
axioms, we get an impression of what these structures are. Later we devote a
section to the comparison of triangulated and abelian categories, for the sake
of intuition. For the reminder of this section, let T be a triangulated category
with suspension functor Σ. Unless otherwise stated, all objects and morphisms
come from T .

Proposition 2.8 (Composition of morphisms). Let X
u−−→ Y

v−→ Z
w−−→ ΣX

be a distinguished triangle. Then vu = 0 and wv = 0.

Proof. By the rotation axiom, it is sufficient to show that vu = 0, since we
can do the exact same argument on the rotated triangle to obtain wv = 0. By
the rotation axiom (TR2), TR1 and the morphism axiom (TR3), the following
diagram is a morphism of triangles

Y Z ΣX ΣY

Z Z 0 ΣZ

v

v w −Σu

Σv

From the rightmost square we see that 0 = Σv ◦ −Σu = −Σ(vu). As Σ is an
autoequivalence, we obtain vu = 0, as desired.
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In other words, the above proposition says that the composition of any two
consecutive morphisms in a distinguished triangle vanishes. In the following
proposition, we see that that every distinguished triangle gives rise to a long
exact sequence of abelian groups. Taken together, these propositions should give
an impression of why the theory triangulated categories is a useful framework
for doing homological algebra.

Proposition 2.9 (Long exact sequences). Let X
u−−→ Y

v−→ Z
w−−→ ΣX be a

distinguished triangle. For any object T ∈ T , there is a long exact sequence of
abelian groups

· · · → HomT (T,ΣiX)
Σiu∗−−−→ HomT (T,ΣiY )

Σiv∗−−−→ HomT (T,ΣiZ)

Σiw∗−−−→ HomT (T,Σi+1X)→ . . .

Proof. By the rotation axiom, we only need to show that

HomT (T,X)
u∗−→ HomT (T, Y )

v∗−→ HomT (T,Z)

is exact. In other words we want to show that Imu∗ = Ker v∗. Since we already
know that the composition of two consecutive morphisms in a distinguished
triangle vanish, we easily obtain one inclusion. By functoriality

v∗ ◦ u∗ = (v ◦ u)∗ = 0,

hence Imu∗ ⊆ Ker v∗. Let f ∈ Ker v∗, i.e v ◦ f = 0. We want to show that
there exists a morphism g such that f = u ◦ g. Consider the following diagram,
whose rows are distinguished triangles

T T 0 ΣT

X Y Z ΣX

g f Σg

u v w

By assumption, the middle square commutes, and by TR3 there exists a mor-
phism g making the diagram a morphism of triangles. Now by looking at the
leftmost square, we see that f = u ◦ g. Hence, the sequence is exact.

In the above proof, a particularly nice consequence of the rotation axiom
was on display. In the infinite sequence of abelian groups, we only needed to
consider the exactness in one degree to conclude that the entire sequence was
exact. This is a property anyone who has worked with long exact sequences
surely can appreciate.

Proposition 2.10 (Split triangles). Let X
u−−→ Y

v−→ Z
w−−→ ΣX be a distin-

guished triangle where w is the zero morphism. Then u is a split monomorphism
and v is a split epimorphism.

Proof. We show that u is a split monomorphism by finding the left inverse of
u. We have the following diagram

9



X Y Z ΣX

X X 0 ΣX

u v

u′

w=0

,

which, by TR2, TR3 and out assumption on w, is a morphism of triangles. Call
this completing morphism u′. We then have u′u = id, and consequently u is a
split monomorphism. The argument for v is similar.

When working with abelian categories, and in particular problems in homo-
logical algebra, the 5-lemma is an indispensable tool. The same can be said for
triangulated categories.

Proposition 2.11 (Triangulated 5-lemma). Let the following diagram be a
morphism of triangles

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′

f

u

g

v

h

w

Σf

u′ v′ w′

If f and g are isomorphism, then so is h.

Proof. Assume that f and g in the diagram above are isomorphisms. We use
Proposition 2.9 and apply HomT (Z ′,−) to obtain the following exact sequences
of abelian groups

Hom(Z ′, X) Hom(Z ′, Y ) Hom(Z ′, Z) Hom(Z ′,ΣX) Hom(Z ′,ΣY )

Hom(Z ′, X ′) Hom(Z ′, Y ′) Hom(Z ′, Z ′) Hom(Z ′,ΣX ′) Hom(V,ΣY ′)

f∗

u∗

g∗

v∗

h∗

w∗

Σf∗

Σu∗

Σg∗

u′∗ v′∗ w′∗ Σu′∗

Since f and g are isomorphisms, f∗, g∗ and Σf∗,Σg∗ are all isomorphisms.
Hence, by the 5-lemma of abelian groups, we can conclude that h∗ is an iso-
morphism. This gives preimage of idZ′ along h∗, i.e there exists a morphism
h′ : Z ′ → Z such that idZ′ = h ◦ h′. The morphism h′ is a right inverse of h,
and dually we find the left inverse by applying the contravariant Hom-functor
and use the dual of Proposition 2.9.

Remark 2.12. An immediate consequence of the triangulated 5-lemma is the
unique completion of a morphism into a triangle. Consider the following com-
mutative diagram, where both rows are distinguished

X Y Z ΣX

X Y Z ′ ΣX

f g

k

h

f g′ h′
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By TR3 k exists, and by the triangulated 5-lemma it is an isomorphism. Thus
any two distinguished triangles with the same starting morphism are isomorphic.

It is worth noting that the triangulated 5-lemma holds for pre-triangulated
categories. With the 5-lemma at hand, we are able to prove that TR2’ is
sufficient.

Proposition 2.13. Let (T ,Σ,∆) be as in Definition 2.2, but assume that ∆
satisfies TR1, TR2′ and TR3. Then TR2 is satisfied as well.

Proof. Let X
f−→ Y

g−→ Z
h−→ ΣX be a distinguished triangle. By TR1, we have

the following triangle in ∆

Σ−1Z
−Σ−1h−−−−−→ X

f ′−→ Y ′
g′−→ Z.

Consider the following commutative diagram

Z ΣX ΣY ΣZ

Z ΣX ΣY ′ ΣZ

h −Σf

k

−Σg

h −Σf ′ −Σg′

where TR2’ assures that the rows are distinguished, and by TR3 it is a morphism
of triangles. The triangulated 5-lemma now applies, and we can conclude that k
is an isomorphism. Consequently Y ∼= Y ′, which yields our desired conclusion.

2.2 A first example

Usually, examples of triangulated categories are quite advanced (for the under-
graduate students at least), as the homotopy category of chain complexes over
an abelian category or the stable Frobenius category. We on the other hand,
wish to introduce the theory with a more elementary example. Our first exam-
ple of a triangulated category will be the module category over a field, ModK,
also known as the category of vector spaces. This is a way to get familiar with
the definition, without using too advanced mathematics.

In order to understand the (yet to be defined) triangulated structure on ModK,
we will make use of the following lemma. In particular, we will use an immediate
corollary, namely that ModK is a semisimple category.

Lemma 2.14. Let R be a ring. A module P in ModR is projective if and only
if every short exact sequence of the form

0→ A→ B → P → 0

splits.
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Proof. Let P be a projective R module and 0 → A
f−→ B

g−→ P → 0 a short
exact sequence of R modules. Since P is projective and g is surjective, we get
the following diagram

P

A B P

h

f g

We see that h is a left inverse of g, and hence injective. Since g is surjective and
the sequence is exact, one obtains B = Imh ⊕ Ker g = Imh ⊕ Im f ∼= A ⊕ P .
This means that the sequence splits.

For the converse, let P be a module such that every short exact sequence of
the form above splits. As we know, every module is the image of a free module,
in other words there exists a surjective map f from a free module F onto P .
Considering the kernel of f , we get a short exact sequence

0→ Ker f
ι−→ F

f−→ P → 0

By assumption, this sequence splits, and F ∼= Ker f ⊕ P . Consequently P is a
direct summand of a free module. For the lifting property, we know that any
free module is projective, so consider the following diagram where the bottom
row is exact

Ker f ⊕ P

P

A B 0

h′

π

k

ι

g

If we now define h := h′ι, we obtain our desired lifting map, since gh = gh′ι =
kπι = k. Therefore, P is projective.

Since all free modules are projective, every object in ModK is projective. As
an immediate consequence from the above lemma, every short exact sequence
in ModK splits.

