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Abstract

Artificial intelligence is an enabling technology for autonomous surface vehicles, with methods such as evolutionary algo-
rithms, artificial potential fields, fast marching methods, and many others becoming increasingly popular for solving problems
such as path planning and collision avoidance. However, there currently is no unified way to evaluate the performance of
different algorithms, for example with regard to safety or risk. This paper is a step in that direction and offers a comparative
study of current state-of-the art path planning and collision avoidance algorithms for autonomous surface vehicles. Across
45 selected papers, we compare important performance properties of the proposed algorithms related to the vessel and the
environment it is operating in. We also analyse how safety is incorporated, and what components constitute the objective
function in these algorithms. Finally, we focus on comparing advantages and limitations of the 45 analysed papers. A key
finding is the need for a unified platform for evaluating and comparing the performance of algorithms under a large set of

possible real-world scenarios.

Keywords Autonomous surface vehicle (ASV) - Path planning - Collision avoidance - Algorithms - Safety

1 Introduction

There is growing appeal for autonomous systems in multi-
ple fields, including manufacturing, transportation, routine
work, and work in dangerous environments. In the wake of
progress in the domain of autonomous cars, much atten-
tion is also given to autonomous surface vehicles (ASVs).
In an accompanying article in this journal [1], we present
a review on theory and methods for path planning and col-
lision avoidance of ASVs. We attempt to unify and clarify
relevant terminology and concepts such as autonomy and
safety, as well as models for guidance, navigation, and
control. Moreover, we propose a classification scheme for
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distinguishing and comparing algorithms for path planning
and collision avoidance.

Here, we extend this scheme to classify state-of-the-art
algorithms presented in 45 different peer-reviewed scientific
papers. Several kinds of algorithms are covered, including
evolutionary algorithms, sampling-based algorithms, cell
decomposition methods, directional approaches, and road-
map methods. We have also included some algorithms for
unmanned surface vehicles (USV5s).

As for any literature review paper, it is impossible to
cover everything in the literature within the scope of a sin-
gle paper. The number of papers studied before arriving at
the shortlist of the 45 papers presented here is probably in
the ballpark of several hundreds. We have carefully selected
papers that we ultimately found useful to include.

Moreover, whereas much of what we present is general
across vessel size, other considerations will differ whether
the vessel is a small boat or a large ship. In such cases, the
reader should note that larger ships are our main focus. Like-
wise, although some elements of path planning and collision
avoidance are common across congested waters and open
sea, we are mainly concerned with shorter time frames and
congested waters in the papers we study here.
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Table 1 Timeline of the first time use of dominating algorithms for
USV/ASV guidance applications

Year Algorithm References
1999 Genetic algorithm (GA) 2]
2001 Fuzzy logic [3]
2008 A* [4]
2008 Rapidly-exploring random tree (RRT) [4]
2010 Ant colony optimization (ACO) [5]
2012 Particle swarm optimization (PSO) [6]
2012 Dijkstra [7]
2013 Voronoi diagram [8]
2014 Velocity obstacles (VO) [9]
2015 Artificial potential field (APF) [10]
2015 Fast marching method (FMM) [11]
2018 Deep reinforcement learning (DRL) [12]

The rest of the paper is organised as follows: Sect. 2 pro-
vides a timeline of some of the most influential algorithms
for path planning and collision avoidance for ASVs or USVs.
Section 3 extracts distinguishing properties of the algorithms
from the literature, and analyses and compares papers based
on these properties. Section 4 analyses the proposed algo-
rithms based on their properties whilst focusing mainly on
two aspects: (1) safety and collision risk assessment (CRA),
and (2) choice of objective function. Section 5 extracts the
advantages and limitations of the algorithms used in the dif-
ferent papers. Finally, Sect. 6 presents a discussion, whilst
some concluding remarks are drawn in Sect. 7.

2 Timeline of algorithms

The first use of some of the most influential algorithms
used for path planning and collision avoidance for ASVs or
USVs is shown in Table 1. Notably, these algorithms have
also been successfully used at earlier times for guidance of
autonomous underwater vehicles (AUVs), unmanned aerial
vehicles (UAVs), or autonomous ground vehicles (AGVs).
Note that Table 1 is by no means an exhaustive list but high-
lights some dominating algorithms that have been commonly
employed, directly or in some derivative form, or in combi-
nation with others.

