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1 Introduction

The goal of this text is to prove Wedderburn’s little theorem. The theorem
states that all finite integral domains are finite fields, also called galois fields.
The outline of this text is as follows. We start by stating some of the basic
definitions from algebra. Then we will prove that finite integral domains are
division rings. After that we break down the important theorems about finite
fields. We also look at two different types of functions on finite fields called
automorphisms and norms. From there we can prove that finite division rings
are fields.

This text assumes that you are familiar with basic group theory. This would
include the study of groups, cyclic groups, subgroups and factor groups. As well
as Cauchy’s theorem, the fundamental theorem of group homomorpisms and the
fundamental theorem of ring homomorphisms. You should also be familiar with
polynomial rings, snd what their ideals are. [1]

Our definitions and theorems mentioned above are from the textbook Basic
Abstract Algebra. This is why some of the definitions here are different than
what you may be used to. For instance a ring does not need unity, and integral
domains need not be commutative. Many of the proofs are based in the article
”A Group-Theoretic Proof of a Theorem of Maclagan-Wedderburn” by Hans J.
Zassenhaus. [2]

I would like to thank Steffen Oppermann for giving me valuable feedback.
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2 Definitions in Algebra

We will start this text by giving the definitions of groups, rings, integral domains
and fields.

Definition 1. A set G equipped with a binary operation ∗ is called a group, if
∀x, y, z ∈ G the following properties hold:

1. (x ∗ y) ∗ z = x ∗ (y ∗ z)

2. ∃e ∈ G s.t. e ∗ x = x = x ∗ e

3. ∀x ∈ G there exists a corresponding x−1 s.t. x ∗ x−1 = x−1 ∗ x = e

e is called the identity of G, and x−1 is called the inverse of x. If we also
have the additional property x ∗ y = y ∗ x, then we say that G is an abelian
group. We often call the group (G, ∗).

Definition 2. A set R equipped with the two binary operations + and · is called
a ring if (R,+) is an abelian group, and if ∀x, y, z ∈ R the following properties
hold:

1. (x · y) · z = x · (y · z)

2. x · (y + z) = (x · y) + (x · z)

3. (x+ y) · z = (x · z) + (y · z)

If ∃1 ∈ R s.t. 1 · x = x = x · 1, then R is called a ring with unity. If
x · y = y · x, then R is called a commutative ring. The additive identity in R
is called 0, and the additive inverse of x is denoted −x.

Definition 3. A ring R is called an integral domain if for all x, y ∈ R, x ·y =
0 =⇒ either x = 0 or y = 0.

Definition 4. A ring R is called a division ring if (R\{0}, ·) is a group.
Furthermore, if it is an abelian group, then R is also a field.

It follows immediately from the definition of a field that every field is a
division ring. The converse is not the case. The quaternions are an example of
a division ring that is not a field. We will finish this section by showing that all
division rings are integral domains.

Theorem 1. Every division ring R is an integral domain.

Proof. If we assume that x · y = 0 for some x, y ∈ R. We want to show that
either x = 0 or y = 0. We have that either x = 0 or x 6= 0. The first case
immediately proves our assertion. If x 6= 0, then x has a multiplicative inverse,
since R is a division ring. If we multiply with the inverse from the left we obtain
y = 0, which is what we wanted to show.

The converse of this theorem is not true. The set of integers (Z,+, ·) is an
example of an integral domain that is not a division ring.
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3 Integral Domains

In the last section we discussed the relationship between integral domains, di-
vision rings and fields. We showed that R is a field =⇒ R is a division ring
=⇒ R is an integral domain. We also found examples that demonstrate that
the converse is not always the case.

One can easily see the relation between division rings and fields. Fields
are simply division rings where multiplication is commutative. The relation
between integral domains and division rings is not as obvious, but nonetheless
very important. The cancellation law applies to integral domains, which is a
property often used in elementary algebra.

Theorem 2. Let R be an integral domain. For x, y, z ∈ R where x 6= 0 and
x · y = x · z, we have that y = z.

Proof. The equation x · y = x · z can be changed to x · (y − z) = 0. Since R is
an integral domain y − z = 0, which means that y = z.

The proof that y · x = z · x implies z = y the same.
The contra-positive of the cancellation laws is that if x 6= 0, then y 6= z =⇒

x · y 6= x · z and y · x 6= z · x. This way of writing the cancellation laws is useful
for proving that finite integral domains are division rings.

Theorem 3. Every finite integral domain is a division ring.

Proof. Let R be a finite integral domain. What we want to show is that ∃1 ∈ R
s.t. 1 · x = x = x · 1,∀x ∈ R, and that ∀x ∈ R,∃x−1 s.t. x−1 · x = x · x−1 = 1.

Let |R| = n. R can be rewritten as {r1, r2, . . . , rn}, where ri 6= rj if i 6= j.
Let x ∈ R, then by the cancellation law (or rather the contrapositive) {x ·
r1, x · r2, . . . , x · rn} and {r1 · x, r2 · x, . . . , rn · x} are equal to R, since both
sets have n different elements from R. This means that for some ri, rj we
have that ri · x = x = x · rj . ∀y ∈ R,∃rk s.t. y = x · rk. This means that
ri · y = ri · x · rk = x · rk = y. A similar argument shows that ∀z ∈ R, z · rj = z.
ri fixes all elements from the left, and rj fixes all elements from the right. If we
apply this to ri · rj , we see that ri = ri · rj = rj , which means that ri = 1.

Now we are going to prove the existence of an inverse for any nonzero x ∈ R.
We are going to look at R the same way as the first part of the proof. R is the
same as {x ·r1, x ·r2, . . . , x ·rn} and {r1 ·x, r2 ·x, . . . , rn ·x}. For some rl and rm,
rl · x = 1 = x · rm. These are respectively left and right inverses of x. However,
rl = rl · 1 = rl · x · rm = 1 · rm = rm, meaning that rl = x−1.

Since division rings and and fields seem more similar than integral domains
and division rings, one may assume that proving that finite division rings are
fields should be easy. But as we are about to see, the second part of Wedder-
burn’s little theorem is far more involved.
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4 Finite Fields

In this section we are going to look at the structure of finite division rings
and finite fields. We are going to look at finite division rings in general to
demonstrate that much of what applies to finite fields apply to finite division
rings. In fact, they have very similar structures.

The first thing we are going to look at is the characteristic of such rings.

Definition 5. Let R be a ring. The characteristic of R is the smallest positive
integer n such that n · r = 0 for all r ∈ R.

If no such n exists, we say that R has characteristic 0.