From an algebraic point of view, vector spaces are quite simple structures, and
the triangulated structure we are about to define somewhat reflects that. We
let the additive autoequivalence on ModK be given by the identity functor, and
define the class of distinguished triangles to be

∆ = {X f−→ Y
g−→ Z

h−→ X|X f−→ Y
g−→ Z

h−→ X
f−→ Y is exact},

12



which we see is closed under isomorphism. As a final preparation before the
proof that this gives a triangulated structure, we find a particularly nice repre-
sentative for each isomorphism class in ∆. Let

X
f−→ Y

g−→ Z
h−→ X

be a distinguished triangle, and consider the short exact sequence

0→ Kerh→ Z
h−→ Imh→ 0.

Since Imh is projective, we know that Z ∼= Imh ⊕ Kerh. By exactness of our
sequence, we obtain Imh = Ker f and Kerh = Im g. The first isomorphism
theorem yields

Im g ∼= Y�Ker g = Y�Im f = Cok f,

and thus Z ∼= Ker f ⊕ Cok f . In particular, every distinguished triangle is
isomorphic to a triangle of the form

X
f−→ Y

[
0
π

]
−−−→ Ker f ⊕ Cok f

[ι 0]−−→ X,

where π and ι are the cokernel and kernel maps respectively.

Proposition 2.15. The triple (ModK, Id, ∆) is a triangulated category.

Proof. Every distinguished triangle is isomorphic to a triangle of the form

X
f−→ Y → Ker f ⊕ Cok f → X,

by the above discussion. Hence, it is sufficient to prove that these triangles
satisfy the axioms.

TR1. We see that ∆ is closed under isomorphisms, and clearly every linear
transformation f : X → Y can be completed into a distinguished triangle.
Since the identity on any object X is an isomorphism, the identity can always
be completed into to a triangle

X X 0 X.

TR2. The rotation axiom follows immediately from the requirements on ∆.

TR3. Consider the following diagram

X Y Ker f ⊕ Cok f X

X ′ Y ′ Ker f ′ ⊕ Cok f ′ X ′

u

f

v

[
0
π

]
[ι 0]

u

f ′
[

0
π′

]
[ι′ 0]

(2.1)

where the rows are distinguished and the left square commute. We split up the
diagram and look at the kernel and cokernel separately. Consider the following
commutative diagram

13



Ker f X Y

Ker f ′ X ′ Y ′

ι

w1 u

f

v

ι′ f ′

By the universal property of Ker f ′, there exists a unique morphism w1 making
the diagram commute. Dually, we get a morphism w2 between the cokernels.
Since ⊕ is a coproduct, we can combine our maps

Ker f Ker f ⊕ Cok f Cok f

Ker f ′ ⊕ Cok f ′

[w1,0] ∃!w
[0,w2]

where

w =

[
w1 0
0 w2

]
: Ker f ⊕ Cok f −→ Ker f ′ ⊕ Cok f ′

because, well, it fits. Now w completes our original diagram (2.1) making it
commutative, since [

w1 0
0 w2

][
0
π

]
=

[
0
w2π

]
=

[
0
π′v

]
and

[ι′ 0]

[
w1 0
0 w2

]
= [ι′w1 0] = [uι 0]

TR4. Let
X

u−→ Y → Keru⊕ Coku→ X,

Y
v−→ Z → Ker v ⊕ Cok v → Y

and
X

vu−→ Z → Ker vu⊕ Cok vu→ X

be distinguished triangles. We can construct the solid part of the following
diagram

X Y Keru⊕ Coku X

X Z Ker vu⊕ Cok vu X

Ker v ⊕ Cok v Ker v ⊕ Cok v Y

Y Keru⊕ Coku

u

v

[
0
πu

]

k

[ιu 0]

vu

[
0
πvu

]
[

0
πv

]
[ιvu 0]

k′ u

[ιv 0] ϕ

[ιv 0]

[
0
πu

]

14



where ϕ =
[

0 0
πuιv 0

]
. The goal now is to find k and k′ which make the diagram

commute, and the new triangle distinguished. The strategy is to use the uni-
versal properties exactly as we did in the proof for the morphism axiom, and
then check exactness and commutativity. From the kernel and cokernel proper-

ties, we get both k =
[
k1 0
0 k2

]
and k′ =

[ k′1 0

0 k′2

]
. Since the construction of k is

identical to the construction of w in the morphism axiom, we know that the top
three squares commute. Similarly, the two remaining squares also commutes by
construction of k′.

We now begin the process of showing exactness in the sequence. There are
few surprises from here and out, but we do the rather laborious process of
showing exactness, to maintain the introductory style of this section. We begin
by showing that the triangle is exact at Ker vu⊕Cok vu. The composition of k
and k′ is [

k′1 0
0 k′2

][
k1 0
0 k2

]
=

[
k1k
′
1 0

0 k2k
′
2

]
We must show that both compositions on the diagonal are exact. Consider the
following diagram

Keru Ker vu X

Ker v Y

k1 ιvu

k′1 u

ιv

By commutativity, we get that ιvk
′
1k1 = 0, which implies that k′1k1 = 0, since

ιv is a monomorphism. The kernel of uιvu is Keru, because ιvu is the inclusion
of Ker vu into X and Ker vu contains Keru. By commutativity, the kernel of
ιvk
′
1 is Keru, and since ιv is a monomorphism we get Ker k′1 = Keru = Im k1.

With the following diagram

Y Coku

Z Cok vu Cok v

πu

v k2

πvu k′2

and a dual argument to the one above, we get that the triangle is exact at
Ker vu ⊕ Cok vu. To show exactness at Ker v ⊕ Cok v, we begin by composing
the relevant morphisms. We have

ϕk′ =

[
0 0

πuιv 0

][
k′1 0
0 k′2

]
=

[
0 0

πuιvk
′
1 0

]
Since ιv is the inclusion map and the kernel of πu is the image of u, we have
that

Kerπuιv = Ker v ∩ Imu.

To determine the image of k′1, we use that Im k′1 = Im ιvk
′
1, which holds as ιv

is just the inclusion map. By commutativity, we have Im ιvk
′
1 = Imuιvu, which

15



again is equal to Ker v ∩ Imu.

Finally we show exactness at Keru⊕ Coku. We begin by calculating the com-
position of the relevant morphisms as usual

kϕ =

[
k1 0
0 k2

][
0 0

πuιv 0

]
=

[
0 0

k2πuιv 0

]
We know what cokernels of linear transformations look like, thus consider the
following commutative diagram

Z

Ker v Y Z�Im vu

Y�Imu

πvu

ιv

v

πu k2

We have that vιv = 0 and therefore k2πuιv = πvuvιv = 0, which gives us
Imπuιv ⊆ Ker k2. For the reversed inclusion, let a ∈ Ker k2. Since πu is an
epimorphism, a has a preimage along πu, call it a′. Now by assumption, a′

vanishes when we follow the lower part of the diagram, and by commutativity
also along the upper part. This implies that a′ is either in the kernel of v or in
the kernel of πvu. If a′ ∈ Ker v, then it lies in the image of ιv, and consequently
a ∈ Imπuιv. If a′ is not in the kernel of v, then v(a′) ∈ Im vu, which implies that
a′ ∈ Imu. This again implies that a′ = 0. We conclude that Imπuιv = Ker k2

and

Keru⊕ Coku
k−→ Ker vu⊕ Cok vu

k′−→ Ker v ⊕ Cok v
ϕ−→ Keru⊕ Coku

is a distinguished triangle. This shows that ModK carries a triangulated struc-
ture.

Remark 2.16. It should be noted that any semisimple abelian category can be
given a triangulated structure in an analogous way. The proof is fairly similar
to the one for ModK. The reason is that the cone of the first morphism is the
sum of its kernel and cokernel, since all short exact sequences splits, and that
the first isomorphism theorem holds in abelian categories.

2.3 Comparison of triangulated and abelian categories

A careful reader may have noticed that there are similarities between the theory
of triangulated and abelian categories. In this section we discuss these similari-
ties, and look at the abelian counterpart of the axioms of triangulated categories.
It is a good exercise to do this comparison on your own. The octahedral axiom
has a particularly neat counterpart in abelian categories. This section will be
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somewhat informal.

Both triangulated and abelian categories have an underlying additive structure,
and from there their axioms take different paths, but the similarities do not end.
Both in the theory of abelian and triangulated categories, a fundamental role
is played by a distinguished class of 3-term sequences, namely the short exact
sequences of an abelian category and the distinguished triangles of a triangu-
lated category. We have notions of morphisms, and in particular isomorphisms,
between both these classes of 3-term sequences. Identity morphisms give rise to
triangles and short exact sequences, in their respective categories, by TR1 and
the fact that the identity is an isomorphism.

