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Abstract

Because of the centrality of data analysis in many human endeavors from science
to industry, methods of dealing with faults and errors in data are an important
area of study. One such error is the problem of missing data. This thesis pro-
vides the reader with a comprehensive introduction to the field of missing data.
It describes the concept of missingness mechanisms and how they might im-
pact inference. Imputation is evaluated and found to be a statistically valid
technique for addressing missing data in the context of these missingness mech-
anisms. Various common and intuitive imputation methods such as Complete
Case Analysis and Mean Imputation are analysed. Evidence from theory and
literature is presented and lead to the conclusion that Multiple Imputation (MI)
is the superior method. However, this is contradicted by experimental results,
suggesting further study is required to uncover the source of this disagreement.

1 Introduction

Wherever there is data there tends to be missing data, and missing data can
distort or invalidate the conclusions drawn from data [Possibly delete]. In science
and academia data analysis is fundamental to progress, but gathering data in
the real world can prove tricky. Take clinical trials of a drug, where dropout
can be a serious obstacle to figuring out whether a drug is worth producing or
not. Similarly, from tech to traditional heavy industry, data analysis allows for
efficiency gains and innovation. However, things from faulty sensors to privacy
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laws introduce missing data. In this thesis, we shall give an overview of the
mathematical theory concerning missing data, as well as some techniques for
dealing with the problem. We will first describe common and intuitive solutions,
so called “ad-hoc” solutions, before proceeding to a statistically principled and
effective solution: Multiple Imputation (MI). We will approach the problem of
missing data from the Bayesian perspective. Other methods motivated from
the frequentist perspective, such as likelihood based methods, are available for
dealing with missing data, but shall not be explored here. For the sake of brevity
and cohesiveness, some topics like congeniality have only been covered in light
detail. We refer the reader to Meng [1994], Molenberghs et. al. [2015], and
Little and Rubin [2019] for a more in-depth explanation of missing data and
non-imputation based techniques.

2 Terminology and basic missingness theory

This section will mostly adhere to the notation of Rubin in [Little and Rubin, 2019],
as it is both well established and quite general.

2.1 What is missingness?

When we say an observation is missing, we mean that we have not observed it.
The missing observation still has a value, but this value is hidden from us for
some reason. The mechanism behind this missingness will be described in detail
later in this section. By treating missingness as a probabilistic phenomenon,
statistically rigorous tools for dealing with it become available.

Let the complete data matrix (i.e. with no missing values) Y = (yij)
be an n× k matrix, with the ith row yi = (yi1, ..., yik) where yij is the value of
variable Yj for observation i. Let also the missingness indicator matrix M =
(mij) be an n × k matrix such that mij = 1 if yij is missing and mij = 0
if yij is observed. Both Y and M are random variables, and we assume for
simplicity that the rows (yi,mi) are independent and identically distributed
over i. It is possible to have more than two possible values for each entry of
the M , for example when we wish to differentiate between different kinds of
non-response. However, we will not explore this in this thesis. Now, given mi,
we can partition yi into yoi and ymi , corresponding to the components that are
observed and missing respectively.
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2.2 The missingness mechanism

The missingness mechanism is characterized by the conditional distribution of
mi given yi, i.e. fM |Y (mi|yi, θ), where θ denotes unknown parameters. Stated
differently, the missingness mechanism characterizes the probability of data be-
ing missing given the values observed values of Y and the information that the
missing values of Y are missing.

We distinguish between three different missingness mechanisms by con-
sidering how M is related to Y in order of decreasing strictness of assumptions:

1. Missing Completely at Random (MCAR)

2. Missing at Random (MAR)

3. Missing Not at Random (MNAR)

Rubin [1976] introduced these missingness mechanisms, and they de-
termine which techniques are appropriate to use on a given problem. In practice,
they are rarely exactly true, but it will be shown later that assuming them is
reasonable in many circumstances.