Obviously the ring Z has characteristic 0, and the field of integers modulo a
prime p; Zp has characteristic p. The set Zp is a set of great interest to us. We
are going to use this set as a basis for the finite division rings. Also keep in mind
that it is impossible for a ring to have characteristic 1, unless it is the trivial
ring 0, which is not a field. Another thing to note is that the characteristic is
unique.

It should be noted, that we are denoting the unity of a ring as 1. The
notation n · r can be used in rings that do not have unity, in those instances
it means adding r with itself n times. in rings that have unity an integer n
simply means the sum of the unity with itself n times, which is an element of
the ring. Multiplying an r with this n gives an identical result adding r with
itself n times. In a ring with unity, a characteristic is a zero of the ring, since
it has identical properties, and smaller numbers are non-zero, since there are
elements that they can be multiplied with to produce a non-zero element.

Theorem 4. Any division ring F has either characteristic 0 or characteristic p,
Where p is some prime. Furthermore, if F is finite, then it is of characteristic
p.

Proof. We know that F has characteristic 0, a prime or a composite number.
We are going to demonstrate that it is not a composite. Let us assume that F
has characteristic n = a · b where a, b 6= 1. ∀x ∈ F , a · b · x = 0. Since n is
the characteristic a 6= 0, and therefore has an inverse. We multiply with the
inverse from the left and obtain b · x = 0. This means that b also has the same
property as n. If a composite has the same property of a characteristic, then
some non-unit factor of that composite has that property. Meaning that it is
impossible for a division ring to have a composite characteristic, proving the
first part of the theorem.

If we assume that F is finite, then (F,+) is a finite group. By Fermat’s
theorem on groups |F | ·x = 0. This means that it has a non-zero characteristic.
Finite division rings have a prime characteristic.

Theorem 5. A finite division ring F is of order pr, where p is it’s characteristic
and r is some positive integer.

Proof. In order to prove this, we are going to demonstrate that no prime outside
of p divides the order of F . Let q 6= p be a prime that divides |F |. If we
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apply Cauchy’s theorem to (F,+), then for some non-zero x ∈ F, q · x = 0.
From number theory we know that gcd(p, q) = 1, and therefore some linear
combination of these over Z can produce 1. That is for some a, b ∈ Z, a·p+b·q =
1. We can use this to show that 0 = p·x = q ·x = a·p·x+b·q ·x = (a·p+b·q)·x =
1 · x = x. Which means that for no non-zero x does q · x = 0. q | |F | gives
us a contradiction. This means that p is the only prime that divides F . r is
positive, since if it were zero then F would be the trivial ring, which it is not.
|F | = pr

What this theorem shows is that for a non-zero x ∈ F, {x, 2 · x, . . . , p · x}
are distinct elements, p · x of course being 0. Any integer n multiplied with x is
one of those elements. If we choose x = 1, then we get {1, 2, . . . , p}. This set is
closed under multiplication. This set is isomorphic Zp and is a field contained
in F . For simplicity we will say that Zp is a subfield of F instead of saying that
it has a subfield isomorphic to Zp.

Definition 6. Let E and F be fields. If F is contained in E then F is called a
subfield of E, and E is called an extension field of F.

We are now going to look at one final theorem to illustrate the structure of
finite division rings.

Theorem 6. Let F be a division ring of order pr, where p is its characteristic.
F is a vector space over Zp of dimension r. One consequence of this is; (F,+) '
Zr
p.

Proof. To prove this, we are going to find a basis for F . We find this basis via in-
duction. Set b1 = 1. Let us then assume we have a set of linearly independent el-
ements {b1, b2, . . . , bk} over Zp. Since they are linearly independent each element
in the span of this basis is a unique combination. |Span{b1, b2, . . . , bk}| = pk.
This includes 0, meaning that 0 can only be expressed if all the terms are 0. If
k < r we can choose a bk+1 not in the span. The set {b1, b2, . . . , bk, bk+1} is lin-
early independent. This is the case because if z1 ·b1+z2 ·b2+ · · ·+zk+1 ·bk+1 = 0
then zk+1 = 0, if it does not, then

bk+1 = −z−1k+1 · z1 · b1 − z
−1
k+1 · z2 · b2 − · · · − z

−1
k+1 · zk · bk,

which is a contradiction since bk+1 is not in the span of the k first basis elements.
This means that

z1 · b1 + z2 · b2 + · · ·+ zk · bk = 0,

implying that z1 = z2 = · · · = zk = xk+1 = 0. The set {b1, b2, . . . , bk, bk+1} is
linearly independent.

If we repeat this process up to r we have a basis which spans pr elements
from F . Span{b1, b2, . . . , br} = F .

From this point on we are going to be analysing finite fields in particular. We
are going to assume that multiplication is commutative. Previously we stated
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that if |F | = pr then Zp is a subfield of F, and F is an extension field of Zp.
We are going to introduce a particular type of extension field called a splitting
field.

Definition 7. Let F be a field, and E an extension field of F. E is called a
splitting field of a polynomial f(x) ∈ F [x] over F if f(x) = (x − a1)(x −
a2) · · · (x− an), where a1, a2, . . . , an ∈ E, and E is the field generated by F and
a1, a2, . . . , an.

C is a splitting field of x2 + 1 over R. And {a+ b
√

3 | a, b ∈ Q} is a splitting
field of x2 − 3 over Q.

If R is a ring, we denote R∗ as the group of invertible elements in R using
multiplication. By the definition of a field F ∗ = (F\{0}, ·) and is an abelian
group. From now on we denote |F | = pr = q. Fermat’s theorem on groups show
us that for any x ∈ F ∗, xq−1 = 1. Multiplying with x we obtain xq = x. This
equation also holds true for 0. The polynomial xq − x has q distinct zeros in F .
Therefore xq − x = (x− a1)(x− a2) · · · (x− aq) where F = {a1, a2, . . . , aq}. F
is then a splitting field of xq − x over Zp.

Any factorization of xq − x = (x− b1)(x− b2) · · · (x− bq) where each bi ∈ F
is in fact the same factorization as the one using each element in F .

To show this we want to use a famous formula from algebra.

Theorem 7. Let R be a commutative ring of characteristic c. For any number

of elements in R. (

n∑
i=1

ri)
c =

n∑
i=1

rci . This equation is sometimes called the

freshman’s dream.

Proof. Since R is commutative, we can use the binomial formula on (r1+

n∑
i=2

ri)
c.

We obtain

(r1 +

n∑
i=2

ri)
c =

c∑
j=0

(
c

j

)
rc−j1 (

n∑
i=2

ri)
c

Looking at
(
c
j

)
= c!

j!(c−j)! , one can see that c |
(
c
j

)
when 0 < j < c. When this is

the case
(
c
j

)
r = 0 for all r in R. When j = c or j = 0,

(
c
j

)
= 1.