3 Properties of algorithms

Although some algorithms in the literature clearly separate
the tasks of path planning and collision avoidance, others
do not, and attempt to solve both problems with overlap-
ping modules [1]. Furthermore, it is generally not easy to
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compare path planning and collision avoidance algorithms
for ASVs due to the variety of constraints and objectives
that exist. One example is the use of regulations such as the
International Regulations for Preventing Collisions at Sea
(COLREGS) [13]: whereas some algorithms successfully
generate paths for avoiding obstacles whilst simultaneously
obeying several COLREG Rules [e.g., 14—18], others fully
or partially ignore these regulations [e.g., 11, 19, 20-22].
For adoption in the future, fully autonomous surface vessels
must comply with all the rules of COLREGs. We appreciate,
however, that algorithms that comply only with a subset of
COLREGs are still a step towards this goal and a contribu-
tion towards full COLREGs compliance in the future.

The literature analysis in Vagale et al. [1] shows that
there are several properties of path planning and collision
avoidance algorithms that can be used for classification and
analysis of the algorithms:

— Compliance with COLREGs: partial/full consideration of
COLREGs for collision avoidance.

— Environmental disturbances: taking into account wind,
waves, currents, and tides.

— Planning type: global and/or local planning.

— Obstacle type: whether a vessel can deal with static
and/or dynamic obstacles (including single or multiple
encounter situations at the same time).

— Environment type: discrete or continuous environment.

— Type of avoidance action: course change or speed change,
or a combination of both.

— Testing of algorithm: simulation or field test.

— Traffic category: congested waters (areas crowded with
static/dynamic obstacles, including harbour areas, lead
to low own vessel speed), open waters (minimal number
of static and dynamic obstacles, lead to high own vessel
speed), riverines (manoeuvring is limited, current is pre-
sent), and coastal areas (mostly static obstacles, such as
land, islands, and shallow water, lead to varying speed).

— Predictability of environment: known or unknown envi-
ronment.

— Planning time: real-time (online) or offline.

— Control horizon: infinite or receding horizon control.

— Number of encountered obstacles: single or multiple tar-
get vessel encounter situations.

— Vessel dynamics and kinematics: maximum ship turn-
ing rate, maximum vessel speed, other vessel’s motion
constraints, torque of the vessel, etc.

— Subject of research: type of the researched vessel or sys-
tem [ASV, USV, and decision support system (DSS)].

— Safe zones: safety margin, virtual safety zone, ship
domain, ship arena, or circle-of-rejection, around the
own vessel or static/dynamic obstacles.
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Note that Tsou and Hsueh [5] define ship domain as “the sea
around a ship that the navigator would like to keep free of
other ships and fixed objects.” This criterion has been widely
used in ships’ collision avoidance, marine traffic simula-
tion, calculation of encounter rates, vehicle tracking system
(VTS) design, and so forth. It differs from ship arena, which
is a bigger area around the vessel used to determine the time
of taking collision avoidance actions [23]. Similarly, a safety
zone can be assumed around each obstacle instead of the
own ship, called the circle-of-rejection (COR) [24].

Based on the aforementioned properties, eight properties
have been chosen for a comparative study of 45 papers con-
taining algorithms for path planning and collision avoidance
of ASVs (see Table 2). The choice of these eight proper-
ties is based on the most common available, and relevant,
information in algorithm descriptions. Some other proper-
ties were neglected due to many papers excluding the very
same information regarding such properties. The proposed
comparison is an attempt to analyse these state-of-the art
algorithms and benchmark them using the proposed crite-
ria. Table 3 compares the ship- and environment-related
properties across the chosen papers. The algorithms in the
comparison of Table 3 are grouped in three groups, sepa-
rated by white space, based on the “planning type” prop-
erty. Each row of the table includes the paper reference
(‘Ref.’), the type of path planning, and/or collision avoid-
ance algorithm(s) employed, followed by an analysis of how
the 8 properties in Table 2 are taken into account.

Although the focus of this study is on methods for ASVs,
papers related to USVs are also considered. The databases
used for finding journal and conference papers were IEEE
Xplore Digital Library and ScienceDirect. Additionally,
the NTNU library was consulted using the search tool Oria,
as well as suggestions from the reference organisation tool
Mendeley. The keywords used for search were “ASV,”
“USV,” “autonomous ships,” “path planning,” “collision
avoidance,” and “guidance.” The papers included in the
comparison are from the years 2010-2020, and the language
was limited to English. The distribution of the analysed
papers over the years is represented in Fig. 1. The number
of papers with respect to each of the eight selected properties
is represented graphically in Fig. 2.

We discuss each of the eight properties P1-P8 in turn,
before making some general observations, mainly with refer-
ence to Table 3 and Fig. 2.