The analogue of the morphism axiom in abelian categories is related to the fact
that the third object in a triangle is both a weak kernel and a weak cokernel. If
we look at the following morphism of triangles

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′,

f

u

g

v

h

w

Σf

u′ v′ w′

we can think about the part to the left of h as the ”cokernel part” and the one
to the right as the ”kernel part” of the diagram. To make it clear what we mean
by this, consider the following commutative diagram

0 X Y Z 0

0 X ′ Y ′ Z ′ 0

f

u

g

v

h

u′ v′

in an abelian category and assume that the rows are short exact sequences. In
this setup, we know that Z ∼= Coku and Z ′ ∼= Coku′, and there will exist a
map h by the universal property of the cokernel. Using the rotation axiom we
get a similar setup using the kernel property.

Finally, we take a look at the octahedral axiom. The axiom states that given
three distinguished triangles related by a composition, it guarantees the exis-
tence of a fourth. We have a similar result for abelian categories. Let
X

u−→ Y → Z ′, Y
v−→ Z → X ′ and X

vu−→ Z → Y ′ be short exact sequences. We
can make a diagram as follows
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0 0

0 X Y Z ′ 0

0 X Z Y ′ 0

X ′ X ′

0 0

u

v

vu

The dotted arrows exist by the cokernel property of Z ′ and Y ′ respectively. The
rightmost sequence is exact since the upper right square is a pushout and the
cokernel is a right exact functor. For the sake of simplicity, assume the above
diagram consists of objects in ModR for some ring R. Then we know that the
cokernels are quotients, so Z ′ ∼= Y/X, Y ′ ∼= Z/X and X ′ ∼= Z/Y by the initial
assumption. Exactness of the dotted sequence then gives us that X ′ is also
isomorphic to Y ′/Z ′, i.e we have

Z�X
Y�X

∼= Z�Y ,

which is known as the third isomorphism theorem.

Even though triangulated and abelian categories have many analogue prop-
erties, the following result shows that the concepts only overlap slightly.

Proposition 2.17. Let A be a category which is both triangulated and abelian.
Then every short exact sequence in A splits.

Proof. Let 0 → X
f−→ Y → Z → 0 be an exact sequence in A. By TR1 and

TR2, we get a distinguished triangle

Σ−1Z ′
w−→ X

f−→ Y
g−→ Z ′

In a distinguished triangle any consecutive morphisms vanish, so fw = 0. But
f is a monomorphism, since it is the first morphism in a short exact sequence.
Hence w = 0 and by Proposition 2.10 the sequence splits.
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3 Exact categories

In this section we introduce the notion of exact categories, in the sense of Quillen
[9]. Exact categories can be seen as a generalization of abelian categories. The
definition of exact categories captures the essential properties of short exact
sequences without assuming the existence of all kernels and cokernels. The
main references for the following sections are [1] and [3].

3.1 Definition and examples

Definition 3.1. LetA be an additive category. A sequence A B C
f g

is called exact if f is a kernel of g, and g is a cokernel of f . The pair (f, g) is
called a kernel-cokernel pair.

Definition 3.2. Let E be a family of kernel-cokernel pairs in an additive cat-
egory A. If (f, g) ∈ E , we call f an inflation (admissable monomorphism), g a
deflation (admissable epimorphism) and (f, g) a conflation.

Inflations and deflations will be denoted by � and �, respectively. A
morphism of exact sequences is a triple (ϕ,ψ, θ) of morphisms, making the
following diagram commute in A

A B C

A′ B′ C ′

ϕ

f

ψ

g

θ

f ′ g′

The triple (ϕ,ψ, θ) is an isomorphism of exact sequences if all three morphisms
are isomorphisms.

Definition 3.3 (Exact category). Let A be an additive category and E a family
of kernel-cokernel pairs in A. Assume E is closed under isomorphisms and
satisfies the following axioms:

Ex0 For any pair of objects A,B in A, the canonical sequence

A A⊕B B
ιA πB

is in E .

Ex1 The composition of two deflations is again a deflation.

Ex1op The composition of two inflations is again an inflation.

Ex2 If f : A � C is a deflation and g : B → C is any morphism, then the
pullback

C ′ B

A C

g′

f ′

PB g

f
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exists and f ′ is a deflation.

Ex2op If f : C � A is a inflation and g : C → B is any morphism, then the
pushout

C A

B C ′

g

f

PO g′

f ′

exists and f ′ is an inflation.

Ex3 Let f : B → C be a morphism with a kernel. If there exists a morphism
g : A→ B such that f ◦ g is a deflation, then f is a deflation.

Ex3op Let f : A→ B be a morphism with a cokernel. If there exists a morphism
g : B → C such that g ◦ f is a inflation, then f is a inflation.

Then (A, E) is an exact category, and E is an exact structure on A.

Remark 3.4. We often say that A is exact, meaning that (A, E) is an exact
category.

Remark 3.5. By the duality of the axioms, E is an exact structure on A if and
only if Eop is an exact structure on Aop.
Remark 3.6. The axioms presented above are due to Quillen [9]. Yoneda showed
that Ex3 and Ex3op was a consequence of the other axioms [12]. This fact was
rediscovered by Keller 30 years later, and he also showed some redundancies
in the remaining axioms as well [5]. The interested reader is encouraged to
investigate this further in [2].

Note that since A ⊕ 0 ∼= A in any additive category and by Ex0 both the
canonical sequences are conflations, the identity morphism idA is both an infla-
tion and a deflation. Isomorphisms are also both inflations and deflations. To
see this, let f : A→ B be an isomorphism, and consider the following diagrams

A A 0 0 A A

A B 0 0 A B

f f

f f

Since the collection of conflations is closed under isomorphisms, both bottom
rows must be conflations.

A natural question to ask is what properties a subcategory of an exact cat-
egory must possess in order to inherit the exact structure, and be an exact
category in its own right. We next show that exact categories can be thought
of as an axiomatization of what we call extension closed subcategories.
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Definition 3.7 (Extension closed). Let (A, E) be an exact category and con-
sider a full subcategory A′ of A containing the zero-object. The subcategory
A′ is extension closed if whenever A � B � C is in E , with A,C ∈ A′, then
B ∈ A′.

Proposition 3.8. An extension closed subcategory A′ of an exact category
(A, E) is exact, with exact structure E ′ = {A� B � C ∈ E|A,C ∈ A′}.

Proof. We begin by showing that A′ is additive. By assumption, we have 0 ∈ A′
and HomA′(A,B) = HomA(A,B) for all A,B ∈ A′, so the A′ has a zero ob-
ject and all hom-sets are abelian groups. To see that A′ has all biproducts, let
A,B ∈ A′ and consider the conflation A� A⊕B � B ∈ E . As A′ is extension
closed, we see that A⊕B ∈ A′, and A′ is consequently additive.

Let A ∼= A′ in A, with A ∈ A′. Then A � A′ � 0 ∈ E , as isomorphisms
are both inflations and deflations. Again, as A′ is extension closed, A′ ∈ A′,
which shows that A′ is closed under isomorphisms. The axioms Ex0, Ex1 and
Ex1op are inherited from the exact structure of A. The axioms Ex2 and Ex2op

follows from Lemma 3.16, which says that pullbacks (pushouts) along deflations
(inflations) have isomorphic cokernels (kernels). For Ex3, let f : B → C be a
morphism with a kernel in A′. If there exists a g : A→ B such that fg is a de-
flation in A, then f is a deflation in A. Hence, one obtain Kerf � B � C ∈ E ,
but since Kerf and C lies in A′, we also get that f is a deflation in A′. The
argument in the case of Ex3op is dual.

Remark 3.9. The exact structure on the subcategory above will be referred to
as the induced exact structure.

Now we present some examples, to get an impression of what type of struc-
tures we are working with. It is worth noticing that all the examples are exten-
sion closed subcategories of an abelian category.

Example 3.10. Any abelian category is exact, with several possible exact struc-
tures. The largest class consists of all short exact sequences, and this will be
referred to as the standard exact structure. The smallest class consists of all
split-exact sequences. To argue briefly for the fact that an abelian category
with the standard exact structure is in fact an exact category, we see that Ex0 -
Ex2 holds immediately. For Ex3, let fg be an epimorphism and πf the cokernel
of f . Then πffg = 0, and since fg is an epimorphism, we get πf = 0, which
implies that f is an epimorphism. The argument in the case of Ex3op is dual.

