
Fagerli, A. T.; Severinsen, O
. A.

The Error-State Kalm
an Filter for Singularity-Free State Estim

ation in Inertial N
avigation System

s

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Ba
ch

el
or

’s
pr

oj
ec

t

Anders Thallaug Fagerli
Odin Aleksander Severinsen

The Error-State Kalman Filter for
Singularity-Free State Estimation in
Inertial Navigation Systems

Bachelor’s project in Mathematical Sciences

Supervisor: Håkon Tjelmeland, Torleiv Håland Bryne

May 2020

Anders Thallaug Fagerli
Odin Aleksander Severinsen

The Error-State Kalman Filter for
Singularity-Free State Estimation in
Inertial Navigation Systems

Bachelor’s project in Mathematical Sciences
Supervisor: Håkon Tjelmeland, Torleiv Håland Bryne
May 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

Abstract

Advances in modern robotics have in the recent years given rise to numerous ap-

plications in the field of estimation for autonomous systems. This thesis provides

a probabilistic framework for doing estimation of position, velocity and orienta-

tion with the error-state Kalman filter, and its application in inertial navigation

systems.

The Kalman filter is first presented as a Bayes filter in a hidden Markov model

under a linear Gaussian assumption. The extended Kalman filter is further de-

rived for handling nonlinear models, and from this the error-state Kalman filter is

presented in its most general form as a way of improving linearization accuracy

and allowing for different state paramaterizations to avoid singular state dynam-

ics. Navigation theory is presented together with a discussion on representation

of orientation, and together with derived kinematic equations, the error-state Kal-

man filter is fitted into state estimation of an inertial navigation system. Results

from simulated and experimental data show that the error-state Kalman filter ad-

equately estimates the position, velocity and orientation of an unmanned aerial

vehicle.

i

Sammendrag

Fremskritt innen moderne robotikk har de siste årene gitt opphav til mange bruk-

sområder innen estimering for autonome systemer. Denne avhandlingen gir et

statistisk rammeverk for estimering av posisjon, hastighet og orientering med et

feiltilstands Kalmanfilter, og dens anvendelse innen treghetsnavigasjon.

Kalmanfilteret blir først presentert som et Bayes filter i en skjult Markov

modell under en lineær Gaussisk antakelse. Det utvidede Kalmanfilteret blir

videre utledet for håndtering av ulineære modeller, og fra dette presenteres feiltil-

stands Kalmanfilteret i sin mest generelle form som en måte å forbedre lin-

eariseringsnøyaktighet og gi mulighet for forskjellige tilstandsparameteriseringer

for å unngå singulær dynamikk. Navigasjonsteori presenteres sammen med en

diskusjon om representasjon av orientering, og sammen med utledede kinemat-

iske ligninger blir feiltilstands Kalmanfilteret tilpasset tilstandsestimering av et

treghetsnavigasjonssystem. Resultater fra simulerte og eksperimentelle data viser

at filteret anslår posisjonen, hastigheten og orienteringen til et ubemannet luft-

fartøy tilstrekkelig.

ii

Preface

This thesis is written as a finalization of the three-year Bachelor’s Programme in

Mathematical Sciences at the Norwegian University of Science and Technology,

with a specialization in Statistics, as part of the course MA2002 Bachelor’s Project

in Mathematical Studies.

The thesis is written in the context of competing in a competition for autonom-

ous unmanned aerial vehicles as part of the student-organization Ascend NTNU,

with the task of autonomously flying a distance of three kilometers, replacing a

physical part on the mast of a ship, and flying back to the point of take-off. Es-

timating the state of the vehicle at all times is one of the many subproblems in

this task, and will set the limits on the scope of this thesis.

We would like to thank our supervisor Håkon Tjelmeland and co-supervisor

Torleiv H. Bryne for their continuous support throughout the semester; your

feedback and guidance has played an invaluable part in shaping this thesis. A

big thanks also goes to Martin L. Sollie, who has relentlessly guided us through

many of the theoretical and practical obstacles in the field of inertial navigation,

in addition to providing us with necessary data. We would also like to thank

Ascend NTNU and all its team members for the incredible learning environment

we have been exposed to in the past year, and for challenging students to be-

come better engineers. A special thanks to our group leader Torjus Bakkene, for

all his support, encouragement and enthusiasm, and for allowing us to focus on

ESKF this spring after our endeavours with VINS during the fall semester. You are

truly “one shaft of a man”. We would like to thank Edmund F. Brekke and Lars-

Christian N. Tokle that provided us with the data used in this thesis during the

course TTK4250 Sensor fusion. Lastly, we would like to thank senior executive

officer Anniken Skotvoll for her commitment to the students at NTNU, ultimately

making this thesis possible.

Anders Thallaug Fagerli,
Odin Aleksander Severinsen

Trondheim, May 2020

iii

Figure 1: The drone of Ascend NTNU Team 2020.

Figure 2: The logo of Ascend NTNU.

iv

Table of Contents

Abstract i

Sammendrag ii

Preface iii

Table of Contents viii

List of Tables ix

List of Figures xi

List of Abbreviations xii

I Introduction and preliminaries

1 Introduction 1

2 Preliminaries 3

2.1 Bayesian inference and Markov models 3

2.1.1 Total probability and Bayes’ rule 4

2.1.2 The prior and posterior probability densities 5

2.1.3 Markov models . 5

2.1.4 Sequential Bayesian estimation 7

2.2 Estimators . 8

2.2.1 Maximum a posteriori estimation 8

2.2.2 Minimum mean square error estimation 8

2.2.3 The Bayes filter . 9

2.3 The multivariate Gaussian distribution 11

2.3.1 Manipulating the Gaussian probability density function . . . 11

v

2.3.2 The product of multivariate Gaussian distributions 13

II The Kalman filter

3 The linear Kalman filter 20

3.1 The linear Gaussian assumption . 20

3.2 The state-space model . 21

3.2.1 The process model . 21

3.2.2 The measurement model . 22

3.3 The Kalman filter algorithm . 22

3.3.1 Initialization and notation 23

3.3.2 The prediction step . 23

3.3.3 The innovation step . 25

3.3.4 The update step . 25

3.4 Properties of the Kalman filter . 26

4 The extended Kalman filter 28

4.1 Nonlinear filtering . 28

4.2 Linearization in EKF . 29

4.2.1 The process model . 29

4.2.2 The measurement model . 32

4.3 The EKF algorithm . 34

5 The error-state Kalman filter 35

5.1 Introduction and motivation . 35

5.1.1 Composing the nominal and error state 36

5.2 The error-state system . 39

5.2.1 The process model . 39

5.2.2 The measurement model . 40

5.3 The ESKF algorithm . 41

5.3.1 Notation . 41

5.3.2 Initialization . 42

5.3.3 The prediction step . 42

5.3.4 The innovation step . 43

5.3.5 The update step . 43

5.3.6 The injection step . 43

vi

III Inertial navigation and kinematics

6 Introduction to inertial navigation systems 46

6.1 Coordinate frames . 46

6.1.1 Vector notation and intuition 46

6.2 Attitude representations . 47

6.2.1 Definition of rigid body rotation 50

6.2.2 The angle-axis representation 51

6.2.3 Quaternions . 52

6.2.4 Rotation matrices . 55

6.3 Sensors used in an INS . 56

6.3.1 The IMU . 57

6.3.2 The GNSS module . 61

7 Kinematics 63

7.1 The true and nominal state . 64

7.1.1 The true state kinematics 64

7.1.2 The nominal state kinematics 65

7.2 The error state . 65

7.2.1 The error state kinematics 66

7.3 Discretizing the kinematics . 71

8 The ESKF applied for inertial navigation systems 74

8.1 Motivating ESKF for INS . 74

8.2 The estimation procedure . 75

8.2.1 The intermediate predictions 75

8.2.2 Measurement arrival . 75

IV Filter validation and results

9 Filter validation and tuning 81

9.1 Visual inspection . 81

9.2 Filter consistency . 82

9.3 Root mean square error . 84

9.4 Tuning . 84

10 Results 86

vii

10.1 The datasets used . 86

10.1.1 Benchmarking with both simulated and real data 87

10.2 The simulated dataset . 88

10.3 The real dataset . 90

V Closing remarks

11 Closing remarks 100

11.1 Conclusion . 100

11.2 Further work . 101

VI Appendices

A Additional plots 103

A.1 Results from simulated data . 103

A.2 Results from real data . 110

B Attitude related mathematics 113

B.1 Arithmetics with quaternions . 113

B.2 Composing quaternions . 116

B.3 R as member of ($(3) . 116

B.4 The skew operator . 117

B.5 Composing rotation matrices . 117

B.6 Calculating R from other attitude representations 118

C Snippet of C++ implementation 120

Bibliography 126

viii

List of Tables

10.1 Table over final parameters for the ESKF on simulated data. 92

10.2 Table over final parameters for the ESKF on real data. 97

ix

List of Figures

1 The drone of Ascend NTNU Team 2020. iv

2 The logo of Ascend NTNU. iv

2.1 Hidden Markov model with states x hidden in observations z. . . . 6

2.2 Different figures displaying the famous Gaussian distribution. . . . 12

5.1 Plot of how the error state might develop compared to the true

and nominal state. 37

5.2 A simplified block diagram showing how ESKF just runs EKF on

the error state δx. 38

6.1 Visualization of how a vector describes properties of one frame

relative another, and how it decomposes differently in different

frames. 48

6.2 Another visualization of how a vector describes properties of one

frame relative another, and how it decomposes differently in dif-

ferent frames. 49

6.3 Coordinate frame local to the vehicle. 50

6.4 Figure showing how a vector is rotated according to the angle-axis. 51

10.1 Flight path of the real dataset. 87

10.2 NEES from simulated data. Note that the H-axis is logarithmic. . . . 89

10.3 Trajectory of simulated data. 89

10.4 Plots over true error state from simulated data. 91

10.5 Estimated trajectory of real dataset. 94

10.6 Position estimate from real data. 95

10.7 Attitude estimate from real data. 96

10.8 NIS before and after correcting R. Note the logarithmic H-axis. . . . 98

A.1 Position estimate from simulated data. 103

x

A.2 Velocity estimate from simulated data. 104

A.3 Attitude estimate from simulated data. 105

A.4 Accelerometer bias estimate from simulated data. 106

A.5 Gyroscope bias estimate from simulated data. 107

A.6 NIS from simulated data. 108

A.7 RMSE of position and velocity from simulated data. 109

A.8 Velocity estimate from real data. 110

A.9 Accelerometer bias estimate from real data. 111

A.10 Gyroscope bias estimate from real data. 112

xi

List of Abbreviations

ANEES Average normalized estimation error squared

ANIS Average normalized innovation squared

ECEF Earth-centered, Earth-fixed

EKF Extended Kalman filter

ESKF Error-state Kalman filter

GNSS Global Navigation Satellite System

HMM Hidden Markov Model

IKF Indirect Kalman filter

IMU Inertial Measurement Unit

INS Inertial Navigation System

KF Kalman filter

LLH Longitude, latitude, height

LMMSE Linear minimum mean square error

LTV Linear time-varying

MAP Maximum a posteriori

MEKF Multiplicative extended Kalman filter

MMSE Minimum mean square error

MSE Mean squared error

NED North-east-down

NEES Normalized estimation error squared

xii

NIS Normalized innovation squared

ODE Ordinary differential equation

PDF Probability density function

RMSE Root mean square error

ROS Robot Operating System

UAV Unmanned aerial vehicle

UKF Unscented Kalman filter

xiii

I

INTRODUCTION AND

PRELIMINARIES

1 | Introduction

An integral part of making a robot autonomous involves making the robot able of

determining, for example, its position and velocity, if any. Such quantities can, in

theory, be calculated from exact mathematical models describing the kinematics

of the robot. This approach, however, is inherently not feasible in practice. To

know the position and velocity of the robot sufficiently accurate at every relevant

point in time would require knowledge about the environment that is impossible

to acquire, neither before-hand nor under operation. In addition, it would re-

quire an incredibly advanced and intricate mathematical model that considers

all possible effects that affect the robot’s position and velocity, given that such a

model even exists. Considering that this algorithm also has to run on a computer

with limited computational power, a different approach must be taken.

The solution in modern robotics [1] is to aggregate uncertainties and inac-

curacies in the mathematical models as stochastic variables, affecting both the

physics of the robot and the sensors that allow the robot to observe the outside

world. This has several advantages. Firstly, it allows for much simpler and more

tangible models for how the robot moves in its environment. It also accounts for

imperfections in a real sensor, letting the robot itself estimate the deviations in

the measurements, resulting in more robust and accurate estimates.

Building on this fundamental approach of probabilistic modelling, powerful,

mathematical tools from statistics become available for use in state estimation.

One such tool is Bayesian inference, building on Bayes’ rule for conditional prob-

ability. As will become evident, such a method allows for combining information

on believed movement of the robot with measurements, yielding a better estim-

ate than each estimate independently. The method also facilitates a recursive

algorithm, laying the foundations for the Kalman filter.

The Kalman filter is today used in numerous applications within a variety of

fields. This thesis will, in addition to the general statistical theory of the Kalman

1

filter, study its application in navigation for unmanned aerial vehicles (UAVs).

Navigation will here be coined as the process of observing variables describing

characteristics as the position, velocity and orientation of the UAV, hereby de-

noted as states. Due to the uncertain nature of the movements of the UAV and

the imperfect measurements from on-board sensors, the states do not evolve in

any deterministic manner, and are therefore reasonably modeled as stochastic

processes. The task is then to retrieve best possible estimates of the states, given

some constraints on e.g. time and processing required by the estimation method.

The aim of this thesis is to present the error-state Kalman filter (ESKF) and

how it is suited for state estimation of inertial navigation systems, and does it

the following the way. Chapter 2 introduces preliminary theory from statistics

and the concept of Bayesian inference, with the prior and posterior distributions

used by the Kalman filter together with underlying assumptions. Additionally, the

mulitvariate Gaussian is discussed. Chapter 3 introduces the linear Kalman filter,

an application of Bayesian inference. The underlying models of the Kalman fil-

ter are introduced, and how they relate to the prior and posterior distribution in

Bayesian inference. The extended Kalman filter (EKF) is introduced in Chapter 4,

an extension to the Kalman filter for nonlinear systems. Chapter 5 will intro-

duce the ESKF, first in its most general form to further build on top of the EKF

presented in the previous chapter as an improved filter for nonlinear estimation.

Chapter 6 introduces preliminary theory for understanding inertial navigation
systems (INS), the challenges it imposes on the filtering algorithm chosen and

the sensors used. Chapter 7 will introduce the kinematic model used to predict

the movement of the UAV, together with the required states. Chapter 8 then rein-

troduces the ESKF, now in an INS setting where the kinematic model and sensor

models are inserted to complete the algorithm for inertial navigation. With the

ESKF for INS finally presented, Chapter 9 will introduce metrics and methods

for quantifying the performance of a filter, and Chapter 10 will use these metrics

and methods to evaluate the performance of an ESKF implementation written in

C++. Chapter 11 will conclude the thesis.

2

2 | Preliminaries

This chapter provides the necessary background theory leading up to the Kal-

man filter. There exists numerous textbooks on this theory, but this chapter

mostly draws inspiration from [2] and [3], which put the probabilistic theory

in a Bayesian context. Chapter 2.1 introduces the concept of Bayesian infer-

ence and its relevance to estimation problems, and gives the underlying model

assumptions of the Kalman filter in the form of a Markov model. Chapter 2.2

gives a brief overview of the most important estimators related to the Kalman

filter, with special emphasis on the Bayes filter, which will be later referenced in

Chapter 3. Chapter 2.3 rounds off the preliminaries, giving some key properties

of the multivariate Gaussian while outlining a fundamental identity that will be

used to derive the Kalman filter.

2.1 Bayesian inference and Markov models

Probability gives some measure of the uncertainty connected to an event. The

classical interpretation explains probabilities as relative frequencies from repeated

experiments, such as a fraction of specific outcomes over all possible outcomes

in the sample space. This way of interpreting probability assigns uncertainty to

the experiment itself, which is representative if sufficient information about the

experiment is given. This methodology will however fail when there is no way

of gathering enough information to describe it in terms of relative frequencies.

Questions such as “What is the probability of rain tomorrow?" or “Which of two

athletes is most likely to win a 100-meter dash, given that one of the athletes

sprained an ankle two months ago?" are difficult to answer with a frequentist

approach. Bayesian statistics is a more suitable interpretation of probability in

these cases, assigning beliefs to events. The main critique of this methodology

3

is its reliance on subjective measures of probability, such as the probability of

an event prior to any observations. Its strength is however the ability to update

belief based on observed data, shifting the prior belief in either direction. This

methodology is extensively used in estimation problems where new observations

continuously arrive, and the following chapters will lay the foundation for the

mathematical tools utilized in this Bayesian way of doing statistical inference.

2.1.1 Total probability and Bayes’ rule

In order to derive the Bayesian inference framework at the core of the Kalman

filter, two fundamental laws in probability need to be stated for later reference.

The first is the law of total probability, which provides a convenient way of deriv-

ing a probability distribution when the conditional distribution for the variable

is available, including the distribution of the conditioning variable itself. For two

random variables, - and /, the marginal distribution of - can be given by total

probability as

?(G) =
∫
?(G |I)?(I)dI, (2.1)

where ?(G) and ?(I) are the marginal distributions of - and /, respectively,

and ?(G |I) is the conditional distribution of - given /. This applies also when

conditioning on several other random variables, such that

?(G |F) =
∫
?(G |I,F)?(I |F)dI, (2.2)

in the case of some other random variable , .

The second fundamental law is Bayes’ rule, laying the foundation for Bayesian

inference, which gives a relation for how uncertainty changes in light of new

observations,

?(G |I) =
?(I |G)?(G)

?(I) . (2.3)

Bayes’ rule can also be utilized when conditioning on several variables, such that

?(G |I,F) =
?(I |G,F)?(G |F)

?(I |F) , (2.4)

in the case of some other random variable , . Equation (2.3) can be restated

by noting that ?(I) in the denominator acts as a normalization constant, making

4

?(G |I) integrate to 1. Thus, an alternative way of writing Bayes’ rule is

?(G |I) ∝ ?(I |G)?(G). (2.5)

The statistical properties of ?(G |I) are in other words encapsulated by the numer-

ator in (2.3).

Lastly, both Bayes’ rule and the law of total probability can be used as above

when the probability distributions are multivariate, where ?(x) denotes the mul-

tivariate distribution for the random vector x. This will mostly be the case in the

remaining parts of the text.

2.1.2 The prior and posterior probability densities

In Bayesian inference, Bayes’ rule is utilized by first assigning a distribution ?(G)
to some random variable -, prior to any observations giving information about

-. This is called the a priori probability density function, or the prior for short.

Observations giving information about - may manifest in some random vari-

able /. This relationship is given by the likelihood ?(I |G), which together with

the prior gives the a posteriori probability density function ?(G |I) in (2.5), or the

posterior for short. In practical terms, this is updating the belief about - by

observing /.

2.1.3 Markov models

Let x = [G1 , · · · , G=]T denote a state vector with = states that may evolve in time.

The dependence between states over a span of time is in the general case not

clear, where the state in one point in time may be dependent on one or several

states at other points in time. The evolution of states in time is often modeled

as a Markov model, or Markov chain, which is for many stochastic processes a

reasonable representation for how the state evolves.

The essence of a Markov model lies in the Markov assumption. Given a system

that is described by some state x at some point in time :, denoted x: , the Markov

assumption is that the most recent state contains all information about previous

states, such that information about these do not affect the distribution of how

the state evolves in the future. This can be formulated as

?(x: |x0 , x1 , · · · , x:−1) = ?(x: |x:−1). (2.6)

5

x0 x1 · · · x:−1 x: x:+1 · · ·

z1 z:−1 z: z:+1

Figure 2.1: Hidden Markov model with states x hidden in observations z.

It is notationally convenient to define a joint collection of consecutive states in

time from time step 0 up to : as x0:: = {x0 , x1 , . . . , x:}, such that the Markov

assumption may be written ?(x: |x0::−1) = ?(x: |x:−1).
In the case of partially observable states, observed through some observa-

tion vector z = [I1 , · · · , I<]T with < observations, where observations are con-

ditionally independent in time, the model takes the form of a Hidden Markov
Model (HMM). The true states are now hidden, and must be estimated by a

chosen estimator. The assumed dependency structure in a HMM is shown as a

Bayesian network in Figure 2.1, depicting the dependency between observations

and states, and states themselves, in the form of a directed, acyclic graph. The

edges connect dependent variables, and the direction tells what variable is de-

pendent on which. The Markov assumption in (2.6) is thus illustrated by a single

edge between states. The assumption of conditional independence between ob-

servations is given as

?(z: |x0:: , z1::−1) = ?(z: |x:), (2.7)

and is also illustrated in Figure 2.1, where observations are conditionally in-

dependent given the corresponding state. The Markov assumption can be for-

mulated in the same manner, where a future state is conditionally independent

on past states, given the current state. This comes from the fact that variables

connected together along a path with intermediate variables are independent of

each other given information about any of the intermediate variables. Intuitively,

this comes as a consequence of how information propagates between variables,

as, for example, information about x:−1 propagates to x: , meaning x: contains

information about x:−1. The full posterior over all states is then given by

6

?(x0:: |z1::) ∝ ?(x0)
:∏
8=1

?(z 8 |x 8)?(x 8 |x 8−1). (2.8)

Note that the state starts at time step 0, with the prior ?(x0). This is the initial

distribution of x, often given as some subjective measure of initial uncertainty,

reflecting the Bayesian interpretation of probability. The power of conditional

independence is clear from (2.8), as the number of required distributions for the

full conditional distribution is greatly reduced. The transition model ?(x: |x:−1)
and observation model ?(z: |x:) may, depending on the application, be reason-

ably modeled as time-invariant. If this is the case, the number of required distri-

butions for full Bayesian estimation is reduced to these two PDFs, in addition to

the prior ?(x0).

2.1.4 Sequential Bayesian estimation

The full posterior in (2.8) is rarely of interest due to the computational costs of

calculating a full joint distribution for each time step, and is in many applications

not of interest in itself. Bayesian inference is more commonly concerned in the

marginal distributions acquired by filtering, smoothing and prediction.

Filtering denotes the task of retrieving the marginal distribution of the current
state, x: , given current and previous observations, z1:: , thus giving ?(x: |z1::).
This method is most applicable when only the most recent state is to be further

used, and the previous states are disregarded as they are currently outdated. This

is often the case for real-time systems with high demand on computational speed.

Smoothing denotes the task of retrieving the marginal distribution of a past
state, x:−) for some previous time step : −), given current and previous obser-

vations, thus giving ?(x:−) |z1::). This differs from filtering in the sense that past

states are now of interest. The previous estimates are updated by new observa-

tions, in effect giving better estimates, which may be important in applications

where the aim is an estimate of the whole trajectory of states. This has the draw-

back of an additional computational cost in updating previous estimates, which

may for many real-time applications be unfeasible.

Prediction denotes the task of retrieving the marginal distribution of a future
state, x:+) for some future time step : +), given current and previous observa-

tions, thus giving ?(x:+) |z1::). The main reason for applying a prediction is to

propagate the system when observations currently are unavailable, such that the

predicted estimates represent the state until new observations become available

7

again. The transition model, ?(x: |x:−1), is thus solely used to predict new states.

The use of these methods is dependent on the application at hand and on the

marginal distribution of interest. Smoothing will in general give better estimates,

but with the requirement of previous states being of interest. This will not be

the case in the upcoming chapters, so the remaining discussion on sequential

Bayesian estimation will be limited to filtering and prediction.

2.2 Estimators

The prior and posterior distributions, discussed in previous chapters, may not

necessarily be of main interest in themselves. In most practical applications,

retrieving best possible estimates of the states is the end goal. An estimate is said

to be the output of an estimator. In general, an estimator attempts to estimate a

parameter of a distribution when given samples from the distribution, giving the

estimate x̂. In the framework of a HMM, best possible estimates of the state is

desired. The following chapter briefly outlines some important estimators which

serve as background information in later parts of the thesis.