2.2.1 Missing Completely At Random

MCAR missingness occurs when, for all and any distinct values yi and y∗i in the
sample space of Y ,

fM |Y (mi|yi, θ) = fM |Y (mi|y∗i , φ), ∃θ, φ

where θ and φ denote unknown parameters. In other words, the probability of
missingness is independent of both the observed and the missing data. This
means that we can view the observed data as a random sample of the complete
data.

2.2.2 Missing At Random

In this case, for all i and any distinct values ymi , y
m∗
i in the sample space of Y m

i ,
we have that the following equation holds:

fM |Y (mi|yoi , ymi , θ) = fM |Y (mi|yoi , ym∗i , φ), ∃θ, φ

This means that the probability of missingness, conditioned on the observed
data, is independent of the missing data. Assuming MAR is less restrictive
than MCAR, and may be considered a more plausible assumption in a real
world situation.
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2018 2019 (Complete) 2019 (MCAR) 2019 (MAR) 2019 (MNAR)
8.9 7.4 7.4 7.4 NA
9.4 7.3 7.3 7.3 NA
8.4 7.9 NA 7.9 NA
5.3 6 NA NA NA
11.1 7.4 7.4 7.4 NA
8.4 10.7 NA 10.7 10.7
6.4 8.8 NA NA 8.8
5.6 3.5 NA NA NA
5.6 7.1 7.1 NA NA
8.2 6.9 6.9 6.9 NA
6.6 5.4 NA NA NA
6.6 6.7 NA NA NA
8.6 9.2 NA 9.2 9.2
7.7 6.1 6.1 NA NA
11.2 8 NA 8 8

Table 1: Simulated data for N = 15 individuals drawn from a bivariate normal
distribution with µ2018 = µ2019 = 7.5, σ2018 = σ2019 = 2, and a correlation ρ = 0.3.
The first two columns show the complete data for 2018 and 2019, while the other three
columns show the values for 2019 after imposing missingness by the three methods
discussed earlier.

2.2.3 Missing Not At Random

If the above equation does not hold for some i and some ymi , y
m∗
i , then the miss-

ingness mechanism is called missing not at random (MNAR). In this situation,
the probability of missingness is dependent on the missing data even after con-
ditioning on the observed data. Put differently, this means that the underlying
values of the missing data influence the probability of data being missing. Thus
the the missingness mechanism cannot be characterised from the available data
in the way that MAR can.

2.3 Illustrative example

The following example illustrates the three different types of missingness.

Suppose you are doing a study in which you want to investigate people’s
sleep patterns. You send N people a survey asking them for the average amount
of sleep they got each night in 2018. A year later, you decide to send a follow-up
survey for 2019. We consider 2018 and 2019 to be stochastic variables. Table 1
shows a simulation of such a study.

In the MCAR scenario, we see a random spread of missing data, i.e. a
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random subset of those who answered the 2018 survey also answered the 2019
one. Now, suppose that the amount of sleep people got in 2018 affected how
likely they were to answer the 2019 survey. Those who slept little in 2018 were
less likely to answer in 2019, and conversely with those who slept more. This is
MAR, since the missingness of the 2019 entries depends on the values for 2018.
For the final column, suppose our earlier conjecture is instead true for 2019:
those who slept little in 2019 were less likely to answer the survey in that year.
This is an example of MNAR, since the missingness of the 2019 entries depends
on the values for those entries. Remember, the full dataset exists, but it has
been hidden from us due to some mechanism.

2.4 The validity of missingness mechanisms

In most real world scenarios, we only have the data at hand to inform us about
the missingness mechanism. Unfortunately, we cannot infer the missingness
mechanism from data [Molenberghs et al., 2014, P.9]. We can check the validity
of MCAR against MAR, but only under the unverifiable assumption that the
data is not MNAR [Molenberghs et al., 2014, P.8]. Neither can we use the
data at hand to support or refute one specific MNAR mechanism over another
[Molenberghs et al., 2014, P.10]. Finally, MAR cannot be checked empirically
against MNAR. We therefore have to assume the missingness mechanism in
practice. Most often it is beneficial to assume MAR, as it tends to yield good
empirical results even when the assumption does not completely hold.