(r1 +

n∑
i=2

ri)
c =

c∑
j=0

(
c

j

)
rc−j1 (

n∑
i=2

ri)
c = rc1 + (

n∑
i=2

ri)
c

If you apply the binomial formula n times you get

(

n∑
i=1

ri)
c =

n∑
i=1

rci
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This formula can be expanded to saying that

(

n∑
i=1

ri)
(cd) =

n∑
i=1

r
(cd)
i

by applying the freshman’s dream d times. This expansion of the freshman’s
dream is going to be used to proving:

Theorem 8. q = pr. Let F be a field of characteristic p and let F split over
the polynomial xq−x such that (x−a1)(x−a2) · · · (x−aq) = xq−x ∈ Zp where
each ai ∈ F . Then {a1, a2, . . . , aq} is a subfield of F of order q.

Proof. Firstly we want to show that the sum and product of zeros of xq −x are
also zeros. let a and b be two zeros. (a+ b)q − (a+ b) = aq + bq − a− b = 0 and
(ab)q − ab = aqbq − ab = ab − ab = 0. The identity in F is also a zero, and if
aq = a, then by multiplying with a−1 q+1 times we obtain a−1 = a−q = (a−1)q.
The inverse of zeros are also zeros. The zeros of xq − x are therefore a subfield
of F .

We are going to show that (x− ai)2 does not divide xq −x. aqi = ai. By the
freshman’s dream means that xq −x = xq −x−aqi +ai = (xq −aqi )− (x−ai) =
(x − ai)q − (x − ai) = (x − ai)((x − ai)q−1 − 1). Obviously ai is not a zero in
(x − ai)q−1 − 1. ai is a zero of multiplicity 1. This means that all of the zeros
are unique, that is |{a1, a2, . . . , aq}| = q.

This theorem only states that if a field of characteristic p has q zeros over
xq−x, that the zeros are a field. The theorem does not state that the ploynomial
has zeros. What the theorem does tell us however is that the splitting field of
xq − x ∈ Zp[x] is a field of q elements, and that a field of q elements is the
splitting field of xq −x. That is |Zp(a1, a2, . . . , aq)| = q. Our next theorem tells
us that any irreducible polynomial ofer a field has an extension such that the
polynomial has a zero.

Theorem 9. Let F be a field for any irreducible polynomial p(x) ∈ F [x] there
exists some extension of F such that it has a zero in p(x).

Proof. If p(x) is irreducible then (p(x)) is a maximal ideal in F [x]. Which
means that F [x]/(p(x)) is a field. It can be regarded as an extension field of F
as elements of F are the constant polynomials.

We want to show that x is a zero of p(x). Remember that x is the coset of x,
that is two elements x and y are in the same coset if and only if x− y ∈ (p(x)).
What this means is that (̄x) = x+ 〈p(x)〉. Where 〈p(x)〉 denotes an element of
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(p(x)).

p(x) =

n∑
i=0

aix
i =

n∑
i=0

ai(x+ 〈p(x)〉)i =

n∑
i=0

(aix+ 〈p(x)〉)(x+ 〈p(x)〉)i−1 =

n∑
i=1

(aix)(x)i−1 =

n∑
i=0

(aix)i =

n∑
i=0

(aix)i =

n∑
i=0

(aix)i = p(x) = 0

Thus we have an extension field where p(x) has a zero. This can be used
tho show that for every field F and all p(x) ∈ F [x] there is some extension of

F where p(x) factors into elements (x − a). p(x) =

n∏
i=1

pi(x), where pi(x) are

irreducible polynomials. Using the algorithm described in theorem 9 you can
find an find an irreducible polynomial of degree two or greater. Find the quotient
ring of the ideal generated by that polynomial. If you then factor again you get

p(x) =

m∏
i=1

ri(x) a different set of irreducible polynomials, but this time m > n

as you have at least one more zero. You can do this until p(x) =

q∏
i=1

(x − ai)

where all ai are contained in some extension of F . Let us call this extenison E.
If F has characteristic p then for any a ∈ E, pa = (p · 1)a = 0. Meaning that
any extension preserves the characteristic.

If we extend Zp so that we can factor x(p
r) − x into pr zeros, we get a field

of pr elements by one of our theorems. This means that for any prime p and
positive integer r there is a field of pr elements.

Definition 8. A monic polynomial is a ploynomal of the form xn+an−1x
n−1+

· · ·+a1x+a0. Let E be an extension field of the field F . The monic polynomial
of smallest degree such that a is a zero of that polynomial is called the minimal
polynomial of a.

What we want to demonstrate now is that two different splitting fields of a
polynomial in F [x] are isomorphic to each other. We are going to use that if a
and b are zeros of an irreducible polynomial p(x) ∈ F [x], then F (a) ' F (b).

Let φa : F [x] → F (a) be the evaluation homomorphism φa(f(x)) = f(a).
Since ker(φa) = (g(x)) for some polynomial, we have that p(x) = g(x)h(x) since
p(x) ∈ (g(x)). However, p(x) is irreducible, therefore (p(x)) = (g(x)) = ker(φa).
This means that any polynomial of which a is a zero, it is contained in (p(x)).
By the fundamental theorem of ring homomorphisms F [x]/(p(x)) ' φa[F [x]].
Obviously F (a) ⊆ φa[F [x]], also φa(x) = a and φa[F ] = F . Which means that
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φa[F [x]] = F (a). One can apply φb on F [x] to get that

F (b) ' φb[F [x]] ' F [x]/(p(x)) ' φa[F [x]] = F (a)

It should also be noted that the isomorphism represented here leaves F
invariant, since φa and φb map elements of F to the same element. In general
we know that if there exists some onto isomorphism φ : E1 → E2 where E1 and
E2 are extension fields that leave F invariant. Then a polynomial in F [x] is
irrducible in E1 if and only if it is irreducible in E2. If g(x) ∈ F [x] has a zero
in E2, say a, we know that

g(φ(a)) = anφ(a)n + · · ·+ a1φ(a) + a0

= φ(ana
n) + · · ·+ φ(a1a) + φ(a0)

= φ(ana
n + · · ·+ a1a+ a0)

= φ(g(a))

= 0

With this out of the way we are ready to show that splitting fields are unique
up to isomorphism.

Theorem 10. Let F (a1, a2, . . . , an) and F (b1, b2, . . . , bn) be two diferent split-
ting fields of a polynomial p(x) ∈ F [x] of degree n, then F (a1, a2, . . . , an) '
F (b1, b2, . . . , bn).