2.2.1 Maximum a posteriori estimation

The maximum a posterori (MAP) estimator is closely related to the Bayesian

methodology presented in Chapter 2.1, aiming to maximize the posterior

x̂MAP = argmax
G

?(x |z) = argmax
G

?(z |x)?(x), (2.9)

where the second equality follows from Bayes’ rule, with the denominator disap-

pearing in the maximization with respect to x. The parameter is here a random

variable in itself, with its own prior distribution ?(x). In cases with few obser-

vations the MAP estimator will rely more on the prior, and in cases with many

observations it will rely more on the likelihood. It will later be seen that this type

of weighting between the prior and likelihood mirrors that of the Bayes filter, and

later the Kalman filter.

2.2.2 Minimum mean square error estimation

The minimum mean square error (MMSE) estimator minimizes the mean squared

error (MSE), defined as

8

x̂MMSE = argmin
x̂

E
[
‖ x̂ − x‖22

]
= E [x |z] , (2.10)

with a proof of the last equality in [2]. By the law of total expectation, E [-] =
E [E [- |/]], the MMSE estimator is seen to be unbiased, a highly desired property

of an estimator. The conditional expectation in (2.10) may in general not have

a closed-form solution, so a linear estimator of the form x̂ = Az + b may be a

necessary approximation in the nonlinear case. The expectation and covariance

of this linear mean square error (LMMSE) is given, with a proof in [2], by

x̂LMMSE = �x +Σx ,zΣ−1z (z −�z), (2.11a)

ΣLMMSE = Σx −Σx ,zΣ−1z ΣT
x ,z , (2.11b)

where � and Σ denote the expectation and covariance of the variable(s) in sub-

script, respectively. The LMMSE estimator is here highlighted due to its strong

resemblance to the later derived Kalman filter equations, and can indeed be used

to derive these equations by means of MSE minimization in a linear model with

Gaussian random variables. Both the MAP and MMSE estimators will later be

referenced when discussing properties of the Kalman filter, but the filter itself

will here be introduced in a more Bayesian context.

2.2.3 The Bayes filter

The states in a HMM, such as the one depicted in Figure 2.1, are not directly

observable and must be estimated. The methods previously discussed may then

be deployed to retrieve estimates of x. As the states propagate in time, new

estimates must continuously be generated. A filter, as discussed in Chapter 2.1.4,

may then be devised to iteratively update the estimate as time passes and new

observations are available. This is particularly useful in cases where the Markov

assumption applies, as all information about previous states are encapsulated

in the current state. This is effectively done in the Bayes filter, which gives the

general equations for filtering in the Bayesian framework.

The desired PDF is the posterior ?(x: |z1::). By applying Bayes’ rule and con-

ditional independence on observations, the posterior can be solved as

9

?(x: |z1::) =
?(z: |x: , z1::−1)?(x: |z1::−1)

?(z: |z1::−1)

=
?(z: |x:)?(x: |z1::−1)

?(z: |z1::−1)
. (2.12)

The observation model ?(z: |x:) is recognized in (2.12), and is normally assumed

known. The factor ?(x: |z1::−1) is a prediction of the current state, given all pre-

vious observations, while ?(z: |z1::−1) is a prediction of the current observation.

Again, the PDF ?(z: |z1::−1) is not a function of x, meaning it only has the effect

of normalizing the posterior such that (2.12) can be written

?(x: |z1::) ∝ ?(z: |x:)?(x: |z1::−1). (2.13)

In order to acquire ?(x: |z1::−1), which here corresponds to the prior introduced

in Chapter 2.1.2, the Markov assumption and (2.2) can be used as

?(x: |z1::−1) =
∫
?(x: |x:−1 , z1::−1)?(x:−1 |z1::−1)dx:−1

=

∫
?(x: |x:−1)?(x:−1 |z1::−1)dx:−1. (2.14)

The transition model ?(x: |x:−1) is recognized in (2.14), and is, as with the ob-

servation model, normally assumed known. With the presence of ?(x:−1 |z1::−1),
the posterior of the previous time step, the recursive nature of the Bayes filter is

apparent. This recursion terminates at the initial prior, ?(x0), which is given as

a subjective measure of initial uncertainty. Together, (2.12) and (2.14) make up

the update and prediction steps of the Bayes filter, respectively. These equations

are thus used in an iterative manner from the initial prior, with a prediction and

update for each time step.

The importance of the Bayes filter should be emphasized. This is filtering for

HMMs in the most general case, and constitutes the equations at the core of any

applied filtering method in this framework. It will indeed later be shown that

this is the underlying structure of the Kalman filter. Two observations should

however be highlighted. First, the numerator in (2.12) may generally not result

in any known PDF, and may therefore not give any obvious and easily acquirable

optimal estimates. Secondly, the product in (2.14) may generally not result in

10

any analytically integrable function, and solutions such as nonparameteric ap-

proximations have to be resorted to. These drawbacks are especially significant

for real-time estimation problems, where tedious computations may render the

estimation algorithm unfit. Closed-form solutions to these equations are thus of

interest, which is the main motivation for Chapter 3.

2.3 The multivariate Gaussian distribution

The multivariate Gaussian distribution proves a fundamental cornerstone to much

of estimation theory by virtue to its many unique properties, and has an in-

dispensable role in the Kalman filter framework for this reason. The following

chapter intends to summarize these properties for later reference.

2.3.1 Manipulating the Gaussian probability density function

The general, multivariate PDF of the Gaussian distribution is given as the expo-

nential of a quadratic polynomial according to

?(x) = 1

(2π)=/2 |P|1/2
exp

(
−1
2

(
x −�

)TP−1 (
x −�

))
(2.15)

≡N(x;�,P),

where � and P are the expectation and covariance of the random vector x, re-

spectively, and = is the dimension of x. See Figure 2.2 for examples of the Gaus-

sian distribution. The quadratic polynomial(
x −�

)TP−1 (
x −�

)
= @(x) (2.16)

is called the Gaussian’s quadratic form. As the exponential function is a monotonic
function, it is also injective, meaning that all mappings between such a quadratic

function and its corresponding exponential form is one-to-one. In addition, under

the normalization constraint that all PDFs have to integrate to 1, this exponential

is proportional to one, and only one, Gaussian. Hence, for all quadratic forms

such as (2.16), there is a unique, corresponding Gaussian. The implication of this

is that when analyzing properties of the Gaussian, one only has to consider the

quadratic form.

11

−2 0 2
0.0

0.1

0.2

0.3

0.4

(a) Plot of the standard Gaussian distribution.

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3 1σ

2σ

3σ

(b) Sigma ellipses of a multivariate Gaussian
of two random variables. Each ellipse is a
level curve of the PDF when the correspond-
ing quadratic form is equal to either 1σ, 2σ or
3σ. The plot is made with � = [0 0]T and

P =
[

1 0.75
0.75 1

]
.

Figure 2.2: Different figures displaying the famous Gaussian distribution.

Linear transformation of Gaussians

Given a multivariate Gaussian random vector x ∼ N(�,P) and another random

vector y =Ax + b, y is also multivariate Gaussian and distributed according to

y ∼N(A�+ b,APAT), (2.17)

as shown in [4].

The marginal and conditional distribution of a Gaussian

From the quadratic form of joint Gaussian distribution, its marginal and condi-

tional distributions can be found in closed form. Pay special note to the remark-

able fact that both of these distributions are in fact new Gaussians.
Given a Gaussian ?(x) = ?(x1 , x2) composed of two random vectors x1 and

x2, where x ∼N(�,P) and with quadratic form given by

@(x) =
([
x1
x2

]
−

[
�1
�2

])T [
P11 P12

P21 P22

]−1 ([
x1
x2

]
−

[
�1
�2

])
, (2.18)

the marginal distribution ?(x1) is a new Gaussian with quadratic form given by

@(x1) =
(
x1 −�1

)TP−111 (
x1 −�1

)
. (2.19)

12

This result follows by considering x1 as a linear transformation of the original

random vector according to

x1 =
[
I O

]
︸ ︷︷ ︸

A

[
x1
x2

]
︸︷︷︸

x

+ 0︸︷︷︸
b

=Ax + b,

where O is the zero matrix, and applying (2.17).

The conditional distribution ?(x1 |x2) is also a new Gaussian with quadratic

form given by

@(x1 |x2) =
(
x1 −�1|2

)T
P−11|2

(
x1 −�1|2

)
, (2.20)

where

�1|2 = �1 +P12P−122 (x2 −�2), (2.21a)

P1|2 = P11 −P12P−122P21. (2.21b)

This result, however, is nontrivial to derive, although in principal straight for-

ward, as it contains nontrivial algebraic manipulations. The complete proof can

be found in [5]. The result in (2.21) can be seen to be identical with that of the

LMMSE estimator in (2.11), showing that the conditional distribution inherits

unbiasedness.

2.3.2 The product of multivariate Gaussian distributions

If all PDFs that appear in the Bayes filter presented in Chapter 2.2.3 are assumed

multivariate Gaussian, inspecting the product of two such distributions is inevit-

able, as both the prediction and update in the Bayes filter involves products of

PDFs. It should again be emphasized that a closed-form solution to the prediction

and update steps of Bayes filter is of main interest. Assuming that the involved

PDFs are Gaussian, the Bayes filter can be further investigated to see if the as-

sumption of Gaussianity gives a solution. A key identity, which will be expanded

on later,

N(z |x)N(x) =N(x |z)N(z) (2.22)

will be assumed to hold, with the parameters of the distributions dropped for

notational simplicity. It is not apparent at this point why this must hold, and why

13

it is of interest to the Bayes filter, but applying the assumption of (2.22) in the

Bayes filter will now be seen to give a closed-form solution.

Before delving further, it is paramount to properly understand that (2.22) is

not implied from Bayes’ rule in (2.3). While it is true in general that Bayes’ rule

allows for swapping around the involved variables, there is no assumption about
what form the resulting PDFs have after swapping. To be assured that the product

of two Gaussian PDFs is indeed the product of two new Gaussian PDFs would

therefore be a significantly simplifying fact.

In order to apply (2.22) to the Bayesian prediction in (2.14), (2.14) must be

written in a form compatible with (2.22). The first step is to apply the Markov

assumption discussed in Chapter 2.1.3 in reverse by reintroducing z1::−1 and

writing

?(x: |z1::−1) =
∫
?(x: |x:−1)?(x:−1 |z1::−1)dx:−1

=

∫
?(x: |x:−1 , z1::−1)?(x:−1 |z1::−1)dx:−1.

The second step is to recall from (2.2) that the law of total probability still holds

when all involved PDFs are conditioned on the same variable, in this case z1::−1.

Thus, the prediction step, under the assumption that (2.22) holds and with un-

derbraces indicating the corresponding variable in (2.22), becomes

?(x: |z1::−1) =
∫
N(x:︸︷︷︸

z

| x:−1︸︷︷︸
x

, z1::−1)N(x:−1︸︷︷︸
x

|z1::−1)dx:−1

=

∫
N(x:−1︸︷︷︸

x

| x:︸︷︷︸
z

, z1::−1)N(x:︸︷︷︸
z

|z1::−1)dx:−1

=N(x: |z1::−1)
∫
N(x:−1 |x: , z1::−1)dx:−1

=N(x: |z1::−1)

where the last equality is a result of the fact that
∫
N(x:−1 |x:)dx:−1 = 1 as

N(x:−1 |x:) is a proper PDF.

Similarly for the posterior, by again reintroducing z1::−1 by applying the

Markov assumption in reverse and writing ?(z: |x:) = ?(z: |x: , z1::−1), such that

14

(2.12) becomes

?(x: |z1::) =
?(z: |x:)?(x: |z1::−1)

?(z: |z1::−1)

=
?(z: |x: , z1::−1)?(x: |z1::−1)

?(z: |z1::−1)

and recalling that Bayes’ rule in (2.4) still holds when all PDFs are conditioned

on the same variable. By now inserting (2.22), this manipulation then yields

?(x: |z1::) =
N(

z︷︸︸︷
z: |

x︷︸︸︷
x: , z1::−1)N(

x︷︸︸︷
x: |z1::−1)

N(z:︸︷︷︸
z

|z1::−1)

=
N(

x︷︸︸︷
x: |

z︷︸︸︷
z: , z1::−1)N(

z︷︸︸︷
z: |z1::−1)

N(z:︸︷︷︸
z

|z1::−1)

=N(x: |z1::).

As seen, the identity in (2.22) proved to give closed-form solutions to the

prediction and update of the Bayes filter, in the form of two new Gaussians.

The product identity

It now remains to determine whether, and if so, when, (2.22) actually holds.

Indeed, if, and only if, z and x are linearly related, then (2.22) does hold. This

result appears frequently in literature on Bayesian inference and target tracking

under different names ([2], [6]–[10]) and will for this thesis be referred to as

the product identity. The following theorem with proof draws inspiration from

[2].

15

Theorem 1 (The product identity). Given two multivariate Gaussian random
vectors x ∼N(x;�x ,Px) and z |x ∼N(z;Hx ,R) that are linearly related. More
explicitly,

z =Hx +w

for some w ∼N(0,R). Then the identity

N(z;Hx ,R)N(x;�x ,Px) =N(z;�z ,S)N(x;�x |z ,Px |z) (2.23)

holds, where

�z =H�x , (2.24a)

S =HPxHT +R, (2.24b)

W = PxHTS−1 , (2.24c)

�x |z = �x +W (z −�z) , (2.24d)

Px |z = (I−WH)Px (I−WH)T +WRWT. (2.24e)

Proof. Notice first that the involved PDFs in (2.23) can be written in the more

general form

?(z |x)?(x) = ?(z)?(x |z).

The parameters of ?(z) and ?(x |z) are found by first combining the quadratic

forms of ?(x) and ?(z |x) into the quadratic form of the joint PDF ?(x , z). Sum-

ming the two quadratic forms is a result of multiplying the two exponential func-

tions in ?(x) and ?(z |x). Combining the quadratic forms is done by

(x −�x)
TP−1x (x −�) + (z −Hx)TR−1(z −Hx)

=

[
x −�x
z −Hx

]T [
P−1x O
O R−1

] [
x −�
z −Hx

]
=

([
x

z

]
−

[
�x
Hx

])T [
P−1x O
O R−1

] ([
x

z

]
−

[
�x
Hx

])
(2.25)

The quadratic form in (2.25) is not a proper quadratic form in its current state

as x appears as both a variable and expectation in the vector part. However,

as the relation between z and x is linear, this can be remedied by the linear

16

transformation [
I O
−H I

] ([
x

z

]
−

[
�x
H�x

])
=

([
x

z

]
−

[
�x
Hx

])
that is substituted into (2.25). Note that this step would not be possible if z

and x were not linearly related. The quadratic form (2.25) can then be further

manipulated into the proper quadratic form([
I O
−H I

] ([
x

z

]
−

[
�x
H�x

]))T [
P−1x O
O R−1

] ([
I O
−H I

] ([
x

z

]
−

[
�x
H�x

]))
=

([
x

z

]
−

[
�x
H�x

])T [
I −HT

O I

] [
P−1x O
O R−1

] [
I O
−H I

] ([
x

z

]
−

[
�x
H�x

])
=

([
x

z

]
−

[
�x
H�x

])T ([
I O
H I

] [
Px O
O R

] [
I HT

O I

])−1 ([
x

z

]
−

[
�x
H�x

])
=

([
x

z

]
−

[
�x
H�x

])T [
Px PxHT

HPx HPxHT +R

]−1 ([
x

z

]
−

[
�x
H�x

])
, (2.26)

where the matrix inversion identities [11][
A O
O D

]−1
=

[
A−1 O
O D−1

]
,[

A B
O D

]−1
=

[
A−1 −A−1BD−1

O D−1

]
and the transpose of a block matrix[

A B
C D

]T
=

[
AT CT

BT DT

]
are used.

From (2.26), the parameters of the marginal distribution ?(z) = N(z;�z ,S)
and the conditional distribution ?(x |z) =N(x;�x |z ,Px |z) are then found by (2.19)

and (2.20), respectively. �

A remark about (2.24e) is in order. The covariance matrix Px |z is here intro-

17

duced in its Joseph form [12]. Another common form used in literature is

Px |z = (I−WH)Px , (2.27)

which is also the form one arrives at when applying (2.20) directly. These two

forms are indeed mathematically identical, given that W is defined as in (2.24c)

[13]. However, from a computational standpoint, (2.27) has poor numerical

stability, where matrix properties like positive definiteness and symmetry are not

guaranteed. The Joseph form in (2.24e), on the other hand, does guarantee these

properties [14], and will exclusively be used.

18

II

THE KALMAN FILTER

3 | The linear Kalman filter

Chapter 2 introduced some of the central concepts moving forward, now leading

up to the Kalman filter (KF). The Kalman filter is nothing more than a special case

of the Bayes filter introduced in Chapter 2.2.3, and aims to solve it analytically

by invoking additional assumptions on the distributions in the Bayes filter. More

specifically, the Kalman filter assumes that the transition and observation models

are linear and with additive, Gaussian noise.

The linear Gaussian assumption will first be expanded on in Chapter 3.1,

describing how the Kalman filter gives a solution to the Bayes filter. Chapter 3.2

will further give explicit forms on the transition and observation model, while

Chapter 3.3 solves the Bayes filter in a linear Gaussian model.

3.1 The linear Gaussian assumption

The underlying model for the Kalman filter is, as for the Bayes filter, a HMM,

where the posterior ?(x: |z1::) is of interest. Chapter 2.2.3 gave the general equa-

tions for solving this posterior, but saw that these equations are not guaranteed

closed-form solutions due to the products of the involved PDFs. In Chapter 2.3.2,

the product of multivariate Gaussian distributions were investigated, giving closed

form solutions to the Bayes filter equations when the model is assumed linear and

Gaussian. Equally important, the resulting PDFs proved to be new Gaussians, en-

suring that the Bayes filter deals with Gaussians over all time-steps. Finally, the

product identity was presented, a key result giving the parameters of the new

Gaussians, which will here be used when deriving the Kalman filter equations.

The product identity, as presented in Chapter 2.3.2, made the assumption

of two linearly related variables x and z, with an additive Gaussian component

w ∼ N(0,R). These assumptions alone are what turns the Bayes filter into the

20

Kalman filter, and is here explicitly pointed out to emphasize that the Kalman

filter really is a special case of the Bayes filter given the added assumptions. The

remaining part is then to add the assumptions to the HMM, giving the transition

and observation models, ?(x: |x:−1) and ?(z: |x:), and apply the product identity

to the Bayes filter equations.

3.2 The state-space model

Due to the Kalman filter’s origin in control theory, the previously described HMM

is in most literature on the Kalman filter denoted as a state-space model. In the

context of control theory, the state-space model does not necessarily involve any

random variables, but will often do so when taking into account model uncer-

tainties, which will be the case here. The transition model is in the state-space

formulation denoted as the process model, while the observation model is de-

noted as the measurement model. The sole purpose of this change of naming is

to coincide with the literature on Kalman filters, but the model and assumptions

remain the same as for the HMM.

3.2.1 The process model

Under the linear Gaussian assumption, the process model ?(x: |x:−1) takes the

form

x: = F:−1x:−1 + v:−1 , (3.1)

where x: and x:−1 denote the state at time steps : and : − 1, respectively, F:−1
is the process matrix at time step : − 1 and v:−1 is additive process noise at time

step : − 1. From Chapter 3.1, v:−1 is assumed to be Gaussian white noise. Thus,

it is distributed as,

v:−1 ∼N(0,Q:−1),

and uncorrelated across time, meaning,

E
[
v:vT;

]
=O, : ≠ ; ,

where O is the zero matrix.

The PDF ?(x: |x:−1) can be derived directly from (3.1). When v:−1 is assumed

Gaussian and the PDF is conditioned on x:−1, x: is just a linear transformation

21

of v:−1, which is a new Gaussian. The expectation is found to be F:−1x:−1 and

its covariance Q:−1, giving

?(x: |x:−1) =N(x: ;F:−1x:−1 ,Q:−1). (3.2)

3.2.2 The measurement model

Under the linear Gaussian assumption, the measurement model ?(z: |x:) takes

the form

z: =H:x: +w: , (3.3)

where z: is the received measurement at time step :, H: is the measurement
matrix at time step :, x: the state of the system at time step : and w: some

additive measurement noise at time step :. Similarly to v: , w: is assumed to be

Gaussian white noise. Thus, it is distributed as

w: ∼N(0,R:),

and uncorrelated across time, meaning

E
[
w:wT

;

]
=O, : ≠ ; ,

where O is the zero matrix.

The PDF ?(z: |x:) can similarly to (3.2) be derived directly from (3.3), as z: ,

conditioned on x: , is just a linear transformation of w: , resulting in z: being

Gaussian. Thus, taking the expectation and covariance of (3.3) shows that

?(z: |x:) =N(z: ;H:x: ,R:). (3.4)

3.3 The Kalman filter algorithm

With the process and measurement models given specific forms in Chapter 3.2,

the Bayes filter equations may be solved such that the posterior ?(x: |z1::) can

be given. The Bayes filter was in Chapter 2.2.3 divided into a prediction and an

update step, which will also be the case for the Kalman filter, but with an added

intermediate step called the innovation step.

22

3.3.1 Initialization and notation

First, the filter is initialized with some initial, known state x0 and state covariance

P0, giving the Gaussian prior ?(x0), which is only valid until the first measure-

ment arrives. The PDF ?(x0) is used to make the prediction of x1 with expectation

�1|0. Note the used notation. Separating the expectation of the prior at time step

: is done with �: |:−1 denoting predicted x: ,

�: |:−1 = E [x: |z1::−1] ,

while �: |: denotes the expectation of the posterior,

�: |: = E [x: |z1::] ,

with its updated x: estimate. The same applies for the covariance matrix, where

P: |:−1 is the covariance of the prior at time step :,

P: |:−1 = Cov [x: |z1::−1] ,

and P: |: is the covariance of the posterior at time step :,

P: |: = Cov [x: |z1::] .

3.3.2 The prediction step

With the assumptions of the state-space model in Chapter 3.2, the involved PDFs

in (2.14) are given by the process model (3.2) and the posterior of the previous

time step

?(x:−1 |z1::−1) =N(x:−1;�:−1|:−1 ,P:−1|:−1), (3.5)

which inductively is assumed Gaussian. As will be seen in the update step, the

resulting posterior remains Gaussian. Thus, one only needs to initialize the filter

with a Gaussian prior ?(x0) to be assured that the prior and posterior remain

Gaussian at all times.

Using the product identity (2.23), the predicted prior may be solved as

23

?(x: |z1::−1) =
∫
N(x: ;F:−1x:−1 ,Q:−1)N(x:−1;�:−1|:−1 ,P:−1|:−1)dx:−1

=

∫
N(x: ;�: |:−1 ,P: |:−1)N(x:−1; • , •)dx:−1

=N(x: ;�: |:−1 ,P: |:−1)
∫
N(x:−1; • , •)dx:−1

=N(x: ;�: |:−1 ,P: |:−1), (3.6)

where the use of • in N(x:−1; • , •) is to emphasize that the expectation and

covariance is of no interest, as
∫
N(x:−1; • , •)dx:−1 = 1, and

�: |:−1 = F:−1�:−1|:−1 , (3.7)

P: |:−1 = F:−1P:−1|:−1FT:−1 +Q:−1. (3.8)

Notice that (3.6), more intuitively than direct use of the product identity,

can also be derived from the fact that x: in (3.1) must be Gaussian under the

assumptions in Chapter 3.1. This results in just having to find the expectation

and covariance of x: to express its PDF, as the Gaussian distribution is fully

parameterized by its expectation and covariance. This gives the expectation

E [x: |z1::−1] = E [F:−1x:−1 + v:−1 |z1::−1]
= F:−1E [x:−1 |z1::−1] +E [v:−1 |z1::−1]
= F:−1�:−1|:−1 ,

and covariance

Cov [x: |z1::−1] = Cov [F:−1x:−1 + v:−1 |z1::−1]
= F:−1Cov [x:−1 |z1::−1]FT:−1 +Cov [v:−1 |z1::−1]
= F:−1P:−1|:−1FT:−1 +Q:−1 ,

arriving at the same parameters as in (3.6).