P1. Planning type: The analysis of the selected papers
shows that 13 (29%) of the examined algorithms perform
global planning and, hence, are mainly concerned with
path planning; 17 (38%) algorithms perform local plan-
ning and collision avoidance; and 15 (33%) algorithms per-
form both global and local planning. We also found that in
most of the cases, local planning is performed in real time,
whereas global planning is often performed offline, prior to
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departure. In the hybrid cases, when both local and global
planning is used, the algorithm is generally a combination
of both real-time and offline planning and covers both path
planning and collision avoidance. Hence, with this close cor-
relation between local/real-time planning and global/offline
planning, a separate property of the algorithm being real
time or offline is not considered necessary in Table 3.

P2. COLREGsSs: The comparison table shows that compli-
ance with COLREGs is included only in the path planning
approaches that consider local path planning and collision
avoidance (algorithms with property GL and L). Most often,
algorithms take into consideration only up to four of the
main encounter situations, described in the three COLREG
Rules 13-15 [e.g., 40, 54]. These rules are usually imple-
mented as constraints in algorithms and indicate which
collision avoidance scenario should be used in the current
situation. Eriksen et al. [41], on the other hand, have imple-
mented a cost function penalising gentle turns and small
speed changes for obeying COLREG Rule 8, which states
that “action taken to avoid collision should be positive, obvi-
ous and made in good time.” Hence, the ASV’s behaviour
should be obvious and makes sense to human captains.

@ Springer
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Table 2 Selection of algorithm properties

# Property Categories

P1 Planning type Local (L), global (G), both (GL)

P2 Compliance with COLREGs Yes, no

P3 Traffic category Open waters (OW), coastal area (CA), congested waters (CW)

P4 Obstacle type Static (S), single dynamic (D1), multiple dynamic (Dn)

P5 Testing type Simulation (S), field test (F)

P6 Consideration of environmental disturbance Current (C), wind (Wn), waves (Wv), existing but unknown (Unk), no
P7 Consideration of vessel dynamics Yes, no

P8 Presence of safety domain Vessel safety domain (O), target vessel/obstacles safety domain (T), no

Szlapczynski [39] has proposed an extended method that
additionally focuses on COLREG Rule 19, planning the
path in restricted visibility conditions. Johansen et al. [53]
additionally have also implemented several other COLREG
Rules, namely 8, 16, 17, and 18. These rules have been
implemented as components of the cost function or as pen-
alty functions. Some papers emphasise that, according to
good seamanship practice, course change is preferred over
speed change in collision avoidance scenarios [38, 49].

P3. Traffic category: Concerning the traffic categories
considered in the papers, one part of the papers focuses on
the “open waters” category (13 papers, or 29%), considering
an area free from static obstacles such as land and islands.
The same amount of papers are dealing with “congested
waters” category (13 papers, or 29%) where the traffic most
often is busy, such as harbour areas, where both multiple
dynamic obstacles and static obstacles are present. However,
most of the papers are considering the “coastal area” type of
environment/traffic (19 papers, or 42%), where the environ-
ment is mostly cluttered with several static obstacles, but
there is almost no presence of dynamic obstacles.

P4. Obstacle type: The analysed papers consider dif-
ferent types of obstacles. In the simplest cases, 16 (36%)
of papers use algorithms that avoid only static obstacles,
including land, islands, and underwater objects. Most of
these algorithms are global path planning approaches. For
dynamic obstacles, 29 (64%) of the papers consider mov-
ing target vessels, underwater vehicles, and icebergs, with
7 (16%) considering single dynamic obstacle situations and
22 (49%) considering more complicated situations involving
avoidance of multiple dynamic obstacles. The high number
of papers that focus on avoiding dynamic obstacles might be
explained by the increased need for real-time collision avoid-
ance solutions. The dynamic obstacle avoidance problem
is more complicated, since knowledge of the target object
movement is required, and therefore, the consideration of
a time parameter must be included. In cases when there is
no communication between the own vessel and the target
vessels, the examined algorithms perform avoidance action
by predicting future positions of target vessels. This can be
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done by assuming that the own vessel can observe and esti-
mate the dynamics of the target object (velocity and course)
and its size; inferring compliance with COLREGs; or by
obtaining information from third parties, e.g., from Auto-
matic Identification System (AIS) data.