Example 3.11. Let R be a ring. The full subcategory of ModR, consisting
of projective modules is extension closed. It is hence an exact category when
equipped with the induced exact structure. Any short exact sequence ending
with a projective module is split, by Lemma 2.14. Hence, the middle term is
a direct sum of projective modules, and again projective. A similar argument
shows that the full subcategory of injective modules is exact as well.
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Example 3.12. The category Abtf of torsion free abelian groups is an exten-
sion closed subcategory of Ab, and consequently inherits the exact structure.
As a reminder, an abelian group is torsion free if no element has finite order.
To see that Abtf is extension closed, let

0→ A→ B → C → 0

be an exact sequence in Ab, where A and C are torsion free. Assume that
b ∈ B is a torsion element. Without loss of generality assume n ∈ Z annihilates
b. The image of a torsion element is again torsion, and hence its image in C
must be zero, as C is torsion free. Since the sequence is exact, b must lie in
the image of A → B. Now let a be a preimage of b. As the arrows are group
homomorphisms, we get that na 7→ nb = 0. Since A → B is injective, this
implies that na = 0. By assumption, A is torsion free, from which we obtain
that a = 0. Consequently, B is torsion free.

Example 3.13. The category Abt of torsion abelian groups is an extension
closed subcategory of Ab. As for the torsion free case above, Abt is exact when
equipped with the induced exact structure.

When exact categories were first introduced in [9], extension closed subcat-
egories of abelian categories were the prototype example, and the motivation
for the definition. It can in fact be shown that a small category S is exact
if and only if it is an extension closed subcategory of an abelian category A.
Since any abelian category is exact, and extension closed subcategories of exact
categories are again exact, the ”if” part is immediate. For the converse, the
idea is that the subcategory of the functor category Fun(S,Ab), consisting of
left exact functors is abelian. It can be shown that the Yoneda functor embeds
S as a full, extension closed subcategory of this abelian category. The details
can be found in Appendix A of [2].

3.2 Elementary properties

In this section we will present some important elementary properties of ex-
act categories, and observe that in particular pushouts and pullbacks behave
similarly as for abelian categories. For a reader who is solely interested in un-
derstanding why the stable Frobenius category is triangulated, Lemma 3.17 and
Lemma 3.18 are the results from this section strictly necessary for the proof.
We begin by introducing some terminology.

Definition 3.14. A commutative square

A B

C D

is called bicartesian if it is both a pullback and a pushout.
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In general additive categories, there is a clear connection between pushouts,
pullbacks and exactness of a sequence. In particular, there is a correspondence
between bicartesian squares and kernel-cokernel pairs.

Lemma 3.15. In an additive category A, consider A B ⊕ C D

[−f
g

]
[h i]

and

A B

C D

f

g h

i

where the square commutes, i.e,
[
h i

][−f
g

]
= 0. The following statements hold:

(1) The square is a pullback ⇐⇒
[
−f
g

]
is a kernel of

[
h i

]
.

(2) The square is a pushout ⇐⇒
[
h i

]
is a cokernel of

[
−f
g

]
.

(3) The square is bicartesian ⇐⇒
([
−f
g

]
,
[
h i

])
is a kernel-cokernel pair.

Proof. We see that (1) holds by looking at the following diagrams

T T

A B A 0

C D B ⊕ C D

t2

t1

ϕ

[−t1
t2

]
ϕ

f

g PB h
[−f
g

]
i [

h i
]

Given the pullback (left), we have the kernel (right) and vice versa. The state-
ment (2) is dual. One obtains (3) by combining (1) and (2).

In abelian categories it is a well-known fact that pushouts preserve coker-
nels, and that pullbacks preserve kernels. The following lemma shows that an
analogue of this holds for exact categories.

Lemma 3.16. Given the following diagram

E

A B C

D

k

h

f g
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in an exact category, in which the middle row is a conflation. Then it can be
completed into a commutative diagram

A C ′ E

A B C

D A′ C

f ′

p2

p1

PB k

h

f

PO

g

i2

i1 g′

where all rows are conflations.

Proof. We consider the bottom part of the diagram. The argument for the up-
per part is dual. Since f is an inflation, the pushout of f and h exists. Using
the notation above we have that i1 is an inflation, and it’s a part of a conflation
(i1, η), where η : A′ → F is the cokernel of i1. We know that (F, η) is unique
up to isomorphism. This means that we need to show that g′ exists and that
(C, g′) is the cokernel of (D, i1).

Consider the morphsims g : B → C and 0 : D → C. We have gf = 0 = 0h, and
thus by the universal property of the pushout, there exists a unique morphism
g′ : A′ → C satisfying g′i1 = 0 and g′i2 = g. Now we check if the universal
property holds for (C, g′). Suppose ϕ : A′ → W is such that ϕi1 = 0. We
know that g is the cokernel of f and ϕi1h = 0 = ϕi2f , and thus there exists a
unique morphism α : C →W with αg = ϕi2. Our next step is to show ϕ = αg′.
Observe that (ϕ − αg′)i2 = 0 by construction of g′, and (ϕ − αg′)i1 = 0 by
assumption on ϕ. Hence, by the pushout property of A′, we can conclude that
ϕ = αg′. This shows that ϕ factors uniquely through g′, and consequently that
(i1, g

′) is a conflation.

By the nature of the axioms of an exact category, one often take pushouts
and pullbacks along inflations and deflations. The following lemma shows us
that in such a setting, we always get bicartesian squares.

Lemma 3.17. Let

B′ C ′

B C

g′

h′ h

g

be a commutative square in an exact category. The following are are equivalent:

1. The square is a pullback.

2. The sequence B′ C ′ ⊕B C

[
g′

−h

] [
h g

]
is a conflation.

3. The square is bicartesian.
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4. The square is part of a commutative diagram of the form

A B′ C ′

A B C

f ′

h′

g′

h

f g

Proof. (1) =⇒ (2): From Lemma 3.15, we have that
[
g′

−h′
]

is a kernel of [h g].

Since we have a morphism
[

0
ιB

]
such that

B C ′ ⊕B C

[
0
ιB

]
g

[
h g

]

commutes, axiom Ex3 gives us that [h g] is a deflation. Hence, it is a part of

a conflation K C ′ ⊕B C.

[
k1
k2

] [
h g

]
Since the collection of conflations is

closed under isomorphism, we get that B′ C ′ ⊕B C

[
g′

−h

] [
h g

]
is a confla-

tion.
(2) =⇒ (3): Since conflations are kernel-cokernel pairs, we obtain from Lemma
3.15 that the square is bicartesian.
(3) =⇒ (4): This follows from Lemma 3.16.
(4) =⇒ (1): Assume we have the following diagram

A B′ C ′

A B C

f ′

h′

g′

h

f g

We want to show that the right square is a pullback. By Lemma 3.15, we may
show that

B C ′ ⊕B C

[−g′
h′

] [
h g

]

is a conflation. From Lemma 3.16 we have the following commutative diagram,
where all rows and columns are conflations

A B′ C ′

B P C ′

C C

f

f ′

PO

g′

j

j′

g

e′

e

.

From the pushout property we get a morphism α : P → C ′ ⊕ B, as shown in
the following diagram
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A B′

B P

C ′ ⊕B

f

f ′

PO j
[−g′
h′

]
j′

[
0

idB

] α

.

where αj′ =
[

0
idB

]
and αj =

[−g′
h′

]
. Since (j′h′ − j)f ′ = 0 and g′ is a cokernel

of f ′, there exists a unique γ such that γg′ = j′h′ − j. The claim is now that
α is an isomorphism, with inverse β = [γ j]. To see this, notice first that
αγg′ =

[
idC
0

]
g′, which implies that αγ =

[
idC
0

]
, since g′ is an epimorphism.

Now αβ = [αγ αj′] = idC′⊕B . For βα we observe that βαj′ = idP j
′, and

βαj = idP j. Thus by the pushout property, we get βα = idP . Hence, α is an
isomorphism. Finally, we show that the following is an isomorphism of sequences

B′ C ′ ⊕B C

B′ P C

[−g′
h′

]

β

[
h g

]

j e

We observe that the left square commutes. Moreover, eγg′ = gh′ = hg′, which
implies that eγ = h, and consequently eβ = [eγ ej′] = [h g]. Thus the diagram
commutes and

B C ′ ⊕B C

[−g′
h′

] [
h g

]

is a conflation.