24

3.3.3 The innovation step

As an intermediate step between the prediction and update, the innovation step
handles the arrival of new measurements z: . This is done by first calculating the

predicted measurement, �: , as

�: = E [z: |z1::−1]
= E [H:x: +w: |z1::−1]
=H:E [x: |z1::−1] +E [w: |z1::−1]
=H:�: |:−1 , (3.9)

which is consistent with (2.24a). This is then used to calculate the innovation
�, defined as the difference between predicted measurement and true measure-

ment, by

�: = z: −�: . (3.10)

In addition, the innovation covariance is calculated as

S: = Cov [�: |z1::−1]
= Cov [z: −�: |z1::−1]
= Cov [z: |z1::−1]
= Cov [H:x: +w: |z1::−1]
=H:Cov [x: |z1::−1]HT

: +Cov [w: |z1::−1]
=H:P: |:−1HT

: +R: . (3.11)

which is consistent with (2.24b).

3.3.4 The update step

Finally, the update step of the Bayes filter gives the desired posterior, given by

(2.12). Under the assumptions of the state-space model in Chapter 3.2, the in-

volved PDFs are the measurement model (3.4), the prior (3.6) and

?(z: |z1::−1) =N(z: ;�: ,S:), (3.12)

where �: and S: are given by (3.9) and (3.11), respectively.

Using the product identity on the posterior then finally gives

25

?(x: |z1::) =
N(z: ;H:x: ,R:)N(x: ;�: |:−1 ,P: |:−1)

N(z: ;�: ,S:)

=
N(z: ;�: ,S:)N(x: ;�: |: ,P: |:)

N(z: ;�: ,S:)
=N(x: ;�: |: ,P: |:), (3.13)

where

�: |: = �: |:−1 +W:�: , (3.14a)

P: |: = (I−W:H:)P: |:−1 (I−W:H:)T +W:R:WT
: , (3.14b)

with W: called the Kalman gain, defined as

W: = P: |:−1HT
:S
−1
:
. (3.15)

The algorithm is summarized in Algorithm 1.

Algorithm 1 The Kalman filter algorithm

The prediction step

1: �: |:−1← F:−1�:−1|:−1
2: P: |:−1← F:−1P:−1|:−1FT:−1 +Q:−1

The innovation step

3: �:←H:�: |:−1
4: �:← z: −�:
5: S:←H:P: |:−1HT

:
+R:

The update step

6: W:← P: |:−1HT
:
S−1
:

7: �: |:← �: |:−1 +W:�:
8: P: |:← (I−W:H:)P: |:−1 (I−W:H:)T +W:R:WT

:

3.4 Properties of the Kalman filter

In the previous chapters, the Kalman filter was introduced and derived in a

Bayesian setting. What has not yet been properly discussed are the remarkable

26

properties that the filter possess under the assumption that both the process and

measurement model are both linear with additive, Gaussian white noise. By in-

serting (3.7) and (3.10) into (3.14a), the state estimate of time step : can be

distilled into

�: |: = F:−1�:−1|:−1 +W:(z: −�:), (3.16)

which is the general equation for what is called a linear state observer. Here, W:

can in principle be any arbitrary gain matrix, and determines how fast the state

estimate converges to the actual state [15]. Although (3.16) usually appears

when estimating the state of a deterministic system, it is just as applicable for

stochastic systems such as (3.1) and (3.3). It can then be shown that, under the

assumptions of Chapter 3.1, the Kalman gain given in (3.15) is in fact the optimal

gain in the sense of yielding the state estimate with the lowest variance [13].

Additionally, considering (3.14a) and (3.14b) were derived from (2.20) when

deriving the product identity in Chapter 2.3.2, the KF estimator is an MMSE es-

timator, as �: |: = E [x: |z:] exactly in the linear, Gaussian case. As a consequence

of this, the state estimate is also unbiased. Lastly, the KF state estimate maximizes

the posterior, as

argmax
x:

?(x: |z1::) = argmax
x:

N(x: ;�: |: ,P: |:)

= argmax
x:

1

(2π)=/2
��P: |: ��1/2 exp

(
−1
2
@(x:)

)
= argmax

x:
exp

(
−1
2
@(x:)

)
= argmax

x:
−1
2
@(x:)

= argmin
x:

@(x:)

= argmin
x:

(
x: −�: |:

)T
P−1
: |:

(
x: −�: |:

)
= �: |: ,

where the last equality holds as P: |: is symmetric and thus positive definite,

meaning that �: |: is the unique global minimum of @(x:). This shows that the KF

estimator is indeed a MAP estimator as well.

27

4 | The extended Kalman filter

Having introduced the linear Kalman filter in Chapter 3, this chapter intends to

first briefly discuss the concept of a nonlinear system together with some methods

for solving the estimation problem for such systems. Then, the natural extension

of the original linear Kalman filter, the extended Kalman filter, is introduced,

together with its inner workings.

4.1 Nonlinear filtering

A substantial weakness of the original, linear formulation of the Kalman filter is

the simple fact that few realistic, dynamic systems exhibit such behaviour, but

instead have some degree of nonlinearity. Thus, a linearization procedure must

be carried out for the process and measurement models to be fit into the Kalman

filter framework described in Chapter 3.3. This solution is known as the extended
Kalman filter (EKF), and is today considered the standard estimation algorithm

for navigation systems [16]. The EKF works by linearizing the process and meas-

urement model so the Gaussian assumption can be maintained, although only as

an estimated PDF. For many applications, this alone has a satisfying performance.

The EKF is far from the only way of handling nonlinear systems. An exhaust-

ive list over all possible ways is impossible to summarize in any sense of the word,

and so a hand-selected few will get an honorable mention. A popular recursive

algorithm is the particle filter, which estimates the PDF of x: in a nonparameteric

form by sampling different possible trajectories of x1:: , called particles. How the

different particles are distributed in the state space can then be interpreted as

an approximation of the true PDF of x: . This methodology of state estimation

creates the foundation of a whole family of estimation methods called Sequential
Monte Carlo methods and is a field of its own. A more thorough treatment of

28

the particle filter in particular can be found in [8]. Another related filter to EKF,

called the unscented Kalman filter (UKF), approaches the linearization scheme by

instead of linearizing the nonlinear model at the expectation and propagating

the state estimate and its covariance from that point, a deterministically chosen

set of points, called sigma points, about the expectation is propagated through

the nonlinear model. The transformed points are then used to linearly estimate

the expectation and covariance of the new PDF from these transformed points,

weighted with predefined weights. More information on UKF can be found in

[16]. Lastly, one may discard the stochastic terms of the system model altogether

and instead resort to a nonlinear observer, where the dynamics of the state estim-

ate � follow a model similar to the actual system, but augmented by a feedback

injection term that makes the estimate � converge to the true state x. Equation

(3.16) is an example in the linear case. Further discussion on the topic can be

found in [17].

4.2 Linearization in EKF

The linearization procedure in the EKF demands some work to derive, and the

following chapter will show the required calculations in order to arrive at the

desired results.

4.2.1 The process model

The nonlinear process model in the EKF is of the form

x: = f (x:−1) + v:−1 , (4.1)

where v:−1 is assumed to have the same properties as in (3.1), that is, Gaussian

white noise and f (x:−1) is some general, nonlinear vector function. Deriving the

process model ?(x: |x:−1) is trivial as, conditioned on x:−1, f (x:−1) reduces to a

simple constant added to a Gaussian random vector, resulting in

?(x: |x:−1) =N(x: ; f (x:−1),Q:−1). (4.2)

With the process model from (4.2), one can calculate the prior of time step :.

Initially, this follows the same procedure as in Chapter 3.3.2 by using a prediction,

as

29

?(x: |z1::−1) =
∫
?(x: |x:−1)?(x:−1 |z1::−1)dx:−1

=

∫
N(x: ; f (x:−1),Q:−1)N(x:−1;�:−1 ,P:−1)dx:−1. (4.3)

This, however, is where the nonlinear model becomes problematic. The expect-

ation of ?(x: |x:−1) in the linear case is simply F:−1x:−1, and thus the product

identity can be applied directly. This does not hold in the nonlinear case, and as

such, the EKF makes a linear approximation by a first-order Taylor approximation

of f (x:−1) about the expectation at time step : − 1 by

f (x:−1) ≈ f (�:−1|:−1) +F:−1
(
x:−1 −�:−1|:−1

)
, (4.4)

where

F:−1 ≡
% f

%x:−1

����
�:−1|:−1

(4.5)

is the Jacobian of f at x:−1 = �:−1|:−1. Do not be confused by the repeated use of

F:−1, as it is also the Jacobian of the linear model in (3.1), since

%

%x:−1
(F:−1x:−1) = F:−1.

Thus, (4.5) is just the general definition of F:−1.

To continue, N
(
x: ; f (�:−1|:−1) +F:−1

(
x:−1 −�:−1|:−1

)
,Q:−1

)
can be rewrit-

ten by examining its quadratic form. Writing the quadratic form as yTQ−1
:−1y,

where

y ≡ x: −
[
f (�:−1|:−1) +F:−1

(
x:−1 −�:−1|:−1

)]
,

the quadratic form can be manipulated by rewriting y as

y = x:︸︷︷︸
variable

−
[
f (�:−1|:−1) +F:−1

(
x:−1 −�:−1|:−1

)]
︸ ︷︷ ︸

expectation

= x: − f (�:−1|:−1) −F:−1x:−1 +F:−1�:−1|:−1
=

[
x: − f (�:−1|:−1) +F:−1�:−1|:−1

]
︸ ︷︷ ︸

variable

−F:−1x:−1︸ ︷︷ ︸
expectation

30

so

N
(
x: ; f (�:−1|:−1) +F:−1

(
x:−1 −�:−1|:−1

)
,Q:−1

)
= N

(
x: − f (�:−1|:−1) +F:−1�:−1|:−1;F:−1x:−1 ,Q:−1

)
.

The product identity can now be applied to (4.3). Simplifying the notation by

denoting s(x:) ≡ x: − f (�:−1|:−1) +F:−1�:−1|:−1, the product identity yields∫
N (s(x:);F:−1x:−1 ,Q:−1)N(x:−1;�:−1|:−1 ,P:−1|:−1)dx:−1

=

∫
N

(
s(x:);F:−1�:−1|:−1 ,F:−1P:−1|:−1F

T
:−1 +Q:−1

)
N(x:−1; • , •)dx:−1

= N
(
s(x:);F:−1�:−1|:−1 ,F:−1P:−1|:−1F

T
:−1 +Q:−1

) ∫
N(x:−1; • , •)dx:−1

= N
(
s(x:);�: |:−1 ,P: |:−1

)
(4.6)

where • again is used for uninteresting parameters and

�: |:−1 = F:−1�:−1|:−1 , (4.7a)

P: |:−1 = F:−1P:−1|:−1FT:−1 +Q:−1 (4.7b)

is used in the last equality. The final step to the derivation of the prior is to again

manipulate the quadratic form of (4.6). Using the notation yTP−1
: |:−1y, y can be

simplified as

y = s(x:)︸︷︷︸
variable

−F:−1�:−1|:−1︸ ︷︷ ︸
expectation

= x: − f (�:−1|:−1) +F:−1�:−1|:−1︸ ︷︷ ︸
variable

−F:−1�:−1|:−1︸ ︷︷ ︸
expectation

= x:︸︷︷︸
variable

− f (�:−1|:−1)︸ ︷︷ ︸
expectation

,

showing that the prior can be approximated as

?(x: |z1::−1) =N(x: ; f (�:−1|:−1),P: |:−1). (4.8)

31

A simpler and perhaps more intuitive way of arriving at (4.8) is by starting at

(4.2), but derive the expectation and covariance of the prior directly from (4.2)

by conditioning on z1::−1 instead of x:−1. By linearizing (4.2) with (4.4), it can

be approximated as

x: = f (�:−1|:−1) +F:−1
(
x:−1 −�:−1|:−1

)
+ v:−1. (4.9)

By taking the expectation of (4.9) conditioned on z1::−1, one gets

E [x: |z1::−1] = E
[
f (�:−1|:−1) +F:−1

(
x:−1 −�:−1|:−1

)
+ v:−1

���z1::−1]
= f (�:−1|:−1) +F:−1

(
E [x:−1 |z1::−1] −�:−1|:−1

)
= f (�:−1|:−1), (4.10)

where F:−1
(
E [x:−1 |z1::−1] −�:−1|:−1

)
= 0, since E [x:−1 |z1::−1] = �:−1|:−1 and

E [v:−1] = 0 as v:−1 ∼N(0,Q:−1).
Similarly, the covariance is found to be

Cov [x: |z1::−1] = Cov
[
f (�:−1|:−1) +F:−1

(
x:−1 −�:−1|:−1

)
+ v:−1

���z1::−1]
= F:−1Cov [x:−1 |z1::−1]FT:−1 +Q:−1

= F:−1P:−1|:−1FT:−1 +Q:−1

= P: |:−1. (4.11)

Under the inductive assumption that the posterior x:−1 is Gaussian, the lin-

earized x: in (4.9) must also be Gaussian. Thus, (4.10) and (4.11) can be directly

inserted into a Gaussian distribution, which results in the same PDF as (4.8).

4.2.2 The measurement model

The nonlinear measurement model used in the EKF is

z: = h(x:) +w: , (4.12)

where w: is assumed to have the same properties as in (3.3), that is, Gaussian

white noise and h(x:) is, just like f (x:−1) in (4.1), some general, nonlinear vector

function.

Deriving the linearized likelihood for the EKF follows the same outline as the

32

derivation given in Chapter 4.2.1, and so the following derivation will be brief.

Linearizing h(x:) about the prediction �: |:−1 = f (�:−1|:−1) gives the approxima-

tion

h(x:) ≈ h(�: |:−1) +H:

(
x: −�: |:−1

)
, (4.13)

where

H: ≡
%h
%x:

����
�: |:−1

(4.14)

is the Jacobian of h at x: = �: |:−1. Again, do not be confused by the repeated use

of H: , as it is also the Jacobian of the linear model in (3.3), since

%

%x:
(H:x:) =H: .

Thus, (4.14) is just the general definition of H: , similar to how (4.5) is the gen-

eral definition for F:−1.

The likelihood function has a similar structure to (4.2) as it is given by

?(z: |x:) =N (z: ;h(x:),R:) . (4.15)

From this, the posterior can be approximated as

?(x: |z1::) =N
(
x: ;�: ,P:

)
, (4.16)

with �: and P: given by the familiar KF equations in (3.14), where H: now is

given by (4.14).

33

4.3 The EKF algorithm

With the prior and posterior approximations used in the EKF derived as (4.8)

and (4.16), respectively, the algorithm can be summarized. As it follows the

same steps overall as in Chapter 3.3, only the involved formulas are repeated,

and is given in Algorithm 2.

Algorithm 2 The extended Kalman filter algorithm

The prediction step

1: �: |:−1← f (�:−1|:−1)
2: F:−1← % f

%x:−1

���
�:−1|:−1

3: P: |:−1← F:−1P:−1|:−1FT:−1 +Q:−1

The innovation step

4: �: |:−1← h(�: |:−1)
5: �:← z: −�: |:−1
6: H:← %h

%x:

���
�: |:−1

7: S:←H:P: |:−1HT
:
+R:

The update step

8: W:← P: |:−1HT
:
S−1
:

9: �: |:← �: |:−1 +W:�:
10: P: |:← (I−W:H:)P: |:−1 (I−W:H:)T +W:R:WT

:

34

5 | The error-state Kalman filter

Chapter 4 introduced local linearization of a nonlinear model as a way to fit the

nonlinear models into the linear framework of the KF. The accuracy of this ap-

proximation, however, is highly reliant on how well the nonlinearities of the mod-

els can be captured by linearization. Some systems may exhibit strong nonlinear-

ities where a local linearization in the fashion of the EKF will not be a sufficiently

accurate approximation, which then is a cause for possible divergence. The error-
state Kalman filter (ESKF) that will be introduced in this chapter approaches the

linearization scheme slightly differently than the EKF, which improves this lin-

earization approximation. Though the ESKF has its main motivation within the

application of inertial navigation systems, it will here be presented in a more gen-

eral form. The following chapter draws inspiration from [18] and [2], though

they are limited to the context of inertial navigation. Other names used in the

literature are the multiplicative extended Kalman filter (MEKF) and the indirect
Kalman filter (IKF).

The following chapter is structured as follows. First, some motivation is built

for exactly why the ESKF is used over the EKF, where comparisons are used to

make the transition more clear. Then, the general error process and measurement

models are derived. Lastly, the steps of the ESKF algorithm are explained.

5.1 Introduction and motivation

Before motivating the use of the ESKF, one should have a general idea of what

it is, and so the following will compare it with the EKF. For any state estimation

with Bayesian filtering, such as the KF, the goal is to arrive at the true state,

x. As the underlying model is a HMM, the true state is unknown and must be

estimated by x̂, giving some nominal, or believed, state. Since the estimate after

35

all is an estimate, there will be an error between the true state and nominal state,

the error state δx. In the EKF, the relation between these three states are assumed

to simply be

x = x̂ +δx. (5.1)

Despite terminology as true, nominal and error state being common in ESKF

literature, but not in EKF literature, these very states do also appear in the EKF,

but under different names. Recall the prediction and update equations of the

EKF, where x is used instead of � to distinguish between stochastic states and

numeric estimates,

x: |:−1 = f (x:−1) + v:−1 ,
x: = x: |:−1 +W:�:

restated here for comparison with the same equations, only with x, x̂ and δx

x̂: = f (x̂:−1)
δx: =W:�:

x: = x̂: +δx:

where the specific details of the actual ESKF algorithm are disregarded. The

important take away is that the ESKF really operates on the same states as the
EKF, but where the linearization is at the error state δx instead of x̂ to improve
linearization accuracy. See Figure 5.1 for a visualization of how the error state δx

in general has better linearization properties than the nominal state x̂.

5.1.1 Composing the nominal and error state

It is hopefully apparent from Chapter 5.1 that one of the main benefits of using

the ESKF over the EKF is the better linearization property. Another huge benefit

that will not be elaborated on here is the fact that the ESKF allows for different
state parameterizations in the nominal state x̂ and the error state δx. Under this

generalization, (5.1) is rewritten as

x = x̂ ⊕ δx , (5.2)

where ⊕ is the composition operator that can be thought of as some function,

linear or nonlinear, that combines the nominal and error state into the true state

36

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time

−1

0

1

2

St
at

e

x
x̂
δx

Figure 5.1: Plot of how the error state might develop compared to the true and nominal state. While
EKF linearizes x̂, ESKF linearizes δx, where the linearization is a much better approximation.

as

x = ⊕(x̂ ,δx). (5.3)

The notation in (5.2) is used to build intuition of what is really going on and to

make it similar to the more familiar composition in (5.1). In the case that the

error state is additive on the nominal state, that is, ⊕ = +, this relationship is just

as for the previously discussed KF and EKF. This is in general not the case in the

ESKF, and although the previous chapters have assumed an additive relationship

on the error, it is here generalized to coincide better with coming chapters.

The main conceptual difference for the ESKF compared to the EKF will be to

estimate the error state instead of the true state, while in parallel predicting the

nominal state. This indirectly gives an estimate of the true state, which after all

is of interest, as the true state is a composition of the nominal and error state, as

seen in (5.2). A key point is that once the error state is estimated, it is injected
into the nominal state to give an estimate of the true state, while subsequently

being reset to zero before the next iteration. Thus, the end of each estimation

cycle will be

x̂← x̂ ⊕ δx̂ ,
δx̂← 0.

37

Process model

Prediction Update ⊕

EKF

Measurement

δG

I

Ĝ

G

Figure 5.2: A simplified block diagram showing how ESKF just runs EKF on the error state δx, with the
prediction of the nominal state x̂ outside the EKF loop. The two states are composed together after arrival
of a new measurement to form the true state G.

In the next iteration, the error state is again estimated and reset to zero after

injection, and the filter continues like this. See Figure 5.2 for an overview over

how an ESKF estimation cycle is.

Now, to summarize. The main motivation behind the ESKF is that the er-

ror state remains small at all times, due to the reset in each iteration. This has

some advantages over the EKF [18], at this point primarily that the linearization

remains valid as higher-order products become negligible. At least equally im-

portant, and perhaps the main reason for using the ESKF over the EKF, is that the
composition of the nominal and error state does not in general make any assump-
tion of the state-spaces of said states. This means the nominal and error state may

consist of different states, as long as they can be composed to give the true state.

This needs further explanation, and will be expanded on in Chapter 8. For now,

accept that using different states in the error and nominal state may be benefi-

cial, which will be seen when estimating states that have dynamics that exhibit

singularities if operating too far from their origins. As will be seen in Chapter 6,

the orientation of an object in 3-dimensional space is such a state.

38

5.2 The error-state system

To estimate the error state in the Kalman filter framework, the process and meas-

urement models for the error state must be provided.

5.2.1 The process model

In order to acquire the process model of the error state, the process model of

both the true and nominal state are required. As for the EKF, the process model

for the true state takes the nonlinear form of (4.1). The nominal state is then

given as the expectation of the true state, where all process noises are removed.

The process model for the nominal state is therefore given as simply

x̂: = f (x̂:−1). (5.4)

The linearized error process model can then be developed from (4.1), (5.4)

and (5.2). Unfortunately, developing a general formula is futile. This follows

from the nonlinear relation between the nominal and error state. A naive ap-

proach that is something along the lines of Chapter 4.2.1 would be

x: = f (x:−1) + v:−1
= f (x̂:−1 ⊕ δx:−1) + v:−1

≈ f (x̂:−1 ⊕ 0) +
% f (x̂:−1 ⊕ δx:−1)

%δx:−1

����
δx:−1=0

(δx:−1 − 0) + v:−1

= x̂:︸︷︷︸
f (x̂:−1⊕0)

+ F̃:−1︸︷︷︸
% f (x̂:−1⊕δx:−1)

%δx:−1

δx:−1 + v:−1.

However, as x:−x̂: ≠ δx in general, this will not suffice. A bonafide linear process

model that is explicit in δx: can therefore not be developed from the same pro-

cedure as in Chapter 4.2.1. In other words, using the Jacobian F̃:−1 =
% f (x̂:−1⊕δx:−1)

%δx:−1
is in general not correct. The process model can instead be obtained by first spe-

cifying the nonlinear dynamics of the true state, which are in general stochastic.