Proof. Recall that (x− a1)(x− a2), · · · (x− an) and (x− b1)(x− b2), · · · (x− bn)
are two different ways to factorize p(x). Let p(x) be the minimal polynomial of
a1. Let bi1 ∈ F (b1, b2, . . . , bn) be one of the zeros of p(x). We get that

F (a1) ' F (bi1)

We choose the lowest j such that aj is not in F (a1) = F (a1, . . . aj−1). Let
bi2 ∈ F (b1, b2, . . . , bn) be a zero of the minimal polynomial of aj , this can be
used to show that

F (a1, . . . aj−1)(aj) = F (a1, . . . , aj) ' F (bi1)(bi2) = F (bi1 , bi2)

We can repeat this process until we get that

F (a1, a2, . . . , an) ' F (F (bi1 , bi2 , . . . , bik) ⊆ F (b1, b2, . . . , bn)

We have an isomorphism φ : F (a1, a2, . . . , an) → F (bi1 , bi2 , . . . , bik) that
leaves F invariant. This means that p(x) cannot be factored into irreducible
polynomials of degree two or higher in F (bi1 , bi2 , . . . , bik) since it can not be
factored like that in F (a1, a2, . . . , an). This means that F (bi1 , bi2 , . . . , bik) ⊆
F (b1, b2, . . . , bn) is a splitting field of p(x) over F . We can therefore conclude
that F (bi1 , bi2 , . . . , bik) = F (b1, b2, . . . , bn). Which proves our theorem.

The next thing we want to show about finite fields is that they are cyclical,
that is F ∗ = {a1, a2, . . . , a|F∗|} for some a ∈ F ∗. We write this as F ∗ = 〈a〉. To
prove this, we want to use a theorem from group theory.
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Theorem 11. Let G be an abelian group. Let a, b ∈ G be elements of order m
and n respectively. Then there exists some x ∈ G such that the order of x is
lcm(m,n).

Proof. Let us assume that m and n are relatively prime. We want to show that
the order of x = a · b is lcm(m,n) = l. Since m | l and n | l, xl = albl = e. Let
k be the order of x, which means that k | l. Let b−1 = c.

akbk = e

ak = b−k

ak = (b−1)k

ak = ck

c is also of order n. l is the smallest positive integer such that al = e = cl. This
is the case since ai = e ⇔ m | i and bj = e ⇔ n | j, and lcm(m,n) is defined
as the smallest number such that both m and n divide. If some power of (ak)
is the identity, then the same power of ck is the identity. The same is true the
other way around. The order of ak is therefore the same as the order of ck. We
call this number o. (ak)m = akm = (am)k = e, you can do the same using b
and n, which means that o | m as well as o | n. o | gcd(m,n) = 1, then o = 1,
which means that k = l. Which means that l is the smallest number such that
(ab)l = e.

We can write

lcm(m,n) =

t∏
i=1

prii ,

where pi are distinct primes and ri are positive integers. In the case where m
and n are not relatively prime, we need only find t elements whose order are
prii = qi. This can be done since either m or n are divided by qi. If it is m then

a
m
qi is an element of order qi, if it is n then b

n
qi has order qi. We can therefore

find elements whose order are {q1, q2, . . . , qt} all of which are relatively prime.
Thus there exists an element of order lcm(m,n).

With this fact established we can now prove that finite fields are cyclic.

Theorem 12. If F is a finite field, then for some a ∈ F ∗, F ∗ = 〈a〉. F ∗ is
cyclic.

This theorem is proved by finding that some polynomial of order n has at
least n zeros by some result in group theory. n is thus both an upper and a
lower bound. This technique is used in several proofs moving forward.

Proof. |F ∗| = q Let r be the lcm(o(a1), o(a2), . . . , o(aq)) = l where ai are dis-
tinct elements of F ∗. l | q means that l ≤ q. By theorem 11 we can find an
element a ∈ F∗ where o(a) = l. Obviously each element of F ∗ satisfies the
equation xl − 1 = 0. The polynomial xl − 1 has at most l zeros. Since each
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element of F ∗ is a zero q ≤ l. Combining this with l ≤ q. We get that l ≤ q ≤ l
meaning that l = q. a is of order q, meaning that 〈a〉 = F ∗, and is cyclic.

One consequence of this theorem is that F ∗ ' (Zq−1,+).
This theorem is also useful to find the subfields of F . As all finite fields have

order pr, a subfield of F is one of order ps where s ≤ r. The next theorem
demonstrates what the subfields of F are.

Theorem 13. Let F be a field of order pr. S is a subfield of F if and only if
it is the set of zeros of a polynomial x(p

s) − x, where s divides r. This subfield
has order ps. This subfield exists for all divisors of r.

Proof. Firstly we want to show that F has no subfields S of order ps if r = as+b
where 1 ≤ b < s. If this is the case then for all x ∈ S we have x = x(p

r) =
x(p

as+b) = (x(p
as))(p

b) = x(p
b), then the polynomial x(p

b) − x has ps > pb zeros,
which is impossible. We can conclude that s | r. If we have a subfield S of order
ps. Then all elements of S are the zeros of x(p

s) − x.
Let us then assume we fave a divisor s of r such that r = ds. Let g be a

generator of F ∗. Obviously ps ≡ 1 (mod ps − 1). Exponentiating each side d
times we obtain pr ≡ 1 (mod ps−1). This means that there exists some element

h of order ps−1, i.e. the set {h, h2, . . . , h(ps−1), 0} contains ps distinct elements,
all of which are zeros in x(p

s)−x. h therefore generates a subfield of F of order
ps.

We want to summarise all of our results. For any prime p and positive
integer r there exist some field of order pr. This field is the splitting field of
x(p

r) − x over Zp, and is thus unique up to isomorphism. For any s which is a
divisor of r we have a unique subfield of order ps. Also all subfields of a this
field are of order ps where s|r. Since finite fields of a given order are unique up
to isomorphism we denote a field of order pr as GF (pr). It is called the galois
field of order pr. GF (pr) is a vector space over Zp of dimension r, and GF (pr)∗

is cyclic. Therefore (GF (pr),+) ' Zr
p and GF (pr)∗ ' Zpr−1.

12



5 Automorphisms on Galois fields

We are going to categorize all automorphisms on any galois field, then we are
going to use this knowledge to define and discuss norms on galois fields.

Our next theorem shows that the transformation x → x(p
k) is an isomor-

phism (also called an endomorphism) on any field of characteristic p.

Theorem 14. Let F be a field of characteristic p. The transformation πk :

F → F , πk(x) = x(p
k) is an embedding from F into itself. If F is finite it is an

embedding onto itself, making it an automorphism.