P5. Testing type: Most of the papers, 38 (84%) in total,
test the proposed algorithms only by means of simulations in
a simulated test environment built for this reason, for exam-
ple using simulation software and high-level programming
languages such as MATLAB. The testing environment varies
depending on the papers’ objective, and may include the
geographic area, traffic data, obstacles, and other parameters
related to ship dynamics of both own and target vessels.
Some papers perform tests in several scenarios for repre-
senting the flexibility of the algorithm adapting to different
situations. Sometimes, the performance of an algorithm is
compared with some other under the same environment. A
common practice is to use real map data for simulations
[e.g., 33, 35-38]. The remaining 7 (16%) papers are veri-
fied in both field tests and simulations. In these cases, small
vessels, equipped with GNC systems, e.g., Springer USV
[31, 24] and ARCIMS USYV [48], are used. An outstand-
ing project with thorough testing is represented in Varas
et al. [48] where tests have been performed both on desktop
simulations, on a bridge simulator, and on sea trials using a
USV. In this paper, testing is performed using Monte Carlo
simulations to detect weaknesses of the proposed method
and using historical collision incident data for more realistic
scenarios.

P6. Environmental disturbances: Table 3 shows that
when it comes to environmental disturbances, more than
half (27, or 60%) of the papers do not take any environ-
mental disturbances into consideration. Several papers
[e.g., 25, 26, 27] are focusing only on the effect of cur-
rent on the vessel (7, or 16%), some consider both current
and wind (4, or 9%) [47, 49, 53, 54], and only two papers
consider both current, wind, and waves [29, 35]. None of
the papers consider waves as the only environmental dis-
turbance affecting the ship’s movement; however, waves
are included in two papers together with wind and current.
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Table 3 Comparison of situation/environment and ship-related properties of different algorithms in 45 selected papers

Refs. Algorithm P1 P2 P3 P4 P5 P6 P7 P8
[25] Voronoi-visibility algorithm G No CA S S C No T
[26] Multi-layered fast marching method G No CA S S C No T
[12] Deep Q-networks G No CA S S Unk Yes (0]
[27] Pseudospectral optimal control G No CA S S C Yes T
[28] Deep deterministic policy gradient G No CA S S Unk Yes o
[29] Improved quantum ACO G No CA S S C,Wn,Wv Yes T
[30] Q-learning G No CA S S No Yes No
[31] Angle-guidance FMS G No CA S S,F C Yes No
[32] Smoothed A* G No CA S S,F No Yes No
[33] Finite angle A* G No CW S S No Yes O
[19] Ant colony optimisation G No CwW S S Unk Yes No
[34] A* on border grids G No CW S S No No No
[35] Genetic algorithm G No ow S S C,Wn,Wv Yes No
[36] A* post smoothed + DW GL No CA S S No Yes T
[22] Shortcut Dijkstra + APF GL No CA S S.F No Yes T
[20] APF-ACO+Multi-layer algorithm GL No CA S S,F C Yes (6]
[17] Modified artificial potential fields GL Yes CA Dn S No No No
[14] R-RA* GL Yes CA Dn S No No (6]
[37] Voronoi diagram + Fermat’s spiral GL Yes CA Dn S C Yes No
[38] Hierarchical multi-objective PSO GL Yes CA Dn S Unk Yes no
[39] Evolutionary algorithm GL Yes CA D1 S No Yes (0]
[16] Fast marching square method GL Yes CA D1 S No No No
[24] Direction priority sequential selection GL Yes CA D1 S No Yes T
[40] COLREG-RRT GL Yes CW Dn S No Yes No
[21] Bacteria foraging optimization GL Yes Ccw Dn S No Yes O,T
[41] A* with OCP + MPC + BC-MPC GL Yes CcwW Dn S C Yes T
[42] Path-guided hybrid APF GL Yes Ccw Dn S No Yes T
[43] Adaptive wolf colony search GL Yes ow D1 S No Yes (0]
[44] Artificial potential fields L Yes CW Dn S No Yes T
[45] Deep reinforcement learning L Yes Ccw Dn S No Yes 0. T
[46] COLREGs-constrained APF L Yes CW Dn S No Yes O, T
[47] Dynamic reciprocal velocity obstacles L Yes Ccw Dn S C,Wn Yes o,T
[48] Multi-objective PSO L Yes CW Dn S,F Unk Yes (6]
[49] Deep Q-learning L Yes Cw Dn S,F C,Wn Yes O, T
[50] Fuzzy relational products L yes ow Dn S no no T
[15] Optimal reciprocal collision avoidance L Yes ow Dn S No No No
[5] Ant colony optimisation L Yes ow Dn S No No (0]
[51] Deterministic algorithm L Yes ow Dn S no yes no
[52] Probabilistic obstacle handling + A* L Yes ow Dn S No Yes No
[53] Model predictive control L Yes ow Dn S C,Wn Yes (0]
[54] Evolutionary algorithm L Yes ow Dn S C,Wn Yes T
[9] Velocity obstacles L Yes ow Dn S,F No No T
[55] Fuzzy membership function L Yes ow D1 S No No (0]
[18] Genetic algorithm L Yes ow D1 S No No O
[23] NSGA-II L Yes ow D1 S No No O
Sums of sub-properties G: 13 No: 16 CA: 19 S: 16 S: 38 C,Wn,Wv: 2 Yes: 32 O, T:5
GL: 15 Yes: 29 CW: 13 Dn: 22 S,F: 7 C,Wn: 4 No: 13 0:13
L:17 OW: 13 DI1:7 C:7 T: 13
Unk: 5 No: 14
No: 27
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Out of all of the environmental disturbances, current is the
most often included one (13 papers), followed by wind (6
papers) and waves (2 papers).