The nominal state dynamics then naturally follow by taking the expectation of

the true state dynamics. With these two nonlinear process models specified, the

error state dynamics can be constructed by taking a suitable decomposition in the

form δx = x	 x̂, where 	 can be considered the inverse function of ⊕. The result-

ing process model can then be linearized. Such an approach will in fact be used

39

later in Chapter 7 when deriving the kinematics for an INS. Needless to say, the

general result of this development is indeed a linear process model on the form

δx: = F:−1δx:−1 + v:−1 (5.5)

where v:−1 remains Gaussian as v:−1 ∼ N(0,Q:−1). In general, (5.5) is a linear
time-varying (LTV) system where F:−1 = F(x̂:−1) is a function of x̂:−1 and any

external input. The fact that F:−1 is a function of x̂:−1 should come as no sur-

prise, as the error state dynamics are inherently entangled with the nominal state

dynamics. The process model can now be found to be

?(δx: |δx:−1) =N(δx: ;F:−1δx:−1 ,Q:−1). (5.6)

5.2.2 The measurement model

Measurements will typically contain information of the true state, and not the

error state directly, so the measurement model takes the same nonlinear form as

for the EKF in (4.12). Deriving a general expression for the measurement model

is, contrary to the process model, possible. Recall that the argumentation at the

end of Chapter 5.1.1 for using a nonlinear relation between x̂: and δx: was be-

cause of state dynamics singularities. For the measurement model, however, the

underlying continuous-time measurement model contains no differential quant-

ities, and so the measurement vector z: can safely be constructed such that the

innovation �: defined in (3.10), in other words the measurement error, is always

additive on the nominal measurement h(x̂:).
The measurement model used in the ESKF can be retrieved as

z: = h(x:) +w:

= h(x̂: ⊕ δx:) +w:

≈ h(x̂: ⊕ 0) +
%h(x̂: ⊕ δx:)

%δx:

����
δx:=0

(δx: − 0) +w:

= h(x̂:) +H:δx: +w:

z: − h(x̂:) = H:δx: +w:

�: = H:δx: +w: , (5.7)

40

where

H: =
%h(x̂: ⊕ δx:)

%δx:

����
δx:=0

. (5.8)

In practice, since h(x:) only implicitly is a function of δx: , (5.8) is evaluated by

use of the chain rule,

H: =
%h(x̂: ⊕ δx:)

%δx:
=

%h(x:)
%x:

· %x:
%δx:

≡ Hx︸︷︷︸
%h(x:)
%x:

· Xδx︸︷︷︸
%x:
%δx:

. (5.9)

The actual contents of Hx and Xδx can only be evaluated with a specific measure-

ment model and state space, and is not concerned with here. The measurement

model can be expressed in z: as in the KF and the EKF, but because of the form

of (5.7), it is here expressed with �: instead as

?(�: |δx:) =N(�: ;H:δx: ,R:). (5.10)

Note that this only shifts the expectation and leaves the covariance untouched.

5.3 The ESKF algorithm

The ESKF follows a similar procedure to that of the EKF, but with a prediction

of the nominal state in parallel with the estimation of the error state. When

the error state is estimated by the prediction and update steps, it is subsequently

injected into the nominal state to give an estimate of the true state, which is done

in the additional injection step.

5.3.1 Notation

For the KF and the EKF, it was useful to separate the prior estimate �: |:−1 and

posterior estimate �: |: by time indexes as these are estimates of the same state

x: , but based on different information. For the ESKF, however, this is no longer

strictly true, as there are now three states, the true state x: , the nominal state x̂:
and the error state δx: , that are estimated simultaneously, and so a little book-

keeping is necessary. This is done by denoting the estimate of the true state x:
by �: and the estimate of the nominal state x̂: by �̂: . For the error state δx: ,

the estimate of the predicted error state is denoted by δ�: and the updated error

state by δ�̂: . The covariance matrix of the predicted error state is denoted by δP:

41

while the covariance matrix of the updated error state is denoted by δP̂: .
The main reason for these notations is to more explicitly separate the time

at which things happen while the algorithm is running. Although this will be

elaborated on later, it is suffice to say that the prediction step in the ESKF runs

much more often than the update step, and so the nominal estimate �̂: and error

covariance δP: will almost always be unsynchronized with the true state estimate

�: and updated covariance δP̂: .

5.3.2 Initialization

The filter is initialized with some known state �̂0, which acts as the initial nominal

state. As the filter operates on the error state, an initial error with covariance

must be provided. Being at the initial point of the filter, the expected error should

be zero, such that

?(δx0) ∼ N(0,δP0)

with some chosen initial covariance δP0.

5.3.3 The prediction step

The nominal state estimate �̂: is propagated by (5.4) as

�̂: = f (�̂:−1). (5.11)

With the process model of the error state given as (5.6), and the previous

posterior assumed the form

?(δx:−1 |�1::−1) =N(δx:−1;δ�:−1 ,δP:−1),

the predicted error state is, as always, given by total probability and the product

identity

?(δx: |�1::−1) =N(δx: ;δ�: ,δP:), (5.12)

with

δ�: = F:−1δ�:−1 , (5.13)

δP: = F:−1δP:−1FT:−1 +Q:−1. (5.14)

42

Note that δ�:−1 is the expected error from the previous time step. As the filter

is initialized with δ�0 = 0 and the error is reset to zero after each injection,

δ�:−1 = 0 for all :. This means (5.12) can be rewritten as

?(δx: |�1::−1) =N(δx: ;0,δP:). (5.15)

5.3.4 The innovation step

When new measurements arrive, the innovation is in the ESKF given by (5.7).

The measurement matrix H: is calculated with (5.9). Following the same pro-

cedure as for the Kalman filter in Chapter 3, the innovation covariance can be

shown to be equal to (3.11) where the suitable matrices are used.

5.3.5 The update step

Updating the estimate by an observation is the only way to observe the error

state, and is done as before with Bayes’ rule and the product identity on the

measurement model in (5.10) and prediction in (5.15), giving

?(δx: |�1::) =N(δx: ;δ�̂: ,δP̂:), (5.16)

where

δ�̂: =W:�: , (5.17a)

δP̂: = (I−W:H:)δP: (I−W:H:)T +W:R:W
T

: , (5.17b)

with Kalman gain W: . The measurement matrix H: is calculated with (5.9).

5.3.6 The injection step

After the error state has been estimated, the composition in (5.2) may be used to

give an estimate of the true state. This final step injects the error into the nominal

state, giving the estimate of the true state as

�: = �̂: ⊕ δ�̂: , (5.18)

such that the new nominal state is the estimate of the true state. As the nominal

state has its error corrected for by the injection, the estimated error must be reset

before the next iteration, and is simply done by

43

δ�̂:← 0. (5.19)

To summarize, the ESKF algorithm is given in Algorithm 3. Notice that the

prediction of δ�: is omitted in the algorithm, as it always takes the value of zero.

Algorithm 3 The error-state Kalman filter algorithm

The prediction step

1: �̂:← f (�̂:−1)
2: F:−1← F(�̂:−1)
3: δP:← F:−1δP:−1FT:−1 +Q:−1

The innovation step

4: �:← z: − h(�̂:)
5: Hx← %h(x:)

%x:

���
x:=�̂:

6: Xδx← %x:
%δx:

���
x:=�̂:

7: H:←HxXδx
8: S:←H:δP:HT

:
+R:

The update step

9: W:← δP:HT
:
S−1
:

10: δ�̂:←W:�:
11: δP̂:← (I−W:H:)δP: (I−W:H:)T +W:R:WT

:

The injection step

12: �:← �̂: ⊕ δ�̂:
13: δ�̂:← 0

44

III

INERTIAL NAVIGATION AND

KINEMATICS

6 | Introduction to inertial nav-

igation systems

The previous chapters have provided much of the general statistical theory for

state estimation, without any specifications of what the states are, or in what

setting the estimation methods are used. The rest of the thesis will now turn to

an application of state estimation in inertial navigation, specifically for a UAV.

An inertial navigation system (INS) is a system, usually on some vehicle or robot,

that fuses measurements from an inertial measurement unit (IMU) with meas-

urements from other sensors in order to estimate its own state for navigation.

The following chapter intends to introduce important concepts and mathemat-

ical tools for working with coordinate frame transformations in addition to the

used sensors.

6.1 Coordinate frames

A key concept for INS design is that of coordinate frames, or coordinate systems.

The following chapter will introduce the notation that will be used, in addition

to the relevant theory of attitude representation and transformations.

6.1.1 Vector notation and intuition

The following will borrow convention from [19] where ®?01 denotes a coordin-
ateless vector. That is, this vector is an entity suspended in space with a length

and direction, but where only its length can be quantified. Its direction cannot

be quantified until it is decomposed into a frame. See Figure 6.1 for visualization.

In this case, one can see how both p0
01

and p1
01

are derived from the same vector

46

®?01 , but with different coordinates as frame 1 is tilted relative to frame 0. As

a consequence, the direction of ®?01 appears more “upwards” in frame 1 than in

frame 0 because of the different perspectives.

In this example, p0
01

has the physical interpretation of being the position of

frame 1 relative frame 0. As such, it is useful to define inertial frame and body
frame. The inertial frame is the frame that is defined as stationary and defines

a global position for all other bodies living in its world. The body frame is the

frame that is attached to some rigid body moving in the world, and thus rotates

and translates with this body. In the given example, frame 0 is the inertial frame

and frame 1 is the body frame. This also applies in general: When some property

of frame 1 is described relative frame 0, then frame 0 is assumed inertial while 1

can be moving.

Going back to the example in Figure 6.1, one can see that, following the

established notation, p1
01

does not have any physical interpretation. The position

of frame 1 relative frame 0 can only be described in coordinates relative frame

0, so decomposing ®?01 in frame 1 does not give any meaningful information,

although it is perfectly doable mathematically. The following example will show

that this is usually not the case. Consider a body travelling counterclockwise

along the perimeter of the unit circle with constant velocity and inertial frame

placed in the center of the circle. See Figure 6.2 for reference. An observer placed

in the center of the body frame, with its axes aligned to the body frame, would

measure a constant velocity v1
01

tangential to the circle perimeter, with zero radial

velocity. An observer in the center of the circle, measuring the velocity v0
01

of the

moving body, however, would measure two sinusoidal components. For an INS,

both of these decompositions contain useful information about how the body is

moving.

6.2 Attitude representations

Attitude, or orientation, is the property of how one body is oriented relative some

reference frame. Many different parameterizations exist for representing attitude

[20], and the choice is not arbitrary. As attitude has three degrees of freedom

in 3D space, choosing three parameters seems like the obvious choice. A natural

choice is then Tait-Bryan angles, where the angles represent rotation about the

G-, H- and I-axis. These angles are called roll, pitch and yaw, respectively. See

Figure 6.3. An alternative representation is proper Euler angles, where rotation

47

®01

®02

®12

®11
®?01

(a) A visualization of how ®?01 is the position of frame 1 relative frame 0.

®01

®02

pa
ab

(b) How p0
01

looks like when ®?01 is decomposed
in frame 0.

®12

®11

pb
ab

(c) How p1
01

looks like when ®?01 is decomposed
in frame 1.

Figure 6.1: Visualization of how a vector describes properties of one frame relative another, and how it
decomposes differently in different frames.

about an axis is repeated. This is for example by rotating first about the G-axis,

then the H-axis, then the G-axis again.

Choosing such a minimal parameterization, that is, where the number of para-

meters is equal to the degrees of freedom, will however inherently contain sin-

gularities. More specifically, an attitude with a pitch of ±90◦ is a transform that

is not uniquely defined for a set of Tait-Bryan angles. This phenomena is called

gimbal lock. Although not shown here, by delving into the mathematics, it can

be shown that it is actually the derivative of the Tait-Bryan angles at this point

that are singular. The system of equations that must be solved becomes under-

48

®01

®02 ®12

®11

®E01

(a) A visualization of how ®E01 is the velocity of frame 1 relative frame 0.

®01

®02

®12

®11

v0
01

θ
=

[
−E sin(θ)
E cos(θ)

]

(b) How v0
01

looks like when ®E01 is decomposed

in frame 0. Here v0
01
= E

[
−sin(θ)
cos(θ)

]
.

®01
®02

®12

®11 v1
01 =

[
E
0

]

(c) How v1
01

looks like when ®E01 is decomposed
in frame 1. Note that the entire figure is aligned

to frame 1. Here v1
01
= E

[
1
0

]
.

Figure 6.2: Another visualization of how a vector describes properties of one frame relative another, and
how it decomposes differently in different frames.

determined, yielding infinitely many solutions. Thus, even though it is perfectly

doable to represent a pitch of ±90◦ for some body, uniquely determining how it
arrived there or exits is not. See [13], [19] for more examples and explanations.

As a consequence, overparameterization of the attitude is required, and two such

49

overparameterizations, the quaternion and the rotation matrix, will be explored

in this chapter.

The following chapter is structured as follows. First, the chapter will define

exactly what a rigid body rotation really is. Then, the angle-axis representation
will be introduced for later use and intuition. Lastly, the quaternion and rotation

matrix are introduced. Note that much of the related mathematics are found in

Appendix B, and are skipped here for brevity.

Figure 6.3: Coordinate frame local to the vehicle, with six degrees of freedom indicated. Picture taken
from https://en.wikipedia.org/wiki/Degrees_of_freedom_(mechanics).

6.2.1 Definition of rigid body rotation

A rigid body rotation is a tranformation that, loosely speaking, preserves volume

and structure of a body, hence keeping the body rigid. This definition results in

all such transformations to have two key properties. The first property is that the

length of a vector is preserved, meaning

u0Tu0 = u1Tu1 , (6.1)

irrespectively of the frames 0 and 1. The second property is that the relative

position and orientation of vectors is preserved. This means that

u0Tv0 = u1Tv1 (6.2)

and

u0 × v0 =w0⇐⇒ u1 × v1 =w1 (6.3)

irrespectively of the frames 0 and 1.

50

https://en.wikipedia.org/wiki/Degrees_of_freedom_(mechanics)

All such transformations form the rotation group of R3, called ($(3), and is

what is called a Lie group. A Lie group is what is called a differentiable manifold,

meaning it is a set which members are continuously distributed, or, loosely speak-

ing, “infinitely many and infinitely close to each other”. As such, the concept of a

Lie group can in some sense be thought of as a generalization of the real line R.

More information on Lie groups can be found in [21]. ($ stands for Special Or-
thogonal and the 3 comes from the fact that the rotations are in three dimensions.

($(3) is given a more thorough treatment in Appendix B.3.

6.2.2 The angle-axis representation

The angle-axis representation follows from Euler’s rotation theorem, stating that

any rigid body rotation can be reduced to a single rotation ϕ about a fixed rota-

tion axis n. By enforcing that n has unit length, the resulting angle-axis repres-

entation is the vector � such that

� = ϕn. (6.4)

Figure 6.4: Figure showing how a vector is rotated according to the angle-axis. The figure uses u as unit
vector instead of n. Figure taken from [18].

In later derivations, knowing about this representation will prove useful to

see how the different parameterizations are connected. It will also be extensively

used to describe angular velocities in body frame.

51

6.2.3 Quaternions

The quaternion as concept was first introduced by Hamilton in 1844 [22]. A

quaternion can interpreted in numerous ways, with Hamilton’s interpretation

being a hypercomplex number formed from a sum of a real number with three

orthogonal, imaginary numbers,

q = 0 + 18 + 2 9 + 3:, (6.5)

with 0, 1, 2, 3 ∈ R and 8 , 9 , : imaginary. In addition, 8 , 9 , : satisify the properties

82 = 92 = :2 = 8 9: = −1, (6.6)

8 9 = −98 = :. (6.7)

Notice that the first property is the same as for ordinary complex numbers, I =

0 + 18, where 82 = −1, and the second property is similar to the cross product of

the basis vectors in R3,

i × j = −j × i = k.

Another interpretation that will be used exclusively for the rest of this thesis is to

consider quaternions as four-dimensional vectors. That is,

q =

[
η

�

]
∈ R4 , (6.8)

for some quaternion q. Here, the real part is called the scalar part so that η = 0 ∈
R and the imaginary parts are combined into the vector part � = [ϵ1 ϵ2 ϵ3]T =
[1 2 3]T ∈ R3. This interpretation is also the most useful considering q will

eventually be inserted into a state vector.

Quaternion as rotation operator

All unit quaternions encode a rotation in three-dimensional space, and such a

quaternion can be written as

q =

cos

(
ϕ

2

)
n sin

(
ϕ

2

) , (6.9)

52

where ϕ denotes the angle to rotate with and n is the axis to rotate about, similar

to the angle-axis representation.

A rotation of a vector x1 from frame 1 to frame 0 is done by first inserting

the vector into the vector part of a quaternion with 0 as scalar part, for then to

premultiply by q0
1

and postmultiply by its conjugate. Pay special attention to the

used notation. A quaternion that transforms from frame 1 to frame 0 has 1 in its

subscript and 0 in its superscript. Thus, the calculation becomes[
0

x0

]
= q0

1
⊗

[
0

x1

]
⊗ q0∗

1
(6.10)

where x0 is x1 expressed in frame 0 and ⊗ the quaternion product defined in

(B.1). Note that (6.10) is often written as

x0 = q0
1
⊗ x1 ⊗ q0∗

1
(6.11)

for notational simplicity.

The fact that one uses ϕ

2 and not ϕ in (6.9), in addition to multiplying x by

both q and q∗ in (6.11), is a consequence of how rotation in four-dimensional

space occurs in two orthogonal planes instead of only one as in three-dimensional

space, depicted in Figure 6.4. Further details can be found in [18] and is outside

the scope of this thesis.

Differential analysis

In order to use quaternions as part of the state space in the ESKF, a differential

equation describing their dynamics is needed, and the following chapter intends

to derive this.

Over small changes Δq in orientation, the corresponding rotation angle Δϕ

can safely be assumed small. Under the small angle approximations

cos(Δϕ) ≈ 1,
sin(Δϕ) ≈ Δϕ,

Δϕ� 1,

53

a small rotation Δq can be approximated from (6.9) as

Δq ≈
[

1
1
2Δ�

]
, (6.12)

where Δ� = Δϕn is the angle-axis representation of the small rotation.

For small rotations, rotation can be treated as an additive quantity, which

allows for writing the time derivative of q(C) as

¤q = lim
ΔC→0

q(C +ΔC) − q(C)
ΔC

As q(C +ΔC) is just q(C) perturbed by Δq, ¤q can be derived as

¤q = lim
ΔC→0

q(C +ΔC) − q(C)
ΔC

= lim
ΔC→0

q(C) ⊗Δq − q(C)
ΔC

= q(C) ⊗
(
lim
ΔC→0

Δq − qI

ΔC

)

= q(C) ⊗

©«
lim
ΔC→0

[
1

1
2Δ�

]
−

[
1

0

]
ΔC

ª®®®®®®¬
= q(C) ⊗

(
lim
ΔC→0

[
0

1
2
Δ�
ΔC

])
= q(C) ⊗

[
0
1
2!

]
=

1
2
q(C) ⊗

[
0

!

]
where ! can be interpreted as the angle-axis representation of the instantaneous

angular velocity of the body with attitude q(C) decomposed in body frame at time

C. For notational simplicity, ¤q is usually expressed as

¤q = 1
2
q ⊗!. (6.13)

54

6.2.4 Rotation matrices

From Chapter 6.2.1 it is clear that rotation is a linear operation, as it is defined

from the scalar and cross product, which both are linear operations. This means

that u1 can be computed from u0 as

u1 = R10u
0 (6.14)

where R10 is called the rotation matrix from frame 0 to frame 1 and is indeed a

member of ($(3) that was introduced in Chapter 6.2.1.

Differential analysis

An analysis of the differential behaviour of R is necessary for later use when

linearizing the process model in ESKF, similarly to the quaternion. By time dif-

ferentiating (B.8) one gets

d
dC
(RTR) = d

dC
I

¤RT
R+RT ¤R =O

RT ¤R = −
(
RT ¤R

)T
, (6.15)

which shows that RT ¤R is a skew-symmetric matrix. This in turn means that there

exists a vector ! ∈ R3 such that

RT ¤R = ((!) (6.16)

where ((·) is the skew operator defined in (B.10).

The physical interpretation of ! in ((!) is the angle-axis representation of

the angular velocity of some body with orientation given by R, decomposed in

body frame. Note that (6.16) could be written as

¤RRT = ((!) (6.17)

by time differentiating RRT = I instead of RTR = I. In (6.17) however, contrary

to (6.16), ! must be decomposed in inertial frame. For an INS, raw angular ve-

locity measurements are always given in the same frame as the IMU, which is

defined as the body frame. Thus, (6.16) follows the classical approach and is the

formulation used for the remainder of this thesis.

55

Rewriting (6.16) as
¤R = R((!), (6.18)

and assuming ! to be constant with respect to time, (6.18) reduces to a simple

ordinary differential equation (ODE), with solution

R(C) = R(0)expm(((!C)). (6.19)

where expm(((!C)) is the matrix exponential of ((!C), defined from the Taylor

expansion of the exponential function as

expm(((!C)) =
∞∑
==0

((!C)=
=!

. (6.20)

By choosing R(0) = I and Δ� =!ΔC for some time period ΔC, (6.19) becomes

R = expm(((Δ�)), (6.21)

which is the exponential mapping from so(3) to ($(3).
Linearizing R(C) is now possible from (6.19) and (6.20). Rewriting as

R(C +ΔC) = R(C)expm(((!ΔC))
= R(C)ΔR,

the exponential mapping ΔR = expm(((!ΔC)) can be interpreted as a local per-

turbation of the body frame over the time period ΔC. By truncating ΔR to first

order and denoting Δ� =!ΔC, ΔR can be approximated as

ΔR ≈ I+ ((Δ�). (6.22)

6.3 Sensors used in an INS

As mentioned briefly in the start of Chapter 6, an INS is defined by fusing sensor

data from an IMU with some external measurement. Two common sensors to

accompany the IMU are a GNSS module or a camera. The former sensor is the

more traditional choice and is common for ships and drones that travel in an area

where GNSS is available. Should this not be the case, that is, that the vehicle is

travelling in a GNSS denied area, then fusing IMU with data from a camera is an

56

increasingly more popular option. The resulting system executes what is called

visual-inertial odometry. The topic is not pursued further, and for the remainder

of this thesis, fusion between IMU and GNSS will get full attention.

6.3.1 The IMU

The IMU is a sensor that is capable of measuring specific force and angular ve-

locity in its local frame at a high rate, typically 100 Hz and above, by using an

accelerometer and a gyroscope, respectively. Specific force is the acceleration that

the IMU experiences in free fall, meaning that an IMU at rest will measure a

positive acceleration upwards equal to gravity. Usually, the IMU has three such

accelerometers and gyroscopes mounted orthogonally to each other, such that

the IMU is capable of delivering measurements with six degrees of freedom, see

Figure 6.3.

While the IMU frame may be any arbitrary frame where the raw measure-

ments are decomposed in, for all practical purposes, the IMU can be assumed to

be rigidly mounted to the vehicle such that the body frame of the vehicle can be

defined equal to the IMU frame. Thus, in the following, IMU frame and body

frame are used interchangeably.

Modelling the IMU

The following will use the notation introduced in Chapter 6.1.1 together with

notation and models from [23]. The accelerometer of the IMU is modelled as

f IMU = a1
81
− g1 + b10 +w0 , (6.23)

where f IMU is the specific force that the IMU measures, a1
81

is the true acceler-

ation of the body frame relative the inertial frame in body frame, g1 is gravity

in body frame, b10 is a bias affecting a1
81

in body frame and w0 is white noise af-

fecting a1
81

. Note that the notation b10 and w0 is used instead of the maybe more

obvious alternative b1
a1
81

and wa1
81

for notational simplicity. The bias term b10 is

modelled as a Wiener process, such that

¤b10 =w10 ,

w10 ∼N(0,Σ10).

57

The white noise w0 is assumed to be Gaussian white noise, such that

w0 ∼N(0,Σ0).

Lastly, both w0 and w10 are assumed isotropic, meaning

wD
0 =wE

0

and

wD
10
=wE

10

irrespectively of frames D and E.

The gyroscope is modelled as

!IMU =!1
81
+ b16 +w6 (6.24)

where!IMU is the angular velocity that the IMU measures,!1
81

is the true angular

velocity of the body frame relative inertial frame in body frame, b16 is a bias term

and w6 white noise. Again, the bias term b16 is modelled as a Wiener process,

such that

¤b16 =w16 ,

w16 ∼N(0,Σ16).

The white noise w6 is assumed Gaussian, such that

w6 ∼N(0,Σ6).

Lastly, both w6 and w16 are assumed isotropic, such that

wD
6 =wE

6

and

wD
16
=wE

16

irrespectively of the frames D and E.