Proof. Using the freshmsn’s dream clearly

πk(x+ y) = (x+ y)(p
k) = x(p

k) + y(p
k) = πk(x) + πk(y)

Also

πk(xy) = (xy)(p
k) = x(p

k)y(p
k) = πk(x)πk(y)

Meaning that πk is a homomorphism on F . Since x(p
k) = 0⇔ x = 0, πk is also

an isomorphism.
For the last part, assume that |F | = q, where q is an integer. Because πk is

a bijection, |πk[F ]| = |F | = q. If we have q distinct elements from F , we have
the entire set. πk[F ] = F , making πk an automorphism.

If we look at these automorphisms in regard to GF (pr) = F , we see that
πr(x) = x(p

r) = x. Meaning that πr is the identity on F . Here you can also
use the fact that F ∗ is cyclic to demonstrate that for all k, 1 ≤ k < r, πk is not
the identity. This is the case since for some x ∈ F r is the smallest integer such

that πr(x) = x. This means that πk(x) = x(p
k) 6= x, πk is not the identity.

It seems intuitive that for integers greater than r, we would get that πk =
πk mod r. Let k = ar + b, where a is a is a non-negative integer and b is a
non-negative integer smaller than p. If we assume b > 0

πk(x) = x(p
k) = x(p

ar+b) = x(p
arpb) = (x(p

ar))(p
b) = x(p

b) = πb(x)

In the case where b = 0, πk = πr, which is the identity. This means that the
set {πk | k is a positive integer} = {πk | 1 ≤ k ≤ r}. We denote this set (π1).

With this being the case, we should be able to find an inverse. Let j, k be
positive integers,

πj(πk(x)) = (x(p
k))(p

j) = x(p
k)(pj) = x(p

k+j) = πk+j(x).

If 1 ≤ k < r, then there is a an j, such that 1 ≤ j < r and j + k = r.
πj(πk) = πk+j = πr for the non-identity elements in (π1). πj is the inverse of
πk. This combined with the existence of an identity and exponentiation being

13



associative means that this set of automorphims is an abelian group (π1). The
mapping πk → k mod r is clearly an isomorphism from (πi) onto (Zr,+).

Let us look at how these automorphisms map elements of subfields of F . Let
GF (ps) be a subfield of F . As we established in the last section r = d · s for
some positive integer d. πs leaves each element of GF (ps) invariant, meaning
that πs(x) = x for all x ∈ GF (ps). The same is also the case for all πas when
a is a positive integer. s is also the smallest integer such that πs leaves each
element of GF (ps) invariant as previously discussed. Let k = as+ b where b is

an integer and 0 ≤ b < s. x = πk(x) = πb(x) = x(p
b). If this were the case, the

the polynomial x(p
b)− x would have at least ps > pb zeros, which is impossible.

〈πs〉 is a subgroup of (π1) of order d. Using the same isomprphism described
earlier, it is isomorphic to the subgroup 〈s〉 of (Z,+).

The next theorem shows that this is the complete picture in regards to
automorphisms on F .

Theorem 15. Let φ be an automorphism on a galois field GF (pr), then φ ∈
(π1).

Proof. If φ(x) = x and φ(y) = y, then φ(xy) = φ(x)φ(y) = xy and φ(x + y) =
φ(x)+φ(y) = x+y. Any automorphism preserves zero and unity, meaning that
it is left invariant, also φ(e) = φ(xx−1) = φ(x)φ(x−1) = xφ(x−1), multiplying
both sides with x−1 we get φ(x−1) = x−1. Also 0 = φ(0) = φ(x − x) =
φ(x) + φ(−x), if we subtract with φ(x), it is clear that φ(−x) = −φ(x) = −x.
The set of elements left invariant by φ is thus a subfield of GF (pr). It can
therefore be written as GF (ps), for some s where r = ds.

If φ is the identity of GF (pr), then φ = πr, which would be an exponentia-
tion. We assume there exists some a that is not left invariant φ. Let us look at
the polynomial

f(x) =

d∏
i=1

(x− πis(a))

If we apply πs to each of the coefficients in f(x), then

d∏
i=1

(x− πs(πis(a))) =
d∏

i=1

(x− π(i+1)s(a)) =

(x− πr+s)

d∏
i=2

(x− πis(a)) =

d∏
i=1

(x− πis(a)) = f(x)

This means that all of the coefficients of f(x) lie in GF (ps). If we apply φ
to all of the coefficients of f(x) we get

d∏
i=1

(x− φ(πis(a))) = f(x)

14



since all of the coefficients lie in GF (ps), and are thus left invariant by φ. The
last of the terms is (x−φ(πr(a)) = (x−φ(a)). This term must equal another of
the terms in f(x). Let us say that it is the jth term, i.e. (x−φ(a)) = (x−πjs(a)),
meaning φ(a) = πjs(a). Applying the inverse of πjs we get π−1js (φ(a)) = a. Thus

the function π−1js (φ) leaves a invariant. It also leaves GF (ps) invariant, as it is

the composite of two functions that leave it invariant. If π−1js (φ) does not leave
GF (pr) invariant, then we set πjs = πk1

and repeat this same process by finding
a b that πk1

(φ) does not leave invariant. We repeat this process n − 1 times
until we get a function

π−1kn
(π−1kn−1

(. . . π−1k1
(φ) . . . ))

that leaves GF (pr) invariant. Then for any x ∈ GF (pr)

π−1kn
(π−1kn−1

(. . . π−1k1
(φ(x)) . . . )) = x

φ(x) = π1(πk2
(. . . πkn

(x) . . . ))

This means that φ is a composite of automorphisms from (π1), and thus φ ∈
(π1).

What we have now demonstrated is that the group of automorphisms of F
is isomorphic to (Zr,+). Generally, for a field F and a subfield S, the group of
automorphisms of F that leave S invariant is denoted G(F/S).

Theorem 16. Let F = GF (pr), then there exists a 1−1 correspondence between
the subfields of F and the subgroups of the group of automorphism of F (π1).
The correspondence is given by GF (ps)→ (πs).

Proof. Let GF (ps) = S be a subfield of F , we know that each automorphism
that leaves S fixed is of the form πsi. These automorphisms are genreated by
πs, and the thus the subgroup (πs) is the group of automorphisms that leave S
fixed.

Since (π1) ' (Zr,+) any subgroup of (π1) is of the form (πj). It can be
instead be generated by πlcm(j,r), and is thus mapped the subgroup of automor-

phims leaving GF (plcm(j,r)) invariant.

This can in fact be shown to be true for many types of field extensions. It
is a special case of the fundamental theorem of galois theory.
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6 Norms of Galois fields

In this section we are going to look at one type of function on a galois field; a
norm.