3 Imputation

3.1 What is imputation?

Imputation refers to the substituting, or “filling in”, of missing values with plau-
sible estimates. Often there much information available in the data at hand,
and utilising this can lead to better performance. The main strength of impu-
tation is that it does not require us to change our desired analysis technique.
In certain situations, a researcher might have more data than they intend to
include in their analysis model. This extra data can be used in the imputation
process to produce a better imputation, but can introduce bias or variance in
parameter estimates. The concept of congeniality, which we will define shortly,
helps us overcome some of these difficulties. Another very practical benefit,
and a strong argument for the use of imputation, is the performance gains to
be had from using it. Examples can be seen in [Madley-Dowd et al., 2019],
[Schafer and Graham, 2002], and [Sterne et al., 2009], as well as in the experi-
ments section.
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The model based approaches of this thesis use both the Bayesian and
frequentist paradigms in complementary ways. The Bayesian approach is used
to create the imputation procedure, while the frequentist one evaluates their
results. The Bayesian paradigm allows us to effectively model the unknown
given the known, and makes assumptions explicit, both highly desirable when
imputing missing data. The frequentist paradigm is the one which is by far most
common when doing inference, so it is natural that it is under that paradigm
we evaluate performance.

3.2 What is valid inference?

An essential question when using imputation is if, and how, it might distort
inference. However, to answer this question we need to have an idea of what
valid inference is. A valid inference, according to Rubin [Rubin, 1996], is one
in which nominal significance levels (denoted by α and often set at α = 0.05)
describe characteristics of a distribution for confidence interval estimation and
hypothesis testing. This can be further refined into “randomization validity”
and “confidence validity”. The former Rubin describes as “actual interval cov-
erage = nominal interval coverage”, for interval estimates, and “actual rejection
rate = nominal rejection rate”, for hypothesis tests. Randomization validity is of
course desirable, but not always achievable, and so Rubin introduces confidence
validity as a looser criterion. It is defined as “actual interval coverage ≥ nominal
interval coverage”, for interval estimates, and “actual rejection rate ≥ nominal
rejection rate”, for hypothesis testing. It is this last version of inferential valid-
ity that we shall be referring to whenever we talk about valid inference. It has
been shown [Xie and Meng, 2017], [Meng, 1994], [Rubin, 1996] that Bayesian
models like the Multiple Imputation (MI), which we will describe in detail in a
later section, yield valid inference.

3.3 Congeniality: when the imputation and analysis mod-
els differ

Congeniality is an important concept in imputation and has a big impact on
the statistical validity of imputation. In short, when the analysis model differs
substantially from the imputation model we say that they are uncongenial. Such
differences might cause the subsequent analysis to be biased, or in the worst case,
invalid. There are many reasons for such difference, for example, one might wish
to include as many variables as possible in the imputation model to achieve an
accurate imputation, while at the same time only being interested in only a
subset of the covariates and the relationship between these. We will not go into
detail about what specifically constitutes a “substantial difference”, and refer to
[Meng, 1994] for a detailed description and explanation. However, an important
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finding by Meng is that even with an uncongenial imputation model, MI still
outperforms methods that ignore missing data. This will be borne out in the
experiments section.

4 Techniques of interest

To properly evaluate the performance of MI, we should compare it to other sim-
ilar and commonly used techniques, i.e. techniques that manipulate the dataset
by either imputing or removing values. When choosing to apply a method it
is important to keep two questions in mind. First, does the method under
consideration give us consistent estimators for our model? Second, does the
method give us appropriate measures of precision? How the following meth-
ods answer these questions will determine which methods are preferable. For a
more in-depth description and examples of these methods we refer the reader
to [Molenberghs et al., 2014].

There is another competing set of methods which we should touch on
briefly before continuing: likelihood-based methods. These methods focus on
maximising the likelihood function directly. Under MAR, the missing data can
be ignored in calculations, leading to a much more tractable problem. However,
given congeniality, more advanced imputation methods like multiple imputa-
tion tend to outperform likelihood-based methods for small sample sizes, while
delivering similar performance for large sample sizes [Schafer, 2016].