58

Bias modelling

The Wiener process is not the only way of modelling bias for IMU. Another com-

mon model used is the Gauss-Markov process, which models the bias dynamics as

the first-order system
¤b = −?b+w (6.25)

where b is some bias, ? is the inverse time constant of the system, ? = 1/), and

w is Gaussian white noise that drives the process. Both models have their pros

and cons. If external measurements are for some reason lost, the Gauss-Markov

process will draw the bias back to zero, as the bias itself is unobservable without

external measurements. The Wiener process does not suffer from this. On the

other hand, the Wiener process variance is unbounded, meaning it predicts in-

finite bias in infinite time and is in that case not a good representation of actual

bias behavior in an IMU. The variance of the Gauss-Markov process is indeed

bounded, and can in that sense be considered a better model for an actual IMU.

Note that the Gauss-Markov process becomes a Wiener process when taking the

limit

)→∞ =⇒ ?→ 0

which again implies that a large time constant) is a simple way of achieving

some sort of compromise between the two models. More discussion about bias

modelling can be found in [13], [24], [25] and is not discussed further here.

Mounting, scaling and orthogonality errors

Common errors when using an IMU are mounting, scaling and orthogonality er-
rors. As these errors are linear in nature, they can be resolved by a compensation
matrix C0 for the accelerometer and C6 for the gyroscope, and can be derived

from (6.23) and (6.24), respectively, as follows.

Because of mounting errors, the IMU will in general not be aligned with the

“true” body frame of the UAV. A consequence of this is for example that the

heading estimate of the UAV will be slightly off. When considering such mounting

error, (6.23) can be rewritten to a more general form

f IMU = RIMU
1
(a1

81
− g1) +w0 + b10 (6.26)

where RIMU
1

is the rotation matrix of the mounting error, transforming the true

acceleration and gravity from the true body frame into IMU frame.

59

Orthogonality errors are manufacturing errors where the axes of the accel-

erometer are not perfectly orthogonal to each other, which causes correlation

between the different sensor readings, as, for example, gravity contaminates the

readings of the other axes, without the filter being aware of this being gravity.

This can be remedied with a orthogonality matrix U0 with rows that correspond

to the actual direction that each axis of the IMU is measuring. Now (6.26) takes

the form

f IMU =U0RIMU
1
(a1

81
− g1) +w0 + b10 . (6.27)

The last error to account for is scaling error and is, as the name suggests, that

the IMU measures an acceleration that is only proportional to the true accelera-

tion, being off by some scale. As the error is linear, it can once again be remedied

by a matrix D0 , where the diagonal elements are the factors that scales the meas-

urement of each axis to be correct. Thus, the most common way of writing (6.23)

is then

f IMU =D0U0RIMU
1
(a1

81
− g1) +w0 + b10 (6.28)

= C−10 (a181 − g1) +w0 + b10 (6.29)

where

C−10 ≡D0U0RIMU
1

(6.30)

is the inverse of the compensation matrix C0 mentioned above. The exact same

procedure is done to get C6 ,

C−16 ≡D6U6RIMU
1

(6.31)

The reason for defining it as the inverse is just a matter of notation, as this allows

for writing the true acceleration as

a1
81
= C0

(
f IMU −w0 − b10

)
+ g1 . (6.32)

For the rest of this thesis, however, the matrices C0 and C6 will not be in-

cluded when using the true acceleration a1
81

and angular velocity !1
81

in expres-

sions.

60

6.3.2 The GNSS module

A GNSS module is a sensor that provides position measurements by communic-

ating with satellites that orbit Earth. Satellites broadcast navigation messages

modulated over a carrier that contains time of transmission and the ephemeris
of the satellite, which are parameters that are used to calculate the position and

velocity of the satellite at the time of transmission. When the receiver at the

surface receives this navigation message, it uses the difference between time of

transmission and arrival to estimate the line of sight distance between the satel-

lite and the receiver, called the pseudorange. When combined with the position

of the satellite at time of transmission, the receiver is able to calculate its own

position.

Sensor fusion where IMU is fused with precalculated position measurements

from a GNSS module is called loosely coupled integration. A more sophisticated

method is tightly coupled integration. This is where raw measurements such as

pseudorange, Doppler frequency, which is the shift in frequency of the carrier

because of relative motion between the satellite and the receiver, and, in the

case of multiple GNSS receivers used in conjunction, the carrier phase, are used

directly in the filter for better estimation. GNSS modelling is incredibly complex,

and further discussion of this topic and how GNSS navigation works in general

is outside the scope of this thesis. More information can be found in [13], [26],

[27].

GNSS measurement frames

GNSS position measurements can be given in multiple frames, and two will be

discussed here. The first frame is longitude, latitude, height (LLH). The position

along the surface of Earth is given as two angles denoting offset from the inter-
national prime meridian, which is the meridian that passes through the British

Royal Observatory in Greenwich, England, and equator, respectively. The height

is given as the height above the Earth’s reference ellipsoid. The full specifica-

tion is given in the WGS-84 standard [28]. Although LLH frame is common in

navigation, it is not cartesian and will therfore not be used here.

Another common frame is the earth-centered, earth-fixed (ECEF) frame. Con-

versely to LLH, ECEF is a cartesian coordinate frame. It is defined to have its

origin in the center of Earth, with its I-axis aligned with the rotational axis of

Earth and with the G-axis such that it passes through the point where longitude

61

and lattiude both equal 0. The direction of the H-axis is then chosen to com-

plete a right-hand system. An important remark about the ECEF frame is that,

as a consequence of its definition, the ECEF is not strictly inertial. It rotates with

Earth at a rate of [13]

ω84 ≈
1+ 365.25 cycles
365.25 · 24 hr

· 2π rad/cycle
3600 s/hr = 7.292115 · 10−5 rad/s.

This can be compensated for in (6.24) by adding the term R14!
4
84

, with !4
84
=

[0 0 ω84]T. Although this can be justified for vehicles that travel for a long time

with high-precision IMUs capable of measuring the rotation of Earth, such as a

maritime vessel that travels over an ocean, it will be neglected for the remainder

of this thesis. As the ECEF frame is cartesian and readily available from GNSS

module measurements, it is the frame of choice for this thesis.

Modelling the GNSS module

The general GNSS model used is

pGNSS = p4
41
+R4

1
r1
1<
+w4

? (6.33)

where p4
41

denotes the position of body frame relative the ECEF frame, R4
1
r1
1<

denotes the lever arm, that is, the position of the GNSS antenna relative the origin

of the body frame, transformed into ECEF frame and w4
? is white noise affecting

p4
84

decomposed in ECEF frame. The white noise w4
? is assumed Gaussian, such

that

w4
? ∼N(0,R?).

It is, however, not assumed to be isotropic. Although having a lever arm is perfectly

normal for an INS, it will be taken to be zero, r1
1<
= 0, for the remainder of this

thesis. Equation (6.33) thus reduces to

pGNSS = p4
41
+w4

? . (6.34)

62

7 | Kinematics

The kinematics of an INS describe the motion of said INS. For navigation with er-

ror state estimation, kinematics of the nominal, true and error state are required.

However, before stating the equations, the state space of each state needs to be

populated. Although large state spaces are possible for sophisticated filters, such

as for tightly coupled integration mentioned in Chapter 6.3.2 where the number

of states can easily surpass 100 states, the following will resort to a more es-

sential state-space approach for reliable estimation when using loosely coupled

integration.

The chapter is outlined as follows. First, the true and nominal states are

defined, together with the continuous-time kinematics that govern how they

evolve with time. Then, the error state is defined, where its continuous-time

kinematics are derived. Lastly, the nominal and error state kinematics are dis-

cretized for later use in Chapter 8. The true state is not discretized as its purpose

is only to be able to derive the continuous-time kinematics of the error state

and is never explicitly computed in the ESKF. The derivations will follow the

same outline as in [18] together with its simple notation. A remark on the use

of continuous-time models is in order before going on. Previous chapters have

inspected models in discrete time under the assumption that these models are

given. However, for a practical application such as INS, it is common and much

more intuitive to derive the process model in continuous-time, for then to dis-

cretize it afterwards with mathematical tools that need not be intuitive, although

the discretized result is correct.

63

7.1 The true and nominal state

As mentioned in Chapter 7, the true and nominal states will resort to a more

essential state-space approach for reliable estimation when using loosely coupled

integration. Therefore, they are defined to be

x =

p4
41

v4
41

q4
1

b10
b16

, (7.1a) x̂ =

p̂441
v̂441
q̂41
b̂
1

0

b̂
1

6

, (7.1b)

respectively. The chosen states should come as no surprise. Position and velocity

are indisputably coupled and required for navigation. Attitude is equally required

to transform IMU measurements to inertial frame so that position and velocity

can be propagated. Representing attitude in the form of a quaternion is chosen

to have a minimal parameterization that is singularity-free. Lastly, biases in IMU

measurements are estimated to have more reliable predictions, mitigating drift

between update steps and improving filter performance.

7.1.1 The true state kinematics

The true state continuous-time kinematics are given as

¤p441 = v4
41
, (7.2a)

¤v441 = a4
41
, (7.2b)

¤q41 =
1
2
q4
1
⊗!1

41
, (7.2c)

¤b10 =w1
10
, (7.2d)

¤b16 =w1
16
. (7.2e)

The true acceleration a4
41

in (7.2b) can be found by rewriting (6.23) into

a4
41
= R4

1

(
f IMU − b

1
0

)
−w0 + g 4 (7.3)

64

where the isotropic properties of w0 are used, g 4 = R4
1
g1 , the intertial frame 8 is

defined as ECEF frame 4 and R4
1

is the rotation matrix representation of q4
1

found

by using (B.17). Likewise, the true angular velocity !1
41

in (7.2c) is found by

rewriting (6.24) into

!1
41
=!IMU − b16 −w6 . (7.4)

By inserting (7.3) and (7.4) into (7.2b) and (7.2c), respectively, the true kin-

ematic system is found to be

¤p441 = v4
41
, (7.5a)

¤v441 = R4
1
(f IMU − b

1
0) −w0 + g 4 , (7.5b)

¤q41 =
1
2
q4
1
⊗

(
!IMU − b16 −w6

)
, (7.5c)

¤b10 =w1
10
, (7.5d)

¤b16 =w1
16
. (7.5e)

7.1.2 The nominal state kinematics

The nominal state continuous-time kinematics are found by simply taking the

expectation of the true state kinematic system in (7.5), which gives

¤̂p4
41
= v̂441 , (7.6a)

¤̂v4
41
= R̂

4

1(f IMU − b̂
1

0) + g 4 , (7.6b)

¤̂q4
1
=

1
2
q̂41 ⊗

(
!IMU − b̂

1

6

)
, (7.6c)

¤̂b10 = 0, (7.6d)

¤̂b16 = 0, (7.6e)

where R̂
4

1 is the rotation matrix representation of q̂41 .

7.2 The error state

Chapter 5 discussed how the composition operator ⊕ that injects the error state

into the nominal state does not make any assumption of the state spaces of the

nominal or error state. This allows the error state to estimate the error of the

65

same states as the true and nominal state, but with different parameterizations. A

full justification for the error state will be given in Chapter 8 and will for now

simply be defined to be

δx =

δp

δv

δ�
δb0
δb6

, (7.7)

where δ� is the attitude error and is represented with the angle-axis representa-

tion discussed in Chapter 6.2.2 and all other states are just the arithmetic differ-

ence between the true and nominal state.

As a quaternion can be formed from an angle-axis with (6.9), the composition

of the nominal state and the error state can now be defined as

x = x̂ ⊕ δx =

p̂441 +δp
v̂441 +δv
q̂41 ⊗ δq
b̂
1

0 +δb0
b̂
1

6 +δb6

(7.8)

where

δq =

cos

(
‖δ�‖
2

)
δ�
‖δ�‖ sin

(
‖δ�‖
2

) ≈
[

1
1
2δ�

]
(7.9)

as ‖δ�‖ is assumed small.

7.2.1 The error state kinematics

Instead of deriving the general, nonlinear kinematics for the error state, as was

done for the true state in (7.5) and the nominal state in (7.6), the following will

derive the linearized kinematics. The reason for this is to later be able to directly

insert the derived equations into the appropriate matrices in Chapter 5.2 when

deriving the ESKF for INS in Chapter 8. The result is so fundamental that it is

stated in Theorem 2 together with proof, based on the proof given in [18].

66

Theorem 2 (The linearized error state kinematics). Given the true state x

and the nominal state x̂ with kinematics given by (7.5) and (7.6), respectively.
Given also the error state δx that is defined by (7.7) and related to x and x̂ by
(7.8). Then the linearized kinematics of δx are given as

δ ¤p = δv , (7.10a)

δ ¤v = −R̂41(
(
f IMU − b̂

1

0

)
δ�− R̂41δb0 −w0 , (7.10b)

δ ¤� = −(
(
!IMU − b̂6

)
δ�−δb6 −w6 , (7.10c)

δ ¤b0 =w10 , (7.10d)

δ ¤b6 =w16 . (7.10e)

Proof. Deriving (7.10a), (7.10d) and (7.10e) is trivial, as the corresponding kin-

ematic equations for both the true and nominal state are already linear. Deriving

(7.10b) and (7.10c), however, is not trivial. A couple of assumptions and approx-

imations are required to arrive at the desired results. First, the rotation matrix for

the true state R4
1

can be approximated by linearizing about the nominal attitude

with (6.22) as

R4
1
≈ R̂41 (I+ ((δ�)) . (7.11)

Second, all error states are assumed to be small signals, which simply means they

are small in magnitude. This implicates that, loosely speaking, a “product” of two

small signals is negligible. Here, this will be used to say that

((δu)δv ≈ 0. (7.12)

where ((·) is the skew operator defined in (B.9). Additionally, as E [w] = 0, the

similar assumption

((δu)w ≈ 0 (7.13)

will be made.

The expression for δ ¤v can be derived by first taking the difference between

67

(7.5b) and (7.6b) to arrive at

δ ¤v = ¤v − ¤̂v

= R4
1

(
f IMU − b

1
0

)
−w0 + g 4︸ ︷︷ ︸

¤v

−
(
R̂
4

1

(
f IMU − b̂

1

0

)
+ g 4

)
︸ ︷︷ ︸

¤̂v

. (7.14)

By applying the approximation in (7.11), canceling g 4 and substituting b0 = b̂0 +
δb0 , (7.14) can be written as

R4
1

(
f IMU − b

1
0

)
−w0 + g 4 −

(
R̂
4

1

(
f IMU − b̂

1

0

)
+ g 4

)
≈ R̂

4

1 (I+ ((δ�))︸ ︷︷ ︸
R4
1

(f IMU−b̂
1

0 −δb0︸ ︷︷ ︸
−b10

) −w0 + g 4 − R̂41
(
f IMU − b̂

1

0

)
− g 4 (7.15)

= R̂
4

1 (I+ ((δ�))
(
f IMU − b̂

1

0 −δb0
)
−w0 − R̂

4

1

(
f IMU − b̂

1

0

)
. (7.16)

After multiplying out terms and canceling, (7.16) can be further manipulated

into

R̂
4

1 (I+ ((δ�))
(
f IMU − b̂

1

0 −δb0
)
−w0 − R̂

4

1

(
f IMU − b̂

1

0

)
= R̂

4

1

(
f IMU − b̂

1

0

)
− R̂41δb0 + R̂

4

1((δ�)
(
f IMU − b̂

1

0

)
(7.17)

− R̂41 ((δ�)δb0︸ ︷︷ ︸
≈0

−w0 − R̂
4

1

(
f IMU − b̂

1

0

)
= − R̂41δb0 + R̂

4

1((δ�)
(
f IMU − b̂

1

0

)
−w0 . (7.18)

where the assumption in (7.12) is invoked. Lastly, applying the property (B.11)

of ((·), (7.18) can finally be written as

− R̂41δb0 + R̂
4

1((δ�)
(
f IMU − b̂

1

0

)
−w0

= − R̂41δb0 − R̂
4

1(
(
f IMU − b̂

1

0

)
δ�−w0

= − R̂41(
(
f IMU − b̂

1

0

)
δ�− R̂41δb0 −w0 .

which is the result in (7.10b).

The expression for δ ¤� is derived using a slightly different strategy because of

the quaternion product in the composition between the nominal and error state.

68

Starting with

q4
1
= q̂41 ⊗ δq (7.19)

and time differentiating, one gets

d
dC

q4
1
=

d
dC

(
q̂41 ⊗ δq

)
¤q41 = ¤̂q

4
1
⊗ δq + q̂41 ⊗ δ ¤q

1
2
q4
1
⊗

(
!IMU − b16 −w6

)
︸ ︷︷ ︸

¤q4
1

=
1
2
q̂41 ⊗

(
!IMU − b̂

1

6

)
︸ ︷︷ ︸

¤̂q4
1

⊗δq + q̂41 ⊗ δ ¤q

1
2
q̂41 ⊗ δq︸ ︷︷ ︸

q4
1

⊗
(
!IMU − b16 −w6

)
=

1
2
q̂41 ⊗

(
!IMU − b̂

1

6

)
⊗ δq + q̂41 ⊗ δ ¤q

where (7.5c), (7.6c) and (7.19) are substituted in appropriately and the product

rule for differentiation of quaternion products (B.3) is used. After eliminating

the common q̂41 prefactor, multiplying both sides by 2 and isolating δ ¤q, one gets

2δ ¤q = δq ⊗
(
!IMU − b16 −w6

)
−

(
!IMU − b̂

1

6

)
⊗ δq. (7.20)

To continue, (7.20) must be written into two equations, one for the scalar part

and one for the vector part of δ ¤q. To do this, the quaternion products will be

multiplied out by using (B.2). It can be shown that (B.2a) and (B.2b) can be

written as [18]

!(q) =
[
η 0T

0 ηI

]
+

[
0 −�T

� ((�)

]
, (7.21a)

'(q) =
[
η 0T

0 ηI

]
+

[
0 −�T

� −((�)

]
, (7.21b)

respectively, where ((·) is the skew operator from (B.9) and q = [η �T]T. Note

also that

q ⊗! = q ⊗
[
0

!

]
and δ ¤q = d

dC

[
1

1
2δ�

]
=

[
0

1
2δ
¤�

]
.

69

Inserting all this into (7.20) gives

2δ ¤q ='(!IMU − b16 −w6)δq − !(!IMU − b̂
1

6)δq

2δ ¤q =
(
'

(
!IMU − b16 −w6

)
− !(!IMU − b̂

1

6)
)
δq

2

[
0

1
2δ
¤�

]
︸ ︷︷ ︸
δ ¤q

=

[
0

δ ¤�

]
=

©«

0 −
(
!IMU − b16 −w6

)T(
!IMU − b16 −w6

)
−(

(
!IMU − b16 −w6

)︸ ︷︷ ︸
'(·)

−

0 −
(
!IMU − b̂

1

6

)T(
!IMU − b̂

1

6

)
((!IMU − b̂

1

6)

︸ ︷︷ ︸
!(·)

ª®®®®®®®®¬
[

1
1
2δ�

]
︸ ︷︷ ︸
δq

.

Substituting b16 = b̂
1

6 +δb6 gives

[
0

δ ¤�

]
=

©«

0 −(!IMU

−b16︷ ︸︸ ︷
−b̂16 −δb6−w6)T

(!IMU−b̂
1

6 −δb6︸ ︷︷ ︸
−b16

−w6) −((!IMU−b̂
1

6 −δb6︸ ︷︷ ︸
−b16

−w6)

−

[
0 −(!IMU − b̂

1

6)T

(!IMU − b̂
1

6) ((!IMU − b̂
1

6)

]) [
1

1
2δ�

]
.

By using that ((·) is a bilinear operator from (B.12) and canceling of terms, the

last expression becomes[
0

δ ¤�

]
=

[
0

(
δb6 +w6

)T
−(δb6 +w6) −2((!IMU − b̂

1

6) + ((δb6) + ((w6)

] [
1

1
2δ�

]
. (7.22)

The scalar equation just states that the sum of two small signal products is 0, and

is of no interest. By examining the vector part, however, the expression for δ ¤�

70

can now be retrieved, as

δ ¤� = −δb6 −w6 − ((!IMU − b̂
1

6)δ�+
1
2
((δb6)δ�︸ ︷︷ ︸
≈0

+ 1
2
((w6)δ�︸ ︷︷ ︸
≈0

= −δb6 −w6 − ((!IMU − b̂
1

6)δ�

= −((!IMU − b̂
1

6)δ�−δb6 −w6 .

where the assumptions in (7.12) and (7.13) are invoked. �

7.3 Discretizing the kinematics

The final step to implementing the kinematics of an INS into the ESKF framework

presented in Chapter 5 is to discretize the nominal and error state kinematics.

Note that the following will skip the indexing of the arbitrary time step : to keep

the notation simple. The nominal state is propagated using classical mechanics

with the approximation that the measured specific force and angular velocity are

constant between time steps. This is a good approximation when for example

using a high-end IMU capable of averaging many samples over the time length

between two prediction steps. Under this assumption, the discretized nominal

state kinematics are found to be

p̂441← p̂441 + v̂
4
41ΔC +

1
2

(
R̂
4

1

(
f IMU − b̂

1

0

)
+ g 4

)
ΔC2 , (7.23a)

v̂441← v̂441 +
(
R̂
4

1

(
f IMU − b̂

1

0

)
+ g 4

)
ΔC , (7.23b)

q̂41← q̂41 ⊗Δq , (7.23c)

b̂
1

0← b̂
1

0 , (7.23d)

b̂
1

6← b̂
4

6 . (7.23e)

where ΔC is the time length between two time steps,

Δq =

[
cos(!IMUΔC

2)
!IMU
‖!IMU‖ sin(

!IMUΔC
2)

]
(7.24)

and ΔC2 = (ΔC)2 is used for notational simplicity.

As the linearized error state kinematics are only nonlinear in the nominal

71

state, they form a LTV, as predicted in Chapter 5.2.1. Hence, the kinematics can

be written in state-space form as

δ ¤x =A(x̂)δx +G(x̂)n , (7.25)

where

n =

w0

w6

w10

w16

, n ∼N(0,Σ=), (7.26)

Σ= =

Σ0 O O O
O Σ6 O O
O O Σ10 O
O O O Σ16

, (7.27)

A(x̂) =

O I O O O

O O −R̂41((f IMU − b̂
1

0) −R̂
4

1 O

O O −((!IMU − b̂
1

6) O −I
O O O O O
O O O O O

, (7.28)

G(x̂) =

O O O O
−R̂41 O O O
O −I O O
O O I O
O O O I

. (7.29)

A(x̂) can then be discretized by [29]

F = expm(A(x̂)ΔC) (7.30)

where F is the discrete-time process matrix that appears in (5.5) and expm(·) is

the matrix exponential function defined in (6.20).

This is a valid approach if the only goal is to discretize A(x̂). However, a more

convenient approach in practice is by using Van Loan’s formula [30], as this has

the added benefit of also computing the discrete-time process covariance matrix

72

Q. The matrices A(x̂), Σ= and G(x̂) are used to first form the matrix

M =

[
−A(x̂) G(x̂)Σ=G(x̂)T

O A(x̂)T

]
ΔC. (7.31)

Then, propagating (7.31) through the matrix exponential function gives a matrix

on the form

expm(M) =
[
• F−1Q
O FT

]
(7.32)

where • indicates a submatrix of expm(M) that is of no interest. From (7.32),

the discrete-time process matrix F and discrete-time process covariance matrix

Q can be extracted. Note that F and Q are only valid the same time step as x̂,

meaning they have to be recomputed every time x̂ is propagated.

73

8 | The ESKF applied for iner-

tial navigation systems

The kinematics of an INS were in Chapter 7 given for the true, nominal and

error state, so it should come as no surprise that the aim is applying the ESKF

for inertial navigation. In fact, the ESKF was engineered specifically for such

state estimation, having its majority of applications, if not its only, in inertial

navigation. The following chapter motivates its use in an INS, and briefly outlines

how it can be implemented.