Definition 9. Let F = GF (pr) be a galois field, and let S = GF (ps) be one
of it’s subfields such that r = ds. For x ∈ F it’s conjugates over S are the
elements πis(x), where πis are automorphisms in G(F/S). The norm of x
over S is the product of the d conjugates over (these need not be unique). We
denote the norm like this like this

NF/S(x) =

d∏
i=1

πis(x)

We can also write the norm like this

NF/S(x) =

d∏
i=1

πis(x) = x(
∑d

i=1 pis) = x(
∑d

i=1 qi) = x((q
d−1)/(q−1)) (1)

If we apply an automorphism in G(F/S) we get

πjs(NF/S(x)) = πjs(

d∏
i=1

πis(x)) =

d∏
i=1

πjs(πis(x)) =

d∏
i=1

π(j+i)s(x) = NF/S(x)

This means that any automorphism in G(F/S) leaves NF/S(x) invariant,
thus NF/S(x) ∈ S. Since a norm is a product of functions that preserve multi-
plication, it itself preserves multiplication. For x, y ∈ F

NF/S(xy) = NF/S(x)NF/S(y)

It should also be noted that the conjugates of z ∈ S are z, meaning

NF/S(z) = zd

What this means is that the norm NF/S is a homomorphism from F ∗ into S∗,
we now show that it is onto.

Theorem 17. Let F = GF (pr) be a galois field, and let S = (GF (ps) be a
subfield of F . Let NF/S(x) be the norm over S. Then ∀z ∈ S, ∃x ∈ F such that
NF/S(x) = z.

Proof. Set q = ps and r = ds. As established earlier, NF/S , F ∗ → F ∗ is a
homomorphism. ker(NF/S) is a normal subgroup of F ∗. By the fundamen-
tal theorem of homomorphisms F ∗/ker(NF/S) ' NF/S [F ∗]. The polynomial

x((q
d−1)/(q−1)) − 1 has at most (qd − 1)/(q − 1) zeros. We are thus presented

with an inequality

|ker(NF/S)| ≤ (qd − 1)/(q − 1)

|ker(NF/S)| ≤ |F ∗|/|S∗|
|S∗| ≤ |F ∗|/|ker(NF/S)|
|S∗| ≤ |NF/S [F ∗]| ≤ |S∗|
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Thus |S∗| = |NF/S [F ∗]|, implying that S∗ = NF/S [F ∗]. The norm of F over S
is an onto mapping.

The last theorem of this section describe what elements in F have 1 as their
norm. It describes the subgroup of F ∗ ker(NF/S).

Theorem 18. Let F be a field of qd elements, and let S be a subfield of q
elements. An element x ∈ F fulfills

x(q
d−1)/(q−1) = 1

if and only if

x = yq−1

for some y ∈ F ∗.

Proof. Let x = yq−1 for some x, y ∈ F . Then x(q
d−1)/(q−1) = y(q

d−1) = 1.
Let us prove the other way. The mapping φ, F ∗ → F ∗, φ(y) = yq−1 is a

homomorphism. We can restate the theorem to φ[F ∗] = ker(NF/S). By the
fundamental theorem of homomorphisms F ∗/ker(φ) ' φ[F ∗]. ker(φ) has at
most q − 1 elements, since the polnomial xq−1 − 1 has at most q − 1 zeros.

|ker(φ)| ≤ q − 1

(qd − 1)/(q − 1) ≤ |F ∗|/|(ker(φ)| = |φ[F ∗]|

The image of φ are all zeros of x(q
d−1)/(q−1) = 1, this polynomial has at most

(qd−1)/(q−1) zeros. This means that (qd−1)/(q−1) ≤ |φ[F ∗]| ≤ (qd−1)/(q−1).
As φ(F ∗) is a subset of ker(NF/S) we get φ[F ∗] = ker(NF/S).

With this theorem established, we are ready to prove Wedderburn’s little
theorem.
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7 Proving Wedderburn’s little theorem

In this section we are going to use group theory to prove Wedderburn’s little
theorem. Let D be a finite division ring. The first part of the proof is going to
be to demonstrate that the centralizer of an abelian subgroup of D∗ is the same
as the normalizer of the same subgroup. Then we are going to show that any
finite group with this property is abelian itself. Meaning that D∗ is abelian,
and hence D is a field.

Let us first repeat what we mean by normalizer and centralizer. Let G be a
group and N a subgroup. We say that N is a normal subgroup if for any x ∈ G,
xNx−1 = N . This means that for any a1 ∈ N , there exists some a2 ∈ N such
that xa1x

−1 = a2.
The normalizer of a subgroup S on G, is the largest subgroup of G which S

is a normal subgroup of. We write it like this NG(S) = {x ∈ G | xSx−1 = S}.
It is easily verified that NG(S) is a group. If x, y ∈ NG(S), then xyS(xy)−1 =
xySy−1x−1 = xSx−1 = S, xy ∈ NG(S). Also xSx−1 = S means that S =
x−1Sx. Therefore x−1 ∈ NG(S). Since S is contained in NG(S), it is a normal
subgroup of the normalizer.

The centralizer is a similar concept. It is the set of all elements in G that
commute with all the elements of S. We denote it like this CG(S) = {x ∈ G |
xs = sx, for all s ∈ S}. The identity obviously commutes with S. If we have
that x, y ∈ G then xys = xsy = sxy. We also have that x−1s = (s−1x)−1 =
(xs−1)−1 = sx−1. The centralizer is a group.

If sx = xs we have that xsx−1 = s and therefore xSx−1 = S. This means
that CG(S) is a subgroup of NG(S). If we wanted to show that these two groups
were equal, we would only need to show that NG(S) is a subgroup of CG(S).
This leads us to our next theorem.

Theorem 19. If D is a finite division ring. Then for any abelian subgroup G
of D∗, we have that ND∗(G) = CD∗(G).

Outline of the proof: The overall goal is to show that for any element
x ∈ ND∗(G) we also have that x ∈ CD∗(G). We know that since x|D

∗| = 1 ∈
CD∗(G) we can find the smallest integer m such that xm ∈ CD∗(G). We create
a field F that contains both G and xm. Since it is a field F ∗ ⊆ CD∗(G). This
means that if we show that if x ∈ F , then x ∈ CD∗(G). We note that the
mapping a→ xax−1 is an automorphism on F . We denote it as σ. We set S as
the subfield F left invariant by σ, and y as an element such that NF/S(y) = xm.
We show that the expression

(x− y)(1 +

m−1∑
i=1

(

i∏
j=1

σj−1(y−1))xi)− y = 0

By demonstrating that the latter factor cannot be equal to zero we get that
x = y ∈ CD∗(G).
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Proof. Let x ∈ ND∗(G), we want to show that xa = ax for all a ∈ G. We know
that x|D

∗| = 1. Since 1 ∈ CD∗(G) there exists an integer m that is the smallest
integer where xm ∈ CD∗(G). If m = 1 we are done, since then xa = ax. We
will from now on assume that 1 < m.