P7. Vessel dynamics: Vessel dynamics have been con-
sidered in most of the cases (32 papers, or 71%). Some of
the ship’s parameters included in the papers are dynamics
of the vessel, a manoeuvring model, a kinetic model, turn-
ing ability, maximum steering angle or speed, and other
vessel motion constraints or limitations. The remaining 13
papers (29%) do not consider vessel dynamics.

P8. Safety domain: To enhance safety, a safety zone
(domain) is required for ensuring the respect of the clos-
est area around the own vessel, target vessels, or obsta-
cles. Across the applied algorithms, safety zones take
a variety of shapes, including circle, ellipse, rectangle,
shipshape, and inverted cone. An own ship domain has
been implemented using various parameters in 13 (29%)
papers. A safety domain around target vessels or a safety
zone around obstacles has been implemented in the same
number of papers (29%). Finally, 5 (11%) of the algo-
rithms have implemented both an own ship domain and
a domain, whereas 14 (31%) algorithms do not include a
safety domain.

Hybrid approaches: The study shows that most of the
algorithms are using a hybrid approach for path planning
and collision avoidance that combines two or more meth-
ods to improve the performance and cover different sides
of real-life situations. For example, Niu et al. [25] com-
bine Voronoi diagram with visibility graph and Dijkstra’s
search, creating a hybrid Voronoi-visibility algorithm; Wu
et al. [20] combine artificial potential field method with
ACO algorithm for global planning and uses a multi-layer
obstacle-avoidance framework for local planning; Xie
et al. [22] combine Dijkstra’s algorithm with APF method;
and Candeloro et al. [37] merge Voronoi diagram with
Fermat’s spiral (FS) to ensure curvature-continuous paths.
In most cases, the purpose of the hybrid approach is to be
able to solve both local and global path planning.

Single- vs. multiple-vessel control: Most papers are
focusing on single-vessel path planning methods, whereas
a few authors are considering path planning of a forma-
tion or a fleet of more than one vessel [e.g., 16, 56-58].
Notably, for formation path planning in a static environ-
ment, conflicting collision avoidance situations between
formation members also need to be considered, turning
the environment into a dynamic one.

4 Safety and objective functions
A crucial aspect of ASVs is the ability to navigate safely

in open waters, coastal areas, and congested waters
like harbours. To achieve safe manoeuvring, multiple
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components should be considered, such as COLREGs,
situational awareness (consideration of both dynamic and
static obstacles), dynamic properties and limitations of
the vessel, environmental disturbances, and safety domain
[59]. One way of ensuring the safety of the own vessel
considering the dynamic target vessels in the vicinity is to
include some safety aspects when searching for collision-
free paths, thus evaluating risk of collision. Hence, safety
of the own and target vessels should be incorporated, or
at least considered, when generating paths based on opti-
misation of an objective function.

In Fig. 3, we highlight what we have identified as being
the four most often used safety components across the
examined literature, namely (1) safety conventions, (2)
collision risk assessment (CRA), (3) safety domain, and
(4) environmental disturbances.

In the following subsections, however, we limit our
study to analysing the employment of (1) collision risk
assessment (CRA) and (2) objective function in the algo-
rithms proposed in the selection of literature.

4.1 Collision risk assessment

CRA is one of the key factors that aids in evaluating the
safety of the path to be taken. It is an assessment tool that
may include several safety criteria based on the current and
predicted situation, own or target vessels’ parameters, and
their mutual relationship.