4.1 Ad hoc methods

This section is mostly adapted from Chapter 2 of [Molenberghs et al., 2014]
Although ad hoc is pejorative in certain circumstances, it is used here to in-
dicate that the methods below are motivated by convenience rather than any
methodological concern.

4.1.1 Case deletion, also called Complete Case Analysis

Probably the most common technique in use for dealing with missing data, Com-
plete Case Analysis (CCA) involves restricting analysis to entries with complete
data. For those familiar with programming, a typical example would be to re-
move all rows from a dataframe with NaN entries. The first and most obvious
problem with this approach is that it drastically reduces the amount of use-
able data. CCA holds an intuitive appeal, as it is both exceedingly simple to
implement, and with the only downside being a loss in accuracy. However, de-
pending on the missingness mechanism, CCA can actually introduce bias into
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an analysis. For example, suppose you want to find the mean and standard
deviation in the height of a population. If for some reason you lack all entries
for people above 200cm, then disregarding these missing entries in a CCA will
lead to biased estimates for both the mean and variance. An implicit assump-
tion, therefore, of CCA is that the observed data is a random sample of the
underlying distribution. This means that CCA implicitly assumes MCAR, and
we see in [schafer and graham] that we get unbiased inference in this scenario,
though with lower accuracy depending on the amount of missing data. How-
ever, as with the height example, deviation from MCAR can introduce bias. See
[Schafer and Graham, 2002] for examples of how inference is affected.

4.1.2 Mean imputation

Another common practice involves substituting the missing values with the
mean of the observed values for that variable. As stated in Schafer and Graham
[Schafer and Graham, 2002], this has the effect of preserving the mean of the
distribution one wishes to draw inference about, but distorts other parameters
such as variance and covariance. Covariance especially is distorted due to mean
imputation taking only the variable under consideration as input. In addition
to this, the technique breaks down when confronted with categorical variables
for which a mean has a less obvious meaning, and it is clear how a majority
vote imputation might skew the data.

4.1.3 Last Observation Carried Forward

Last Observation Carried Forward (LOCF) is mostly used in longitudinal stud-
ies where individuals drop out, withdraw, or are lost over the course of the
studies. LOCF involves imputing the missing values for an individual with the
last observed value for that individual. By replicating already existing values,
LOCF has a dampening impact on the variance estimate. Additionally, LOCF
produces biased estimators in all except very specific MNAR circumstances
[Kenward, M. G. and Molenberghs, 2009]. With LOCF, we are effectively as-
suming that for each individual that drops out, their responses do not change
at all for the remainder of the study, a highly unrealistic assumption. It can
be concluded, therefore, that LOCF is the worst imputation method of those
mentioned here, and all the other methods are preferable. We conclude by quot-
ing [Molenberghs et al., 2014, P. 40] that“LOCV is neither valid under general
assumptions nor based on statistical principles, it is not a sensible method, and
should not be used”.
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4.1.4 Regression

Regression imputation functions by regressing the variable(s) with missing en-
tries on the fully observed variables, or subsets that are fully observed. To
illustrate this, let us consider the simplest case, with one fully observed variable
X linearly related to a variable yY with missing data. Fitting a regression of
X on Y , we have

Yi = β0 + β1xi + ε, ε ∼ N(0, 1) i ∈ (0, ..., n)

Obtaining estimates of the regression parameters β̂0 and β̂1 allows us to impute
E(yi) = β̂0 + β̂1xi. A variation on this method is to use the regression to
specify the parameters of a normal distribution Y N(Xβ, σy) from which to
draw our imputation values. This is the best of the ad hoc methods, as it
gives us much more plausible imputations that vary more like the true data
[Molenberghs et al., 2014, P. 37]. However, even in this simple case it yields
imputations that tend to be less variable than the observed data. Therefore,
using these imputations in inference will most often lead to underestimating
standard errors and p-values. If there are non-linear relationships in the data,
this method’s performance breaks down.

5 Statistically principled imputation

The methods in this section are motivated from a desire to preserves the distri-
butional qualities in the data. For inference, this would be parameter values of
a distribution and their variance and covariance.