We are familiar with the fact that in abelian categories, pushouts and pull-
backs of monomorphisms and epimorphisms are again monomorphisms and epi-
morphisms. The situation is similar for exact categories.

Lemma 3.18. Given a pushout

A B

C D

f

g PO g′

f ′

in an exact category, then g′ is a deflation. Moreover, if g is an isomorphism,
so is g′.

Proof. By the dual of Lemma 3.17, the square is bicartesian, and [g′ f ′] is a
deflation. We want to find a morphism h such that g′h is a deflation. Since the
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identity on any object is a deflation, the morphism

[
idB 0
0 g

]
is a deflation. By

Ex1, we get that

[g′ f ′]

[
idB 0
0 g

]
= [g′ f ′g] = [g′ g′f ] = g′[id f ]

is a deflation. Now, by Ex3, g′ is a deflation if and only if it has a kernel. Since
g is a deflation, it is part of a conflation

A′ A B.a g

By the kernel property of A′ � A and pullback property of A, we get for all
(K, ι) such that g′ι = 0 the following diagram

K

A′ A B

C D

0

ι

ϕ

ϕ′

a f

g BC g′

f ′

This shows that (A′, fa) is a kernel of g′, and we can conclude that g′ is a
deflation. If additionally g is an inflation, i.e an isomorphism, then from Ex2op

we get that g′ is an inflation as well.

As a little fun fact, and to further point out the structural importance of
the isomorphism theorems, we include the following result.

Proposition 3.19 (3. isomorphism theorem). Given the solid part of the fol-
lowing diagram in an exact category

A B X

A C Y

Z Z

then the diagram can uniquely be completed such that X � Y � Z is a confla-
tion, and all squares commute. Moreover, the upper right square is bicartesian.

Proof. The morphisms exist uniquely by the cokernel property of B � X and
C � Y . By Lemma 3.17 the upper right square is bicartesian, which implies
that X � Y is an inflation. Now by the dual of Lemma 3.17 the rightmost
sequence is a conflation.

For further information on exact categories see [2].
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3.3 Projective and injective objects

In this section we present some elementary results on injective and projective
objects. Readers who are familiar with these concepts may skim this section,
but should keep in mind that objects are projective (injective) with respect to
the exact structure. Different exact structures give rise to different collections
of projective and injective objects.

When we encounter a new class of categories, a natural question to ask is
what the corresponding notion of structure preserving functors between such
categories is. For exact categories we have the following.

Definition 3.20 (Exact functor). Let (A, E) and (A′, E ′) be exact categories.
An exact functor F : A → A′ is a functor which takes conflations in A to
conflations in A′.

Exact functors are necessarily additive. It is worth noticing that the def-
inition above coincides with the definition of exact functors between abelian
categories, when we think of abelian categories as exact categories with the
standard exact structure.

Example 3.21. Let A′ be an extension closed subcategory of an exact cate-
gory (A, E), where A′ is equipped with the induced exact structure. Then the
inclusion functor is exact.

Lemma 3.22 (Hom is left exact). Let

0→ A
f−−→ B

g−−→ C → 0

be an exact sequence in an additive category A. Then for any object D in A,
the sequences of abelian groups

0 −→ Hom(D,A)
f∗−−→ Hom(D,B)

g∗−−→ Hom(D,C)

0 −→ Hom(C,D)
g∗−−→ Hom(B,D)

f∗−−→ Hom(A,D)

are exact. If additionally g (f) is a split epimorphism (monomorphism), then
g∗ (f∗) is surjective.

Proof. We show that the covariant Hom is left exact, i.e that

0 −→ Hom(D,A)
f∗−−→ Hom(D,B)

g∗−−→ Hom(D,C)

is exact. The other statement is dual. Consider a morphism ϕ ∈ Hom(D,A).
As f is a monomorphism, we have that f∗(ϕ) = fϕ = 0 if and only if ϕ = 0,
and consequently f∗ is injective. The image of f∗ is contained in the kernel of
g∗ since g∗f∗(−) = g ◦ f ◦ − = 0. For the reverse inclusion, let ψ ∈ Ker g∗, i.e
gψ = 0. Since gψ = 0, we know that ψ must factor through the kernel of g. This
gives a unique map h such that ψ = fh = f∗(h). If g is a split epimorphism,
then the original sequence splits. Since Hom is additive, it preserves split exact
sequences, and thus g∗ is surjective.
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As we now have seen, mathematicians’ favorite functor, Hom, is not in gen-
eral exact. We can now do one of two things, either bury our heads in dis-
belief, never touching Hom again, or we can put some substantial effort into
understanding how far Hom is from being exact, and why this is the case. As
mathematicians, the canonical choice is of course to take the tough road. Not
to surprisingly, the answer depends on what object you fix.

Definition 3.23. Let A be an exact category.

1. An object I ∈ A is injective if the functor

HomA(−, I) : Aop → Ab

is exact. Here we equip Ab with the standard exact structure.

2. An object P ∈ A is projective if the functor

HomA(P,−) : A → Ab

is exact.

3. A has enough injectives if any object A fits into a conflation

A� I � B

with I injective.

4. A has enough projectives if any object B fits into a conflation

A� P � B

with P projective.

Remark 3.24. The projective objects in A coincide with the injective objects in
Aop.

Digging deeper into the questions asked above naturally leads you to in-
teresting topics, such as projective and injective resolutions, derived functors,
and derived categories. We will not dwell further on these question, but rather
explore what projective and injective object ”are”, and how they interact with
the category they live in.

Definition 3.25. For (A, E) be an exact category. We define proj A and inj
A to be the full subcategories of A consisting of all projective and injective
objects, respectively.

The following proposition gives a characterization of projective and injective
objects. When they are encountered in the wild, it is often more convenient to
use the lifting property (2), as opposed to the definition in terms of exactness
of Hom.
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Proposition 3.26. Let A be an exact category. The following are equivalent
for an injective object I ∈ A:

1. I is an injective object.

2. For any diagram

A B C

I

h

f

∃h′

g

with the top row a conflation, there is a morphism h′ : B → I such that
h′f = h.

3. Any conflation I � B � C splits.

Proof. (1) =⇒ (2):
Let A � B � C be a conflation and I an injective object. By definition, we
have an exact sequence

0 −→ Hom(C, I)
g∗−−→ Hom(B, I)

f∗−−→ Hom(A, I)→ 0

In particular, this yields that f∗ is surjective, i.e that any h ∈ Hom(A, I) has a
preimage h′ along f∗. Spelled out, we have f∗(h′) = h′f = h.

(2) =⇒ (3):
The following diagram commutes

I B C.

I

f

∃h′

g

Thus, f is a split monomorphism, and the sequence consequently splits.

(3) =⇒ (1):
Assume we have a conflation A � B � C and a morphism h : A → I with I
injective. By Lemma 3.16, we have the solid part of the following diagram

A B C

I A′ C,

h

f

PO h′

g

f ′ g′

f ′′

where the left square is a pushout. Since the bottom row splits, there exists an
f ′′ such that f ′′f ′ = idI . Define the morphism ϕ : B → I as ϕ := f ′′h′. We
have f ′ϕf = f ′f ′′h′f = f ′h, which since f ′ is a monomorphism, implies that
ϕf = h.
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The dual result holds for projective objects. Recall that we proved this in
the case of modules in Lemma 2.14. As we have already seen, exact categories
usually have several exact structures. The flexibility of this notion is analogous
to that of a topological structure on a set. Given a set, the choice of topolog-
ical structure on that set affects which maps in and out of the space that are
continuous. The relationship between the exact structure and the collections
of projective and injective objects resembles this in the sense that a smaller
exact structure allows for more injective and projective objects, and vice versa.
Intuitively, it should make sense, since with a smaller exact structure, there are
fewer conflations Hom needs to preserve.

Example 3.27. In a module category with the standard exact structure, injec-
tive and projective objects are precisely the injective and projective modules.
Module categories have enough injectives and enough projectives.

Example 3.28. In an exact category with the minimal exact structure, i.e
the collection of all split-exact sequences, every object is both projective and
injective. This can be seen from the following diagram

C

A A⊕B B

C

h[
0
h

][
idA
0

]

h′

[0 idB ]

[h′ 0]

Equivalently, we know that Hom is additive, so it preserves split exact sequences.
Such a category obviously has enough projectives and enough injectives.