An often used risk evaluation criterion for CRA in the lit-
erature is the closest point of approach (CPA), which can be
measured both in time and distance, as illustrated in Fig. 4.

The CPA is the position at which two dynamically mov-
ing vessels will have the shortest distance between them at
a specific time. The time to the closest point of approach
(TCPA) is the time when this position is reached. The

Safety
conventions

Environmental
disturbances

Ship
domain

Fig.3 Safety components



Journal of Marine Science and Technology

IEO)\“;.\\

Fig.4 The concept of time and distance of CPA

distance of the closest point of approach (DCPA) is the dis-
tance between both CPA points on the trajectory of each
vessel.

Both TCPA and DCPA are proposed for the maritime
field by Kearon [60], and they are used mainly for collision
risk assessment and navigation safety enhancement. The
TCPA and DCPA parameters, however, have a drawback. As
noted by the authors in Nguyen et al. [61], both parameters
do not adequately represent the danger of a collision when
moving into head-on situations and overtaking situations.

CRA parameters are not limited only to TCPA and DCPA,
although these are the most commonly used ones. Other
papers also consider parameters such as the distance of the
last-minute avoidance, distance to the target vessel, ratio of
speed, relative bearing, safe passage circle, and distance of
adopt avoidance action [15, 47, 62].

4.2 Objective function

There are many possible criteria for path evaluation using
an objective function. Some of the most often used criteria
which we have identified are:

— Path length: length of the obtained path (either before or
after smoothing of the path).

— Voyage time: time required to reach the target position
when traversing the obtained path.

— Smoothness: connection of waypoints in an optimal way
taking into consideration limited curvature or turning
radius of the ship. This property partly reflects whether
the path is feasible from the ship’s perspective. Reduced
number of sharp turns or a path smoothing module are
some examples of a smoothness component.

— Tractability: the practicality of the path, especially in
dynamic environments when some waypoints have to be
relocated during the journey [63].

— Energy consumption: a criterion that might be influenced
by several other factors, including path length, vessel’s
speed, or the effect of sea currents on the vessel, in terms
of economy.

— Path precision: how precisely does the designed path
pass through waypoints [63].

The comparison of (1) CRA components and (2) objective
function criteria included in papers is presented in Table 4.
Here, CRA analysis includes only the most often used crite-
ria, namely TCPA and DCPA. The analysis of the objective
function considers only the four most often implemented
components: length, time, smoothness, and energy effi-
ciency. For all columns, the presence/absence of the criteria
is indicated with ‘+’/’—’, respectively. The analysis is per-
formed for the same 45 papers that were chosen and analysed
in Sect. 3 with the same sequence of papers and the division
based on “planning type” property. The last row of the table
summarises the number of papers that have included each
of the criteria.

4.3 Analysis

Table 4 shows that the most often used CRA criterion is
DCPA, used in 21 (47%) papers, whereas TCPA was used
in 15 (33%) papers. 14 (31%) papers use both TCPA and
DCPA, whereas half the papers (23, or 51%) use neither
TCPA nor DCPA as a CRA criterion. Most of these 23
papers are dealing with static obstacles; therefore, there is
no need for calculating CPA. Instead, authors in Tam and
Bucknall [54] use a two-step CRA process by (1) determin-
ing the type of encounter, and (2) calculating the dimensions
of the safety area. The rest of the 23 papers that do consider
dynamic encounters use other ways to ensure safety, and col-
lision-free paths, such as considering COLREGs [16, 24, 40,
53], applying a safety domain around own or target vessels
[24, 53, 54], or calculating the probability of collision [52].

Regarding the objective function, path length (27 papers,
or 60%) is the component taken into account the most, fol-
lowed by smoothness (13 papers, or 29%), time (12 papers,
or 27%), and lastly energy efficiency (8 papers, or 18%). 10
papers use none of the four objective function components,
and no paper uses all four. In most of these cases, the papers
are dealing with collision avoidance [9, 15, 47, 51, 52, 53,
55]; therefore, authors do not prioritize optimization of the
path’s length, energy efficiency, or other parameters but
instead focus on safety of the collision-free path. Other com-
ponents included in objective functions by some authors are
tractability [31]; cost on deviating from the relative nominal
trajectory, and on control input [41]; and navigation restora-
tion time and angle during collision avoidance manoeuvre as
well as optimal safe avoidance turning angle [18].