5.1 Single imputation using conditional distributions

Single imputation is the building block of MI, and many of its deficiencies are
corrected for when expanded to MI. It can be done in a variety of ways, but
the most straightforward and easy to understand is the following: create a
joint posterior distribution of your missing data given your observed data, i.e.
f(Y m|Y o,M). Draw from this distribution to fill in your dataset, then perform
your desired analysis. How you specify the missing data model can determine
the efficacy of this method, but it is otherwise uncomplicated. We will therefore
focus the majority of our analysis on the MI case.
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5.2 Multiple imputation

One sizeable weakness of the earlier imputation methods is that they use points
as estimates of distributions. Hence, subsequent measures of precision are bi-
ased downwards. Multiple imputation solves this problem by creating multiple
imputed datasets drawn from f(Y m|Y o,M), running the desired analysis proce-
dure on each, and then combining the results. This preserves the distributional
variation in the missing data, and leads to better variance estimates. It can
be quite computationally expensive, especially for large data sets, but recent
increases in available computation power has made this concern less of an issue.
Many previous objections to MI regarding inference concerned MI using a low
number of imputed datasets M , typically between 5 and 10 [Meng, 1994]. With
larger M and careful combining of the resulting analyses, one can achieve strong
results in a large number of situations, see [Xie and Meng, 2017]), [Meng, 1994],
[Rubin, 1996], and [Madley-Dowd et al., 2019].

Multiple imputation can be thought of as three distinct steps:

1. M imputed datasets are generated through repeated random draws from
the predictive distribution of the missing values, f(Y m|Y o,M), under a
particular model for missingness.

2. The intended analysis is performed separately on all M datasets

3. The results of the analysis are combined using Rubin’s or Meng’s rules
(which we will describe shortly) to create a single MI result.

It should be noted that even though there is no strict mathematical proof that
MI yields valid inference in the case of finite M , the empirical evidence in
the literature so far referenced presents a strong case that MI is a useful tool.
Comparing it to the other methods available, one finds that alternatives are on
the whole less effective.

5.2.1 Specifying the imputation model

To create an accurate model for the missing data, we often want to include
as many covariates as possible. Madley-Dowd et al. [2019] have shown that
even mildly correlated auxiliary variables can improve subsequent inference.
By auxiliary, variables we mean variables not included in the analysis model.
For example, imagine we have data on 1000 people’s age, height, and weight.
Suppose we wish to find the relationship between age and weight, but we are
missing some of the weight data. Since height is correlated with weight, i.e.
it contains some information about the distribution of weight, it makes sense
to include it in our imputation model, despite not using it in our analysis.
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This leads us to make repeated random draws from f(Y m|Y o,M,A), where A
represents auxiliary variables. Whether or not to include auxialiary variables
can be either a cause and a cure for uncongeniality depending on the situation.
Meng [1994] cautions against the use of less general imputation models (e.g.
ignoring covariates/auxiliary variables).

5.2.2 Rubin’s rules

At step 2 of MI, we have M sets of parameter estimates and their variances:
θ̂i, ˆV ari, i = 0, ...,M . The next step is to combine these into a single estimate.
Under congeniality, Rubin’s combining rules suffice for giving us statistically
valid estimates [Meng, 1994]. The parameter estimate is simply the average

θ̄ =
1

M

M∑
i=0

θ̂i

and the variance associated with θ̄ is given by

T = V ar + (1 +
1

M
B) (*)

where

V ar =
1

M

M∑
i=0

ˆV ari

measures the within imputation variability and

B =
1

M − 1

M∑
i=0

(θ̂i − θ̄)(θ̂i − θ̄)T

measures the between imputation variability. The adjustment (1 + 1
MB) in

equation (∗) is due to the finite number of imputations. If we let M →∞ then
we achieve asymptotic equality to the true variance estimate.