We now want to find a field that contains G and xm. Let H be the subgroup
of D∗ generated by G and xm. Since xm commutes with G the group H is
abelian. Let F be the set of finite sums of elements of H. That is

F = {
n∑

i=1

bi | bi ∈ H}

Obviously F is closed under addition. It is also closed under multiplication
and abelian since

n1∑
i=1

bi

n2∑
i=1

ci =
∑
i≤n1
j≤n2

bicj =
∑
i≤n1
j≤n2

cibj =

n2∑
i=1

ci

n1∑
i=1

bi =

Remember thatD is of characteristic of a prime p. This means that (p−1)1 =
−1 and p · 1 = 0. Therefore F contains 0 and the additive inverses of elements
in F . It is therefore a finite commutative integral domain. Meaning that F is a
galois field by theorem 3.

F ∗ ⊆ CD∗(G) ⊆ ND∗(G), which means that xF ∗x−1 = F ∗. Combine this
with x0x−1 = 0 we have that σ(a) = xax−1 is a mapping from F → F .

σ(a1a2) = xa1a2x
−1 = (xa1x

−1)(xa2x
−1) = σ(a1)σ(a2)

σ(a1 + a2) = x(a1 + a2)x−1 = xa1x
−1 + xa2x

−1 = σ(a1) + σ(a2)

σ is therefore a homomorphism. σ(a) = 0 =⇒ a = 0. σ is therefore an
automorphism.

σm(a) = xmax−m = axmx−1 = a. Therefore σm is the identity on F . If
v < m, then there exists an av ∈ F such that σv(av) = xvavx

−v 6= av. Therefore
σ is an automorphism of order m. Since σ(xm) = xxmx−1 = xm, xm is in the
subfield of F that are left invariant by σ. We call this field S. By theorem 17
we know that there exists an element y ∈ F such that

NF/S(y) = σ(y)σ2(y) · · ·σm(y) = xm

Let us look at the following expression, we want to show that it is equal to 0
(we denote σ0 = σm):

f(x, y) = (x− y)(1 +

m−1∑
i=1

(

i∏
j=1

σj−1(y−1))xi) =

x+

m−1∑
i=1

x(

i∏
j=1

σj−1(y−1))xi − y − x−
m−1∑
i=2

(

i∏
j=2

σj−1(y−1))xi
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Let 2 ≤ r ≤ m− 1. If we compare the terms here, we see that

(

r∏
j=2

σj−1(y−1))xr = (

r∏
j=2

xσj−2(y−1)x−1)xr = x(

r−1∏
j=1

σj−1(y−1))xr−1

This means that all but two of the terms of f(x, y) cancel out. If we then look
at one of the remaining terms:

x(

m−1∏
j=1

σj−1(y−1))xm−1 = (

m−1∏
j=1

xσj−1(y−1)x−1)xm = (

m−1∏
j=1

σj(y−1)xm =

(σm(y−1))−1(

m∏
j=1

σj(y−1))xm = yNF/S(y−1)NF/S(y) = y

The last thing we could do since the norm preserves multiplication. We can
now say that

f(x, y) = (x− y)(1 +

m−1∑
i=1

(

i∏
j=1

σj−1(y−1))xi) = x(

m−1∏
j=1

σj−1(y−1))xm−1 − y = 0

With this being the case we can say that either x− y = 0 or

1 +

m−1∑
i=1

(

i∏
j=1

σj−1(y−1))xi = 0 (2)

We are going to show that the latter cannot be the case. If we assume it is the
case, we arrive at a contradiction. (2) is a relation of the form:

1 +

t∑
v=1

cjvx
jv = 0

where cj1 < cj2 < · · · < cjt < m, 0 6= cjv ∈ F and ct 6= 0. Obviously 1 6= 0,
and if 1 + cj1x

j1 = 0, then we would get xj1 = −c−1j1
∈ F , which would be a

contradiction. We can therefore also add that 1 < t < m.
We want to show that if we have one of these relations, we can produce

another one of that type of relation with fewer terms. We know that there
exists some aj1 ∈ G ⊆ F ∗ such that xj1aj1x

−j1 6= aj1 . We multiply our relation
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by aj1 from the right, and a−1j1
from the left. We get

0 = 1 +

t∑
v=1

a−1j1
cjvx

jvaj1 =

= 1 +

t∑
v=1

a−1j1
cjvx

jvaj1x
−jvxjv

= 1 +

t∑
v=1

a−1j1
cjvσ

jv (aj1)xjv

= 1 +

t∑
v=1

djvx
jv

Since σ is an automorphism on F , σjv is also an automorphism on F . Therefore
djv ∈ F . If we subtract this relation from our first relation we get

0 = 1 +

t∑
v=1

cjvx
jv − (1 +

t∑
v=1

djvx
jv )

=

t∑
v=1

(cjv − djv )xjv

= cjv − djv +

t∑
v=2

(cjv − djv )xjv

Because of how we selected aj1 , and since cj1 and a−1j1
both are elements of

the same field F , we can conclude that

dj1 = a−1j1
cj1σ

j1(aj1) 6= a−1j1
cj1aj1 = cj1a

−1
j1
aj1 = cj1

With this being the case cj1 − dj1 6= 0, and therefore it has an inverse. We
denote (cj1 − dj1)−1(cjv − djv ) = ejv . If we multiply the inverse we get a third
relation

0 = (cj1 − dj1)−1(cjv − djv +

t∑
v=2

(cjv − djv )xjv ) = 1 +

t∑
v=2

ejvx
jv

We can repeat this same process until we get a relation with fewer then two
terms, which is impossible. Therefore

1 +

m−1∑
i=1

(

i∏
j=1

σj−1(y−1))xi = 0

presents us with a contradiction. We can thus conclude that x−y = 0, meaning
x = y ∈ F ∗ ⊆ CD∗(G). We thus conclude by saying ND∗(G) = CD∗(G).
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The only thing that remains before we have proven Wedderburn’s little is
the theorem that any finite group is abelian if the normalizer of all abelian
subgroups of the gruop is the same as the centralizer of the subgroup. We
recall that the centre of a group is the centralizer of a group, the subgroup that
commute with all elements of the group. The centre of a group G is CG(G).
We are going to use this concept when proving our last theorem.

Theorem 20. Let G be a finite group. If for every abelian subgroup of G the
normalizer of that group coincides with the centralizer, then G is abelian.

Outline of the proof: |G| = N . We prove this by using induction. We
assume that the theorem is correct for all groups of order less than G. From
this we can assume that all subgroups of G are abelian. From here we have two
cases, wither the centre is the identity, or it is not.