Example 3.29. Any initial object is projective and any terminal object is
injective. The zero object is both projective and injective.
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4 Frobenius categories and the associated stable
category

In this section we build up to the definition of the stable Frobenius category, and
conclude by showing that it canonically carries a triangulated structure. This
is not to say that the proof is in any way obvious, but the autoequivalence and
the distinguished triangles are defined in a natural way. In order to get there,
we first need to define the concept of a quotient category.

4.1 Quotient categories

Given an arbitrary ring (with unity), it is possible to think of it as a pre-additive
category with one object. In this way, pre-additive categories can be seen as
a generalisation of rings. This section will revolve around another one of these
generalized constructions, namely that of a categorical quotient. Recall that for
rings we have to introduce the concept of a two-sided ideal in order to have a
well-defined quotient ring, and for general pre-additive categories, it is not much
different.

Definition 4.1. Let A be a pre-additive category and I a class of morphisms
of A. Denote I(A,B) = I ∩HomA(A,B). We say that I is a (two-sided) ideal
of A if:

1. For each pair of objects A,B in A, I(A,B) is a subgroup of HomA(A,B).

2. If f ∈ HomA(A,B), g ∈ I(B,C) and h ∈ HomA(C,D), then hgf ∈
I(A,D).

This definition coincides with our usual definition of a two-sided ideal in ring
theory when A only has one object. As we have hinted at, given a pre-additive
category and an ideal I, we can now define a new category A/I. The objects
of A/I are just the objects of A and

HomA/I(A,B) :=
HomA(A,B)

I(A,B)

For notational convenience, we write f for the equivalence class f + I(A,B)
throughout this discussion. To show that this quotient indeed is a valid category,
we begin by showing that the composition map (f, g) 7→ gf is well-defined. Let
f − f ′ ∈ I(A,B) and g − g′ ∈ I(B,C). Note that

gf − g′f ′ = gf − g′f + g′f − g′f ′ = (g − g′)f + g′(f − f ′) ∈ I(A,C).

This implies that gf = g′f ′. The composition is necessarily associative, since it
is associative in A. We immediately get that idA is the identity on A and 0(A,B)

is the zero element in HomA/I(A,B). By definition of the group structure on
HomA/I(A,B) and the composition, we have

h(g+g′)f = h(g + g′)f = h(g + g′)f = hgf + hg′f = hgf+hg′f = hgf+h g′ f,
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which shows that A/I is a pre-additive category. This also defines a functor
F : A → A/I, which is identity on objects and maps f to f . It is additive and
will be referred to as the quotient functor.

If A is additive, A/I is also additive for any ideal I. The zero-object in A
is a a zero-object in A/I, since HomA/I(0, A) and HomA/I(A, 0) still only con-
tains one element each. Let A⊕B be the biproduct of A and B, and πA, πB , ιA
and ιB be the projections and inclusions. Since the quotient functor is additive,
we have

πi ιi = πiιi = idi for i = A,B

ιi πj = 0 for i 6= j

ιAπA + ιBπB = ιAπA + ιBπB = idA⊕B

This together with the fact that the quotient functor is identity on objects gives
us a biproduct in A/I. This discussion proves the following proposition.

Proposition 4.2. Let A be a (pre)additive category and I a two-sided ideal in
A. Then the quotient category A/I is (pre)additive and the quotient functor
F : A → A/I is additive.

Let A be a preadditive category, and N ⊆ A a full subcategory closed
under finite direct sums. For all pairs of objects A,B in A, define I(A,B) ⊆
HomA(A,B) to consist of all morphisms f : A → B that fit into a diagram of
the form

A B

N

f

ϕ ψ

with N ∈ N . In this case, f is said to factor through N . We claim that I,
the union of all I(A,B), is an ideal. The zero morphism factors through any
object, in particular it lies in I(A,B) for all A,B ∈ A. If f, g ∈ I(A,B), then
f = ψϕ for some ϕ : A → N and ψ : N → B, where N is in N . Similarly g
factors through some N ′, and we can write g = ψ′ϕ′. Since N is closed under
finite direct sums, we now have the following commutative diagram

A B

N ⊕N ′

f−g

ϕ̃ ψ̃

where ϕ̃ =
[ ϕ
−ϕ′

]
and ψ̃ = [ψ ψ′], which shows that f − g ∈ I(A,B). Thus we

have shown that I(A,B) is a subgroup of HomA(A,B) for all A,B ∈ A. Now
let f ∈ HomA(A,B), g ∈ I(B,C) and h ∈ HomA(C,D). The following diagram
shows that hgf factors through an object in N
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A B C D

N

f

ϕ

g h

ψ

Hence I is an ideal. Given an exact category A, we denote the ideal of mor-
phisms that factor through an injective by I . Similarly, we denote the ideal of
morphisms that factor through a projective by P.

Definition 4.3. Let A be an exact category. The injectively stable category
A is the quotient category A/I , and the projectively stable category, A is the
quotient category A/P.

We use the notation HomA(A,B) := HomA(A,B) and HomA(A,B) := HomA(A,B).

Moreover we denote representatives of the equivalence classes by f and f , re-
spectively.

Remark 4.4. Assume that f : X → B factors through some injective object J ,
as shown in the diagram below. If µ : X � I is an inflation and I is injective,
then there exists a morphism α : I → B such that αµ = f .

X B

I

J

f

g

µ α

β

h

To see this, notice that the morphism β exists, since J is injective. If we define
α := hβ, then αµ = hβµ = hg = f .

4.2 Definition and examples

Above we have seen that it makes sense to define both the projectively and
injectively stable category of an exact category. In this section we study what
happens when the projective and injective objects coincide.

Definition 4.5 (Frobenius category). A Frobenius category is an exact category
(F , E) such that:

1. F has enough injectives.

2. F has enough projectives.

3. An object is injective if and only if it is projective.

For a reader with some experience with representation theory of finite di-
mensional algebras, the idea of projective and injective modules coinciding is
not too obscure.

34



Example 4.6. Let F be a Frobenius algebra. Then mod F , the category of
finitely generated F modules, is a Frobenius category.

Example 4.7. Let K[G] be the group algebra of a finite group G over a field
K. Then mod K[G] is a Frobenius category.

Example 4.8. Let C(A) denote the category of chain complexes over an abelian
category. If we equip C(A) with the exact structure

E = {All degree-wise split short exact sequences},

then C(A) is a Frobenius category. A short exact sequence of complexes

0→ A• → B• → C• → 0,

is degree-wise split if in each degree we have the sequence Ai → Ai ⊕Ci → Ci,
where the maps are the obvious ones. The injective and projective objects with
respect to this exact structure coincides, and are given by all complexes of the
form

· · · → Ci−1 ⊕ Ci−2 → Ci ⊕ Ci−1 → Ci+1 ⊕ Ci → . . . ,

with differential
[

0 0
id 0

]
. By a slight abuse of notation, we denote the complex

above by C•[1]⊕C•. That these complexes are in fact injective and projective,
can be seen by considering the following diagram

C•[1]⊕ C•

A• A• ⊕B• B•

C•[1]⊕ C•

[h•1 h
•
2 ][

0 0
h•1 h

•
2

]
[

id•A
0

]
[ g•1
g•2

]
[0 id•B ]

[ g•1 0

g•2 0

]

These projective and injective complexes are called contractible, and one can
show that they are homotopy equivalent to the zero complex.

Definition 4.9 (The stable Frobenius category). Let F be a Frobenius cate-
gory. The stable Frobenius category F is the quotient category F/P.

Remark 4.10. Since the projective and injective objects coincide, we have F/I =
F/P. Thus we have to make a choice on notation. From here and out, we
will denote HomF (A,B) by Hom(A,B), and f ∈ Hom(A,B). There will be
little room for confusion, as we solely consider Frobenius categories and their
associated stable category in the remainder of the text.
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4.3 Triangulation

At last we arrive at the golden nugget if the thesis, or main result, as some
might call it. The somewhat abundant structure of Frobenius categories allows
us to construct a triangulated structure in a rather natural way. The first time
encountering these constructions might be a little overwhelming, which proba-
bly is a result of the intertwined nature of the whole thing. Throughout this
section, assume that we work in a Frobenius category F , with exact structure E .

We initiate this section with three lemmas, which more or less is the backbone
of the entire section, and will be referred to regularly. Finally we present a proof
showing that the stable Frobenius category carries a triangulated structure.

Lemma 4.11. Given two conflations X � I � X ′ and Y � I ′ � Y ′ with
I ′ injective, and a morphism f : X → Y , we get the following commutative
diagram.