8.1 Motivating ESKF for INS

The EKF as a nonlinear filter features a very generic, efficient and simple frame-

work for state estimation, and therefore sees extensive use in a wide variety of

fields. However, when considering INSes, the generic framework of the EKF does

unfortunately not suffice. In Chapter 6.2, the choice of parameterization of atti-

tude for the state vector was discussed. As choosing a minimal parameterization

will inherently contain singularities, it was concluded that overparameterization

of the attitude is required.

This solution is, however, not compatible with the original EKF framework.

As the attitude is determined by three degrees of freedom, any overparameter-

ization will induce linear dependency between the parameters. As such, a state

covariance matrix computed with an overparameterized attitude representation

will contain linearly dependent rows, making it rank deficient and singular, po-

tentially resulting in the filter to diverge. Additionally, the representation of at-

titude may not even be represented as vector, for example by using the rotation

matrix that was discussed in Chapter 6.2.4 as state.

74

The ESKF introduced in Chapter 5, however, circumvents this troubling mat-

ter. By separating the system into its nominal, true and error state, the two

former states can use a different attitude parameterization than the latter, as was

done in Chapter 7.2. By only estimating the offset between the predicted and

true state of the system in the error state, using three parameters for estimating

the attitude is considered safe as the error state will be far from any singularities.

Chapter 5.1 mentioned that a benefit of using the error state is that all higher

order terms than first order are often safe to neglect, making the computation of

Jacobians fast and reliable. In addition to that, the error state dynamics evolve

at a slower rate than the nominal and true state dynamics, making it possible to

run the ESKF update at a slower rate and instead only run the prediction step

in between [18], [24]. This is especially favorable for an INS, as an IMU is in

general capable of delivering measurements that drive the kinematics at a much

higher rate than any other sensor integrated into the system, for example a GNSS

module.

8.2 The estimation procedure

With the general ESKF algorithm described in Chapter 5 and the kinematic model

of the nominal and error state in Chapter 7, the ESKF algorithm can now be

determined for an INS. Note that, as in Chapter 7.3, time indexing of states, such

as p1
41

, is skipped for brevity.

8.2.1 The intermediate predictions

As mentioned in Chapter 8.1, the prediction step in the ESKF is usually run much

more frequently than the update step and is executed every time a new measure-

ment from the IMU arrives. The first substep is to propagate the nominal state

according to (7.23). The second substep is to discretize the continuous-time sys-

tem matrices A(x̂) and Σ= in (7.28) and (7.27), respectively. This is done with

Van Loan’s formula in (7.31) and (7.32). This is necessary for the last substep,

where the covariance matrix δP: is propagated according to (5.17b).

8.2.2 Measurement arrival

Only when a GNSS measurement arrives, the full update step is run. Recalling

that the GNSS measurement model is given by (6.34) and the true state by (7.1a),

75

the measurement matrix H: can be calculated from (5.9). The matrix Hx is

straight forward to obtain, as

Hx =
%h(x:)
%x:

=
%p4

41

%x:

=

[
I O O O O

]
.

Obtaining Xδx is done by

Xδx =
%x:
%δx:

=

I O O O O
O I O O O
O O Θδ� O O
O O O I O
O O O O I

where Θδ� is found to be

Θδ� =
%(q̂41 ⊗ δq)

%δ�

=
%(q̂41 ⊗ δq)

%δq
·
%δq

%δ�

=
%!(q̂41)δq

%δq
·
%[1 1

2δ�
T]T

%δ�

=
1
2

η −ϵ1 −ϵ2 −ϵ3
ϵ1 η −ϵ3 ϵ2

ϵ2 ϵ3 η −ϵ1
ϵ3 −ϵ2 ϵ1 η

·

0 0 0

1 0 0

0 1 0

0 0 1

=

1
2

−ϵ1 −ϵ2 −ϵ3
η −ϵ3 ϵ2

ϵ3 η −ϵ1
−ϵ2 ϵ1 η

.

Following this, the Kalman gain W: is calculated with (3.15) to get the updated

error state estimate and covariance by (5.17).

76

The injection and reset step

The injection of nominal state estimate with the updated error estimate is ex-

ecuted according to (5.18). Here, with the presence of attitude as a state, an

additional step is done that is not in the general ESKF algorithm. The states

δb0 , δb6 and δ� are before injection expressed locally in the uninjected, nominal

frame, and so a transformation of their covariances should be done to express

them locally in the injected, nominal frame. By taking the Jacobian J: of the

error state after injection δx+
:

with respect to the error state before injection δx: ,

J: =
%δx+

:

%δx:
,

the covariance is reset by

δP̂:← J:δP̂:J
T
: . (8.1)

It is easy to see that J: will be a block-diagonal matrix where each submatrix

along the diagonal is the Jacobian of the state after injection with respect to itself

before injection,

J: =

%δp+

%δp O O O O

O %δv+
%δv O O O

O O %δ�+
%δ� O O

O O O %δb+0
%δb0

O

O O O O
%δb+6
%δb6

.

The Jacobian can be computed by first noticing that the first two submatrices

%δp+

%δp
=

%δv+

%δv
= I

as they are expressed in inertial frame, and the covariance is therefore unaltered

by the injection. The last three Jacobians are found as follows. Notice that the

injection step leaves the true state untouched, x+
:
= x: , so

x̂+: ⊕ δx+: = x̂: ⊕ δx: (8.2)

must hold. In order to find %δ�+
%δ� , recall that the inverse of a unit quaternion is

its conjugate defined in (B.4) and that all quaternions involved in ESKF are unit

77

quaternions as they encode a rotation. The quaternion part of (8.2) is

q̂4+1 ⊗ δq+ = q̂41 ⊗ δq. (8.3)

and the quaternion part of (5.18) is

q̂4+1 = q̂41 ⊗ δq̂ (8.4)

where it is emphasized that δq̂ is a member of δ�̂: and is therefore a numeric

estimate. By premultiplying (8.3) by (q̂4+1)∗ and inserting (8.4), the error qua-

ternion after injection δq+ can be expressed in terms of the error quaternion

before injection δq as

δq+ = (q̂4+1)∗ ⊗ q̂: ⊗ δq
= (q̂41 ⊗ δq̂)∗ ⊗ q̂: ⊗ δq
= δq̂∗ ⊗ q̂4∗1 ⊗ q̂: ⊗ δq
= δq̂∗ ⊗ δq
= !(δq̂∗)δq[

1
1
2δ�

+

]
=

[
1 1

2δ�̂
T

− 1
2δ�̂ I− ((12δ�̂)

] [
1

1
2δ�

]
where, by inspecting the vector part of the last expression, reveals that

1
2
δ�+ = −1

2
δ�̂+ 1

2

(
I− (

(
1
2
δ�̂

))
δ�

δ�+ = −δ�̂+
(
I− (

(
1
2
δ�̂

))
δ�

=⇒ %δ�+

%δ�
= I− (

(
1
2
δ�̂

)
. (8.5)

Perhaps unexpectedly, following the same procedure for δb+0 and δb+6 reveals

that
%δb+0
%δb0

=
%δb+6
%δb6

= I.

78

Thus, the Jacobian J: in (8.1) is given by

J: =

I O O O O
O I O O O

O O I− (
(
1
2δ�̂

)
O O

O O O I O
O O O O I

. (8.6)

79

IV

FILTER VALIDATION AND RESULTS

9 | Filter validation and tuning

Having derived the necessary equations to deploy the ESKF in an actual INS, the

filter must be validated by some criteria in order to verify its performance. For ar-

tificial data, where the true states are known, the estimates can easily be verified

by comparing to the true states. In most situations, however, the true states are

unknown, demanding other means for verification. This chapter intends to intro-

duce some possible ways of validating the filter performance, both for artificial

and experimental data, and how the filter can be tuned to give best performance.

9.1 Visual inspection

The most basic form for validating the filter is by visually inspecting the output of

the filter. For artificial data this can be done by plotting the estimates against the

true states, which gives some qualitative measure of how well the filter performs.

This is, however, more troublesome in an experimental setup, as the true states

are unavailable. The estimates must here be compared to what can be reasonably

expected from the experiment, and for an INS the positional estimates may be

most easily comparable to what is expected. In an INS setup with GNSS, the

positional measurements from the GNSS may also indicate where the positional

estimates should be.

Although these qualitative methods of validating the filter give some rough

indication of its performance, more quantitative methods are desirable for further

validation and tuning.

81

9.2 Filter consistency

Filter consistency is a systematic method for computing statistics that give in-

formation of the consistency of a filter. Following [2] and [31], a filter is deemed

consistent when its errors correspond to the modeling assumptions of the filter,

that is, the errors are on average zero with covariance as yielded by the filter. In

this context, the errors are both the state errors and the innovations. More spe-

cifically, both the state errors and innovations should be acceptable as zero-mean

and have magnitude commensurate with their covariance, in addition to the in-

novations being white. It goes without saying that the criteria on state errors can

only be tested when the true states are available, so this is limited to the artificial

case, but the innovations may also be tested on experimental data.

Consistency is typically first tested by a χ2-test on the normalized estimation
error squared (NEES)

ε = (x −�)TP−1(x −�) (9.1)

and normalized innovation squared (NIS)

εν = �TS−1�, (9.2)

both of which are χ2-distributed under the assumption of a linear and Gaussian

model. If x ∈ R= and z ∈ R< , the NEES and NIS are distributed as

ε ∼ χ2= ,
εν ∼ χ2< ,

respectively, where = and < are the degrees of freedom, or equivalently the ex-

pectations. A χ2-test for the state error can then be formulated as

�0 : E [ε] = = against �1 : E [ε] ≠ =, (9.3)

while the test for the innovation is

�0 : E [εν] = < against �1 : E [εν] ≠ <, (9.4)

where the NEES and NIS are the respective test statistics. By choosing some

level of significance, α, the filter may be tested for consistency. Note that the

82

filter is consistent under the null-hypothesis, �0. Equivalently, and perhaps more

illustrative, one may construct a two-sided confidence interval for the NEES and

NIS to check for filter consistency.

The overall consistency is typically tested by constructing a confidence inter-

val for the average NEES and NIS over all time steps, denoted ANEES and ANIS,

where

ε̄ =
1
#

#∑
:=1

ε: (9.5)

and

ε̄ν =
1
#

#∑
:=1

εν
:

(9.6)

are the ANEES and ANIS, respectively, over the total number of time steps, # .

The distributions are then found as

ε̄ ∼ χ2#= ,
ε̄ν ∼ χ2#< ,

where the respective confidence intervals are given by

%

(
1
#
χ2
#=,1− α2

≤ ε̄ ≤ 1
#
χ2
#=, α2

)
= 1−α, (9.7)

%

(
1
#
χ2
#<,1− α2

≤ ε̄ν ≤ 1
#
χ2
#<, α2

)
= 1−α, (9.8)

for some chosen confidence level α. The filter is said to be consistent in terms

of NEES and NIS if the ANEES and ANIS lie within their respective confidence

bounds. Similarly, the filter is also consistent if a sufficient percentage of the

NEES and NIS are within their respective bounds.

If the filter is inconsistent in terms of NEES and NIS, the filter typically tested

for bias and whiteness to identify the problem. The tests for bias and whiteness

follow a similar procedure as for NEES and NIS, but as they are not used in the

remainder of this thesis they will not be further discussed here. A treatment of

bias and whiteness tests can be found in [31].

83

9.3 Root mean square error

The root mean square error (RMSE) provides an absolute measure of the state

error in the filter, and is given by

xRMSE =

√√√
1
#

#∑
:=1

(x: − x̂:)T(x: − x̂:). (9.9)

A low RMSE is perhaps one of the most desirable properties of a filter, as it gives

a direct indication of its performance, but is unfortunately only measurable when

the true states are available. The use of RMSE for validation is therefore limited

to artificial data.

9.4 Tuning

Tuning denotes the process of adjusting variables to give best possible perform-

ance according to some performance criteria. In this context, the filter is said

to be tuned when its performance is satisfactory, for example according to the

methods of validation previously discussed. These methods can only be used

after the experiment is conducted, so tuning usually happens as a post-process.

For the ESKF, the only possible variables to adjust are the process and measure-

ment model covariances, the bias covariance of the gyroscope and accelerometer,

and the initial state. Although the covariances have previously been given as

time-variant variables, they will for simplicity be assumed time-invariant in the

remainder of the thesis.

Denoting the initial state as a tuning variable may be somewhat incorrect, as

one usually has control over the initial conditions in the experiment, and will

therefore not need to tune this variable. If the filter initially converges fast to-

wards the true state, this variable will also not affect the remainder of the ex-

periment. However, if one were to initialize the filter at a completely wrong

initial state, the filter may never converge at all [32], especially if there are large

modeling errors. Setting a good initial state may therefore be crucial for the

performance of the filter.

The process and measurement model covariances, Q and R, respectively, are

usually the main tuning variables for a Kalman filter. For the ESKF, which here

internally discretizes the continuous-time covariance Σ= into Q, the continuous-

time covariance is tuned instead. These variables capture the uncertainty in the

84

models, and are given values that are consistent with both the model uncertainty

and the dataset being tuned for. Although there are methods that give rough

estimates of Σ= and R, the process of tuning is often done by trial and error

on a given dataset. For the ESKF, where both the process and measurement

model use sensory input, the values of Σ= and R need only be consistent with the

noise of the given sensors, greatly simplifying the tuning process. The same goes

for the bias covariances, as these are properties of the specific IMU used in the

experiment.

Although using the characteristics of the sensors for choosing the respective

covariances may seem sufficient, the filter may still not perform satisfactory in

terms of consistency. This is because the modeling assumptions, namely that the

process and measurement models are Gaussian, are nothing more than models of

the true processes. An analysis in terms of NIS, and NEES and RMSE if the true

states are available, is then usually done to ensure that the filter is consistent.

One will typically observe that too large values of Q and R drive the ANEES and

ANIS below the lower bounds of the confidence intervals, while too low values

drive them above the upper bounds. The two cases are denoted as the filter

being underconfident and overconfident, respectively. Underconfident typically

means that the associated covariance is too large, and that the filter makes better

predictions than it believes itself. A consequence of this is for example slower

convergence to the true state of the system. Overconfident is the counterpart

of underconfident in the sense that the filter now makes worse predictions than

it is aware of itself. An underconfident filter can work in practice, although not

optimally, while an overconfident filter is susceptible to divergence, and is a much

more critical problem to correct.

If the true states are available, it may seem obvious that the filter should

be tuned to give the lowest possible RMSE. This may, however, have negative

consequences in terms of consistency, where the performance of the filter may

be satisfactory on the dataset being tuned on, but completely off on another. A

middle ground between filter consistency and RMSE is thus often desired, so that

the filter is generalized while still performing satisfactory.

85

10 | Results

As this thesis was written as a cooperation with the student organization Ascend

NTNU, an implementation in C++, shown in Appendix C, was written that inter-

faces with the Robot Operating System (ROS). ROS is a middleware that signific-

antly simplifies communication between different nodes, which are just processes

on a computer executing a single task. In this context, the ESKF node is a part of

a pipeline of nodes to provide the autonomous drone with state estimation. The

performance of this implementation has been benchmarked using two datasets,

and the results together with discussion is presented in the following chapter.

Additionally, the tuning process is explained, with how initial model parameters

are chosen and how they are tuned in accordance to the given results.

10.1 The datasets used

As mentioned, two different datasets are used to inspect the performance of the

ESKF. Both datasets were used as part of the second graded assignment in the

course TTK4250 Sensor Fusion, fall 2019, at NTNU. The first dataset is a sim-

ulated dataset generated in Matlab, but the underlying parameters and models

used in the simulator are not known. The second dataset is real data from a flight

with a UAV conducted by the UAV lab at the ITK Department of Engineering Cy-

bernetics at NTNU. See Figure 10.1 for flight path.

For the real dataset, the IMU used was a Sensonor STIM300 [34], while the

GNSS modules were two uBlox NEO-M8T receiver modules [35], with the front

receiver placed close to the IMU and the rear receiver placed approximately 0.7

m behind. The dataset, however, only provides one GNSS measurement that is

assumed on top of the IMU, and as such, no lever arm is used to compensate for

displacement. The measurements are timestamped with the SenTiBoard, which

86

Figure 10.1: Flight path of the real dataset. Picture taken from [33].

is a sensor timing board developed at the UAV lab at the ITK Department of

Engineering Cybernetics at NTNU [36]. This is used to synchronize the arrival

of all measurements beforehand and is therefore not done internally in the ESKF

node.

10.1.1 Benchmarking with both simulated and real data

In general, benchmarking the performance of ESKF with both simulated and real

data has several benefits. Using simulated data will give access to what is called

ground truth, which is the true state, at any desired point in time. This allows

for directly measuring the error in the estimate and to use metrics such as NEES

from Chapter 9.2 and RMSE from Chapter 9.3. Additionally, simulated data is

made from a simulator written in software, meaning it is available at a much

earlier stage than the actual hardware required for real data. This is crucial for

debugging in the early stages of an iterative development process, where the

functionality of the filter may be tested on perfect data, that is, data without

noise, that may otherwise hide faults in the system. However, a simulator is no

more realistic than the underlying, implemented model. Ultimately, the filter

has to be tested with data collected with the actual hardware it will be used in

conjunction with to validate that it functions as intended. This also tests the

entire pipeline of data gathering, transport and processing.

87

10.2 The simulated dataset

Before going into the tuning process, a brief overview of the data is in order. The

trajectory that the UAV follows in the simulated data can be seen in Figure 10.3.

The dataset has a brief period in the start where the UAV is at rest, before being

launched into flight, where it then follows many sharp maneuvers. The entire

set is 15 minutes long, with IMU measurements arriving at 100 Hz and GNSS at

1 Hz. GNSS measurements are given in a local tangent frame, called north-east-
down (NED) frame, where the G-axis is aligned to point north, the H-axis east and

I-axis downwards, towards the center of Earth. The origin is placed at the start

of the trajectory.

With ground truth available, the initial nominal state �̂0 was chosen equal to

ground truth at the first time step and error covariance δP0 small. Thus, the main

tuning challenge was the tuning of the continuous-time process noise covariance

matrix Σ= and discrete-time measurement noise covariance matrix R.

One large tuning benefit for filters used in INS, such as the ESKF, is the fact

that both process noise and measurement noise originate from sensors. In the

more general case, Q has to be deduced from the process dynamics, where char-

acteristics such as process transients are used for making an initial guess, and

must therefore also be known. In the ESKF, however, both Σ= and R are obtain-

able from the datasheets of the respective sensors. As the parameters used in the

simulated data were not known, this was obviously not possible.

For tuning the white noise in Σ= , it was exploited that the IMU is at rest for the

first period of the simulation. This period is, however, less than a minute, which

is not long enough to give good estimates of the sensor bias as it accumulates

so slowly. Bias variance was therefore tuned by trial and error using NEES and

estimation errors. Sensor bias tends to be magnitudes lower than white noise,

where around a tenth of the white noise standard deviation gave good results.

As ground truth was available, R was estimated by subtracting the ground

truth from the GNSS measurements and calculating the empirical standard de-

viation of the resulting signal. This gave reasonable results, with equal variance

in the plane and higher variance in altitude, as expected for a GNSS. The final

parameters are shown in Table 10.1, with the ESKF performance shown in Ap-

pendix A.1.

NIS and NEES were used for tuning by validating that the filter is not under-

or overconfident and with as many estimates inside the confidence interval as

possible, choosing α = 0.05 as confidence level. The metrics, however, ended up

88

10−1
100
101
102

Total NEES - 66.32% inside 95% confidence interval

1− α/2 bound

α/2 bound

10−1
100
101
102

NEES position - 93.16% inside 95% confidence interval

1− α/2 bound

α/2 bound

10−1
100
101
102

NEES velocity - 90.99% inside 95% confidence interval

1− α/2 bound

α/2 bound

10−1
100
101
102

NEES attitude - 86.63% inside 95% confidence interval

1− α/2 bound

α/2 bound

10−1
100
101
102

NEES acceleration bias - 87.84% inside 95% confidence interval

1− α/2 bound

α/2 bound

0 20000 40000 60000 80000
Timestep k

10−1
100
101
102 NEES gyroscope bias - 77.45% inside 95% confidence interval

1− α/2 bound

α/2 bound

Figure 10.2: NEES from simulated data. Note that the H-axis is logarithmic.

X [m]

0 1000 2000 3000 4000

Y
[m

]

−600
−400
−200

0
200
400
600
800
1000

Z
[m

]

10
20
30
40
50

60

70

80

Trajectory of simulated data Estimate
True

Figure 10.3: Trajectory of simulated data. Note the different scales of the axes.

89

being used for only a few of the states when arriving at the values in Table 10.1.

This is explained by the discussion above, were parameter values were mostly

estimated based on a purely statistical approach instead of trial and error. This is

not guaranteed to give the best results, and the results in Appendix A.1 are most

likely not depicting the optimal solution, but further tuning by trial and error did

not show significant increase in performance.

The true errors of the state estimates are all low, as seen from Figure 10.4.

Although the position and velocity error are slightly larger in the beginning, with

EG spiking a couple of times, these errors are otherwise small and show a white

noise looking behavior. This is expected from their strong observability from the

GNSS position measurements. Roll and pitch errors and horizontal accelerometer

biases are only observed as linear combinations from the GNSS measurements

under constant acceleration and attitude. To separate the estimates, turning and

forward acceleration of the UAV is required. The error states are then observable

by the ESKF by tracking the changes to their impact on the velocity error through

the off-diagonal elements in δP [37]. From Figure 10.4, the roll φ and pitch θ

error converges reasonably fast to zero, with the horizontal accelerometer biases

10,G and 10,H lagging more behind. This could be a consequence of suboptimal

tuning of bias variance, where a larger variance is more fit. This is consistent

with NEES for accelerometer bias in Figure 10.2, as the filter shows overcon-

fident behavior in the start before converging to consistent estimates. Heading,

both for yaw ψ and gyroscope bias 16,I , requires more significant maneuvers to

be properly observed, resulting in a usually slower convergence [37], and the

heading error in Figure 10.4 never really settles on zero in the same way as roll

and pitch. This is subsequently a weakness of this filter with only position as

GNSS measurement with no lever arm. For example using a compass or a second

GNSS antenna for measuring heading would therefore provide better estimates

of heading for the whole trajectory.

10.3 The real dataset

As for the simulated dataset, an overview of the real data is in order before

delving into the tuning process. The first part of the data the UAV is stationary on

ground level. It is then launched into flight, where it first builds height following

a helix trajectory, before following a zig-zag trajectory, with an intermediate flight

back to approximately the initial G- and H-coordinate, but keeping its altitude.

90

−2

0

P
os

it
io

n
[m

]

Position error

x

y

z

−0.5

0.0

0.5

V
el

o
ci

ty
[m

/s
]

Velocity error

vx

vy

vz

−2.5

0.0

2.5

D
eg

re
es

[◦
]

Attitude error

ϕ

θ

ψ

−0.05

0.00

0.05

A
cc

el
er

at
io

n
[m

/s
2]

Accelerometer bias error

ba,x

ba,y

ba,z

0 20000 40000 60000 80000
Timestep [k]

−0.25

0.00

0.25

A
ng

ul
ar

ve
lo

ci
ty

[◦
/s

] Gyroscope bias error

bg,x

bg,y

bg,z

Figure 10.4: Plots over true error state from simulated data.

91

Parameter Value

σ0 0.02 m/s
√
B

σ10 0.002 m/s
√
B

σ6 0.0008 rad/
√
B

σ16 0.00008 rad/
√
B

ρG 0.3 m
ρH 0.3 m
ρI 0.5 m

Table 10.1: Table over final parameters for the ESKF on simulated data. σ indicates the scalar value used
in the diagonal of the respective Σ covariance matrix. Recall that the white noise of the IMU is assumed
isotropic, such that the same variance is used for all axes. ρ is used for the diagonal element of R.

The entire dataset is approximately 1 hour long, where IMU measurements arrive

at 250 Hz and the GNSS at 1 Hz. Although the original GNSS measurements

came in ECEF frame, it has here been transformed into NED frame beforehand.