Xia and Meng [2017] state that “When the imputation model class and
the (embedded) analyst’s model class differ, the behavior of Rubin’s rules be-
comes very complicated, capable of producing inconsistent variance estimators,
a matter that has received recurrent criticisms”. They argue that in the uncon-
genial case, which is often the rule rather than the exception, doubling Rubin’s
variance measure will never underestimate the true variance. This holds for
any degree of uncongeniality, and provides a surprisingly simple solution to the
problem of uncongeniality. For univariate data, Xia and Meng [2017] suggest

replacing T with T̃ = (
√
V ar +

√
B)2 + 1

MB. These methods may be viewed
as highly conservative, but in the context of MI where uncongeniality between
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analysts and imputer is unknown and potentially large, it pays to be as insured
as possible against invalid inference. However, even if these methods are not
used and the models are uncongenial, we note that Meng [1994] has shown that
MI is still superior to CCA.

5.2.3 Potential pitfalls and criticism

The following arguments apply for imputation in general, but we will consider
them in the context of MI. When there is missing data in several variables of
different types, for example continuous and binary, and there exists hierarchical
structure in the data, specifying the imputation model can be quite difficult. A
solution to the problem is using chained equations, where one has a univariate
model for each variable with missing data and iteratively draws from this. De-
spite good empirical results, this method lacks the theoretical justification of
drawing from a fully specified conditional distribution [Little and Rubin, 2019],
and so is at best a partial solution. Another danger is that improper specifi-
cation of the imputation model can cause uncongeniality and so one needs to
exercise care when using MI. Finally, imputation procedures based on draw-
ing from conditional distributions tend to assume that these distributions are
normal. In certain cases this requires us to transform the data.

Taking all this into account, it is important to see MI in the context
of the options available to someone working with data. As we have established
earlier, simply ignoring missing data can lead to serious biases, while alternative
methods tend to negatively effect estimates and/or their variance. Since there
is no option to “do nothing”, MI presents itself as a useful way of dealing with
missing data.

6 Experiments

6.1 MICE

We have chosen to use the MICE package for R [van Buuren and Groothuis-Oudshoorn, 2011]
for our experiments. There are two main reasons for this. One is the perfor-
mance: MICE is able to deal with the complex scenario of mixed variable types
as described earlier. MICE functions by drawing from univariate conditional
distributions for all the variables with missing data, i.e for a variable Yi we
draw from the predictive distribution p(yi|y0, ...yj), i 6= j for each i in an
iterative process. This solves the problem of complex data mentioned earlier,
and despite the lack of theoretical justification, its performance is compara-
ble to the fully specified conditional distribution approach [Lee and Carlin, ],
[Little and Rubin, 2019].
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6.2 Synthetic example

In this section we will provide a simple experiment to explore the efficacy of MI.
We will look at a simple linear regression with a single covariate defined by the
model Yi = β0 + β1xi + ε, ε ∼ N(0, 1) i ∈ (0, ..., n). Missingness will be
simulated in both X and Y . Data was generated by drawing from a bivariate
normal distribution

[Y X] ∼ N(

[
0
0

]
,

[
1 0.8

0.8 1

]
)

The true regression coefficient is then β1 = 0.8. In our experiment we draw
1000 data points from this distribution. MCAR was simulated by removing
the first p values in the data set. MAR was simulated using the logit function
where the probability of an observation being missing was equal to 1

1+e−(Y+α)

when simulating missingness in X, and 1
1+e−(X+α) when simulating missingness

in Y . α was chosen such that we achieved the desired percentage of missing
data. MNAR was simulated using the same logit function, but in this case the
probability of Y missing was dependent on Y . The number of imputations M
was set to 20. We will look at the following metrics to evaluate the performance
of MI:

1. Size of the confidence interval of β1

2. Coverage of the confidence interval

3. Bias

We will compare the performance of MI to an equivalent analysis per-
formed with CCA for reference. Our experiment was then conducted in the
following manner:

1. Draw 1000 observations from the distributions of [Y X]

2. Simulate 5, 10, 20, 40, 60, 80, and 90 percent missingness under different
missingness mechanisms.

3. Create linear models for each of these 7 datasets based on CCA and MI

4. Repeat 1000 times

5. Evaluate the results based on the above metrics.

13



6.2.1 MCAR

(a) β1 estimate with CCA (b) β1 estimate with MI

(c) Coverage (d) Average CI size (e) Average bias

Figure 1: Average results for MCAR missingness in Y over 1000 repetitions of the
analysis procedure described in 6.2.