X I X ′

Y I ′ Y ′

f

µ

f ′

π

g

µ′ π′

Proof. Since µ′f : X → I ′, µ : X � I is an inflation and I ′ is injective, there
exists a morphism f ′ : I → I ′ such that µ′f = f ′µ. As (X ′, π) is a cokernel of µ
and π′f ′µ = πµ′f = 0, there exists a unique g : X ′ → Y such that gπ = π′f ′

For a reader familiar with syzygies, it is known that taking (co)syzygies does
not in general give a well-defined functor. But in the projectively (injectively)
stable category, the following discussion shows that the (co)syzygy functor is in
fact well-defined. In the case where the projective and injective objects coincide,
it defines an autoequivalence.

Lemma 4.12. Let X � I � X ′ and X � I ′ � X ′′ be two conflations, with I
and I ′ injective. Then X ′ and X ′′ are isomorphic in F .

Proof. From Lemma 4.11 we can create the following commutative diagram

X I X ′

X I ′ X ′′

X I X ′

µ

f ′

π

g

µ′ π′

f ′′ g′

µ π

We have
f ′′f ′µ = µ ⇐⇒ (f ′f ′′ − idI)µ = 0
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Hence f ′f ′′− idI factors uniquely through π, i.e there exists an h : X ′ → I such
that f ′f ′′ − idI = hπ. This implies that

πhπ = πf ′f ′′ − π = g′gπ − π = (g′g − idX′)π

Since π is an epimorphism, one obtains πh = g′g − idX′ , and consequently
g′g = idX′ . The argument for gg′ = idX′′ is similar. Hence, X ′ and X ′′ are
isomorphic in F .

Let [X] denote the isomorphism class of X in F . For all X ∈ F we have
an inflation X � I where I is injective, which again is a part of a conflation
X � I � X ′. The previous lemma gives us that [X ′] is independent of the
choice of X � I � X ′.

For each X ∈ F choose a conflation

X I(X) TX
µ(X) π(X)

with I(X) injective. We want to construct an equivalence T : F → F . On
objects we define T (X) := TX, which is well-defined by our argument above.
Given f : X → Y , we get a commutative diagram

X I(X) TX

Y I(Y ) TY

f

µ(X)

I(f)

π(X)

T (f)

µ(Y ) π(Y )

The following lemma shows that T (f) is independent of choice of I(f).

Lemma 4.13. Given a commutative diagram

X I(X) TX

Y I(Y ) TY

f

µ(X)

Ii(f)

π(X)

Ti(f)

µ(Y ) π(Y )

for i ∈ {1, 2}, then T1(f) = T2(f) in F .

Proof. We want to show that T1(f)−T2(f) factors through an injective object.
The injective I(Y ) is a good candidate. The proof is essentially the same as
that of Lemma 4.12. We have that (I1(f)− I2(f))µ(X) = 0 by commutativity.
This gives a unique ϕ : TX → I(Y ) such that ϕπ(X) = I1(f) − I2(f). Post-
composing with π(Y ) gives

π(Y )ϕπ(X) = π(Y )(I1(f)− I2(f)) = (T1(f)− T2(f))π(X),

which implies that π(Y )ϕ = T1(f)−T2(f) since π(X) is an epimorphism. Hence,
one obtains T1(f) = T2(f) in F .
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With this result, we can conclude that T : F → F is a well-defined functor.
Our next aim is to prove that T is in fact an autoequivalence. It is worth
noticing that up until this point we have not used that proj F = inj F . This
reflects the comment that taking (co)syzygy defines a functor when factoring
out projective (injective) objects, as the same argument as above works in the
projectively (injectively) stable category. In order for an inverse to exist, it is
crucial that the projectives and injectives coincide, as will be seen in the proof
below.

Theorem 4.14. The functor T : F → F constructed above is an autoequiva-
lence. If T : [X]→ [X ′] is a bijection for all X, then T is an automorphism.

Proof. We show that T is full, faithful and dense.

Dense: We want to show that T is surjective on isomorphism classes of ob-
jects, i.e that for any Y ∈ F we have that Y ∼= TX for some X ∈ F . Since
F has enough projectives, we have a deflation I � Y , where I is projective,
which again is a part of a conflation X � I � Y . By Lemma 4.12, one obtains
Y ∼= TX. If T : [X] → [Y ] is a bijection, then there exists a unique X ′ ∈ [X]
such that T (X ′) = Y .

Full: We want to show that for any g ∈ Hom(TX, TY ), there exists an f ∈
Hom(X,Y ) such that g = T (f). Let g ∈ Hom(TX, TY ). For projective objects
I(X) and I(Y ) we have a diagram

X I(X) TX

Y I(Y ) TY

f

µ(X)

ϕ

π(X)

g

µ(Y ) π(Y )

by the dual of Lemma 4.11 and the fact that projective and injective objects
coincide. Now by Lemma 4.13, one obtains T (f) = g, which implies that T is
full.

Faithful: Assume T (f) = T (g), we want to show that f = g. We have the
following commutative diagram

X I(X) TX

Y I(Y ) TY

f−g

µ(X)

I(f)−I(g)

π(X)

h T (f)−T (g)=0

µ(Y ) π(Y )

By assumption, we have

(T (f)− T (g))π(X) = π(Y )(I(f)− I(g)) = 0,
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hence I(f)− I(g) factors through the kernel (Y, µ(Y )). We get a unique map h
such that µ(Y )h = I(f)− I(g). Furthermore, we see that

µ(Y )(f − g) = (I(f)− I(g))µ(X) = µ(Y )hµ(X),

which since µ(Y ) is a monomorphism, implies that hµ(X) = f − g. Now, since
I(X) is injective, we conclude that f = g.

Remark 4.15. The construction of T involved making a choice for each object.
It can be shown that two functors constructed in this manner, with different
choices, will be naturally isomorphic. See for example [4] Section 2.2 for details.

Throughout the rest of this thesis we will write

X I TX as X I TX,
µ(X) π(X) x x

to simplify the notation.

Let u : X → Y be a morhpism in F , and X � I � X ′ be a conflation with I
injective. By Lemma 3.16, we have the solid part of the following diagram

X I X ′

Y C X ′ TX

f

µ

PO f ′

π

v w′

w:=g′w′

g′

,

where the bottom row is a conflation. By Lemma 4.12, there exists a morphism
g′ : X ′ → TX such that g′ is an isomorphism. Define w := g′w′. The sequences

X Y C TX
f v w ,

and their images in F will be called standard triangles.

Definition 4.16. Let ∆ be the collection of all triangles in F isomorphic to a
standard triangle. A triangle in ∆ will be called a distinguished triangle.

We are now almost ready to prove that F is a triangulated category. In order
to show the octahedral axiom, we will have to make use of the triangulated
5-lemma (2.11), which holds for pre-triangulated categories. As we mentioned
in Section 2, a category is pre-triangulated if it satisfies TR1 - TR3. Hence, the
plan is to first show that F is pre-triangulated, for then to use the available
machinery to tackle the octahedral axiom.

Theorem 4.17. The triple (F , T,∆) is a pre-triangulated category.

Proof. Throughout this proof we only consider standard triangles, which is suf-
ficient since every triangle is isomorphic to a standard triangle. Note that we
have already proven that F is additive, and that T is an additive autoequiva-
lence.
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TR1: From the construction of ∆ it is clear that it is closed under isomor-
phisms, and that every morphism is part of a triangle. Now look at the triangle
defined by the following diagram

X I X ′

X C X ′ TX

µ

PO f ′

π

v w′

w:=g′w′

g′

By Lemma 3.18, the morphism f ′ is an isomorphism, which implies that C is
injective. In F we have the following isomorphism of triangles

X X C TX

X X 0 TX

v w

since any injective object is isomorphic to 0 in F . The top row is in ∆, and
thus the bottom is as well.

TR2’: Let X
u−→ Y

v−→ C
w−→ TX be a standard triangle given by the following

diagram.

X I X ′

Y C X ′ TX

u

µ

PO u

π

v w′

w:=g′w′

g′

By Lemma 4.11, we also have the following diagram.