Lastly, the uBlox receiver is able to estimate the accuracy of its own position

estimate, and these estimates were provided with the dataset.

An initial test of the filter performance with the parameters from Chapter 10.2

was done. However, this resulted in suboptimal results, and a new investigation

of parameters was done. With the sensors used now given, an initial guess on

noise parameters was derived from data in the respective datasheets. The velocity

accuracy for the used GNSS sensor is given as 0.05 m/s [35], so an initial guess

for position noise was set to

ρ =
0.05 m/s
1 Hz

= 0.05 m (10.1)

where 1 Hz is the sampling frequency and ρ is the position standard deviation in

G-, H- and I-direction.

For the IMU, the white noise parameters were found to be 0.06 m/s/
√

hr for

acceleration and 0.15 ◦/
√

hr for angular velocity [34]. The standard deviation

for the acceleration white noise σ0 was calculated to be

σ0 = 0.06 m/s/
√
hr

= 0.06 m/s/
√
hr ·

√
1 hr

3600 s

= 1.0 · 10−3 m/s
√
s (10.2)

92

and the standard deviation for the gyroscope white noise σ6 to be

σ6 = 0.15 ◦/
√
hr

= 0.15 ◦/
√
hr · π rad

180◦
·
√

1 hr
3600 s

≈ 4.36 · 10−5 rad/
√
s (10.3)

where the units of m/s
√

s and rad/
√

s are a result of computing standard de-

viations in continuous-time. After squaring σ0 and σ6 , inserting them into Σ= in

their appropriate places and discretizing the covariance matrix, the units will rest

assured be correct.

No numeric value for the bias, or random walk, variance is given in the data-

sheet for the STIM300. The datasheet does, however, provide plots of the Al-
lan variance for the gyroscope and accelerometer. Allan variance is a systematic

method for estimating the white noise, bias instability and random walk variance

of IMUs, and was originally invented by David W. Allan for estimating frequency

stability in oscillators during the 1960s [38]. The bias variance can be read from

such a plot by the intersection between the tangent of the log curve where the

slope is 1/2 with where τ = 3 s [39], [40]. Random walk can be observed from

such a plot as an inflection of the graph, where, after some time of decreasing,

the variance starts to increase. The time of inflection is dependent on the qual-

ity of the IMU. However, due to the high quality of the STIM300 and the short

time scale of only 104 s ≈ 2.7 hours in the plots, extracting the bias variance

can unfortunately not be done without extrapolating the curve, and was instead

estimated from the white noise variance as a thousandth of its magnitude. For a

real application, where the exact IMU that will be used is available, such a plot

can be made from raw measurements of said IMU at perfect rest in a temperat-

ure constant environment to minimize estimation errors from external sources of

noise. The time period required is again dependent on the IMU, but in general,

the longer time, the better. In [39], measurements are sampled for seven days to

ensure stable data with little influence from external errors on average.

With these initial parameter values, the filter performs decent. The saw-tooth

looking behaviour of the G- and H-coordinate in the plot shown in Figure 10.6

is explained by the shape of the trajectory, as the UAV is zig-zagging back and

forth in the G-direction before returning to the origin, twice. The H-coordinate

increases linearly when the UAV turns, and remains stationary while making the

stint where the G-coordinate changes. This causes the staircase looking plot.

93

X [m]

−2000
−1500

−1000
−500

0

Y [m]

−200

0

200

400

600

800

1000

Z
[m

]

0

50

100

150

200

250

300

Estimated trajectory

Figure 10.5: Estimated trajectory of real dataset.

The attitude estimates in Figure 10.7 appear stable and consistent with what is

expected from the trajectory. Thus, having a sensor give control input to the filter

has therefore been shown to ease the tuning process, as the process noise is well

explained by the properties of the sensor and not only in the uncertainty of the

maneuvers of the object being estimated, which can be difficult to assess.

As the real data has no ground truth to calculate NEES with, the only avail-

able metric for evaluating filter consistency is NIS. In Figure 10.8a, a large spike

can be observed in the beginning of the dataset, before settling down, and is

the main contributor to measurements outside the confidence interval. The NIS

settles down when the robot starts to move. One possible explanation is that, as

this is at the start of the estimation, the filter estimates incorrect bias as it has

not converged to the correct estimate yet. This is probably also due to the poor

observability of accelerometer bias when the UAV is not in sufficient motion, and

the usual slower convergence of gyro bias with respect to time [37]. Thus, as

the UAV is otherwise at rest at the start of the estimation, small signal noise and

biases dominate the measurement, which the filter incorrectly mistakes for true

acceleration which propagates to driving the kinematics. This is consistent with

the fact the filter shows overconfident behavior. These errors are only observed

and corrected by the periodic GNSS measurements. After a while, the filter man-

94

0

500

1000

P
os

it
io

n
[m

]

x

−2000

−1500

−1000

−500

0

P
os

it
io

n
[m

]

y

0 200000 400000 600000 800000
Timestep [k]

−300

−200

−100

0

P
os

it
io

n
[m

]

z

Figure 10.6: Position estimate from real data.

95

−50

0

50
D

eg
re

es
[◦

]

Roll ϕ

−20

0

20

D
eg

re
es

[◦
]

Pitch θ

0 200000 400000 600000 800000
Timestep [k]

−100

0

100

D
eg

re
es

[◦
]

Yaw ψ

Figure 10.7: Attitude estimate from real data.

ages to estimate bias correctly before being launched into flight, which settles

down NIS.

With the initial measurement standard deviation of ρ = 0.05 m, only ∼10% of

the measurements were inside the 95% NIS confidence interval, see Figure 10.8b.

A large portion of the measurement estimates were on the upper side of the

95% confidence interval, indicating the filter was overconfident. Because of this,

the measurement variance was inspected, and was done by analyzing the uBlox

position accuracy estimates that were available. Using this data directly would

be wrong considering it is the position precision, and not the accuracy, that is

of interest. The standard deviation of the accuracy, however, should be a good

96

estimate of the precision. Calculating the standard deviation revealed that the

given GNSS module had closer to 0.5 m in standard deviation, ten times higher

than the value predicted from the datasheet. Applying this correction improved

NIS to 70%, see Figure 10.8a.

To further improve NIS, implementing the compensation matrices C0 and C1
from Chapter 6.3.1 given by (6.30) and (6.31) is an option. Although the filter

still is able to estimate the state to a satisfying degree, a filter consistency ana-

lysis will usually quickly reveal that the filter in absence of such compensations

matrices becomes overconfident. The most intuitive explanation for this is that

the compensation matrices present the filter with additional information that the

filter otherwise has no means of acquiring. As the filter naively trusts the IMU

measurements, this results in it underestimating the actual error, which is the

source of the overconfidence. As this was never implemented in software, these

results do not exist, unfortunately.

Parameter Value

ρG 0.5 m
ρH 0.5 m
ρI 0.5 m
σ0 1.0·10−3 m/s

√
s

σ10 1.0·10−6 m/s
√

s
σ6 4.36 · 10−5 rad/

√
s

σ16 4.36 · 10−8 rad/
√

s

Table 10.2: Table over final parameters for the ESKF on real data.

97

0 1000 2000 3000
Timestep 1

250k

10−3

10−1

101

103
NIS - 70.64% inside 95% confidence interval

1− α/2 bound

α/2 bound

(a) The final NIS from the real dataset. The sharp peak in the start is probably a
consequence of the UAV being at rest.

0 1000 2000 3000
Timestep 1

250k

10−4

10−2

100

102

104
NIS - 10.65% inside 95% confidence interval

1− α/2 bound

α/2 bound

(b) The initial NIS from the real dataset, before increasing measurement noise.

Figure 10.8: NIS before and after correcting R. Note the logarithmic H-axis. Also note that the NIS is is
only computed every time a GNSS measurement arrives, which is every 250th timestep

98

V

CLOSING REMARKS

11 | Closing remarks

11.1 Conclusion

This thesis started by introducing theory for understanding the fundamental

Bayes filter, together with underlying assumptions, that the Kalman filter is based

on. The original linear Kalman filter was then given together with its involved

assumptions. Then, the extension for nonlinear systems, the extended Kalman

filter, is introduced, together with derivations of how the process and measure-

ment models are linearized to fit with into the original Kalman filter framework.

The error-state Kalman filter is then given in a general form, where the concept of

the error state and how it can represent the same states as the true and nominal

state, but with different parameterizations, is introduced.

After the introduction of the Kalman filters, relevant theory for inertial navig-

ation systems is given, with special emphasis on attitude representations. Then

the state spaces and kinematics of the true, nominal and error state are intro-

duced. The error-state Kalman filter is then finally explained in the setting of an

inertial navigation system.

The thesis then discusses how the filter can be tuned and how its performance

can be measured with relevant metrics. Then an implementation of the filter is

tested with two datasets, where its performance is plotted and discussion is in-

cluded around how to choose initial parameters and how to tune them based on

the results. The results show that the error-state Kalman filter is able to perform

state estimation in a highly dynamic configuration, and achieves satisfactory per-

formance with regards to the relevant metrics.

100

11.2 Further work

Many models throughout the thesis are discussed, but were never implemen-

ted. Examples are the compensating matrices in Chapter 6.3.1 and leverarm in

(6.33). Especially implementing a leverarm is beneficial, as this allows for us-

ing multiple GNSS measurements, which allows for directly observing heading

through measurements of the baseline between two GNSS antennas. If three

or more antennas are used that are not colinear, the full attitude becomes dir-

ectly observable, improving filter consistency. As mentioned in Chapter 10.3, the

compensating matrices can also improve the consistency of the filter.

Additionally, the state space chosen is one of the simplest state spaces pos-

sible for an INS, and could be expanded. Bias from using incorrect gravity is a

large source of error and possibly divergence of the state estimate from the true

state, and as such online estimation of gravity can be beneficial to correct this.

The ESKF implemented for this thesis fused GNSS and IMU data in a loosely

coupled manner. The estimate can be improved by converting to tightly coupled

fusion, although this demands a sophisticated model for error sources in raw

GNSS measurements such as pseudorange and Doppler frequency.

The thesis has only considered the theoretical background for ESKF in an

INS, and little to no discussion around practical implementation is included. An

example is use of the costly matrix exponentiation computation given by Van

Loan in Chapter 7.2.1, which has approximations discussed in for example [24]

that can be considered for shorter computation time. Perhaps most importantly,

time synchronization of sensor data is an incredibly important part of sensor

fusion, and has been completely abstracted away in the datasets used. How the

filter should cope with measurements that are not valid at the time of arrival

should be discussed and implemented, for example by use of rollback, where the

update step is performed on a previous, buffered state estimate that is closest

in time to when the GNSS measurement is valid, for then to predict back to

the current time step. On top of this, outlier rejection of measurements can be

considered, either to detect missing measurements or measurements that are not

feasible. This can for example be implemented as a hypothesis test with a suitable

confidence interval that the measurement must be within.

In Chapter 10.3, the used GNSS module provides position accuracy estimates

online. Thus, instead of setting a static covariance based on a datasheet value,

updating the measurement covariance online while the filter is running has po-

tential for improvement.

101

VI

APPENDICES

A | Additional plots

A.1 Results from simulated data

−500

0

500

1000

P
os

it
io

n
[m

]

x

True

Estimate

0

2000

4000

P
os

it
io

n
[m

]

y

True

Estimate

0 20000 40000 60000 80000
Timestep [k]

−80

−60

−40

−20

P
os

it
io

n
[m

]

z

True

Estimate

Figure A.1: Position estimate from simulated data.

103

−20

−10

0

10

20

V
el

o
ci

ty
[m

/s
]

vx

True

Estimate

−10

0

10

20

V
el

o
ci

ty
[m

/s
]

vy

True

Estimate

0 20000 40000 60000 80000
Timestep [k]

−2

0

2

V
el

o
ci

ty
[m

/s
]

vz

True

Estimate

Figure A.2: Velocity estimate from simulated data.

104

−20

0

20

40

D
eg

re
es

[◦
]

Roll ϕ

True

Estimate

0

5

10

D
eg

re
es

[◦
]

Pitch θ

True

Estimate

0 20000 40000 60000 80000
Timestep [k]

−100

0

100

D
eg

re
es

[◦
]

Yaw ψ

True

Estimate

Figure A.3: Attitude estimate from simulated data.

105

−0.075

−0.050

−0.025

0.000

B
ia

s
[m

/s
2]

ba,x

True

Estimate

−0.100

−0.075

−0.050

−0.025

0.000

B
ia

s
[m

/s
2]

ba,y

True

Estimate

0 20000 40000 60000 80000
Timestep [k]

0.000

0.025

0.050

0.075

B
ia

s
[m

/s
2]

ba,z

True

Estimate

Figure A.4: Accelerometer bias estimate from simulated data.

106

−0.006

−0.004

−0.002

0.000

B
ia

s
[◦

/s
]

bg,x

True

Estimate

−0.002

0.000

0.002

0.004

B
ia

s
[◦

/s
]

bg,y

True

Estimate

0 20000 40000 60000 80000
Timestep [k]

−0.0050

−0.0025

0.0000

0.0025

0.0050

B
ia

s
[◦

/s
]

bg,z

True

Estimate

Figure A.5: Gyroscope bias estimate from simulated data.

107

0 200 400 600 800
Timestep 1

100k

10−1

100

101

102 NIS - 94.22% inside 95% confidence interval

1− α/2 bound

α/2 bound

Figure A.6: NIS from simulated data. Note that the H-axis is logarithmic. NIS is only computed at
arrival of a GNSS measurement, so the time scale is every 100th timestep :.

108

0.0

0.5

1.0

1.5

2.0

P
os

it
io

n
R

M
S

E
[m

]

posRMSE

0 20000 40000 60000 80000
Timestep k

0.0

0.2

0.4

0.6

0.8

1.0

V
el

o
ci

ty
R

M
S

E
[m

/s
]

velRMSE

Figure A.7: RMSE of position and velocity from simulated data.

109

A.2 Results from real data

−20

0

20

V
el

o
ci

ty
[m

/s
]

vx

−20

0

20

V
el

o
ci

ty
[m

/s
]

vy

0 200000 400000 600000 800000
Timestep [k]

−5

0

5

10

V
el

o
ci

ty
[m

/s
]

vz

Figure A.8: Velocity estimate from real data.

110

0.00

0.05

0.10

B
ia

s
[m

/s
2]

ba,x

0.0

0.1

0.2

B
ia

s
[m

/s
2]

ba,y

0 200000 400000 600000 800000
Timestep [k]

0.000

0.025

0.050

0.075

0.100

B
ia

s
[m

/s
2]

ba,z

Figure A.9: Accelerometer bias estimate from real data.

111

−0.002

−0.001

0.000

B
ia

s
[◦

/s
]

bg,x

−0.0015

−0.0010

−0.0005

0.0000

B
ia

s
[◦

/s
]

bg,y

0 200000 400000 600000 800000
Timestep [k]

0.000

0.002

0.004

B
ia

s
[◦

/s
]

bg,z

Figure A.10: Gyroscope bias estimate from real data.

112

B | Attitude related mathemat-

ics

B.1 Arithmetics with quaternions

To use quaternions, the arithmetic operations must be defined. Addition and

subtraction are trivially defined as

q1 + q2 =

[
η1

�1

]
+

[
η2

�2

]
=

[
η1 + η2
�1 + �2

]
and

q1 − q2 =

[
η1

�1

]
−

[
η2

�2

]
=

[
η1 − η2
�1 − �2

]
.

which follows intuitively from (6.5) and (6.8).

Multiplication is less intuitive, and can be derived from the formulation in

(6.5), as

q1 ⊗ q2 =

[
η1η2 − �T1�2

η2�1 + η1�2 + �1 × �2

]
, (B.1)

with ⊗ defined as the quaternion multiplication operator. Some remarks regard-

ing (B.1) are in order. Firstly, with the presence of the cross product in the vector

part of the product, it is evident that quaternion multiplication is not commutat-

ive. That is,

q1 ⊗ q2 ≠ q2 ⊗ q1

in general. However, it is associative and distributive, meaning that

q1 ⊗ q2 ⊗ q3 = (q1 ⊗ q2) ⊗ q3 = q1 ⊗ (q2 ⊗ q3)

113

and

q1 ⊗ (q2 + q3) = q1 ⊗ q2 + q1 ⊗ q3

for all q1 , q2 , q3 ∈ R4. Additionally, the quaternion product is linear in both its

arguments, or bilinear, meaning (B.1) can be rewritten as a matrix-vector product

as

q1 ⊗ q2 = !(q1)q2

= '(q2)q1

where !(·) and '(·) are the left and right quaternion product matrix operators,

respectively. By inspecting (B.1), these are found to be

!(q) =

η −ϵ1 −ϵ2 −ϵ3
ϵ1 η −ϵ3 ϵ2

ϵ2 ϵ3 η −ϵ1
ϵ3 −ϵ2 ϵ1 η

, (B.2a)

'(q) =

η −ϵ1 −ϵ2 −ϵ3
ϵ1 η ϵ3 −ϵ2
ϵ2 −ϵ3 η ϵ1

ϵ3 ϵ2 −ϵ1 η

. (B.2b)

The matrices in (B.2) are useful when differentiating quaternion products, for

example
%(q1 ⊗ q2)

%q1
=

%('(q2)q1)
%q1

= '(q2),

which may not otherwise be intuitive to compute. Lastly, as for ordinary func-

tions, differentiating a quaternion product obeys the product rule, meaning that

d
dC

(
q1(C) ⊗ q2(C)

)
= ¤q1(C) ⊗ q2(C) + q1(C) ⊗ ¤q2(C). (B.3)

It is important to remember that the quaternion product still is not commutative,

such that

d
dC

q2(C) = d
dC

(
q(C) ⊗ q(C)

)
= ¤q(C) ⊗ q(C) + q(C) ⊗ ¤q(C) ≠ 2q(C) ⊗ ¤q(C).

The inverse of a quaternion q can be defined from its conjugate q∗, which

114

itself is defined to be

q∗ =

[
η

−�

]
. (B.4)

Note that the conjugate of a quaternion product is the product of each quaternion

conjugated in the opposite order,(
q1 ⊗ q2

)∗
= q∗2 ⊗ q∗1. (B.5)

The inverse q−1 is then given as

q−1 =
q∗

| |q | |2

where | |q | | is the familiar vector norm applied to a quaternion,

| |q | | =
√
η2 + �T�

=

√
η2 + ϵ21 + ϵ22 + ϵ23 .

Notice that when q is a unit quaternion, that is, | |q | | = 1, then q−1 = q∗. In other

words, the conjugate and inverse are equal.

Multiplication of a quaternion with its inverse results in the identity qua-
ternion

qI =

[
1

0

]
, (B.6)

which holds commutatively. Specifically,

q ⊗ q−1 = q−1 ⊗ q = qI.

The identity quaternion has the property

q ⊗ qI = qI ⊗ q = q

for all q.

115

B.2 Composing quaternions

Composing quaternions, that is, chaining together consecutive transformations,

is done by simply multiplying together the different quaternions in the correct

order. Given q10 that transforms from frame 0 to frame 1 and q2
1

that transforms

from frame 1 to 2, the quaternion q20 that transforms from frame 0 to frame 2

directly is given by

q20 = q2
1
⊗ q10 . (B.7)

B.3 R as member of ($(3)
The name Special Orthogonal in ($(3) can be made clear by inserting (6.14) into

(6.1). This yields

u0Tu0 = u1Tu1

= (R10u0)T(R10u0)
= u0TR1T0 R10u

0

which implies

R1T0 R10 = I =⇒ R1T0 = (R10)−1 (B.8)

meaning that R10 is orthonormal, or Orthogonal with unit column vectors. The

Special in ($(3) comes from taking the determinant of (B.8), as

det(R1T0 R10) = det(I)
det(R1T0)det(R10) = 1

det(R10)Tdet(R10) = 1

det(R10)2 = 1

det(R10) = ±1.

Choosing det(R10) = −1 results in a reflection in R3, which are transformations

that do not form a Lie group and is of no interest here. Thus, all rotation matrices

have determinant equal to unity, making them Special.

116

B.4 The skew operator

The skew operator ((·) is defined as

((!) =

0 −ωI ωH

ωI 0 −ωG
−ωH ωG 0

 (B.9)

and provides a mapping R3 → so(3), where so(3) is the Lie algebra of the Lie

group ($(3) and contains all derivatives of R at its origin, where R(0) = I.
Remarkably, ((·) also provides an alternative way of computing the cross

product between two vectors, as

((u)v = u × v (B.10)

by construction of ((·). Note that this implies that

((u)v = u × v
= −(v × u)
= −((v)u (B.11)

and, where α,β ∈ R,

((αu + βv)w = (αu + βv) ×w
= α(u ×w) + β(v ×w)
= α((u)w + β((v)w
=

(
α((u) + β((v)

)
w ,

implying that

((αu + βv) = α((u) + β((v). (B.12)

B.5 Composing rotation matrices

Composing rotation matrices is done identically to quaternions. Given R10 that

transforms from frame 0 to frame 1 and R2
1

that transforms from frame 1 to 2,

the rotation matrix R20 that transforms from frame 0 to frame 2 directly is given

117

by

R20 = R2
1
R10 . (B.13)

B.6 Calculating R from other attitude representa-

tions

While quaternions are useful for storing an attitude in a state vector due to only

needing four parameters, rotation matrices are the most useful representation

in a practical application for actually transforming vectors. This is because the

involved transformation is just a simple matrix-vector product in R3. As such,

formulas for calculating R from parameters of other attitude representations are

desirable.

The first and most basic way is to compose the rotation matrix from individual

rotations about each axis,

R(φ,θ,ψ) = RI(ψ)RH(θ)RG(φ) (B.14)

where the order G, then H, then I is convention and φ, θ and ψ denote roll, pitch

and yaw, respectively. The three matrices RG , RH and RI are given as

RG(φ) =

1 0 0

0 cos(φ) −sin(φ)
0 sin(φ) cos(φ)

 , (B.15a)

RH(θ) =

cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)

 , (B.15b)

RI(ψ) =

cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 . (B.15c)

Another way is from the angle-axis representation, where the angle-axis � = ϕn
was a vector with direction parallel to the rotation axis and magnitude equal to

the rotation angle. Such a rotation matrix is constructed from Rodrigues rotation
formula as

R(ϕ,n) = I+ sin(ϕ)((n) + (1− cos(ϕ))((n)2 (B.16)

118

where ((·) is the skew operator defined in (B.9). Lastly, the rotation matrix can

be constructed from a unit quaternion q = [η �T]T as

R(q) = (η− �T�)I+ 2η((�) + 2��T. (B.17)

119

C | Snippet of C++ implement-

ation

The following code is a snippet of the C++ implementation which performance is

discussed in Chapter 10. Only the high-level part of the code is included, where

the actual algorithm is implemented, and more low-level code that interfaces

with ROS and the external sensors is left out. The library Eigen that is used is

a linear algebra library in C++ that abstracts away the complicated low-level

arithmetics involved in matrix and vector arithmetics, in addition to providing

many convenient functions for other matrix operations. More information can be

found in [41].