Algorithms based on reinforcement learning (RL) [e.g.,
49] do not use a standard objective function but rather a
reward function. This means that standard objective param-
eters are not optimised directly. Instead, the reward function
helps the agent to learn and improve based on the dynamics
of an agent and the practicality and safety of the path. There-
fore, even though RL algorithms do not optimise smoothness
directly, they might generate a path that is smooth.

@ Springer
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Table 4 The use of CRA and
objective function components
in 45 selected papers Reference TCPA DCPA Length Time Smoothness Energy

CRA Objective function

[25] - -
[26] - -
[12] - -
[27] - -
(28] - -
[29] - -
[30] - -
(31] - -
(32] - -
(33] - -
[19] - -
[34] - -
[35] - -
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+
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+ + o
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+ + 4+ + + + + o+

[36] - -
[22] - -
[20] -
[17]
[14] -
[37]
[38]
[39] -
[16]
[24]
[40] - - -
[21]
[41]
[42]
[43]
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+ o+ L+ !
P + 1 + + +
[ [ |

[44]

[45] +
[46] -
[47] +
[48] -
[49] +
[50] -
[15]
[5]
[51]
[52]
[53]
[54] - - + + - -
[9] +
[55] -
[18] +
[23] +

+ + 4+ + o+

|

|

|

|
+

+ o+ +
+ + +
+
+
|
|

Total 15 21 27 12 13 8
% 33 47 60 27 29 18
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33% | 47%

TCPA DCPA

Fig.5 Usage of the CRA components TCPA and DCPA in 45
selected papers

60% 27% | 29% 18%

Length Time Smoothness Energy

Fig.6 Usage of the objective function components Length, Time,
Smoothness, and Energy in 45 selected papers

Statistics of CRA and objective function components
included in the papers are summarised in Figs. 5 and 6,
respectively.

5 Advantages and limitations

To further enhance our comparative study of path planning
and collision avoidance algorithms for ASVs and USVs,
we summarise the advantages and limitations (room for
improvement) of the algorithms proposed in the 45 selected
papers, as shown in Table 5. The criteria of the analysis
include computational complexity, convergence, planned
path features (particularly optimality and smoothness), the
ability to re-plan, operation in real time, the complexity of
the environment, consideration of the local minima trap, and
others.

The analysis of the advantages and limitations of the pro-
posed algorithms is based purely on the information provided
by the authors of each one of the analysed papers. Therefore,
this evaluation is inherently subjective, and in most cases, the
authors have not stated the limitations of the algorithms at all
even if they exist (noted in the table as ‘N/D’) or they have
been extracted from the future work section.

The analysis of the algorithms in Table 5 shows that in
many papers, authors do not state their limitations in a straight-
forward manner. In many cases, the limitations of the proposed
algorithms have been extracted from the future work section
of the paper. This section often gives a better comprehension
of the current state of the proposed method and its limitations
and parts that have to be improved.

In some cases, the conventional version of an algorithm has
been extended and improved to form promising derived algo-
rithms that avoid limitations of the conventional algorithm.
For example, a well-known limitation of the conventional APF
algorithm is the local minima problem. However, for derived
algorithms that are based on the conventional APF, authors
often state avoiding local minima trap as their advantage, addi-
tionally to other improvements.

To sum up, many of the proposed algorithms are trying to
overcome different problems connected with developing an
autonomous system that performs well in real-life applications.
However, the analysis shows that even when the limitations of
the algorithms are not stated clearly by the authors, they still
exist. That is, although researchers demonstrate knowledge
about which components should be included in an ASV path
planning and collision avoidance system, there inevitably will
still be difficulties in implementing the system in real life.

Finally, we wish to point out that, according to our knowl-
edge, several other path planning algorithms used for mobile
robots, ground vehicles, aerial vehicles, or underwater ves-
sels have not been applied to surface vessels yet, e.g., bug
algorithm [64], Voronoi fast marching method [65], sym-
bolic wavefront expansion [66], probabilistic roadmaps [67],
and fast marching® (FM*) [68]. Even though these algo-
rithms have been applied for path planning in various other
fields, it would be possible to adapt these algorithms also to
applications for ASVs. Moreover, interested readers should
note that additionally to our own comparison of algorithms,
and a comparison of performance of the A* algorithm and
derivative algorithms (A*PS, Theta*, and A*GB) used for
path planning for autonomous inland vessels is provided by
Chen et al. [34].

6 Discussion

The timeline of algorithms for the latest decade shows
an increased interest of researchers for solving path plan-
ning and collision avoidance problems for surface vessels
by experimenting with, and developing new, methods and
algorithms from the AI domain. However, this comparative
study shows that there is still no unambiguous model of how
“the ultimate” autonomous ship should be designed, which
components it should include, and how it should act. The
analysed papers offer various solutions to example problems,
but these solutions are often limited to perform well under
specific and restrictive conditions.