X I X ′

Y I(Y ) TY

u

µ

u′

π

u′′

y y

By the pushout property of C, we get a unique morphism ϕ : C → I(Y ) such
that ϕu = u′ and ϕv = y. Now consider the following diagram

X I

Y C I(Y )

X ′ TY

u

µ

u

u′

v

0

ϕ

w′ y

u′′
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Since the upper left square is a pushout, there exists a unique morphism indi-
cated by the dotted arrow. Both u′′w′ and yϕ fits, i.e the lower square commutes.
Now consider

Y C X ′

I(Y ) I(Y )⊕X ′ X ′

TY TY

y

v w′[ ϕ
w′

][
id
0

]

y

[0 id]

[y −u′′]

,

which commutes by our discussion above. The middle row is a conflation by
Ex0. It then follows by (the dual of) Lemma 3.17 that the upper left square is
a pushout. Using this we get that

Y C I(Y )⊕X ′ TY
v

[ ϕ
w′

]
[y −u′′]

is a distinguished triangle. The claim now is that the following is an isomorphism
of triangles in F

Y C I(Y )⊕X ′ TY

Y C TX TY

v

[ ϕ
w′

]

[0 g′]

[y −u′′]

v w −Tu

By construction g′ is an isomorphism, and injective objects are 0 in F . Thus
all vertical morphisms are isomorphisms. By the definition of w, we see that the
middle square commutes. It remains to show that the right square commutes.
Since y is a morphism from an injective, it is zero in F . If the square is to
commute, the morphisms Tu ◦ g′ and u′′ must be equal. Consider the following
commutative diagram

X I(X) TX

X I X ′

Y I(Y ) TY

x

h

x

h

Tu

u

µ

u′′

π

u′′

y y

where h be a representative of g′−1. From Lemma 4.13, we know that Tu = u′′h,
and consequently Tu ◦ g′ = u′′. Thus the triangles are isomorphic in F and

Y C TX TY
v w −Tu

,
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is a distinguished triangle.

TR3: Consider two distinguished triangles constructed from the following dia-
grams

X I X ′

Y Z X ′ TX

u

µ

u

π

v s

w:=τs

τ

and

A I ′ A′

B C A′ TA

u′

µ′

u′

π′

v′ s′

w′:=λs′

λ

Assume we have the following commutative diagram

X Y Z TX

A B C TA

ϕ

u

ψ

v w

Tϕ

u′ v′ w′

(4.1)

in F . Since τ is an isomorphism, we can construct the following commutative
diagram

X I(X) TX

X I X ′

A I ′ A′

A I(A) TA

x

ν′

x

ν

Tϕϕ

µ

ϕ′

π

ϕ′′

µ′

λ′

π′

λ

a a

by Lemma 4.11 and 4.12, where ν : TX → X ′ is a representative of the equiva-
lence class of τ−1. By Lemma 4.13, we get that Tϕ = λϕ′′ν. Now the strategy
is to find a morphism i : I → C, such that iµ = v′ψu, for then to use the
pushout property of Z to get our desired morphism. By assumption, we have
ψu = u′ϕ, i.e ψu− u′ϕ = αµ for some α : I → B (Remark 4.4). The following
calculation gives us the i mentioned above:

v′ψu = v′(αµ+u′ϕ) = v′αµ+v′u′ϕ = v′αµ+u′µ′ϕ = v′αµ+u′ϕ′µ = (v′α+u′ϕ′)µ
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Thus we let i = v′α+u′ϕ′. The following diagram might be illuminating in the
upcoming arguments

X I

Y Z

C

u

µ

u
v′α+u′ϕ′

v

v′ψ

θ

Now by the pushout property of Z, there exists a unique θ : Z → C, such that
θu = v′α + u′ϕ′ and θv = v′ψ. This θ makes diagram (4.1) commute. The
middle square commutes by the construction of θ, while to see that the right
square commutes requires a little more work. We use the pushout property of
Z once more. If we in the pushout diagram above extend the bent arrows by
post-composing with s′, then the following calculations show that s′θ must be
equal to ϕ′′s:

(s′θ − ϕ′′s)u = s′θu− ϕ′′su = s′(v′α+ u′ϕ′)− ϕ′′π = 0 + π′ϕ′ − ϕ′′π = 0

and
(s′θ − ϕ′′s)v = s′v′ψ − ϕ′′sv = 0− 0 = 0

Thus s′θ = ϕ′′s, and

w′θ = λs′θ = λϕ′′ντs = Tϕτs = Tϕw

We have hence shown that (F , T,∆) is a pre-triangulated category.

An immediate consequence of the result above is that distinguished triangles
in F are uniquely determined by their starting morphism, as explained in Re-
mark 2.12. In particular every distinguished triangle is isomorphic to a triangle
constructed in the following manner

X I(X) TX

Y C TX

u

x

PO u

x

v w

Such triangles will be called strictly standard.

Theorem 4.18. The triple (F , T,∆) is a triangulated category.

Proof. As we now know, the category F is pre-triangulated, and the only part
remaining is to show the octahedral axiom.

TR4: Assume that we have three distinguished triangles, defined by the fol-
lowing diagrams:
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X Y Y Z X Z

I(X) Z ′ I(Z ′) X ′ I(X) Y ′

TX TX Ỹ Ỹ TX TX

TY

u

x i

v

zi j

w:=vu

x k

u

x i′

, v

π j′

and
w

x k′

ν

The morphism z comes from the conflation

Z ′ I(Z ′) TZ ′.z z

Our goal is to find morphisms f , g and g′ such that the triangle

Z ′ Y ′ X ′ TZ ′
f g g′

is distinguished, and makes the following diagram commute in F

X Y Z ′ TX

X Z Y ′ TX

X ′ X ′ TY

TY TZ ′

u

v

i

f

i′

w:=vu k

j

k′

g Tu

νj′ g′

νj′

Ti

(4.2)

By browsing through our rather large set of available morphisms, we are able
to obtain f and g from the pushout property of Z ′ and Y ′ respectively

X Y X Z

I(X) Z ′ I(X) Y ′

Y ′ X ′

u

x i
kv

w=vu

x k
j

u

w

f

w

vzu

g

The construction f and g makes the squares to their left in 4.2 commute. With
f and g on our hands, we are ready to construct the distinguished triangle we
need. Consider the following commutative diagram
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X I(X)

Y Z ′ I(Z ′)

Z Y ′ X ′

x

u u

i

v

z

f v

k g

The lower right square commutes by the pushout property of Z ′, since

(vz − gf)i = jv − gkv = 0

and
(vz − gf)u = 0.

Both the upper square and the tall rectangle are pushouts by construction,
consequently the lower left square is a pushout. Then, since the flat rectangle
and the lower left square are pushouts, the lower right square is also a pushout.
Consequently, we can set up the following diagram

Z ′ I(Z ′) TZ ′

Y ′ X ′ TZ ′

z

f

z

v

g g′

which since the leftmost square is a pushout, defines a strictly standard triangle

Z ′ Y ′ X ′ TZ ′.
f g g′

Now we find fitting representatives for Tu and Ti. As usual, by Lemma 4.11
and 4.12, we have the following commutative diagrams

X I(X) TX

Y I(Z ′) Ỹ

Y I(Y ) TY

u

x

zu

x

ϕ

zi

ν

π

ν

y y
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Y I(Y ) TY

Y I(Z ′) Ỹ

Z ′ I(Z ′) TZ ′

y

u

y

µ

i

zi π

ψ

z z

where µ is a representative of ν−1. By Lemma 4.13, we can assume νϕ = Tu
and ψµ = Ti. What now remains is to show that 4.2 indeed commutes. We
already know that the upper left, upper middle and centre square commutes.
For the two rightmost squares we have

(k′f − i′)u = k′w − x = 0

and

(Tuk′ − νj′g)w = ν(ϕk′w − j′gw) = ν(ϕx− j′vzu) = ν(ϕx− πzu) = 0,

which by the pushout property of Z ′ and Y ′, implies that k′f = i′ and Tuk′ =
νj′g. Hence, the squares commute. For the last remaining square, we first note
that ψj′ = g′, since

(ψj′ − g′)j = −g′j = −g′gk = 0

and
(ψj′ − g′)v = ψπ − z = 0

and X ′ is a pushout. Now at last we have

Tiνj′ = ψµνj′ = ψj′ = g′

and can conclude that F is a triangulated category.

When an algebraist goes to work and stumbles across a triangulated category,
chances are high that it is in fact the stable category of some Frobenius category.

Definition 4.19. A triangulated category is called algebraic if it is equivalent
to the stable category of a Frobenius category.

For more discussion on algebraic triangulated categories see [10] and [6].

Example 4.20. We saw in 4.8 that (C(A), E) is a Frobenius category. The
associated stable category C(A) is triangulated, and in fact equivalent to the
homotopy category K(A).
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