Looking first at the β1 estimates and their confidence intervals, we see that
there is little difference between the methods other than the confidence interval
of CCA growing at a much faster pace than that of MI as missingness increases.
Next we observe that Bias is lower for MI at low missingness, while higher
at high missingness. Additionally, coverage decreases substantially for MI as
missingness increases.

Overall it seems like MI provides some benefit over CCA in a low miss-
ingness scenario, while CCA seems superior otherwise. The poor performance
of MI at higher amounts of missingness suggests an instability in the imple-
mentation, whether in MICE or the supplementary code. Another possibility is
that at 90 percent missingness our estimates for the conditional distribution of
Y become too inaccurate.
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6.2.2 MAR

(a) β1 estimate with CCA (b) β1 estimate with MI

(c) Coverage (d) Average CI size (e) Average bias

Figure 2: Average results for MAR missingness in X over 1000 repetitions of the
analysis procedure described in 6.2.

For missingness in X we find that MI provides substantial benefits in reduc-
ing bias and increasing coverage while at the same time reducing the size of
confidence intervals. This is in line with earlier theory and results described in
literature.
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(a) β1 estimate with CCA (b) β1 estimate with MI

(c) Coverage (d) Average CI size (e) Average bias

Figure 3: Average results for MAR missingness in Y over 1000 repetitions of the
analysis procedure described in 6.2.

In contrast to missingness in X, we do not find any benefits from using
MI when missingness is in Y . In fact, we observe that CCA outperforms MI
on all of our metrics. The strong performance of CCA on its own is surprising,
and suggests that the data is MCAR rather than MAR despite use of the logit
function to remove data.
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6.2.3 MNAR

(a) β1 estimate with CCA (b) β1 estimate with MI

(c) Coverage (d) Average CI size (e) Average bias

Figure 4: Average results for MNAR missingness in Y over 1000 repetitions of the
analysis procedure described in 6.2.

We observe that both methods have a similar performance until they reach
60 percent missingness where their performance drastically diverges. Under
MNAR, without specifying the missingness mechanism in the imputation model
there is a high chance that it will be uncongenial with the analysis model. If this
is the case, then this would go some way in explaining the poor performance of
MI at hgih missingness.

6.3 Should we use multiple imputation?

Overall MI has shown quite poor performance in our experiments. Theory
suggests that CCA should at best equal the performance of MI, and only in
the MCAR scenario. We see from our experiments that multiple imputation
loses some of its efficacy at extremely high levels of missingness. However, the
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research of Madley-Dowd et. al. [2019] suggest otherwise, showing that MI can
yield large benefits for bias and standard error even at high missingness levels.
Madley-Dowd et. al. make use of auxiliary covariates, and so it is plausible that
this has an impact on the performance of MI relative to our experiment. Given
the vast amount of theory and experimental results on this topic, some of which
has been cited in this thesis, the likely scenario is that the implementation has
skewed the results.

7 Conclusion and further work

This thesis has shown that missing data is an important consideration in data
analysis by the effect it has on inference. The mechanism behind missing data
is key to addressing it, and this thesis has characterised three possible such
mechanisms. Imputation has been established as a statistically valid technique
for addressing missing data. Various common and intuitive imputation methods
such as Complete Case Analysis and Mean Imputation have been evaluated, with
Multiple Imputation found to be the superior method. Theory and literature
suggest strong benefits from using MI, however, this was not fully borne out
in our own experiments. Nonetheless, the substantial amount of literature in
favour of MI suggests that our experimental results were due to an error in
implementation rather than an error with the method. Further study will be
needed to verify this.

Possible future investigations could be made into the effect of MI on
prediction and classification, especially in the context of machine learning mod-
els. Another interesting avenue of exploration is replacing the conditional dis-
tributions with other modeling tools such as trees or neural networks. Perhaps
the messy nature of much of modern data will make the underlying assumptions
of conditional distributions untenable.
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