In the case in which the centre Z is not the identity we show that G is
ableian. The first part to demonstrate this is to show that the quotient group
G/Z is abelian. This is accomplished by showing that for any abelian subgroup
U of G/Z, NG/Z(U) = CG/Z(U). We note that since 1 < |Z|, |G/Z| < |G|. And
by the induction hypothesis G/Z is abelian. We use this knowledge to show
that for any two elements in a, b ∈ G, the element b is in the normalizer of the
abelian subgroup generated by Z and a. Thus it is in the centralizer of that
group. Meaning that ab = ba, G is abelian.

For the second part we show that Z = e leads to a contradiction. One of
the first consequences of this assumption is that G is not abelian. We look
at maximal subgroups of G. Since G is not abelian it has a proper maximal
subgroup U . We find that there are an equal number of conjugate subgroups
of U and cosets of U . This leads us to show that the number of non-identity
elements in all of the conjugate subgroups of U is somewhere in the range
[N/2, N − 2]. We can therefore wind another maximal subgroup V . The non-
identity elements in the conjugate subgroups of V are all different from the ones
in the conjugate subgroups of U . There are therefore more than N elements in
G, a contradiction. Z is not the identity.

Proof. We are going to use strong induction on the size of the group to prove
this theorem. Let |G| = N .

If N = 1 it is clear that G is abelian.
Now we are going to assume that the theorem is true for all groups that have

order lower than N . One immediate consequence of this is that all the proper
subgroups of G are abelian. Let Z be the centre of G.

Let us first consider the case in which 1 < |Z|. If this is the case then
|G/Z| < |G|. Let U be an abelian subgroup of G/Z. We want to show that
CG/Z(U) = NG/Z(U). If U = G/Z, we get that G/Z is abelian. We therefore

assume that U is a proper subgroup of G/Z. Let U be the subgroup of G
generated by the elements of the cosets of Z which are in U . In other words
U = {u | u ∈ u, u ∈ U}. We can now rewrite U = {uZ | u ∈ U}. Since
U is a proper subgroup of G/Z, U is a proper subgroup of G, therefore U is
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abelian. Let x ∈ NG/Z(U), and let x ∈ x. We can rewrite this as x = xZ and

(xZ)U(x−1Z) = U . For any u1 ∈ U there is some u2 ∈ U such that

xZu1Zx
−1Z = u2Z

xu1x
−1Z = u2Z

We can find z1 and z2 in Z such that

xu1x
−1z1 = u2z2

xu1x
−1 = u2z2z

−1
1 ∈ U

We can therefore write further that xUx−1 = {xux−1 | u ∈ u, u ∈ U} = {u |
u ∈ u, u ∈ U} = U . Since x ∈ NG(U), we have x ∈ CG(U). This means that
xZu = xZuZ = uZxZ = uxZ, therefore we have that xU = Ux. x ∈ CG/Z(U).
Since the order of G/Z is less than N it is abelian by the induction hypothesis.

We are going to show that G is abelian. Let a, b be any elements of G. Since
Z is commutes with all of G, the subgroup of G generated by a and Z is abelian.
We denote it as (a, Z) = {amz | z ∈ Z}. In the next equation we will use zi
to denote an element of Z. We will apply G/Z and (a, Z) being abelian and Z
being a normal subgroup of G.

bamz1b
−1 = bz2a

mb−1 = bz2a
mz3z

−1
3 b−1 = amz4bz5z

−1
3 b−1 = amz6

Thus b(a, Z)b−1 = (a, Z), since b ∈ NG((a, Z)) we have that b commutes with
(a, Z). In particular

ab = ba

We are going to show that Z being the identity leads to a contradiction.
Z being the identity means that G is not abelian. Remember that a maximal
subgroup is on which is not properly contained in any proper subgroup of G.
Let U be a maximal subgroup. U is abelian.

Let us look at the conjugate subgroups of U , that is the subgroups of the
form xUx−1, x ∈ G. Our interests lie in finding out when they are the same,
and finding how many elements are in all of the conjugate subgroups. If we look
at when two conjugates are the same we see that

xUx−1 = yUy−1

(y−1x)U(y−1x)−1 = U

The conjugates coincide if and only if y−1x ∈ NG(U), or equivilantely y−1x ∈
CG(U). This means that the group (y−1x, U) is abelian, since it is generated by
an abelian group and an element the commutes with U . If y−1x is not in U then
by U being maximal (y−1x, U) = G. Since G is not abelian y−1x ∈ U , since we
are presented with a contradiction when it is not the case. The assumption that
y−1x is not in U is therefore false. This leads us to conclude that y−1x ∈ CG(U)
if and only if y−1xU = U , which is the case if and only if

yU = xU

23



The amount of conjugate subgroups directly therefore corresponds with the
number of left cosets. Also recall that |xUx−1| = |xU | = |U | = |yU | = |yUy−1|.
The number of these cosets is (G : U). Let

xu1x
−1 = yu2y

−1

(y−1x)u1(y−1x)−1 = u2

y−1x ∈ NG(U), which means that y−1x ∈ U , or u1 = u2 = e. If two elements
from conjugate different subgroups are the same then they are the identity.
Meaning that for two different conjugate subgroups their intersection is {e}.
The number of non-identity elements in all of the conjugate groups of U is
therefore

(G : U)(|U | − 1) =
|G|
|U |

(|U | − 1) = N − N

|U |

We now want to show that this means that there are more thanN elements in
G, a contradiction. Since G is not abelian it has a proper non-trivial subgroup,
it therefore has a proper non-trivial maximal subgroup. We call it U . Since
2 ≤ |U | ≤ N/2, we get

N

2
≤ N − N

|U |
≤ N − 2

There thus exists some non-identity element in G not contained in a conjugate
subgroup of U .

Let V be a maximal subgroup containing that element. Since U is maximal,
the group generated by U and V is therefore (U, V ) = G. If we have some
element in a in the intersection of U and V , we know that it commutes with
(U, V ) = G since both U and V are abelian. Therefore a ∈ Z = {e}. If we then
look at the conjugate subgroups of V , and when they coincide with conjugate
subgroups of U

xUx−1 = yV y−1

y−1xU(y−1x)−1 = V

However, we know that V contains elements not in any conjugate subgroup of
U . Meaning that the non identity elements of conjugate subgroups of V are
wholly distinct from those of the conjugate subgroups of U . We therefore have

2N − N

|U |
− N

|V |
≥ N

Distinct non-identity elements of G, which is a contradiction. The assumption
that G is not abelian leads to a contradiction. G is abelian.

Wedderburn’s little theorem states that a finite integral domain is a finite
field. By theorem 3 a finite integral domain is a finite division ring. Theorem
19 combined with theorem 20 means that any finite divison ring is a finite field.
Therefore any finite integral domain is a finite field.
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