Through the analysis, we have identified a number of
limitations in recent solutions for path planning and col-
lision avoidance of ASVs (some of these limitations have
also been pointed out in other review papers in the field, as
described in our accompanying paper [1]):
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— The variety of algorithms used for solving path planning
issue is wide, with researchers continuously exploring
different options and trying to find better and more gen-
eral solutions.

— Many developed algorithms that appear to be efficient
theoretically have not been tested in a real environment or
with real traffic data; hence, it is not possible to evaluate
their efficiency in handling real-world issues.

— Some algorithms deal only with static obstacles, exclud-
ing dynamic ones.

— In many cases, the developed algorithms do not take
into account external disturbances such as wind, waves,
or current, which means that the modelled environment
is not complete and the performance of the algorithms
under realistic conditions would differ.

— Some algorithms assume that the velocity of target ships
(that need to be avoided) is constant, and/or that target
vessels do not follow COLREGS, meaning that the con-
trolled vessel is not observed and is ignored by other
vessels, which is not very realistic.

— Although many researchers agree that safety is the top
priority when navigating vessels, not all solutions are
considering COLREGs as part of their safe collision
avoidance or path planning algorithm.

— Collision risk assessment is typically based only on one
or two factors that do not represent the full comprehen-
sion of the safety situation of the own vessel in the envi-
ronment.

Several of these shortcomings lead to the consideration of
non-realistic testing environments for vessels, which, in turn,
might cause situations where the behaviour of the vessel at
sea will differ from the one in simulation tests.

Regarding the limitations of this comparative study, we
wish to highlight the following:

— It could be argued that the algorithms in the selected
papers should be sorted depending on whether they are
solving a path planning (on the global level) or a col-
lision avoidance (on the local, reactive level) problem.
The reason for not doing this is the difficulty in distin-
guishing the algorithms based on this division, as some
algorithms are used both for solving path planning and
collision avoidance issues.

— Another limitation is that the comparison of the consid-
ered properties only gives a partial understanding of the
performance of different algorithms in action.

— Finally, it is difficult to extract sufficient details about the
properties of the algorithms because of the incomplete or
vague descriptions in some of the papers, thus requiring
interpretation by the reader.

Future work should try to address these limitations, and
examine in more depth some of the properties in Sect. 3 left
out in this study, especially “predictability of environment”
and planning with uncertainty.

7 Conclusions

The extent of this research is large and fills in some gaps in
the field by comparing existing path planning and collision
avoidance algorithms of ASVs in a manner they have not
been compared before.

ASVs clearly have a big potential in future maritime
transportation, but their limitations should also be consid-
ered and treated with caution. In this study, we extracted a
set of defined properties and characteristics that was used
for comparison of the proposed algorithms in 45 carefully
selected papers. These properties can be used later by other
researchers for benchmarking and for comparing their own
algorithm to others’. With respect to the analysis of the 45
papers, the main contribution is threefold and consists of:
(1) a comparison of the usage of eight important ship- and
environment-related properties; (2) an analysis of how safety
has been incorporated, and what components constitute the
objective function; and (3) an analysis of advantages and
limitations of the proposed algorithms. We consider this
comparative study a good attempt at comparing the current
state-of-the-art and believe that it can serve as the basis for a
deeper performance evaluation system of path planning and
collision avoidance algorithms for ASVs.

Future research should be dedicated to simulation as well
as real-world field tests that evaluate the actual performance
of algorithms in various scenarios under different conditions
for a more precise comparison of the developed methods.
Such testing systems might aid in evaluating the reliability,
durability, and the flexibility of the methods, and in design-
ing appropriate algorithms for specific applications and
needs. Testing a large number of different scenarios might
be performed using Monte Carlo simulation methods.

Another interesting direction of future research is the
evaluation of safety and collision risk assessment of the
own ship navigating realistic environments. Components
that should be considered when evaluating safety and col-
lision risk are obedience to COLREGS, environmental dis-
turbances, static and dynamic obstacles, and safety domain.

Finally, quantitative and objective evaluation of ASV
behaviour should be supplemented by qualitative and subjec-
tive evaluation by domain experts such as pilots that could
observe ASV behaviour in simulated and real environments.
This would lead to improved safety evaluation and could
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help with designing new quantitative performance measures
for evaluating safety and risk in ASV operations.
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