1 #include "eskf/eskf.h"

2 #include <cmath>

3 #include <Eigen/Core>

4

5 ESKF::ESKF()

6 {

7 nom_state_.quat = Eigen::Quaterniond(1,0,0,0);

8 nom_state_.vel = Eigen::Vector3d(0,0,0);

9 nom_state_.pos = Eigen::Vector3d(0,0,0);

10 nom_state_.acc_bias = Eigen::Vector3d(0,0,0);

11 nom_state_.gyro_bias = Eigen::Vector3d(0,0,0);

12

13 Qerr_ = Eigen::MatrixXd::Zero(12, 12);

14 R_ = Eigen::Matrix3d::Zero(3, 3);

15 P_ = Eigen::MatrixXd::Zero(15, 15);

16 }

17

18 void ESKF::initialize(const double Qacc, const double Qacc_bias, const double

p_acc,↩→

19 const double Qgyro, const double Qgyro_bias, const double

p_gyro,↩→

120

20 const double RGNSSx, const double RGNSSy, const double

RGNSSz,↩→

21 const NominalState& init_state, const Eigen::MatrixXd&

init_covariance, double g,↩→

22 const double imu_sample_rate)

23 {

24 Eigen::Matrix3d I = Eigen::Matrix3d::Identity();

25

26 Qerr_.block<3,3>(0,0) = Qacc * I;

27 Qerr_.block<3,3>(3,3) = Qgyro * I;

28 Qerr_.block<3,3>(6,6) = Qacc_bias * I;

29 Qerr_.block<3,3>(9,9) = Qgyro_bias * I;

30

31 R_(0,0) = RGNSSx;

32 R_(1,1) = RGNSSy;

33 R_(2,2) = RGNSSz;

34

35 p_acc_ = p_acc;

36 p_gyro_ = p_gyro;

37

38 nom_state_ = init_state;

39 P_ = init_covariance;

40

41 G_ = Eigen::Vector3d(0,0,g);

42

43 imu_sample_rate_ = imu_sample_rate;

44 IMUdt_ = 1.0 / imu_sample_rate_;

45 }

46

47 void ESKF::readIMU(const Eigen::Vector3d& acc, const Eigen::Vector3d& gyro)

48 {

49 acc_raw_ = acc;

50 gyro_raw_ = gyro;

51 }

52

53 void ESKF::readGNSS(const Eigen::Vector3d& gnss)

54 {

55 gnss_raw_ = gnss;

56 }

57

58 Eigen::Quaterniond ESKF::getAttitude() const

59 {

60 return nom_state_.quat;

61 }

62

63 Eigen::Vector3d ESKF::getVelocity() const

64 {

121

65 return nom_state_.vel;

66 }

67

68 Eigen::Vector3d ESKF::getPosition() const

69 {

70 return nom_state_.pos;

71 }

72

73 void ESKF::predict()

74 {

75 nom_state_ = predictNominal();

76 P_ = predictCovariance();

77 }

78

79 NominalState ESKF::predictNominal()

80 {

81 Eigen::Vector3d acc, ang;

82 Eigen::Matrix3d I = Eigen::Matrix3d::Identity();

83 Eigen::Quaterniond dq = Eigen::Quaterniond::Identity();

84 NominalState nom_state_pred;

85

86 // Predict nominal orientation (quaternion)

87 ang = (gyro_raw_ - nom_state_.gyro_bias)*IMUdt_;

88 double ang_norm = ang.norm();

89 if (abs(ang_norm) > 1e-8)

90 {

91 dq.w() = cos(ang_norm/2.0);

92 dq.vec() = sin(ang_norm/2.0) * ang/ang_norm;

93 }

94

95 nom_state_pred.quat = nom_state_.quat * dq;

96 nom_state_pred.quat.normalize();

97

98 acc = nom_state_.quat.toRotationMatrix() * (acc_raw_ - nom_state_.acc_bias) +

G_;↩→

99

100 // Predict nominal position, velocity, bias

101 nom_state_pred.pos = nom_state_.pos + nom_state_.vel*IMUdt_ +

0.5*acc*IMUdt_*IMUdt_;↩→

102 nom_state_pred.vel = nom_state_.vel + acc*IMUdt_;

103 nom_state_pred.acc_bias = nom_state_.acc_bias -

p_acc_*I*nom_state_.acc_bias*IMUdt_;↩→

104 nom_state_pred.gyro_bias = nom_state_.gyro_bias -

p_gyro_*I*nom_state_.gyro_bias*IMUdt_;↩→

105

106 return nom_state_pred;

107 }

122

108

109 Eigen::MatrixXd ESKF::predictCovariance()

110 {

111 Eigen::MatrixXd P_pred(15,15);

112

113 Eigen::MatrixXd A = Aerr();

114 Eigen::MatrixXd G = Gerr();

115 auto [Ad, GQGd] = discretizeErrorMats(A, G);

116

117 P_pred = Ad * P_ * Ad.transpose() + GQGd;

118

119 return P_pred;

120 }

121

122 Eigen::MatrixXd ESKF::Aerr()

123 {

124 // Error-state vector: x = [d_pos.T, d_vel.T, d_ang.T, d_acc_bias.T,

d_gryo_bias.T].T (15x1)↩→

125 Eigen::MatrixXd A = Eigen::MatrixXd::Zero(15,15);

126

127 Eigen::Matrix3d I = Eigen::Matrix3d::Identity();

128 Eigen::Matrix3d Rq = nom_state_.quat.toRotationMatrix();

129 Eigen::Matrix3d Sa = skewSymmetricMatrix(acc_raw_ - nom_state_.acc_bias);

130 Eigen::Matrix3d Sw = skewSymmetricMatrix(gyro_raw_ - nom_state_.gyro_bias);

131

132 A.block<3,3>(0,3) = I;

133 A.block<3,3>(3,6) = -1.0 * Rq * Sa;

134 A.block<3,3>(3,9) = -1.0 * Rq;

135 A.block<3,3>(6,6) = -1.0 * Sw;

136 A.block<3,3>(6,12) = -1.0 * I;

137 A.block<3,3>(9,9) = -1.0 * p_acc_ * I;

138 A.block<3,3>(12,12) = -1.0 * p_gyro_ * I;

139

140 return A;

141 }

142

143 Eigen::MatrixXd ESKF::Gerr()

144 {

145 // Process noise vector: n = [acc_n.T, gyro_n.T, acc_w.T, gyro_w.T].T (12x1)

146 Eigen::MatrixXd G = Eigen::MatrixXd::Zero(15,12);

147

148 Eigen::Matrix3d I = Eigen::Matrix3d::Identity();

149 Eigen::Matrix3d Rq = nom_state_.quat.toRotationMatrix();

150

151 G.block<3,3>(3,0) = -1.0 * Rq;

152 G.block<3,3>(6,3) = -1.0 * I;

153 G.block<3,3>(9,6) = I;

123

154 G.block<3,3>(12,9) = I;

155

156 return G;

157 }

158

159 std::tuple<Eigen::MatrixXd, Eigen::MatrixXd> ESKF::discretizeErrorMats(const

Eigen::MatrixXd& A, const Eigen::MatrixXd& G)↩→

160 {

161 // Allocate

162 Eigen::MatrixXd Ad(15,15);

163 Eigen::MatrixXd GQGd(15,15);

164 Eigen::MatrixXd V = Eigen::MatrixXd::Zero(30,30);

165 Eigen::MatrixXd Vexp(30,30);

166 Eigen::MatrixXd V1(15,15);

167 Eigen::MatrixXd V2(15,15);

168

169 // Using Van Loan's formula

170 V.block<15,15>(0,0) = -1.0 * A;

171 V.block<15,15>(0,15) = G * Qerr_ * G.transpose();

172 V.block<15,15>(15,15) = A.transpose();

173 V = V * IMUdt_;

174

175 Vexp = V.exp();

176 V1 = Vexp.block<15,15>(15,15);

177 V2 = Vexp.block<15,15>(0,15);

178

179 Ad = V1.transpose();

180 GQGd = V1.transpose() * V2;

181

182 return {Ad, GQGd};

183 }

184

185 void ESKF::update()

186 {

187 // Allocate matrices for error state update

188 Eigen::MatrixXd Hx = Eigen::MatrixXd::Zero(3,16);

189 Hx.block<3,3>(0,0) = Eigen::Matrix3d::Identity();

190

191 Eigen::MatrixXd X_dx = Eigen::MatrixXd::Zero(16,15);

192 Eigen::MatrixXd Q_dtheta(4,3);

193 double qx = nom_state_.quat.x();

194 double qy = nom_state_.quat.y();

195 double qz = nom_state_.quat.z();

196 double qw = nom_state_.quat.w();

197 Q_dtheta << -qx, -qy, -qz,

198 qw, -qz, qy,

199 qz, qw, -qx,

124

200 -qy, qx, qw;

201 Q_dtheta = Q_dtheta * 0.5;

202

203 X_dx.block<6,6>(0,0) = Eigen::MatrixXd::Identity(6,6);

204 X_dx.block<4,3>(6,6) = Q_dtheta;

205 X_dx.block<6,6>(10,9) = Eigen::MatrixXd::Identity(6,6);

206

207 Eigen::MatrixXd H = Hx * X_dx;

208 Eigen::MatrixXd S = H*P_*H.transpose() + R_;

209 Eigen::VectorXd x_nom(16);

210 x_nom << nom_state_.pos,

211 nom_state_.vel,

212 nom_state_.quat.w(),

213 nom_state_.quat.vec(),

214 nom_state_.acc_bias,

215 nom_state_.gyro_bias;

216 Eigen::MatrixXd I = Eigen::MatrixXd::Identity(15,15);

217

218 // Update error state/covariance (assumes GNSS measurements in NED-frame)

219 Eigen::MatrixXd K = P_*H.transpose()*S.inverse();

220 Eigen::VectorXd delta_x = K*(gnss_raw_ - Hx*x_nom);

221

222 err_state_.pos = delta_x.block<3,1>(0,0);

223 err_state_.vel = delta_x.block<3,1>(3,0);

224 err_state_.ang = delta_x.block<3,1>(6,0);

225 err_state_.acc_bias = delta_x.block<3,1>(9,0);

226 err_state_.gyro_bias = delta_x.block<3,1>(12,0);

227

228 P_ = (I - K*H)*P_*(I - K*H).transpose() + K*R_*K.transpose();

229

230 // Inject error into nominal state

231 inject();

232 }

233

234 void ESKF::inject()

235 {

236 // Get quaternion from euler angles in error state

237 double ang_x = err_state_.ang(0);

238 double ang_y = err_state_.ang(1);

239 double ang_z = err_state_.ang(2);

240 Eigen::Vector3d ang_err(ang_x, ang_y, ang_z);

241 Eigen::Quaterniond q_err(1, 0.5*ang_x, 0.5*ang_y, 0.5*ang_z);

242

243 // Inject error state into nominal state

244 nom_state_.pos = nom_state_.pos + err_state_.pos;

245 nom_state_.vel = nom_state_.vel + err_state_.vel;

246 nom_state_.quat = nom_state_.quat * q_err;

125

247 nom_state_.quat.normalize();

248 nom_state_.acc_bias = nom_state_.acc_bias + err_state_.acc_bias;

249 nom_state_.gyro_bias = nom_state_.gyro_bias + err_state_.gyro_bias;

250

251 // Reset error

252 err_state_.pos = Eigen::Vector3d::Zero();

253 err_state_.vel = Eigen::Vector3d::Zero();

254 err_state_.ang = Eigen::Vector3d::Zero();

255 err_state_.acc_bias = Eigen::Vector3d::Zero();

256 err_state_.gyro_bias = Eigen::Vector3d::Zero();

257

258 Eigen::MatrixXd G = Eigen::MatrixXd::Identity(15,15);

259 Eigen::Matrix3d Serr = skewSymmetricMatrix(0.5*ang_err);

260 G.block<3,3>(6,6) = Eigen::Matrix3d::Identity() - Serr;

261

262 P_ = G * P_ * G.transpose();

263 }

264

265 // Helpers

266

267 Eigen::Matrix3d ESKF::skewSymmetricMatrix(const Eigen::Vector3d& v)

268 {

269 Eigen::Matrix3d skew = Eigen::Matrix3d::Zero();

270 skew << 0, -v[2], v[1],

271 v[2], 0, -v[0],

272 -v[1], v[0], 0;

273

274 return skew;

275 }

126

Bibliography

[1] S. Thrun, W. Burgard and D. Fox, Probabilistic Robotics, 1st ed. The MIT

Press, 2005, ISBN: 0262201623,9780262201629.

[2] E. F. Brekke. Fundamentals of Sensor Fusion, [Online]. Available: http:

//folk.ntnu.no/edmundfo/msc2019-2020/sf13chapters.pdf (visited

on 3rd May 2020).

[3] S. Särkkä, Bayesian filtering and smoothing, 1st ed. Cambridge University

Press, 2013.

[4] H. Wolfgang and S. Léopold, Applied multivariate statistical analysis. Springer,

2015.

[5] R. Wang. (Nov. 2006). Marginal and conditional distributions of multivari-

ate normal distribution, [Online]. Available: http : / / fourier . eng .

hmc.edu/e161/lectures/gaussianprocess/node7.html (visited on

24th Mar. 2020).

[6] B.-N. Vo and W.-K. Ma, ‘The Gaussian Mixture Probability Hypothesis Dens-

ity Filter’, IEEE Transactions on Signal Processing, vol. 54, no. 11, 4091–4104,

2006. DOI: 10.1109/tsp.2006.881190.

[7] Y. Ho and R. Lee, ‘A Bayesian approach to problems in stochastic estim-

ation and control’, IEEE Transactions on Automatic Control, vol. 9, no. 4,

333–339, 1964. DOI: 10.1109/tac.1964.1105763.

[8] B. Ristic, S. Arulampalam and N. Gordon, Beyond the Kalman filter: Particle
Filters for Tracking Applications. Artech House, 2004.

[9] E. F. Brekke and E. F. Wilthil, ‘Suboptimal Kalman filters for target track-

ing with navigation uncertainty in one dimension’, 2017 IEEE Aerospace
Conference, 2017. DOI: 10.1109/aero.2017.7943601.

127

http://folk.ntnu.no/edmundfo/msc2019-2020/sf13chapters.pdf
http://folk.ntnu.no/edmundfo/msc2019-2020/sf13chapters.pdf
http://fourier.eng.hmc.edu/e161/lectures/gaussianprocess/node7.html
http://fourier.eng.hmc.edu/e161/lectures/gaussianprocess/node7.html
https://doi.org/10.1109/tsp.2006.881190
https://doi.org/10.1109/tac.1964.1105763
https://doi.org/10.1109/aero.2017.7943601

[10] L.-C. N. Tokle, ‘Multi target tracking - Using random finite sets with a

hybrid state space and approximations’, Master’s thesis, Norwegian Uni-

versity of Science and Technology, Aug. 2018.

[11] T.-T. Lu and S.-H. Shiou, ‘Inverses of 2 × 2 block matrices’, Computers
& Mathematics with Applications, vol. 43, no. 1-2, 119–129, 2002. DOI:

10.1016/s0898-1221(01)00278-4.

[12] R. S. Bucy and P. D. Joseph, Filtering for Stochastic Processes with Applica-
tions to Guidance. John Wiley & Sons, 1968.

[13] J. Farrell, Aided navigation: GPS with high rate sensors. McGraw-Hill, 2008.

[14] R. Zanetti and K. J. Demars, ‘Joseph formulation of unscented and quad-

rature filters with application to consider states’, Journal of Guidance, Con-
trol, and Dynamics, vol. 36, no. 6, 1860–1864, 2013. DOI: 10.2514/1.

59935.

[15] C.-T. Chen, Linear system theory and design, 3rd. Oxford University Press,

1999.

[16] S. Julier and J. Uhlmann, ‘Unscented Filtering and Nonlinear Estimation’,

Proceedings of the IEEE, vol. 92, no. 3, 401–422, 2004. DOI: 10.1109/

jproc.2003.823141.

[17] T. I. Fossen, Handbook of Marine Mraft Hydrodynamics and Motion Control.
Wiley, 2014.

[18] J. Solà. (Oct. 2017). Quaternion kinematics for the error-state KF, [On-

line]. Available: http://www.iri.upc.edu/people/jsola/JoanSola/

objectes/notes/kinematics.pdf (visited on 23rd Jan. 2020).

[19] O. Egeland and J. T. Gravdahl, Modeling and Simulation for Automatic
Control. Marine Cybernetics, 2003.

[20] M. D. Shuster, ‘A survey of attitude representations’, The Journal of the
Astronautical Sciences, vol. 41, no. 4, pp. 439–517, 1993.

[21] A. Baker, Matrix groups: an introduction to Lie group theory. Springer,

2002.

[22] W. R. Hamilton, ‘On Quaternions; or on a new System of Imaginaries in

Algebra’, The London, Edinburgh and Dublin Philosophical Magazine and
Journal of Science, vol. xxv, pp. 489–495, 1844.

128

https://doi.org/10.1016/s0898-1221(01)00278-4
https://doi.org/10.2514/1.59935
https://doi.org/10.2514/1.59935
https://doi.org/10.1109/jproc.2003.823141
https://doi.org/10.1109/jproc.2003.823141
http://www.iri.upc.edu/people/jsola/JoanSola/objectes/notes/kinematics.pdf
http://www.iri.upc.edu/people/jsola/JoanSola/objectes/notes/kinematics.pdf

[23] M. L. Sollie, T. H. Bryne and T. A. Johansen, ‘Pose Estimation of UAVs

Based on INS Aided by Two Independent Low-Cost GNSS Receivers’, 2019
International Conference on Unmanned Aircraft Systems (ICUAS), 2019.

DOI: 10.1109/icuas.2019.8797746.

[24] P. Maybeck, Stochastic models, estimation, and control. Academic Press,

1979, vol. 3.

[25] J. R. Carpenter and C. N. D’Souza. (Apr. 2018). Navigation Filter Best Prac-

tices - NASA, [Online]. Available: https://ntrs.nasa.gov/archive/

nasa/casi.ntrs.nasa.gov/20180003657.pdf (visited on 12th May

2020).

[26] P. Misra and P. Enge, Global positioning system: signals, measurements, and
performance. Ganga-Jamuna Press, 2012.

[27] E. D. Kaplan and C. J. Hegarty, Understanding GPS: principles and wexxd.

Artech House, 2006.

[28] R. Wang. (Jul. 2014). National geospatial-intelligence agency (nga) stand-

ardization document - Department of defense World Geodetic System 1984,

[Online]. Available: http://w3.uch.edu.tw/ccchang50/NGA.STND.

0036_1.0.0_WGS84.pdf (visited on 4th May 2020).

[29] J. G. Balchen, T. Andresen and B. A. Foss, Reguleringsteknikk, 6th ed. In-

stitutt for teknisk kybernetikk, NTNU, 2016.

[30] ‘Computing integrals involving the matrix exponential’, IEEE Transactions
on Automatic Control, vol. 23, no. 3, 395–404, 1978. DOI: 10.1109/tac.

1978.1101743.

[31] Y. Bar-Shalom, X. Li and T. Kirubarajan, Estimation with Applications to
Tracking and Navigation. John Weily & Sons, 2001.

[32] K. Reif, S. Gunther, E. Yaz and R. Unbehauen, ‘Stochastic stability of the

discrete-time extended Kalman filter’, IEEE Transactions on Automatic Con-
trol, vol. 44, no. 4, 714–728, 1999. DOI: 10.1109/9.754809.

[33] M. L. Sollie, ‘Estimation of UAV Position, Velocity and Attitude Using Tightly

Coupled Integration of IMU and a Dual GNSS Receiver Setup’, Master’s

thesis, Norwegian University of Science and Technology, 2018.

[34] STIM300 Inertia Measurement Unit, TS1524, Rev. 25, Sensonor, Feb. 2020.

[35] NEO/LEA-M8T, UBX-15025193, Rev. 3, uBlox, Jun. 2016.

129

https://doi.org/10.1109/icuas.2019.8797746
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20180003657.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20180003657.pdf
http://w3.uch.edu.tw/ccchang50/NGA.STND.0036_1.0.0_WGS84.pdf
http://w3.uch.edu.tw/ccchang50/NGA.STND.0036_1.0.0_WGS84.pdf
https://doi.org/10.1109/tac.1978.1101743
https://doi.org/10.1109/tac.1978.1101743
https://doi.org/10.1109/9.754809

[36] SenTiBoard - About, [Online]. Available: https://sentiboard.com/

about.html (visited on 9th May 2020).

[37] P. D. Groves, Principles of GNSS, inertial, and multisensor integrated navig-
ation systems, 2nd. Artech House, 2013.

[38] D. Allan, ‘Statistics of atomic frequency standards’, Proceedings of the IEEE,

vol. 54, no. 2, 221–230, 1966. DOI: 10.1109/proc.1966.4634.

[39] N. El-Sheimy, H. Hou and X. Niu, ‘Analysis and Modeling of Inertial Sensors

Using Allan Variance’, IEEE Transactions on Instrumentation and Measure-
ment, vol. 57, no. 1, 140–149, 2008. DOI: 10.1109/tim.2007.908635.

[40] MathWorks. Inertial sensor noise analysis using allan variance, [Online].

Available: https : / / se . mathworks . com / help / nav / ug / inertial -

sensor- noise- analysis- using- allan- variance.html (visited on

9th May 2020).

[41] Eigen - Main Page, [Online]. Available: http://eigen.tuxfamily.org/

index.php?title=Main_Page (visited on 19th May 2020).

130

https://sentiboard.com/about.html
https://sentiboard.com/about.html
https://doi.org/10.1109/proc.1966.4634
https://doi.org/10.1109/tim.2007.908635
https://se.mathworks.com/help/nav/ug/inertial-sensor-noise-analysis-using-allan-variance.html
https://se.mathworks.com/help/nav/ug/inertial-sensor-noise-analysis-using-allan-variance.html
http://eigen.tuxfamily.org/index.php?title=Main_Page
http://eigen.tuxfamily.org/index.php?title=Main_Page

Fagerli, A. T.; Severinsen, O
. A.

The Error-State Kalm
an Filter for Singularity-Free State Estim

ation in Inertial N
avigation System

s

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Ba
ch

el
or

’s
pr

oj
ec

t

Anders Thallaug Fagerli
Odin Aleksander Severinsen

The Error-State Kalman Filter for
Singularity-Free State Estimation in
Inertial Navigation Systems

Bachelor’s project in Mathematical Sciences

Supervisor: Håkon Tjelmeland, Torleiv Håland Bryne

May 2020

	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	I Introduction and preliminaries
	Introduction
	Preliminaries
	Bayesian inference and Markov models
	Total probability and Bayes' rule
	The prior and posterior probability densities
	Markov models
	Sequential Bayesian estimation

	Estimators
	Maximum a posteriori estimation
	Minimum mean square error estimation
	The Bayes filter

	The multivariate Gaussian distribution
	Manipulating the Gaussian probability density function
	The product of multivariate Gaussian distributions

	II The Kalman filter
	The linear Kalman filter
	The linear Gaussian assumption
	The state-space model
	The process model
	The measurement model

	The Kalman filter algorithm
	Initialization and notation
	The prediction step
	The innovation step
	The update step

	Properties of the Kalman filter

	The extended Kalman filter
	Nonlinear filtering
	Linearization in EKF
	The process model
	The measurement model

	The EKF algorithm

	The error-state Kalman filter
	Introduction and motivation
	Composing the nominal and error state

	The error-state system
	The process model
	The measurement model

	The eskf algorithm
	Notation
	Initialization
	The prediction step
	The innovation step
	The update step
	The injection step

	III Inertial navigation and kinematics
	Introduction to inertial navigation systems
	Coordinate frames
	Vector notation and intuition

	Attitude representations
	Definition of rigid body rotation
	The angle-axis representation
	Quaternions
	Rotation matrices

	Sensors used in an ins
	The imu
	The gnss module

	Kinematics
	The true and nominal state
	The true state kinematics
	The nominal state kinematics

	The error state
	The error state kinematics

	Discretizing the kinematics

	The ESKF applied for inertial navigation systems
	Motivating ESKF for INS
	The estimation procedure
	The intermediate predictions
	Measurement arrival

	IV Filter validation and results
	Filter validation and tuning
	Visual inspection
	Filter consistency
	Root mean square error
	Tuning

	Results
	The datasets used
	Benchmarking with both simulated and real data

	The simulated dataset
	The real dataset

	V Closing remarks
	Closing remarks
	Conclusion
	Further work

	VI Appendices
	Additional plots
	Results from simulated data
	Results from real data

	Attitude related mathematics
	Arithmetics with quaternions
	Composing quaternions
	 as member of SO(3)
	The skew operator
	Composing rotation matrices
	Calculating from other attitude representations

	Snippet of C++ implementation
	Bibliography

